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PROJECTION METHODS COUPLED TO LEVEL SET 

INTERFACE TECHNIQUES 

ABSTRACT 

In this work, we consider the hydrodynamic problems with cold flame propagation 

by merging a second-order projection method for viscous Navier-Stokes equations with 

modem techniques for computing the motion of interfaces propagating with curvature

dependent speeds. This is part of the efforts in trying to approximate the solution of a 

simplified model of turbulent combustion. Results are given for a simple model of a 

flame burning in driven cavities and shear layers. 
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Introduction 

In this paper, we merge modem techniques for computing the solution to the viscous Navier-Stokes 

equations with new techniques for computing the motion of interfaces propagating with curvature

dependent speeds. The resulting algorithm tracks the motion of an evolving interface in a complex flow 

field, and easily handles complex changes in the front, including the development of spikes and cusps, 

topological changes and breaking/merging. As examples, we apply the resulting algorithm to interface 

boundaries in a driven cavity and in a shear layer, and cold flame propagation in a hydrodynamic field. 

At the core of this work are two separate numerical algorithms. The first is a second-order projection 

method due to Bell, Colella and Glaz [1] which extends the original projection technique introduced by 

Chorin [4,5]. This algorithm is used to track the evolving hydrodynamic flow field, and has produced some 

dramatic results of evolving flow, see Bell and Marcus [2,3]. The second set of numerical algorithms is a 

new class of schemes to follow the evolution of propagating interfaces. These techniques, introduced by 

Osher&Sethian [12], rely on level set partial differential equation to describe the motion of the propagating 

interface which may be approximated by borrowing technology from the numerical solution of hyperbolic 

conservation laws. The merger of these two techniques results in a robust approach to hydrodynamic prob

lems with interfaces. 

The work presented here, in some sense, is the next stage in the incorporation of the interface metho

dology presented in [12] into modem techniques for computational fluid mechanics. Starting from the ori

ginal interface work in [12], the interface equations were coupled to the equations of compressible gas 

dynamics in [10] to study the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. In that work, two 

approaches were examined. In one approach, the interface equation was directly incorporated as a fifth 

conservation law, and approximated using standard shock technology. Alternatively, the compressible flow 

equations were solved at each time step for the velocity field, which was then used to advect the interface. 

In [10] the coupling between the interface and the underlying hydrodynamics rested on locating the inter

face to determine the appropriate constant in the y-gas law. 

In this paper, we focus on the application of the level set interface methodology to the case of 

viscous flow. These equations are solved by a projection-type method which first advances the velocity 
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field by one time step and then enforces incompressibility as a constraint by projecting the new time step 

data onto the space of incompressible flows. As examples, we consider simulations in which the location of 

the interface may change as a result of both self-propagation (due to local geometric properties, for exam-

pIe), and through underlying advection by the hydrodynamic flow field. However, in this paper we do not 

consider problems in which the feedback mechanism is completed and the interface affects the hydro-

dynamic field. One such example of complex fluid-interface interactions with an extremely intricate fecd-

back mechanism between propagating interfaces and an underlying heat diffusion equation applied to cry-

stal growth and dendrite solidification was studied using the level set methodology in [16]. 

The outline of this paper is as follows. First (Section 1), we begin with a description of the second-

order projection method as developed by Bell, Colella and Glaz in [1]. Next (Section 2), we derive the 

interface equations for the level set approach and discuss numerical approximations. In Section 3, we 

present the numerical details of our implementation, and give results of numerical simulations of propagat-

ing interfaces in driven cavities, shear layers, and the numerical simulations of cold flames in hydro-

dynamic fields. 

1. The Second-Order Projection Method 

1.1. Theory 

In this section we describe a second-order projection method for the time-dependent, incompressible 

Navier-Stokes equations developed by Bell, Colella and Glaz [1]. The Navier-Stokes equations for 

incompressible flows are: 

1 
u/ + (u·V)u = -Vp + -V2u 

Re 

V'u=O 

(1.1) 

(1.2) 

on a domain n, where u is the velocity field, p is the pressure and Re is the Reynolds number. The initial-

boundary value problems for the Navier-Stokes equations include specifying initial u throughout n, and 

boundary condition for u, but not for p on an. 

The original projection method for incompressible flows was introduced by Chorin [4,5] to view the 

incompressibility condition as a constraint. The central idea is to update the velocity by first ignoring the 
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incompressibility, marching forward one time step and then projecting to the space of the incompressible 

. flows. It was inspired by the Hodge decomposition which states that a vector field v defined on a domain 

n can be uniquely decomposed into a divergence-free part u, which satisfies the boundary condition , 

u·n = 0 where n is the unit normal vector to the boundary, and the gradient of some scaler function <\>. We 

shall follow the construction given by Bell, Colella and Glaz [1] . 
.. 

We begin by reorganizing the terms in the Navier-Stokes equations in the form 

1 
u/ + Vp = -v2u - (u·V)u. 

Re 
(1.3) 

Thus, by the Hodge decomposition, u/ is the divergence-free component obtained by projection the right 

hand side onto the space of incompressible flows. We extend this argument to the semi-discrete form, 

defining un to be the velocity at t = n /).t ,p n + 112 the pressure at t = (n + 1I2)L\t. Given un ,p n -112, we 

hope to find un + 1 and p n + 112 satisfying 

u n+1_un 1 un + u n+1 
--- + Vpn+1I2 = _V2( ) _ (u.Vut+1I2 

L\t Re 2 
(104) . 

V·un +1 = 0 (l.5) 

While this scheme is second-order in time, it is not practical because of the poor conditioning of the linear 

system arisen [1]. The second-order method we describe here, like the original first-order method, com-

'putes an intermediate vector field and then projects it onto the divergence-free field. The other two parts of 

this scheme are the evaluation of the non-linear advection term (u· Vu)n+1I2 and the projection itself. 

Instead of solving Equation (1.4) with the incompressibility constraint (l.5), we solve the intermedi-

ate velocity field u * 

(1.6) 

Let us project u * onto the divergence-free field and write 

u* ::::un+1+L\tVp* (1.7) 

then Equation (1.6) becomes 

u
n

+
1 

- un + V(P n -112 + P * ) = _1_V2( Un + U
n

+
1 

) _ (U. VU)n+1I2 + ~ V2(Vp * ) (1.8) 
L\t Re 2 2Re 

V·un +1 = 0 (1.9) 
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In other words, the left hand side is decomposed into the divergence-free part and the gradient of the scalar 

field p n-1I2 + p * . By comparing Equations (1.8-9) with Equations (1.4-5) we see that 

pn+1I2 = pn-1I2 + p * (1.10) 

if the term 21lt V2(Vp *) vanishes. This can be achieved by an iterative process. Namely, we take 
Re 

p n + 1I2,k and solve Equation (1.6) for u * ,k , once we have u * ,k we decompose the right hand side of Equa-

tion (1.6) into 

(I.U) 

Then we use this pn+1I2,k+l to repeat the process until we have the convergence u* ,k ~ Un+1,k ~ u n+1 

and p n + 1I2,k ~ P n + 112. The first guess p n + 112,0 can be taken as p n -112 for n ~ 1, and for n = 0 we take 0 

as the first guess. In practice, we have found that for Ilt small enough, iteration is not needed beyond the 

first time step and the single step process in (1.11) is sufficient for our purpose. At the initial time step, we 

do not have the exact pressure field so it is necessary to iterate this process more than once. 

1.2. Implementation 

Next, we describe the spatial discretization and the evaluation of the non-linear terms. For simplicity, 

we assume that the domain is rectangular with n xm grid points. First we point out that the terms 

(u·Vu)n+1I2 are determined explicitly, based entirely on information at tn. Thus, solving Equation (1.11) 

in time reduces to solving the heat equation with an known source term. The discretization is done in the 

following way: the velocity and pressure gradient are defined in the centers of all cells and the pressure is 

defined on all corners. The diffusion operator is approximated by centered difference with special care 

taken at the boundary points. This leads to a five band linear system which, together with the known 

source terms, can be solved by a standard conjugate gradient method. 

Next, we briefly describe the evaluation of the known source term (u' Vut+1I2. First, the equation is 

set on the centers of all cells. Thus, (u'Vu)n+1I2 is evaluated at the center of a cell. It is approximated by 

the edge values at t n+1I2 in the following way: 

n+1I2 1 Ui+1/2j - Ui-1I2j 
(u·Vu) ij=2"(Ui+1I2j+Ui-1I2j) Ax (1.12) 
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1 UiJ+l!2 - UiJ-1I2 
+ 2(ViJ+li2 + ViJ-ll2) ~y 

To illustrate the way of calculating the edge values at t"+1I2, we take Ui+1I2J as an example. We can use 

Taylor expansion both in time and space and extrapolate either from the left cell, 

(1.13) 

or from the right cell. To decide which value to take we need an upwinding scheme. In this method we can 

use either the Godunov scheme or the Engquist-Osher scheme [8]. Since the schemes are explicit we 

require the following CFL condition 

to be satisfied. 

u··~t v··~t 
max(-IJ- , _IJ_) ~ 1 

ij ax ~y 
(1.14) 

We construct the spatial and temporal derivatives by the following steps. For spatial derivatives we 

compute a linear profile within each cell first, then we limit the slopes so new maxima and minima are not 

introduced. For the temporal derivatives we go back to the Navier-Stokes equations to obtain an approxi-

mation for ut by information at the previous time step. Again, we present the algorithm as derived by Bell, 

Colella and Galz, details may be found in [1]. 

The last part of each iteration is the projection itself. The direct computation of the divergence-free 

part of v is based on a discrete Garlerkin formulation. That is, we find an orthogonal basis for the finite 

dimensional discrete incompressible vector field and use the orthogonality condition to determine the pro-

jection of any vector onto this field. To guarantee that such a finite dimensional orthogonal basis exists we 

need some requirements for the discrete gradient G and discrete divergence D. The Hodge decomposition 

is based on the fact that if we integrate by parts we find that 

JU'Vq,dx =-Jq,V'udx = 0 (1.15) 
n n 

One crucial part of the numerical formulation is the construction of the . finite difference gradient 

operator G and divergence operator D to satisfy the discrete analogue 

(U, Vq,)=-(D'u,q,) (1.16) 

for discrete velocity field U and scalar field q,. This is a summation-by-parts procedure and one operator 
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will define the other. In our case we define G first at the center of a cell to be 

cJ>i+1I2J+1I2 + cJ>i+l!2J-l!2 - cJ>i-l!2J+1I2 - cJ>i-1I2J-1/2 

(G ~)i j ~ [:: 1 ~ ~i+li2j+li2 + ~i-IJ2j+IJ~i+1J2j-1J2 - ~i-IJ2j-ll2 (1.17) 

2~y 

for both interior and boundary points, while in the case of boundary points cJ> = 0 if this comer lies on the 

boundary. By the summation-by-parts of Equation (1.16) we determine the discrete divergence operator 

implicitly. 

After the derivation of operator D we define the vector space 

Vd = {u: (D U)i+1I2j+1I2 = O. i=l, ... , n-1, j=l, ... , m-1) (1.18) 

Since the discrete fluid velocity space V is the direct sum of V d and the space of discrete potentials, 

Stephens, Bell, Solomon and Hackerman have shown [17] that the dimension of this space 

dimVd = dimV - dimG (1.19) 

= dimV - [(n+1)(m+1) - dim (KerG )] 

We note that dimV = 2nm and dim (KerG) = 2, so 

dimVd = (n-1)(m-1). (1.20) 

To look for a basis of V d we need only to look for a basis of the discrete stream function field, which 

is a scalar field. Let '!i+1I2J+1I2 = 1 on the comer (i + 1I2,j + 112) and 0 everywhere else, then the velocity 

field induced by this stream function, Gi'!i+1I2J+1I2 is, first of all, divergence free and secondly, orthogo-

nal to all others, since 

(Gl-'!i+1I2J +li2 , Gl-'!i'+1I2J '+1I2) = 0 for i,j * i ',j' (1.21) 

Furthermore there are exactly (n-1)(m-1) interior comer points, we conclude that they form a basis of 

Once we have an explicit basis, we write the projection of any vector v in the form 

p v = Lai + 1I2J + 112 (7l'!i + 1I2J + li2 

iJ 

and since v - P v is perpendicular to V d we have 

(~a. . (7l1Iri +1I2J+1I2.r"' I ",i'+1I2J'+1I2) _ (v .r"' I ",i'+1I2J'+l!2) 
~ 1+ li2J + li2 'j" , Lr'-,/, -, Lr'-,/, 

iJ 

for all i' ,j' 

(1.22) 

(1.23) 

;' 
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These constitute the linear system for the projection. 

We also observe that the linear system turns out to be a discrete form of the vorticity-stream function 

equation - V2", = 00, with the inclusion of boundary conditions for",. The stencil is derived from forms of 

the discrete gradient operator G and the divergence operator D thus defined through the adjoint relation 

(1.16), and in this case, is the standard five point turned by an angle of : ' with mesh size fih for the case 

L\x = l'1y. = h. This makes the system decoupled into 2 independent systems and it is not surprising to us 

since dim (K erG) = 2 . 

. 2. Propagating Interfaces by Level Set Technique 

In this section, we describe the details ofa new class of algorithms for following moving interfaces. 

These techniques were introduced in [12], and grew out of a link between interfaces propagating with 

curvature-dependent speed and hyperbolic conservations laws discussed in [14,15]. They can be used to 

track highly complex moving interfaces in two and three space dimensions. Because these techniques do 

not rely on a discrete parameterization of the front itself, they naturally handle situahons in which the front 

may develop cusps and spikes, change topology and break/merge. The equations of motion and numerical 

approximations were discussed in [12]. Recently, these techniques have been applied to interface problems 

in the development of singularities in mean curvature flow [14,15], compressible gas dynamics [IO], and 

crystal growth and dendrite solidification [16]. In addition, theoretical analysis of mean curvature flow 

based on the level set model presented in [12] has recently been developed in [9]. Below, we present the 

basic ideas behind these techniques. The most straightforward derivation of the basic equations of motion 

was given in [10], and we follow that derivation below . 

2.1. Equations of Motion 

Suppose we wish to follow the evolution of an interface r(t) propagating with speed F normal to 

itself, in either two or three dimensions. The essential idea is to construct a function <I>(x, t) defined in all of 

domain, such that the level set { ~ = o} always corresponds to the position of the front r(t ). That is, 
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(2.1) 

Suppose we can smoothly extend F to all of the domain. We can then derive a partial differential equation 

for the evolution of <1>. Initialize <I>(x, 0) such that 

(2.2) 

where the plus (minus) sign is chosen if x is inside (outside) the initial front r(t = 0). Pick any level set 

<I> = C, and let x(t) be the trajectory of a particle located on this level set, so that for all time we have 

<I>(x(t), t) = C 

Since the level set moves with speed F normal to itself, we must have that 

ax 
-'n=F at 

where n is the normal vector given by n = ~<I><I>I . 

By the chain rule, we have that 

and substitution yields 

ax '" +V''''·_=o '1'1 'I' at 

<1>1 -F I V'<I> I =0 

<I>(x, t = 0) = given 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

This equation yields the motion of the front r(t) with normal velocity F on the level set <I> = O. We refer 

to this equation as a "Hamilton-Jacobi" level set formulation. Strictly speaking, it is only a Hamilton-Jacobi 

equation in the case when F is constant, but the flavor of Hamilton-Jacobi equations is present. 

To summarize, we have derived an equation of motion for a higher dimensional function <I> for which 

the level set always corresponds to the motion of the original front. Another way to say this is that we have 

transformed the Lagrangian equation which would have resulted from a parameterization of the moving 

interface into an Eulerian equation on a fixed grid of one higher dimension. We have traded an n-l dimen-

I 

sional hypersurface for an n dimensional problem. 
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Fortunately, the advantages of this exchange far outweigh the additional computational energy 

required by the extra dimension. To begin, we observe that the function <\>(x, t) always remains a function, 

even if the level surface <\> = 0 corresponding to the front ret) changes topology, breaks, or merges. In 

such cases, parameterizations of the front often break down. As an example, consider two circles in R 2 

expanding outwards with normal velocity V = 1. The initial function <\> is double-humped . As <\> evolves 

under the Hamilton-Jacobi equation of motion, the topology of the front <\> = 0 changes. When the two cir

cles expand, they meet and merge into a single closed curve with two comers. This is reflected in the 

change of topology of the level set <\> = o. 

Thus, the level set approach avoids the complex bookkeeping that plagues discrete parameterization 

techniques when the interface changes topology. Another advantage is that the technique is applicable in 

any number of space dimensions: calculations of interfaces propagating in three space dimensions are dis

cussed in detail in [12]. 

Finally, the central advantage of this approach is that, because we have posed an Eulerian problem 

for the motion of the propagating interfaces, fixed grid finite differences may be used to approximate the 

equations of motion. While care must be taken to choose difference schemes that satisfy an entropy condi

tion for propagating fronts, the most basic versions of the schemes presented in [12] are extremely straight

forward and simple to program. In this next section we give the motivation and form of the most basic 

technique. 

2.2. Link Between Propagating Interfaces and Hyperbolic Conservation Laws 

It is tempting to use a central difference approximation to the gradient in Equation (2.6), and thus 

produce the obvious explicit scheme (central difference in space, forward difference in time) for the update 

<\>n+l. Unfortunately, such an approximation is unworkable, for reasons which we now explain. For details, 

see [12,14,15]. 

Consider the simple case of a front propagating with speed function F = 1-£1(, where £ is a small 

parameter and 1C is the local curvature. The equation of motion for the propagating function <\> is then given 

by (see [12]) 
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(2.8) 

here we have used the coordinate-free definition of the curvature. Numerical evidence in [14,15], followed 

by a proof in [12] shows that for E > 0, the right-hand-side diffuses sharp gradients and forces the <\> to stay 

smooth for all time. Conversely, for E = 0, comers develop, and a singularity develops in the curvature. 

This situation is analogous to solutions of hyperbolic conservation laws, in which the absence of viscosity 

on the right-hand-side allows the development of shock discontinuities in the propagating solution. Indeed, 

an entropy is required to force the correct solution for propagating interfaces which is equivalent to the one 

required for hyperbolic conservation laws. A full description of this entropy condition and the link between 

propagating interfaces and hyperbolic conservation laws is given in [14,15]. 

Thus, an accurate numerical approximation to the equation for a propagating interface must pick OUl 

the correct entropy-satisfying solution and avoid excessive smearing at sharp discontinuities. This leads 

quite naturally to the use of schemes borrowed from the numerical solutions of hyperbolic conservation 

laws, where stable, consistent, entropy-satisfying schemes have a rich history. For an overview of shock 

schemes for solving conservation laws, see [11]. 

2.3. Numerical Approximation to the Level Set Equations 

Complete explanation of the use of shock schemes for approximating the level set equation (2.6) may 

be found in [12]. Briefly, consider a one-dimensional version of the level set equation, and let 

(2.9) 

Then a forward time-discrete version of the equation may be written as 

(2.10) 

Let g be an appropriate numerical flux function approximating H. Then we may directly approximate the 

spatial term and write 

(2.11) 

where D/ (Dx) is the forwards (backwards) difference operator. In multiple space dimensions and the 

special case where H (u) = u 2, a particularly straightforward numerical flux function was given in [8,12], 
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namely 

(2.12) 

This conservative monotone scheme is an upwind method, in that it differences in the direction of pro

. pagating characteristics. Equation (2.12) completely specifies the numerical approximation to Equation 

(2.6). Details may be found in [12]. 

2.4. Addition of Underlying Advection 

In the problems under study in this paper, the underlying advection plays the key role in the transport 

of the interface. This may be easily incorporated in the level set framework. Let U be the velocity field 

throughout the domain. Then the equation of motion for an interface propagating normal to itself with 

speed F and advected by an underlying fluid with velocity U is given by 

(2.13) 

3. Numerical Implementation and Results 

In this section we describe briefly the numerical implementation and present our results. The fluid 

calculation part is independent of the front propagating part and therefore can be tested before we merge 

the two parts. This part of the algorithm is identical to the one in [1]. We have developed codes to solve 

both the Dirichlet and the periodic boundary value problems. For each case we compute the solution on 

uniform grids with L\x = Ily = 1164, 11128 and Ilt = min(L\x/2, Iltcjl) where lltcjl is the largest time 

step the CFL condition allows. The time stepping is absolute stable since it is a Crank-Nicholson approxi

mation and is done by a straightforward conjugate gradient method. The evaluation of the nonlinear terms 

involves Taylor extrapolations and solving Riemann problems. We use the Godunov scheme for this pur

pose. The projection part is the most time consuming part as far as computing time is concerned. We use a 

preconditioned conjugate gradient method to solve the linear system and choose the incomplete Cholesky 

decomposition to be the preconditioner. 

For the Dirichlet problems we choose the driven cavity problem because of its distinctive vortex 

feature and literature on the subject. We solve the Navier-Stokes equations in the unit box 

n = [O,I]x[O,I]. The initial condition is that u = ° inside the box, no-slip and no-flow boundary condition 
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along the boundaries except the top where u = (1,0). With Reynolds number 1000, the flow takes about 50 

seconds to become fully developed. We plot the velocity field at this time and note that besides the main 

eddy centered around the box center, there are secondary eddies near the lower comers. The strength of 

these eddies is substantially weaker than that of the main eddy. 

In the case of periodic problems, the absence of boundaries eliminates boundary layers and viscosity 

plays a negligible part in the motion when it is small. For solutions to the Navier-Stokes equations with 

large Reynolds numbers, the in viscid solutions will provide us with a good approximation. Thus, to sim-

plify the calculation and concentrate on the vortex dynamics and its impact on burning flames, we instead 

solve the Euler equations. The linear algebra part for periodic geometry is similar to the Dirichlet . 

geometry except that we need to pay more attention to the null space elements. We consider the smoothed 

jet flow and use the same initial data as in [1] where 

{

tanhC y -0.25) for y ~ 0.5 
P 

u = 075-
tanh( . p Y) fory ;?: 0.5 

v = ~ sin(21tX) 

We also choose the parameters p == 1/30 and ~ = 0.05 to help us to compare our results with the results in 

[1]. We have obtained identical vorticity contours to those in [1]. As we refine the calculations, the vorti-

city layers get thiner and thiner. This agrees with the results in [1]. 

Next we consider a propagating interface by studying the propagation of a cold flame burning with 

speed F = 1 - £lC, where £ is a small parameter and K is the local curvature, see [14]. Here, we repeat the 

calculations performed in [13], obtained using a volume-of-fluid interface technique. Since the flame pro-

pagation does not affect the fluid calculation in this model, we use the first-order method to update <\>. The 

passive advection part is well-known [7] and we simply use a first-order upwind difference scheme. For 

the hyperbolic part, as we mentioned in Section 2, a particularly simple numerical flux function is the 

Enquist-Osher scheme and we use it in our calculations. Given a burning speed F = 1 - £lC, Equation 

(2.8) is of parabolic type and requires a much smaller time step than the one allowed by the fluid calcula-

tion. Therefore we introduce another time step f.t inside the fluid calculation time step interval, used for 

the updating of <l> within a single time step tlt, while the fluid velocity used remains the same for this time 
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period calculation. We find that letting tit = ~2 is adequate for this purpose. For the approximation of 

!C, we use centered difference for both the first and second derivatives. To avoid numerical singularity 

when 1 V<\> 1 is close to zero, we smooth the expression for !C in (2.8), replacing 1 V<\> 12 by 1 V<\> 12 + 82 in 

the denominator where_8 is some small positive constant. 

There are two kinds of ignition: one is to ignite the fluid located in the ignition cell only once which 

we call "sparked ignition"; the other is to constantly ignite the cell which we call "constant ignition". The 

difference is that for "constant ignition", the ignition point stays burned for ever; while for "sparked igni

tion", this point is ignited only once. In terms of the algorithm, the "sparked ignition" is described by 

Equation (2.12), and the "constant ignition" has to satisfy the extra condition that <\>(x,t) ~ 0 for t ~ 0 

where x is the ignition point. If we denote the region where <\> ~ 0 being burned and <\> ~ 0 being unburned, 

a first-order algorithm for "constant ignition" is the following: first we solve Equation (2.12) in one time 

step by the first-order method as in the "sparked" algorithm, and define ~1I+l to be the updated value, then 

<\>11+1 = rnax(~II+I,<\>~. 

In the problem of driven cavity, we take a 64x64 grid for both the fluid calculation and flame burn

ing. In Fig. (1-5) we show the results with the driven cavity flow. In Fig.(1-2) we constantly ignite the bot

tom midpoint (0.5,0.1 ). We run the fluid flow until t = 50 seconds to let the flow to be fully developed. 

To capture the fine detail of the flow we choose the burning speed S = 0.01. These calculations are simi

lar to those in [13]. Fig. 1 shows the burning flame at this constant burning speed. At t = 64 seconds, 

there is a sharp spike appearing, indicating the flame being dragged by the maximal velocity along the top. 

We also see the effect of the eddy around the lower left corner at this time and later at t = 66 and 68 

seconds. At t = 72 seconds the tip of the flame continues to be dragged toward the ignition area and at 

t = 74 seconds it has merged with the rest of the flame, pushing the flame toward the center. In Fig. 2 we 

include the curvature-dependence and let £ = 0.01. At t ~ 64 seconds the spike has not formed as the pre

vious case due to the fact that the positive curvature slows down the burning speed, and negative curvature 

speeds up the burning speed, which is why the flame is moved more toward the center. The merging 

appears earlier in this case than in the previous case since the flame is more pushed toward the center and 

the negative curvature speeds up the burning. At t = 80 seconds we see that the unburned region around 



- 14 -

the center has been disappeared. 

In Figs. (3-5) we study the motions of an interface initially dividing the box. First (Fig. 3) we show 

the passive advection of this interface, thus F = O. Then we ignite the upper part of the fluid only once and 

set the burning speed S = 0.1 (Fig. 4). The flame is approaching from the upper part to the lower part. For 

the part of the fluid on the right, the fluid velocity is in the same direction as the burning and the region is 

quickly burned. In the left part the situation is reversed and there is a competing balance between the fluid 

motion and burning. The fluid velocity is at its maxima halfway between the center and the left boundary, 

so there is an unburned narrow region moving into the burned region by the fluid flow, but it is burned 

eventually. We compare the case £ = 0 to the case £ = 0.01 and see the shortening and smoothing of this 

narrow region in the latter case. This is caused by the curvature-dependence as we expected. 

The final example is the doubly-periodic jet which results in two shear layers with opposite signs. 

Here we take a 128x128 grid for calculations. The burning speed S = 0.2. We ignite at the center con

stantly and again, compare the case £ = 0 (Fig.6) with the case £ = 0.01 (Fig.7). For t :s; 1.8 seconds there 

is not much difference. The flame moves to the right with the jet first, and is pushed down by the forming 

of the fluid vortex later. At t = 2.4 seconds we see that there is a small region surrounded by flame and a 

tip sticking to above in the case of no curvature-dependence (Fig. 6), while in the curvature-dependence 

case (Fig. 7) the flame has burned all the interior and the tip is much smoother. At t = 3.3 seconds we find 

that the flame is split into two parts due to the strong shear layer in Fig.6, and this does not happen in Fig.7 

since the flame does not reach that shear layer region. At t = 3.9 seconds the flame branch to the left

lower becomes thinner and continues to reach out at t = 4.5 in Fig.6. In Fig.7, however, it is shrinking 

(t = 3.9) and finally disappears at t = 4.5. 

We repeat the above calculations for a 256x256 grid and show the results in Fig. 8 and 9. It is obvi

ous that the burning rate is higher in the refined calculations than the coarse ones. For example, the tip of 

the flame is already merged into the ignition region at t = 1.8 in the 256x256 case. The reason is the thin

ning of the shear layers in more refined calculations as shown in [1] and our fluid calculations. Across the 

shear layer, the velocity changes its direction, with the approximated magnitude 1 in both directions. As 

the shear layer becomes thinner, the transition becomes sharper and the magnitude of velocity reaches it 
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maxima on both sides of the shear layer in shorter distances. In [l], Bell, Colella and Glaz showed that for 

a fixed time, the kinetic energy increases when calculations are refined. Therefore, with the increase of 

magnitude of the velocity, the flame is spread faster. This is what we see in the difference between these 

two calculations with different grid sizes. 

To summarize, we have studied the cold flame burning in several fluid flows with strong vorticity 

dominance. OUf interests are the interplays between the fluid velocity and flame burning, and the effect of 

the curvature-dependence. We have shown the easy handling of comer formings of flames by the level set 

technique and consistently the smoothing effect by the curvature-dependence. The next stage of the 

research is to study the complete feedback system, with inclusion of volume expansion and baroclinic vor

ticity production along the flame fronts. We can also use second-order schemes [12] to improve the accu

racy of the front position. The methods described here can be easily extended to three dimensional prob

lems and therefore will generate many more interesting results. 
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t =54. t =64 . 

t =66. • t =68. 

t =72. t =80. 

FIG. 1 Constant ignition at a bottom point: F(K) = 0.01 
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t =54. t =64. 

t =66. t =68. 

t =72. t =80. 

FIG. 2 Constant ignition at a bottom point: F(le) = 0.01 - O.Olle 
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t =50.4 t =51.6 

t =52.8 t =54. 

t = 55.2 t =56.4 

FIG. 3 Passive advection: F(K) = 0 
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t =50.4 t =51.2 

t =52. t =52.4 

t =52.8 t =54. 

FIG. 4 Sparked ignition along the center line: F(lC) = 0.1 
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t =50.4 t = 51.2 

t =52. t = 52.4 

t =52.8 t =54. 

FIG. 5 Sparked ignition along the center line: F(le) = 0.1 - O.Olle 
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t = 1.2 

t =2.4 

t =3.9 

t = 1.8 

~ , 

t =3.3 

t =4.5 . 

FIG. 6 Constant ignition at the center: F(lC) = 0.2 
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t = 1.2 t = 1.8 

t =2.4 t =3.3 

t =3.9 t =4.5 

FIG. 7 Constant ignition at the center: F(IC) = 0.2 • O.OIIC 
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>, 

t = 1.2 t = 1.8 

t =2.4 t =3.3 

,~ 

t =3.9 t =4.5 . 

FIG. 8 Constant ignition at the center: F(lC) = 0.2 
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I" 

t = 1.2 t = 1.8 . 

t =2.4 t =3.3 

t =3.9 t =4.5 

FIG. 9 Constant ignition at the center: F(lC) = 0.2 - O.QllC 
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