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ABSTRACT 

We describe a new relativistic electromagnetic 

computer simulation code, with one spatial dimension, which 

explicitly follows right- and left-going electromagnetic 

waves by integrating along the characteristics of ~axwell's 

equations. The code is suited to simulating laser-plasma 

interactions. As an examyle, we discuss simulations of 

the heating of plasma by two opposed lasers whose beat 

frequency drives a local plasma oscillation. Excellent 

.agreement is obtained with the analyti~ theory, in the 

linear-response regime. 

I. INTRODUCTION 

This paper presents computer simulations of laser-plasma inter-

actions 1 introducing a new code for performing relativistic particle 

simulations with fully electromagnetic interaction. The application 

studied is the heating of plasma by two lasers (of frequencies w
0

, w
1

) 

whose beat frequency (0: w0 - ~1 ) is near the plasma frequency. 
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The nonlinear interaction may be considered as an induced decay 

(w0 -+ w1 + S't), in which the fraction R of the incident power at 

w0 is converted to w
1 

and S't, with the fraction RS't/w0 appearing 

as longitudinal plasma oscillation and, because of damping, ultimately 

as heat. It is the aim of the theory and simulations to determine the 

dependence of this efficiency parameter R on the parameters of the 

problem: laser intensities, density scale length, temperature. 

In the present paper we discuss the general theory of the 

interaction, with specific attention to the regime of linear longi-

tudinal response of the nonuniform plasma. This theory is then 

tested by the simulations, with excellent agreement obtained. 

Particular interest attaches also to the regime of nonlinear 

1 response; however, its analysis is still in progress, and will be 

reported in a later publication. 

It should be kept in mind that the process studied here, 

involving three electron waves (two transverse and one longitudinal), 

with no ambient magnetic field 1 is illustrative of the mor.e general 

' 
three-wave process, possibly involving ions, and in a magnetic field. 

. . 

Thus the principle of electron heating, by the damping of a resonant 

excitation_from the beat of two high-frequency waves, can be extended 

to the analogous heating of ions in a magnetically confined plasma. 

II. THE CODE 

There is a considerable literature concerning electromagnetic 

codes. 2 Mbst algorithms for solution of Maxwell's equations require 

solving a currentdrtven·wave equation for the vector potential. In 

this code, we solve for the electromagnetic fields explicitly by 



-3-

integrating 1~xwell's equations along their characteristics, Dawson 

and Langdon3 first used this method in 1966, 

Charged particles are represented by clouds of infinite 

cross-sectional area in the plane transverse to the grid. In the 

one dimension in which spatial variations are followed and 

particle positions are assigned, particles have finite size. Charge 
, 

densities are calculated by linear interpolation according to the 

PIC-CIC mode1.4 In this same dimension,, designated "longitudinal", 

there are components of particle velocity and electric field, and all 

wave propagation occurs. The electromagnetic waves are linearly 

polarized in the direction of the single transverse velocity component 

(see Figure 1). The self-consistent ana external magnetic fields lie 

in the transverse plane and are perpendicular to the polarization 

direction. The equations of motion are relativistic. There are 

versions of the code for which the plasma is assumed periodic or, 

alternatively, finite. 

For the particular geometry we have described (Figure 1), the 

two Maxwell curl equations take the following form: 

aE /ax + c-l aB /at 
y z 

= 47TJ /c y 

= 0 

By adding and subtracting these equations, we obtain 
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If we define the right- and left-going electromagnetic field 

quantities respectively as 

become 

E + B , the two Maxwell equations y - z . 

= + 4nJ /c 
y (2) 

Given the particle positions and velocities, from which we obtain the 

current · J , Eq. (2) is integrated along the vacuum characteristics y 

x + ct = const. Gridpoints in the sp~ce~ttme mesh are linked by the 

vacufun characteristics. Then [).x/[).t :: c, and there is no Courant 

condition in the usual sense. 5 By solving for the fields explicitly 

and by calculating a new current J with some smoothing at the 
y 

half time-step, spurious numerical dispersion is minimized. Conse-

quently, if we do the mechanics of the particle motion relativistically 

there should be no numerical Cerenkov instability. Furthermore, the 

parameters for which light waves in a drifting plasma can become 

unstable, due to finite differencing, are unphysical and can be 

easily avoided. 6 

The differential equations which the code solves can be 

summarized as follows: the equations for the fields, given the 

sources, i.e., charge density and current, are Eq. (2) and the 

Poisson e·quation 
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tJ) 

Electrons have charge e. We assume a single species here (with 

fixed neutralizing backgrouna) but the code deals with two in general. 

The equations for the particle and current densities (before linear 

interpolation) are 

ncx> = 2: o(x ~ xm> 
m 

t4) 

= 

m 

The equation of motion for the particles is 

e(E + v X B/c) (5) 
....., - ...., ' 

The closed set of equations yields to standard space~time 

centering and leap-frog techniques (Fig. 2). The equation of motion 

l5) is integrated forward in time using a hybrid, fast half-accelera

tion and rotation method. 7 Because·we are interested in the Fourier 

transform ot' the electrostatic potential, we solve Poisson's equation 

by means of fast Fourier transforms although f~ster techniques 

exist. The differences between the bounded and periodic versions of 

the code appear in the boundary conditions on the potential <P, the 

particles, and the electrostatic and electromagnetic fields at the 

system walls. Our simulation of a finite plasma assumes that the 

walls are radiation transparent and particle reflecting. In the 

bounded version, the longitudinal field Ex vanishes at the system 

walls. The magnetostatic, vacuum 1'ield contribution to Bz is 

an arbitrary constant value throughout, in either version of the 
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code, We have found the code quite inexpensive to use; typical computer 

experiments with 4000 particles have required 0.25 sec CPU per time-step 

on the C. D. C. 7600 at the Lawrence Berkeley Laboratory (this includes 

all operations: field solving, particle pushing,. and diagnostics). 

III, BEAT HEATING 

The theory of beat heating, of interest for confined plasmas, 

8-10 has been discussed by Cohen, Kaufman, and Watson and by Rosenbluth 

and Liu.11 Two linearly polarized transverse waves are oppositely 

incident on a finite, inhomogeneous, underdense plasma (Fig. J)~ 

1here can be a resonant interaction with a longitudinal normal mode 

of the plasma if the electrostatic disturbance, driven by the pondero-

. motive force at the beat frequency and wavenumber (n = w0-w1 << w
0

,w
1

; 

~ E ~0-~1 ), approximates the Bohm-Gross dispersion relation somewhere 

in the plasma. Because of the plasma inhomogeneity, the three-wave 

interaction is resonant only in a finite region around the position 

of exact matching shown in Fig. J. The dissipation of the electron 

plasma oscillation introduces· irreversibility into the three-wave 

process, and is the mechanism for the eventual thermalization qf part 

of the energy provided by the electromagnetic waves. The dissipation 

may be due to collisions, Landau damping, convective loss, or non-

linear mode coupling processes. Inasmuch as our present studies 

encompass both the linear and nonlinear regimes for the beat wave, 

we shall reformulate and extend the.main ideas of Ref. 9
1 

pointing out 

those results which remain valid for a nonlinear beat wave. 

From the wave equation for the total vector potential (of 

the two transverse waves), we obtain 
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= -w. 2 (on( x, t )/n
0 

]u 
p .. y 

(6) 

where uy(x,t) = -eAY(x,tJ/mc is the transverse oscillation velocity. 
. . 2 2 . 2 2 

(corrections to Eq. (6) are of relat~ve order uy /c , vth /c << 1, 

as shown by a Vlasov analysis.) We use a WKB representation 

for the vector potential, or transverse velocity: 

= '\)tx,t) exp[-iw0 t • iJ\rx• )dx.J 

+ ~(x,t) exptiw1 t - i J\1 ( x' )dx.] 

. 

+ c.c. 

+ c.c • (7J 

in terms of' the slowly varying complex amplitudes u0,u1 of the two 

opposed transverse waves; the wave numbers satisfy local dispersion 

relations: k£
2
(x) s (w~2 - wp~(xJ)c-2 • 

For the density perturbation (not assumed small), we use a 

beat representation: 

6n(x,t) = Ii(x,t) exp [-iflt • 1Jx K(x' )dx] • c.c. ,(8) 

where 0 : WQ - Wl is the beat frequency, and K : kQ + kl is the 

local beat ·wavenumber, We can ignore the density perturbation at the 

sum frequencies (w0 + w1 , 2w0, and 2~), for the followi~ reason. 

Since they represent high frequency, high phase velocity nonresonant 

perturbations, they can be only collisionally damped and are not normal 

modes. But if we consistently ignore collisional loss in high frequency 

perturbations the density perturbations at these sum frequencies simply 
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couple back into the electromagnetic waves, to produce nonlinear 

frequency shifts. 12 (The nonlinear frequency shifts for the transverse 

waves are of order (w 2;wo) cl u !2;c2 ), and are, in this paper, less 
p y 

than 10% of the frequency mismatches, which are at least 0.01 wp' 

when the magnitude of the mismatch is averaged over the resonance 

zone.} 

We further assume that n(x,t) is slowly varying in time 

(on the n-scale) and in space (on the K-scale). We can then obtain, 

from Eqs. (6)-(H), 

( 9) 

where only slow temporal variations are kept in the nonlinear coupling 

terms. The transverse group velocities are cR.= kR.c2;wR.. 

The energy density of each wave is proportional to 

w,_ 21 uR-1 2 (Ref. 8'). Multiplying the two equations of (9) by u0 * 
* and ~ 1 and adding their complex conjugates, we obtain the conserva-

tion law for transverse action: 

= 0 

(10) 

This law (ManleY-Rowe 1 or photon conservation) is valid for uniform 

or nonuniform plasma, and for linear or nonlinear density petrubation; 

but it is violated if our assumption of slowly varying amplitudes 

breaks down. The conservation of action implies that transverse 

energy is not conserved: as action is transferred from the higher 
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frequency wave tw0 ) to the lower frequency one (w
1

J, the energy 

difference, of relative size S2/w
0

, is deposited in the plasma, as 

a coherent oscillation or as heat. In the latter case, the process 

is irreversible, and only tne w0 + w
1 

transition can occur. In the 

former case, the deposit can be withdrawn, and energy transferred frcn 

w1 back to w0• (This is observed when the beat wave traps 

electrons. 1 
) 

The rate of action transfer is, from Eqs. (9), given by 

= 

On using the Poisson equation for the density and scalar potential 

amplitudes, K2~ = 4rrne1 the right side of (11) becomes 

( 12) 

The potential <P is the longitudinal response to the ponderomotive 
. ' 

potential energy13 '!'( x, t) :: (~ mu2
) ( x, t) ot' the electrons; 

{ ) represents an average over the rapid temporal variation at 

~0 ,u;_, yielding a beat variation '!'(x,t) = ~(x,t)exp(~iQt + ij" Kd.x) 
• ,-v( ') * .., c,c.~ .w1th If x,t = mu0~ , If the longitudinal response is 

linear.; we· have 

(13) 

where E is the electron dielectric function, evaluated at Q,K. 

(If the space-time variation of (u0,~) is not sufficiently slow, 

we should instead use n + ia;at and K -·ia;ax as the arguments of 

Ej in that case, the present formulation is not the most expedient, 
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and a three-wave analysis is preferable.) When the response is non-
1 . 

linear, certaJ.n of the nonlinear aspects may be incorporated by 

modifying the form of £, so that £ depends on ~ implicitly. 

We now use (12) and (13) to express the right side of (11) as 

21 21 12 -1 K u0 j u
1 

Im £ ( n, K) ( 14). 

For a liniform medium, the nonlinear equations for 

lu0 12(x,t), lu1 1
2(x,t) can be solved analytically, as discussed in 

Ref. 10. For a nonuniform medium, we limit o~ analytic study to the 

steady state (dUQ/()t = dUft = 0), Whence (11) and (10) become 

td/dx)(k0 1u0 12 > = (d/dx)(k1 lu1 1
2J. :;: (K2/c2 )!u0 !2 1u1 12 Im £-l 

( 15) 

where E(n,K; x) has an explicit x-variation through its parameters: 

density, temperature, possibly non-'Maxwellian electron distribution. 

In order to use the same notation as in Ref. :9, the (absolute) action 

density·f1uxes are expressed as (mc
2/e)2

JR.' with 

J Rt = (kRt/21T) I uR./c 12, so that ( 15) reads as in Eq. ( 3) of Ref. 9: 

~ -1 - 2 dJ0/dx = dJ1/dx = o J0J1Im £ (x), with 8 = 2K /x0k1 ~ 8 for 

n << w0 • Upon integrating over x, we found the solution 

' 
(16) 

where Af :: f( x = a) - f(x = b) 1 a and b are any two x-planes 
#V 

(such as the "e.dges" of the plasma), and J : J0 - J1 is the constant 

(signed) action density flux. 
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In the limit of weak damping (Im e: :: e:" <<;: 1), the x-integral 

can be carried out exactly. 9 We write Im e: -l(x) = -'TI'o( e: 1 ( x >], wnere 

·e: 1 :: Re e:; the integral is then 

f
b 

1 
a dx Im e:- (x) = -'TI'IO.e:'/'Ox,-1 = -'TI'Ln 

I e:'=O 
(1'/) 

defining the effective density scale length L • In this limit, the 
n 

action transfer of Eq. (15) takes place over the infinitesimal region 

where e:•(n,K;x) = 0, i.e., at the position x where the Bohm-Gross 

frequency at the beat wavenumber, . w(K; x), matches the beat-

frequency n. More realistically with finite e:", we have 

, 

and it can be shown ·that Im e:-l has a half-width of order 

e:"L = 2(vjw )L , where v is the total damping rate of a Langmuir n p n 

oscillation. Equation ( 17), however, remains unaltered in the limit 

that the half-width is small compared to the plasma length. In order 

that our WKB representation_ be valid, we must require that the transfer 

zone width (v/w )L exceed the wavelengths, i.e.; (v/w) >> (k 0 L )-1 • . p n p Nn 
17 3 (Typical parameters for a a-pinch, n0 - 10 /em , Te - 100 eV, 

w !w0 - 6.1, p 
. -2 
v/~ ~ 10 , 

and L _ 10 em, satisfy this inequality, since n . 
. ( )-1 -4 while k0Ln - 10 • For our simulations the resonance 

zone was of order lU wavelengths long.) If the damping is not weak 

(v ~ wp) 1 so that e:(x) does not become <<1 1 the integration can 

still be done, for known e:(x). Since strong damping implies 

Im e: -l = - 0'( 1 )1 we obtain in place of ( 17) 
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( 18) 

where L is the length of the plasma. In a real plasma, when 

L - ~L ), we have the important result that the action transfer is, 
n 

in order ot' magnitude, the~ f'or strong as for weak damping of 

the longitudinal response. Thus, for given K, the dependence on 

KAD is weak; and for KAD(< 1, the dependence vanishes, since the 

integral is truly independent of v for the model of a linear 

gradient. 

In a simulation model, for reasons of economy the slab 

thickness L may be smaller than L , and even smaller than the n 

resonance width (vjw )L • 
p n 

In that case appropriate corrections must 

be made in comparing theory and simulation. A typical simulation for 

beat heating when the density perturbations are linear is shown in 

Fig. 4. 

- Ref. 9); 

Inserting {17) into (16), we have the result (Eq. (5) of 

~ S~ k0Ln!u0/cj~ri = (1 - R - p)-l 1n[(l R)(p + R)/p] , 

(19) 

~implicit equation for the relative action transfer R = ~J/J0in, in 

terms of the input ratio p = J1in;J0in and the input amplitude 

ju0 1in" (See Fig. 2 of Ref. 9 for a plot, also Fig. 5 here.) This 

result is remarkable not only in its independence ofthe damping rate 

v {and thus of the temperature, the collision rate, and the damping 

mechanism), but also in that its dependence on the power parameter 

I 
2 . 

~lin and the scale length Ln is only through their product. 



-lJ-

The relation (19) was tested by simulation for the case of 

equal input actions (p =- 1)1 corresponding roughly to maximum transfer 

for given total power input, The excellent agreement, in the linear 

regime, is shown in Fig. 5. 

To test the dependence on 

product only, three runs were made 1 varying each but holding the 

product fixed. The agreement is shown also in Fig, 5. 

The damping rate v in these simulations was due to Landau 

damping of the beat wave. It was chosen to be in the range 

-2 -1 iO wp to 10 wp' corresponding to KAD between O.JO and 0.45. 

IV. CONCLUSION 

We have described a fully elec:tromagnetic, relativistic, 

finite-sized particle simulation code. The code is free from beam-

Cerenkov numerical instability~ The region of parameter space over 

which two light waves can interact with the grid and a plasma drift 

to give numerical instability is limited to unphysically short wave-

lengths and large time-steps, We found relativity to be important 

when nonlinear eft"ects are included because individual particles can 

attain very large velocities. 01' course, for some astrophysical 

applications, relativity is essential. Finall~ the code was found to 

be econoFScal to use. _ 

We h~ve used the code to study beat heating of a plasma in 

the linear and nonlinear regime of the driven density disturbance. 

Steady-state theory was found to be useful in understanding the_ ~ction 

transfer and plasma heating for small amplitude electron waves. There 

was good quantitative agreement between simulation and theory. 
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FIGURE CAPTIONS 

Fig. 1. The 1!-dimensions (x,vx,vy) of the code are pictured 

schematically. Wave propagation and density variation occur 

parallel to x. Transverse waves are linearly polarized in 

the y-direction. Magnetic fields are parallel to z. The 

three-wave interaction is diagrammed. 

~1g. 2, The equations describing transverse waves and particle 

dynamics are integrated forward in time using a time-centered, 

leap~frog technique. Currents are calculated from charge 

locations measured over consecutive time-steps and from 

velocities at the half time-steps ( Jy = ( J; + J; )/2 ]. 

Fig. 3. Beat heating in an inhomogeneous medium. Because of the 

resonance condition, there arises a resonance region h. The 

density gradient, described by the scale length 

Ln = (d~n0/dz)-1 , is parallel to the propagation direction 

of waves. 

Fig. 4. Beat heating in a finite, inhomogeneous medium: (a) the right

and left-going electromagnetic waves before onset of beating; 

(b)' (x,vx) phase space after a fairly large amplitude 

electron Plasma wave has been established. 
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Fig. 5, Relative energy or action depletion (R = 6.W/W) of the high 

frequency wave vs dimensionless parameter (scale length 

x pump strength) 4nk0Lnlu0 j2;c2 for beat heating in an 

inhomogeneous medium. The driven electron plasma waves are 

small in amplitude. An input ratio J
1
in;J

0
in = 1 has been 

. 2 2 
selected. The data points for 4nk0Lnlu0! /c = 0.5 

represent three parameter choices: V : 4lu
0
/cl 2 ~ 0,008 

and ·k0Ln = 18.3; [] : 4lu0/cl 2 = 0.010 and k
0

Ln = 15.2; 

and ~ : 4lu0/cl
2 = 0.012 and k0Ln = 13.7, We conclude 

that it is the combination of scale length k L multiplied 
0 n 

by pump strength lu0/cl 2 that determines action transfer. 
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