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Construction of Simple Multiscale Bases 
for Fast Matrix Operations 

Bradley K. Alpert 

Abstract 

Wavelet-like bases are presented with the property that a variety of 
integral operators are represented in these bases as sparse matrices. The 
bases differ from standard constructions of wavelets, in that they possess 
no elemental basis function, yet they retain the multiresolution structure 
of wavelets. Integral operators arising in problems of potential theory, 
which possess kernels that are smooth except at diagonal singularities, have 
sparse matrix representations in these bases. For these matrices, common 
matrix operations, including application of a matrix or its inverse to a 
vector, matrix-matrix multiplication, and matrix factorization, are fast. 

Key Words. wavelets, integral equations, sparse matrices, fast algorithms 

AMS(MOS) subject classifications. 42C15, 45L10, 65R10, 65R20 

Several common matrix operations often dominate the computer time in scientific 
computations in which they occur. These operations include the application of a 
matrix to a vector (matrix-vector multiplication), the application of the inverse 
of a matrix to a vector, and the addition or multiplication of two matrices. For 
arbitrary dense n x n-matrices, these operations each require computer time of 
order O(n 2) to order O( n3

), and typical scientific computations require many 
repetitions of these operations. Sparse matrix techniques have been developed 
to reduce these costs in cases where the matrices involved are sparse. 

In recent years a number of numerical algorithms have been developed ([7], 
[10], [11], [14]) in which operators of the type arising in potential theory are 
represented with "sparse" constructions. These algorithms effectively achieve 
application of a dense n x n-matrix to an arbitrary vector in order O(n) oper
ations. Yet more recently, algorithms have been constructed ([3], [6], [8]) which 
explicitly transform dense matrices representing integral operators to sparse ma

trices in order 0 (n) or 0 (n log n) operations. The application of these sparse 
matrices to vectors is similarly fast. 
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Perhaps of even greater interest is the fact that the inverses of these sparse 
matrices, when they exist, are also sparse and can be obtained in order O(n) 
or O( n 10g2 n) operations. As a result, the application of the inverse of a dense 
matrix to a vector can be made fast, and a variety of integral equations can be 
solved rapidly. 

The transformation of dense matrices to sparse ones is accomplished by a 
coordinate transformation, in which the revised coordinates, or basis, is a basis 
of wavelets. For these applications the essential properties of the basis is that it 
consists of functions that (generally) are 

1. Non-zero on finite intervals of various lengths, and 

2. Orthogonal to low-order polynomials. 

These two properties combine so that "smooth" operators are transformed to 
sparse matrices. The defining property of wavelet bases, that a basis should 
consist of a single basic shape which is identical on all scales, is not essential 
for these applications. In this chapter we outline the construction of bases which 
retain the multiscale structure of wavelets but in which the requirement of a single 
basic shape is discarded. The additional flexibility thereby obtained enables 
construction of simple bases for £2 [0,1], as well as bases for the finite-dimensional 
space of functions defined on a set of points {Xl, ... , xn} C [0,1]. In addition, 
we construct bases (in one dimension) for which the transformed matrices can be 
factored into sparse lower and upper-triangular matrices. The latter construction 
leads to the rapid solution of certain first-kind integral equations not treated by 
other algorithms. 

In §1 we present a sketch of the construction of these classes of bases (details 
may be found in the references). In §2 we state the fundamental analytical prop
erties of the bases which lead to the sparse representation of integral operators. 
In §3 we present several numerical examples, and in §4 we give a few concluding 
remarks. 

1 Construction of Simple Multiscale Bases 

We begin this section with the construction in §1.1 of a class of bases for £2[0, 1]. 
The class is indexed by k, a positive integer, which denotes the number of van
ishing moments of the basis functions: we say a basis {bI, b2 , b3 , ••• } from this 
class is of order k if 

j = 0, ... , k -1, 
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for each hi with i > k. We will see that in addition to several vanishing moments, 
most basis functions bi are non-zero only on small subintervals of [0, 1]. In §1.2 we 
show how a slightly different point of view leads to a class of bases for functions 
defined on a discrete set of points {Xl, ... , x n }. Finally, in § 1.3 we show how 
the constructions of bases defined in §1.1 and §1.2 can be revised to yield bases 
supporting sparse factorizations. 

1.1 Bases for £2[0,1] 

We employ the multi-resolution analysis framework developed by Mallat [12] and 
Meyer [13], and discussed in detail by Daubechies [9]. For m = 0,1,2, ... and 
i = 0,1, ... , 2m 

- 1 we define a half-open interval 1m ,i C [0,1) by the formula 

(1) 

For a fixed m, the dyadic intervals 1m ,i are disjoint and their union is [0,1); 
also 1m ,i = 1m + I ,2i U 1m + I ,2i+l. Now we suppose that k is a positive integer and 
for m = 0,1,2, ... and i = 0,1, ... , 2m 

- 1 we define a space S~,i of piecewise 
polynomial functions, 

S!,i = {f: f: R ---+ R, the restriction of f to the interval 1m ,; is a (2) 
polynomial of degree less than k, and f vanishes elsewhere} 

and we further define the space S~ by the formula 

It is apparent that for each m and i the space S~ i has dimension k, the space 
S~ has dimension 2m k, and ' 

Sk Sk Sk . m,i C m+l,2i E9 m+l,2i+l' 

thus 
S~ c S; c ... c S! c .... 

For m = 0,1,2, ... and i = 0,1, ... , 2m 
- 1, we define the k-dimensional space 

R~,i to be the orthogonal complement of S!,i in S~+1,2i E9 S!+1,2i+l' 

and we further define the space R~ by the formula 
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Now we have S~ EB R':n = S~+1' so we inductively obtain the decomposition 

(3) 

Suppose that functions hI' ... ' hk : R ---t R form an orthogonal basis for R~. 
Since R~ is orthogonal to Si, the first k moments of hI, ... , hk vanish, 

j = O,l, ... ,k - 1. 

The space R':n i has an orthogonal basis consisting of the k functions hI (2m x - i), , 
... , hk (2 m x - i), which are non-zero only on the interval 1m ,i, and themselves 
each have k vanishing moments. Introducing the notation htn,; for j = 1, ... , k, 
m = 0,1,2, ... , and i = 0,1, ... ,2m 

- 1, by the formula 

x E R, 

we obtain from decomposition (3) the formula 

S~ = si EB linear span {h!n,;: j = 1, ... , k; 
m = 0,1,2, ... ; i = O,l, ... ,2m -I}. 

(4) 

An explicit construction of hI, ... , hk is given in [3]. 
We define the space Sk to be the union of the S~, given by the formula 

(5) 
m=O 

and observe that Sk = £2[0,1]. In particular, Sl contains the Haar basis for 
£2 [0,1], which consists of functions piecewise constant on each of the inter
vals 1m ,;. Here the closure Sk is defined with respect to the £2-norm. We let 
{ U1, ... , Uk} denote any orthogonal basis for Si; in view of (4) and (5), the or
thogonaJ system 

Bk = {Uj: j = l, ... ,k} 
U {htn,i: j = l, ... ,k; Tn = 0,1,2, ... ; i = O, ... ,2m -I} 

spans £2[0,1]; we refer to Bk as the multi-wavelet basis of order k for £2[0,1]. 
In [3] it is shown that Bk may be readily generalized to bases for £2(R), 

£2(Rd), and £2[0, l]d. 
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1.2 Bases for Discretely Defined Functions 

The bases Bk described in §1.1 can be revised somewhat to yield bases for the 
n-dimensional space of functions defined on a set of points X = {Xl, ... , Xn} C 
[0, 1], where Xl < ... < X n . In the following development, for simplicity we 
assume that n = 21 k, where 1 and k are positive integers. Analogous to the 
intervals 1m ,i defined in (1), for m = 0,1, ... ,1 and i = 0, 1, ... , 2m - 1 we define 
the sets Xm,i by the formula 

We again assume that k is a positive integer and for m = 0, 1, ... ,1 and i 
0, 1, ... ,2m 

- 1 we define the k-dimensional space U! i by the formula , 

U!,i = {f: f: X ~ R, the restriction of f to the set Xm,i is a 
polynomial of degree less than k, and f vanishes elsewhere} 

and we further define the 2m k-dimensional space U! by the formula 

Clearly, as for S! i' we have the inclusions , 

and 
U; C Ul

k C ... C Ur 

For m = 0, .. . ,1 - 1 and i = 0,1, ... ,2m - 1, we define the k-dimensional space 
T!,i (analogous to R~,i) to be the orthogonal complement of U!,i in U!+1,2i EB 

U!+1,2i+1' 
U! i EB T! i = U!+l 2i EB U!+l 2i+l' , , , , 

and we further define the space T! by the formula 

Now we have U! EB T! = U!+1' so we inductively obtain the decomposition 

(6) 

This decomposition parallels (3). In both decompositions the constituent sub
spaces, which reflect various scales, are naturally spanned by "locally" supported 
basis elements, each orthogonal to low-order polynomials. Although the spaces 
R~ are spanned by the translates and dilates of only k basis functions hI, ... , hk, 
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Figure 1: The matrix represents a basis Ck for the space of functions defined on 
a set of points {Xl, ... , x n }, where n = 128 and k = 4. Each row denotes one 
basis vector, with the dots depicting non-zero elements. All but the final k vectors 
have k vanishing moments. 

the spaces T,~ do not have the same scale-invariance. Nevertheless, a basis for the 
space ut, which reflects the hierarchical decomposition (6), can be constructed 
by constructing bases for each of the k-dimensional spaces T! i and combining 
them with a basis for U~. We refer to such a basis as Ck ; th~ construction is 
illustrated in Fig. l. 

It is noteworthy that the construction of Ck requires only nj k orthogonaliza
tions of 2k x 2k-matrices and is therefore an order O(n) procedure (see [6] for 
this construction). 

1.3 Bases Supporting L U Factorization 

In §2 we will see that certain integral operators, whose kernels are smooth (and 
non-oscillatory) except at diagonal singularities, are represented as sparse matri
ces in the coordinates Bk or Ck . Also, the inverses of these matrices, when they 
exist, are sparse. It would be convenient if in addition these matrices could be 
factored into sparse lower and upper-triangular matrices. 

Integral operators expanded in bases Bk and Ck do not directly admit sparse 
LU-factorizations. Bases with this property do exist, however, and we outline 
their construction next. We construct bases (analogous to Ck ) for the space Ut

k 

of functions defined on {Xl, . .. , x n }; similar bases exist for the spaces 8~. 
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Figure 2: The matrix represents a basis DkJ for n = 128 and k = 4 (compa1'e 
Fig. 1). The limited interaction between basis functions on one scale and between 
scales leads to sparse LU factorizations of integral operators represented in these 
bases. 

The idea of the construction is to create subspaces of Ul
k of various scales, 

analogous to the T!, but whose basis vectors are supported on separated sets of 
points in X; the construction decomposes the spaces T!. For the following defi
nitions, we assume that the points Xl, ••• , Xn are equispaced. For m = 1, ... , I ~ 1 
and i = 1,3,5, ... ,2m 

- 1, we define the space Y:' i by the formula , 

yk Tk Tk Tk Tk 
m i = m i E9 m+1 2i E9 m+24i E9 ... E9 1_121- 1 - m i, , , , t t 

we define Y:' by the formula 

and we define Yok by the formula 

T,- k T,k Tk Tk ° = 0,0 E9 1,0 E9 ... E9 1-1,0' 

We now have the analogue of (6), namely 

(7) 

which expresses our intended decomposition. As is the case for (6), which gives 
rise to the basis Ck, a basis Dk of the space Ul

k that reflects the structure in (7) 
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can be constructed by constructing bases for the T! i. Such a basis is illustrated , 
in Fig. 2. Its basic properties will be discussed in §2. At this point we mention, 
however, that another such basis can be obtained by a straighforward reordering 
of the elements of Ck • 

2 Analytical Properties of the Bases 

We now describe how the wavelet-like bases Bk , Ck , and Dk whose construction 
is outlined in §1 produce sparse matrix representations for many integral oper
ators. The main idea is the following: a function which is analytic except at a 
finite set of singularities can be well approximated on intervals separated from 
the singularities by low-order polynomials. An interval separated from the sin
gularities is a line segment in the complex plane (generally lying on the real axis) 
whose length is less than its distance to the nearest singularity. We say that a 
function is well approximated by low-order polynomials on such intervals if the 
relative error of Chebyshev interpolation on each interval decays exponentially 
and uniformly in the order of the interpolations. The singularities are assumed 
to be poles or branch points. An illustration of this notion is given in Fig. 3. 

The ability to locally approximate by low-order polynomials any function with 
a finite number of singularities leads to the efficiency of function representation in 
the bases B k , Ck , and D k . For such a function f, if the order k is chosen based on 
the required precision, a basis element of Bk whose interval of support is separated 
from the singularities of f (and is orthogonal to polynomials of degree less than 

----~--~--~- --~----~------~----------------------~---------------
I, I , I , I , I, I , I , I , I , I , I , I, I , I , I , I , I , I , I , I , I , I , I , I , I , I , I , I , I , I , I , I , I 

Figure 3: The function f(x) = lnlx - .21 is graphed on the interval [0,1]' which 
is divided into dyadic subintervals. On each subinterval separated from the sin
gularity (indicated by solid line segments), the function can be represented by a 
polynomial of order 7 to six-digit accuracy. 
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Figure 4: The matrix represents a discretized integral operator with a kernel that 
is singular along the diagonal. The matrix is divided into submatrices of rank k 
(to high precision) and transformed to a sparse matrix with O( n) elements. Here 
n/k = 32. 

k) receives negligible projection from f. Consider now an integral operator K, 

(Kg)(x) = 10
1 

J«x, t) g(t) dx, 

whose kernel J< is an analytic function of x and t except at x = t, where it is 
singular. (Here the function J< (x, t), for fixed x or fixed t, is the analogue of the 
function f.) We can approximate the integral with the trapezoidal rule, which 
results i~ a system of linear equations. For a positive integer nand equispaced 
xl, ... ,Xn on [0,1]' we define an n X n matrix L = L( n) with elements Lij given 
by the formula 

L .. _ { J«Xi' xj)/n i::l j 
tJ - 0 i = j. 

The sequence of matrices {L(n)}nEZ+ converges to K. Although the rate of 
convergence is low, a change to endpoint-corrected quadratures [4] can be used 
to greatly accelerate the convergence. Each matrix L can be subdivided into·· 
squares separated from the diagonal, as shown in Fig. 4, in which the elements 
can be approximated by low-order polynomials. As a result, transformation of 
L to the basis Ck yields a sparse matrix. In particular, given a precision E, the 
order k can be chosen so that, up to E, the number of non-negligible elements in 
the matrices {L( n)} grows linearly in n. 
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Next consider two integral operators represented as sparse matrices in the 
basis Ck, possessing kernels /{1 and /{2 which are analytic except at diagonal 
singularities. The kernel /{3 of their product, given by the formula 

/{3(X, t) = 10
1 

/{2(X, y) /{1(Y, t) dy, 

is itself analytic except for x = t, and therefore has a sparse representation in 
the basis Ck' The product matrix can be obtained for a cost of order O(n) by 
simply multiplying the matrices of the two operators! This fact makes the Schulz 
method, a Newton-iteration-like scheme for inverting matrices, useful in practice 
[6]. 

All invertible integral operators of the above type have asymptotically sparse 
inverses (the number of non-negligible elements of the n x n-matrix representing 
the inverse operator is proportional to n). For certain operators, however, the 
number of non-negligible elements in the inverse matrix for moderate values of n 
may be nearly n 2

• This lack of sparseness occurs when inverting operators from 
first-kind integral equations. One solution to this problem would be to obtain an 
operator's decomposition into a product of lower and upper-triangular matrices, 
if these matrices are sparse. Operators represented in the bases Dk have such 
sparse factorizations, due to two properties: 

1. Two basis vectors bl and b2 of the space t! which are non-zero on different 
sets of points have negligible interaction b1 L b2 T. This follows from the fact 
that L b2 T is negligible outside the 3 . 21- m k points centered on the 21- m k 
points where b2 is non-zero. 

2. The interaction of basis vectors of different subspaces has "controlled growth" 
as one moves up the hierarchy. This property is somewhat complicated to 
state precisely [2], but is illustrated in Fig. 5. 

The number of non-negligible elements in n x n-matrices representing integral 
operators in the basis Dk is potentially of order O(n log2 n), but in numerical 
experiments we have observed slower growth. 

Analytical properties of the wavelet-like bases are statedand proved in greater 
detail in [5]. 

3 Numerical Examples 

In this section we give several numerical examples using the bases defined in §1. 
We consider a class of integral equations with logarithmic kernel, 

f(x) - p(x) 1110g Ix - tl f(t) dt = 9m(X), xE[O,l], (8) 

10 
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Figure 5: The potential non-negligible matrix elements are shown for a matrix 
1'epresenting an integral operato1' in the basis Dk . Note the matrix can be factored 
into lower and upper-triangular matrices without fill-in (additional elements) pro
vided that pivoting is done only within each block. 

where the right hand side gm is chosen so that the solution f is given by the 
formula f(x) = sin(mx). The integration can be performed explicitly, yielding 
the formula 

illoglx-tlsin(mt)dt = 10g(x)-cos(m)10g(1-x) 
o . 

- cos(mx)[Ci(mx) - Ci(m(l - x))] 
- sin(mx)[Si(mx) + Si(m(l - x))], 

where Ci and Si are the cosine integral and sine integral (see, e.g., [1], p. 231). 
Equation (8) clearly requires quadratures with increasing resolution as m in
creases; for our examples we let n = m, which corresponds to 211" points per 
oscillation of the right hand side gm' We use quadratures derived from the trape
zoidal rule with endpoint corrections [4], [15]; these quadrature rules converge 
rapidly. 

We consider cases with three different values of the coefficient p(x), namely 
p(x) = 1, p(x) = 100, and p(x) = 1 + ~sin(100x). The first two cases can 
be solved using the bases of this chapter, while the third case requires a minor 
elaboration. For the case p( x) = 1, both the operator and its inverse are sparse 
in the bases Ck and Dk , so either the inverse or the L U factorization can be 
obtained cheaply. The second case, in which p( x) = 100, is poorly-conditioned 

11 



Table 1: The integral equation f(x) - p(x) f~ log Ix -tl f(t) dt = gm(x), for which 
an explicit solution is known, is solved for various coefficients p( x) and various 
values of m (see text). Precision t = 10-3 and order k = 4 were used. The 
"bandwidths" N I , N 2, and N3 denote the average number of elements/row in the 
sparse matrices representing the operator, its inverse, and its L U factorization, 
while t l , t 2, and t3 denote the time in seconds required to compute these matrices. 
The condition number of the operator matrix is denoted by /\', and e2 and e3 denote 
the relative £2 errors of the solution obtained by inversion and L U factorization. 

Operator L U Factorization 
NI tl /\, N3 b e3 

p(x) = 1 
64 27.7 3 ,~ 31.3 30 .23,~E-3 27.7 0 .237E-3 

12R 31.0 7 4 34.2 RO .169E-3 31.1 1 .171E-3 
2S6 30.6 16 4 33.6 173 .161E-3 30.6 3 .161E-3 
S12 27.5 33 3 30.2 306 .130E-3 27.S 7 .130E-3 

1024 21.7 64 3 2404 3RO .597E-3 21.7 13 .164E-3 
204R 15.S 115 3 1R.1 4R7 o479E-3 15.5 15 .117E-3 
4096 9.7 199 3 10.6 463 o415E-3 9.7 13 .107E-3 
R192 6.0 357 3 7.3 M9 .3ME-3 6.0 17 .104E-3 

p(x) = 100 
64 29.1 3 411 63.3 1RO o442E-2 29.6 0 .R02E-2 

12R 33.3 R 393 113.0 R12 .374E-2 34.3 1 o44,~E-2 

256 34.6 17 3R6 169.2 3133 .46RE-2 3,~.9 3 .521E-2 
S12 32.2 3R 3S0 202.1 R991 .337E-2 33.7 6 .352E-2 

1024 2R.6 7R 29.9 13 o433E-2 

204R 22.9 lS9 23.6 2R .,~99E-2 

4096 15.9 316 16.3 47 .516E-2 
R192 10.7 62R 1O.R 32 .3R2E-2 

p(x) - 1 + lsin(100x) - 2 

64 36.2 3 4 41.3 ,~2 .22RE-2 36.3 0 .22RE-2 
12R 40.R R 4 47.0 1.~0 .209E-3 40.R 1 .210E-3 
2S6 40.S 1R 4 47.3 343 .177E-3 40.S 4 .177E-3 
512 34.7 36 4 40.9 574 .125E-3 34.7 9 .12SE-3 

1024 26.6 69 3 32.5 R40 .134E-3 26.7 15 .134E-3 
204R 1R.7 124 3 22.5 R,~R .S97E-3 1R.7 22 .117E-3 
4096 12.2 221 3 14.2 910 .S29E-3 12.2 26 .100E-3 
R192 7.2 394 3 Ro4 R93 o461E-3 7.2 21 .913E-4 
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and the inverse is not as sparse as the operator. For this case, it is dramatically 
cheaper to obtain the LU factorization. 

The third case, with an oscillatory coefficient p, is solved by the construction 
[6] of bases in which the basis elements are orthogonal to the functions p( x )1/2Xj , 

for j = 0, ... , k - 1, rather than simply the moments xj. This construction 
leads to the sparse matrix representation of an integral operator with a highly 
oscillatory coefficient. As we will see, the inverse is also sparse. 

Table 1 presents the numerical results for various coefficients p( x) and various 
right hand sides 9m (x). For each problem instance, the dense matrix representing 
the integral operator was transformed to wavelet coordinates Ck reordered for 
sparse L U factorization. The smallest matrix elements were discarded according 
to an element threshold determined by the chosen precision €, leaving a sparse 
matrix representing the integral operator. Second, the inverse matrix, which is 
also sparse, was computed by the Schulz method. As an alternative method, the 
LU factorization is obtained by direct Gaussian elimination. Third, the solution 
is obtained and the error is measured, for each of the two methods: application 
of the inverse to the right hand side and forward and back-substitution using the 
LU factorization. The table presents the "bandwidths," computation times, and 
errors associated with the methods, based on our FORTRAN implementation 
run on a Sun Sparcstation 1+. 

We make several observations: 

1. The "bandwidths" of the operator, its inverse, and its LU factorization 
decrease with increasing matrix size. In other words, in the range of matrix 
sizes tabulated, the number of matrix elements grows sublineady in the 
matrix dimension n. 

2. The operator matrix in wavelet coordinates is computed in time that grows 
nearly linearly in n. The inverse matrix and LU factorization are each com
puted in time which grows sub linearly in n, due to the decreasing "band
widths" as n increases. 

3. The solution accuracies are generally within the specified precision. Excep
tions are attributable to quadrature errors (for n = 64) and to poor condi
tioning of the underlying problem (for p(x) = 100). When confronted with 
large condition numbers, one must obtain the integral operator to higher 
accuracy than the accuracy required in the solution (as is well known). 

4. The times to compute the L U factorizations are much less than those for the 
inverses, even when the sparsities are comparable. In the case of the poorly
conditioned problem, the inverse matrices were not very sparse (large sizes 
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exhausted available memory and were not computed), yet LU factorizations 
remained sparse and inexpensive to compute. 

5. The ability to solve problems requiring an 8192-point discretization in a few 
minutes on a Sparcstation using these methods should be compared to an 
estimated 78 days for Gauss-Jordan inversion and 26 days for LU decom
position of an 8192 x 8192-matrix. One dense matrix-vector multiplication 
of that size requires roughly 19 minutes. 

We summarize these observations by remarking that the L U factorization of an 
integral operator represented in the wavelet coordinates described above is a 
highly effective method for the numerical solution of integral equations. 

4 Summary 

In this chapter we have described a class of bases in which integral operators are 
represented as sparse matrices. More generally, a dense matrix with elements that 
are a smooth function of their indices is transformed to a sparse matrix in these 
bases (to high precision). The sparseness results from the fact that the typical 
basis element has "local" support and is orthogonal to low-order polynomials. A 
locally smooth function is therefore concisely represented in these bases. 

These sparse matrices can be manipulated rapidly. Matrix operations, includ
ing application of a matrix to a vector, application of its inverse to a vector, and 
matrix-matrix multiplication, scale roughly linearly with the dimension of the 
matrices. We have presented examples demonstrating the effectiveness of these 
methods for the solution of a variety of integral equations. We anticipate that 
these bases will be applied successfully to other matrix computations, including 
some arising from elliptic and hyperbolic partial differential equations. 
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