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Lawrence Berkeley Laboratory 

Berkeley, California 94720 

ABSTRACT 

An experiment is described that provides an example of how Berry's geometric phase 

arises from motion of a particle with a magnetic moment in an electric field and an 

inhomogeneous magnetic field. 

Considerable attention has been paid in recent years to Berry's phase 1-4. In the 

simplest circumstances this quantity arises in the following way. Suppose that a 

quantum mechanical system possesses a Hamiltonian H[R(t)] that depends on a set of 

parameters, (represented by vector R in parameter space) which vary continuously 

and slowly with time. Suppose that at some initial time t =0, R=RO and the system is 

described by a wave function '1'0. Now suppose that after a certain time T, R(T) returns 

to its original values RO. Then the wave function at time T is not in general equal to 

'l'Oexp[-i!li 1T E(t)dt] • but'differs from it (even in the adiabatic lim~) by a phase factor 

eia, where a is Berry's phase. In particular, we consider the Hamiltonian H = -Ilee, .... 
where a is a magnetic moment, and B (t) is a time-dependent magnetic field. If B 

varies continuously and slowly with time, and at time t= T returns to its initial value, 

then it can be shown 1 that Berry's phase is 

am = -ma (1) 

where m is the magnetic quantum number of state'll, and a is the solid angle subtended 

by the tip of the magnetic field vector with respect to its point of origin as it traces out 

its closed path between t=o and t= T. 

In this note I would like to describe an experiment and its interpretation that provide 

an example of the foregoing, in which at least a part of the time- dependent magnetic 

field is motional, which means that it arises from motion of the particle of interest in an 

electric field. There is really nothing fundamentally new or startling about this 

situation, but it is described here because it may be of some pedagogical interest. 

The observations were carried out in the course of a continuing experiment to 

search for the electric dipole moment of the electron, an experiment that actually makes 

use of atomic beams of neutral thallium-205 in the F=1 hyperfine component of the 
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62P1/2 ground stateS. However the point of interest to us in the present note can be 

demonstrated most simply by considering instead a hypothetical experiment with a 

mono-energetic beam of spin 112 particles, for example neutrons. 

However, since this hypothetical experiment involves the interaction of a moving 

neutron with electric and magnetic fields, it is appropriate to recall in general terms 

how this interaction should be described , before we consider the experiment itself. 

Thus, we start with the Dirac equation for a neutral particle of spin 1/2 and magnetic 

moment ~. This moment is entirely anomalous and enters the Dirac equation only in a 

Pauli moment term. The equation is: 

(2) 

where we set li = c =1 and employ the "Pauli metric,,6. Let 

'V =( ~~ ) 
where 'I' A and 'l'B are the "large" and "small" two-component spinors in the standard 

representation. Then (2) can be written: 

" a·p 'VB + ill a· E 'VB = (W + Il a· B) 'V A 

aop 'VA - iJl aoE 'VA = (W - Jl aoB + 2m) 'VB 
( 3 ) 

1\ 
where p is the momentum operator, and W = E - m, where E is the total energyo For a 

non-relativistic particle and for physically attainable magnetic fields B, 

W - ~ creB « 2m. Thus in the last equation, we replace W - ~ cree + 2m by 2m to 

obtain: 

,.. 
aop - ill a·E 

'VB = 2m 'VA 

The first of equations (3) then yields: 

1'" '" W 'VA = -Il aoB'VA + - (aop + ill a·E)(a·p - ill aoE) 'VA 
2m 

(4) 

In the last term of (4) we ignore the contribution proportional to ~2, employ the 

identity a·a a·b = a·b + i a·a x b and also assume that E is independent of spatial 

coordinates, so that Ee~ = peE. Then making use of: 
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we find that (4) becomes: 

( 5 ) 

where in (5) c has been written explicitly. Now we consider a plane wave solution 

corresponding to a particle with definite momentum p =mv. Then (5) becomes: 

W=p2 _~cr.B_~cr.Exv 
2m c 

( 6 ) 

The meaning of (6) is of course quite obvious: in the laboratory frame the energy of the 

particle, apart from its rest energy, is given by p2/2m, and two other contributions: 

one arising from interaction of the magnetic moment with the actual magnetic field B, 

and another arising from interaction with the motional magnetic field Exv/c. 

We are now ready to describe our hypothetical experiment with neutrons. Imagine, 

then, a beam of non-relativistic neutrons, all with velocity v «< c) in the x direction, 
(see Fig. 1) and with spins prepared initially along the +z direction: 

'l'initial = ( ~ ) (7) 

This beam traverses an apparatus of the "Ramsey" type7 with separated oscillating 

fields fo~ magnetic resonance, the principal features of which are as follows: 

a) A uniform magnetic field BO in the z direction is imposed throughout. 

b) An inhomogeneous magnetic field B' = B' i is applied in the x direction by a pair of 

coils G,G' with oppositely directed currents. B' is odd with respect to reflection about 

the midpoint (x5) of the apparatus (see Fig.2), and IB'I « IBOI. 

c) An electric field E in the z direction is applied with a pair of parallel plates, and 

exists between x3 and x7' The neutrons enter and leave the electric field "rapidly" but 

"adiabatically". By rapid we mean that over the short lengths in which E varies between 

zero and full strength, the variation in B' can be neglected. By adiabatic we mean that the 

neutron magnetic moment precesses many cycles in BO in the time it takes for a neutron 

to traverse either of these short lengths. It is assumed that IBOI » IExv/cl. 

d) There is a pair of radio-frequency regions RF1, RF2 within which exist rf magnetic 

fields that rotate in the xy plane and are tuned to the magnetic resonance frequency: 
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0)0 =yBo ( 8 ) 

These fields are of equal magnitude, but differ in phase by rc/2. 

e) There exists a detector that is sensitive only to neutrons with spin up along z. 

Let us explain the function of this apparatus by following a neutron as it travels 

through the apparatus starting from an initial point xO. First it passes through RF1, the 

effect of which may be described in the rotating frame by a spin-flipping rotation 

matrix: 

COS~ . J3 
- SIO-

Ml = 
2 2 

sin~ 
2 

cos~ 
2 ( 9 ) 

We choose the rf field intensity and neutron transit time through RF1 so that ~ = 1tI2. 

Hence, immediately after RF1 the spinor becomes: 

\/( - M \/( .. 'a1 -.JJ 1 ) 
't" - 1 't" mill - m 1 ( 1 0 ) 

which means that the spin now points in the x direction in the rotating frame. The 

spinor of (10) evolves further as the neutron travels through the region of finite B' 

and finite E: 

( 1 1 ) 

Here 0, the quantity of interest to us in this paper, is a small phase that depends on v, B', 

E , and BO in a way that we shall shortly explain. But before we do, let us complete our 

description of the experiment, by accounting for RF2 and the detector. These components 

are included to make observation of the small quantity 0 possible. The effect of RF2 in the 

rotating frame is also described by a 2x2 rotation matrix M2, which differs from M1 

because the two rf fields differ in phase by rc/2: 
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M2= 
COS~ 

2 

i Si~ 

i Sin~ 

cos~ 
2 

( 

_1 

= 1'1 
i 
1'1 

( 1 2 ) h) _1 
1'1 

We apply matrix M2 to the spinor of (11) to find the final state: 

1 . (1-0) 'l'final = 2<1 + 1) 
1 + 0 ( 1 3 ) 

The signal S in the detector is proportional to the probability of finding a neutron, 

described by expression (13), with spin up: 

( 1 4 ) 

Now let us return to the question of what ois, and how it depends on B', BO' E, and 

v. We can see that 0 is the extra phase acquired in the rotating frame by the m= 1/2 

component of the neutron spinor, because of its adiabatic evolution through a magnetic, 

field (actual plus motional) that begins and ends as BO but is something else in-between. 

Hence it is clear that -0 is just 8erry's phase. From (1) and (13) we have: 

( 1 5 ) 

As for n, it can be obtained very easily in the limit where 80 » 8', 80» vE/c, by the 

following pictorial argument. We once again follow a neutron as it emerges from RF1 in 

Fig.1. At point x1 on its path 8' is negligible and the resultant magnetic field is just 80 

and in the z direction (see Fig. 1 b). The neutron proceeds along its path to point x2 

where B' is non-zero. The resultant magnetic field vector now points to "2" in Fig.1 b. 
.. The neutron proceeds further and enters the electric field rapidly but adiabatically at , I 

'..) 

x3. The magnetic field thus acquires a y component, which is, to order vIc: 

8y = vE/c 

As a reSUlt, immediately after point x3' the resultant magnetic field vector now points to 

"3" in Fig. 1 b. As the neutron moves further along, 8' increases for a time, but then 

decreases to zero at point xS' then reverses, and is negative at point xS. When the 

5 



neutron emerges from the electric field at x7' the component By rapidly but 

adiabatically goes to zero. Thus finally at point x9' the magnetic field is once again 8 0. 

It can be seen from Fig. 1 b that the resultant magnetic field vector has traced out a closed 

curve, which subtends the solid angle: 

n = 2 B'(X3)V Ji. (16) 
C Bij 

Of course, Berry's phase, given in this example by (15) with (16), is a purely 

geometric phase. Hence it should not, and does not, contain any mention of Planck's 

constant, or of the neutron magnetic moment. However, there is a restriction: the 

derivation we have just given is valid only if the magnetic moment is sufficiently large, 

so that the neutron spin precesses many times in the regions where E is turning on and 

off (adiabatic approximation). 

We have presented the foregoing discussion in terms of a beam of polarized neutrons. 

A closely analogous description applies for the experiment we have actually carried out, 

with 205TI atoms in the ground 62 P 1 /2 state, with total angular momentum (including 

nuclear spin 1/2) given by F=1. In the thallium experiment the rf fields and state 

selection procedure are set up in such a way that (13) is replaced by: 

- 1 ei1t/4 (1 - 8) 
2 

'If = -_1 (1 + 8) (17) 
f1 

1 e- i1t/4 (1 - 8) 
2 

Also the detector is set up to yield a signal S proportional to the ~ of the probabilities 

that the atom is found in states m=1, m=-1: 

S == 1-20 

Finally, since with thallium we are dealing with a system of angular momentum unity 

instead of one half, (15) is replaced by: 

( 1 8 ) 

with n given by (16) as before. We have made observations of 0, and the results are in 

excellent accord with (18). 
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The foregoing analysis is easily generalized to cover the case where BO is not 

necessarily much larger than B' or vE/c, and where the resultant magnetic field does not 

describe a closed loop (as in Fig. 1 b), for example because B' does not quite return to 

zero at x9. By employing an "instantaneous frame" with quantization axis along the 

resultant magnetic field (actual plus motional) at any point of the particle trajectory, 

we can calculate 0 , as follows: 

Let the magnetic field at a point x=vt be Bx=B', By=vE/C, Bz=B O' and define the 

angles <\I, e by the expressions: 

<I> = Arcta{:-x ' e = Arcos Bz 
-VBi +B~ + B~ 

Returning to the spin-1/2 case, let us also define the "instantaneous" basis states as: 

( 1 9 ) 

These represent neutron spin up, down with respect to 8(x(t)), respectively. 

The Hamiltonian is: 

H = - Jl·B = 1J.llg S·B -
where S is the spin operator. We have 

H'I' = ifi\j! (20) 

and Hu+ = E+u+, Hu_= E_u_, where E± = ±:y [Bx2 + By2 + Bz2]1/2. Let us express 'l' 

in terms of the basis states u± as follows: 

(21 ) 

Substituting (21) into (20), and taking into account that a±, u± ' and E± all depend on 

the time, we obtain: 

[a..14 + a.u.] exp(- ~{ E.d~) + [iLD. + a.u.] exp(-k{ E.d~) = 0 (22) 
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We now multiply (22) on the left by u+t . Noting that u+tu+ =1, u+tu_=O, we find: 

a. + a.(u; 14) + •. (u.; u.) exp~L [E.. E.J dt) = 0 (23) 

Dropping the third (rapidly oscillating) term on the left hand side of (23) in the 

adiabatic approximation, and employing (19) to calculate the second term, we obtain: 

A similar calculation leads to the following result for a_: 

It is then clear that 

It is easy to show that 

and 

$ = B"Ey - ByE" 
B~ + B~ 

where B = (Bx2 + By2 + Bz
2)1/2. 

(24) 

(25) 

(26) 

( 27) 

(28) 

Finally, in the limit where Bz » Bx,y one obtains from (27) and (28): 

(29) 
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where here the prime denotes differentiation with respect to x. Consequently, we have: 

8 = _1_ VfL(B}E _ E aBx) dx 
4B~ C . ax ax 

o 

(29) 

The secohd term in (29) may be integrated by parts, yielding: 

f' E~ = [EB,l~ -f' B,~ ax ax 
o 0 

(30) 

However, the first term on the right hand side of (30) vanishes. Thus, we find that (29) 

becomes: 

8 = _1 VfL(BxaE ) dx 
2B~ C ax 

o 

(31 ) 

As we have already stated, the regions over which E varies are sufficiently short that we 

may neglect the variation of Bx in those regions. Consequently Bx may be extracted from 

the integral in (31). It is then easy to see that we obtain result (15) with (16) once 

again. 
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FIGURE CAPTIONS 

1 a. Schematic diagram of experimental setup used to observe Berry's phase arising 

from a motional field. The numbers 0, ... ,9 correspond to points xO, ... ,x9 referred to in 

text. Coils C,C' have currents I, -I respectively that generate the magnetic field B', (see 

Fig. 2). 

1 b.(lnsert) Diagram showing how tip of resultant magnetic field (actual plus motional) 

depends on x(t). The numbers 1, .. ,9 correspond to the points of Fig. 1 a (see also Fig. 2). 

2. Dependence of the magnetic field B' on x. 
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