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cker diodes are required for sufficient energy deposition in the
material and better signal to noise ratio. One main obstacle in
achieving this objective has been the production of thick a-Si:H
diodes - with-.Jow defect density. that can sbe- fully depleted at
reasonable :bias voltages.: It should -be emphasized that the presence
of ;a' sizeable: electric field: is ~essential- for\,charge. collection in :a-
Si:H .devices as:-~carrier ‘diffusiony_playsT7 little role -in .charge

collection. One fundamental.. difficulty;'encountered.«in=obtaining - fully

depleted thick.:diodes flies. in the nature ,-.ofr.p amorphous -silicon.

Hydrogenated. amorphous:, silicon. has a - high;density, of states in:its

‘band.-gap.. These states.-are "differentiated ,as..beinggeither, shallow.!-or

deep states: ;These. states, control ithe electrical, properties ofuthe

material-t The shallow - states:ihave -dominant influence .on-, carrier

‘mobility ‘as carriers are trapped-and- detrapped-in-the shallow_states

during - their transit: [Tiedje_-etr-al:, .1980]..:The ' deep states ‘are

crucial -in determining - the carrier. lifetime...These:; states are:ialso

responsible . for -creating: space -charge. in.:the: material which then

shapes.i the: electric field:. The :thicknesst. to:.which the electtic field

penetrates'-in a thick a-Si:H p-i-n diode -is crucial ito;its usefulness

as a-radiation detector. The fact that: a largeo~density.rof charged
centers exist in.the i layer when .the .diode-is. under :DC bias, .the
electric field would no longer be.uniform, unlike za..crystalline p-i-n
diode where the electric field in the intrinsic layer is uniform
[Knoll, 1979]. This problem is further discussed at the beginning of
Chapter 5. Presently made ‘a.-Si:H diodes with i layer thickness
between 30 -to0;:40::microns deplete at reasonable bias .voltages
2



without breakdown or excess noise. Evidently the density of defect
states or the dangling bond density is an important parameter for
reasons stated above. Presently material with defect density ~ 1-2
x1015 ¢m-3 is produced without great difficulty and enormous
research is being done by various research groups toimprove the.
quality of the material further. Chapter 2 discusses some of the
material aspects rel.evant to my research work. In writing this
chapter I have drawn heavily on the published works of various

authors who specialize in this field and these works are referenced.

1.2 Device speed

The carrier mobility in hydrogenated amorphous silicon is small
compared to crystalline silicon. The electron mobility is ~ 1 cm?2/V-
s, a factor of ~1000 smaller compared to crystalline silicon and the
hole mobility is even smaller (< 0.01 cm?2/V-s). Consequently, one
expects an amorphous silicon device to be slow. In a 30 um thick
detector at 300 V bias the transit time ty (tf = d2/uV) for electrons
is > 30 ns and for holes is > 3 us limiting the device speed to several
microseconds for full charge collection.

However, if one were to rely on the signal from electrons
alone the device speed could be much higher. This has been demons-
trated in section 5.2.4 where significant beta signal is collected at
shaping times as low as 20 ns. Measurements with 860 Mev alpha

particles at short shaping times also illustrate this. As thicker and

~ improved a-Si:H diodes are realised, more energy is deposited by a
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particle going through the diode. The electron collection alone would

produce large enough signal making a faster a-Si:H device more

realistic.
1.3 Device Iieakage current and noise

The Ieakagé current of an a-Si:H p-i-n diode under reverse bias
is important from noise and power dissipation consideraiions. In
chapter 3 leakage current and noise behaviour of a well behaved a-
Si:H p-i-n diode has been studied. It is found that leakage current
at operating bias shows "Poole-Frenkel effect" [Hill, 1971] type of
dependence on voltage and leakage current makes dominant contri-
bution to noise in the form of "shot noise" for CR-(RC)4 (pseudo-

Gaussian) shaping at 3 us shaping time.
1.4 Device degradation

Hydrogenated amorphous silicon is known to degrade on
prolonged exposure to light due to Staebler-Wronski effect ( i.e. the
defect density of the material increases on exposure to light)
[Staebler et al., 1977]. As a radiation detector little degradation has
been observed in a-Si:H diodes on exposure to high radiation
fluences. As discussed in Chapter 4, 1 Mev neutron fluences
exceeding 1014 cm 2 produced little degradation in leakage current
and noise, and the effects were annealable. 1.4 Mev proton irrad-
iation showed more damage in terms of degradation in leakage curr-

4
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ent and noise and it became significant at 1013 cm-2 fluence. This

proton fluence corresponds to ~ 22 Mrad ionizing dose. The effects

were partially annealable.



2 Material properties

2.1 Structure of amorphous silicon

o Si
«—Dangling bond
° H

Fig. 2.1. Two-dimensional sketch of a random network of amorphous
silicon incorporating several dangling bonds. Also shown are hydr-
ogen atoms passivating some of the dangling bonds when amorphous
silicon is hydrogenated.

X-ray and electron diffraction experiments_v show that the
nearest neighbor environment in a-Si is approximately the same as
'that found in its crystalline counterpart. Although the long-range
periodicity is absent in a-Si based materials, a high degree of short-
range order is retained because of the chemical bonding resulting in
nearly equal bond lengths and bond angles as in crystalline Si.

6
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Generally, a continuous random network (CRN) in which all
bonds are satisfied but in which there is no long-range order is 'used.
as a model for a-Si. It is widely believed that in the bulk of a-Si a Si
atom on the average is surrounded by four other atoms at the same
distance as in crystalline Si, forming a regular tetrahedron. Further,
eéch of these atoms in turn has three more neighbors forming a
well-defined second shell of 12 atoms none of which is a neighbor
to any other. The resemblance of a-Si to crystalline Si ceasés
beyond the second shell [Madan , 1988]. In a CRN although the number
of atoms associated with the nearest nejghbors is the same, there is
a variation in the interbond angles that rapidly leads to loss of
order.

Polk [1971] first demonstrated the possibility of building a
CRN for tetrahedrally bonded a-Si with coordination number of 4 by
allowing +£10° spread in the tetrahedral bond angle of 109.59.

Fig. 2.1 shows two-dimensional sketch of a random network
for amorphous silicon. Also shown are several dangling bonds. In
amorphous silicon the density of these dangling bonds is ~ 1019
cm-3. Hydrogen incorporation lowers these dangling bonds to ~1015

cm-3,
2.2 Effect of disorder

Because of the absence of long-range order the conduction and
valence bands in a-Si differ from those in crystalline Si in having a
tail of states localized in the sense of Anderson [1958]. According to

7
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Fig. 2.2. Schematic showing states in the band gap of amorphous

silicon. The shallow states are due to long-range disorder and the

deep states are due to structural defects such as dangling bonds.

Anderson a state is localized if, for an electron placed in the state

at t=0, there exists a finite probability of finding the electron in the

state at t=e~ or more simply the electron has not diffused. The
localized band tail states in Fig. 2.2, that is the states between E.
and Eg, and Ey and Ep are supposed to be due to lack of long-range
order and the deeper lying gap states denoted by Ex and Ey are

ascribed to structural defects such as dangling bonds.

2.2.1 The mobility edge



B

Anderson [1958] predicted that for a carrier moving in a
potential well of Fig. 2.3 all states would be localized if Vo/B .
exceeded a critical value. Here Vg is the extent of the random
potential as shown in Fig. 2.3(b) and B is the bandwidth when Vg -
vanishes. Mott [1967] showed that if Vo/B was less than the critical
value the states in the gap would bé localized, a sharp energy, Eg,
called the mobility edge, as illustrated in Fig. 2.4, would separate
the localized from the extended states. The position of the mobility
edge ilsv an intrinsic property of the CRN and not a consequence of

defects. In a-Si:H the position of the mobility edge is independent of

E
N
v B
(&) N(E)
N L E
\'
1Y
(b) |

N(E)

Fig. 2.3. The potential energy of an electron in the Anderson model.
(a) Without random potential. (b) With random potential. B is the
bandwidth when Vg vanishes.The density of states is also shown.
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Mobility edge

I
)
' Eq E, E

Fig. 2.4. Density of states near mobility edge, E;. The states below
the edge are localized and above it are extended and thus have
distinctly higher mobility. :

hydrogen content [Jones et al., 1980]. Thé fact that hydrogen (10% or
so) widens the band gap is believed to be due to a shift of the
valence band downwards. One strong evidence of the existence of
mobility edge is the change in the behaviour of conductivity from
extended state conductivity in the conduction band to hopping
conductivity in the shallow states as temperature is lowered. This

is discussed in section 2.4.4.
2.3 Density of states

The states in the gap of an amorphous semiconductor . not only
10
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control the position of the Fermi e»nergy, Ef, but also the transport
properties of the material. In addition, they act as traps and
recombination centers that determine the kinetics for the restor-
ation of equilibrium after any perturbation away from thermal
equilibrium. Further, in intrinsic a-Si:H the defect centers release
charge which is swept out by the electric field thus producing space
charge in the material which then shapes the elect.ric field inside
the sample. |

The energy associated with repulsion between two electrons
with ' opposite spins that are present in the same spatial state is
called the correlation energy , U. When an electron of either spin is
present on the defect center the energy of the corresponding state
for the electron with opposite spin is increased by U and this con-
figuration forms a D- defect center as shown in Fig. 2.5(d). For
localized states U is of the order of a few tenths of an eV.

The key to understanding the electronic structure of a-Si and
its related alloys, for example a-Si:H, is the fact that it forms an
overconstrained network in Which the average coordination is 4 in
comparison to < 2.4 dictated by optimal bond lengths and bond angles
for covalent bonding [Adler et al., 1985] leading to local strains. For
an overconstrained material one expects that most of the strain is
relieved by non-optimal bond angles. This is the reason why a-Si
exhibits a £10° spread from the thimalvtetrahedral bond angle of
109.59. However, during the preparation of a-Si some concentration
of stretched bonds and uncoordinated atoms are likely to be
introduced because of the extent of the overconstrained nature of

11



the network. Alloying with any element from other columns in the
periodic table, e.g. hydrogen, lowers the average coordination z and
this tends to reduce the overall strain. The simplest defect that
uncoordination produces is a three-fold coordinated Si atom usually
called a dangling bond. The conventional notation used to denote
coordination and charge state of a defect is D,9 where z is the
coordination number and q is the charge state of the defect. Thus a
neutral dangling bond would be denoted by D30, Tight-bihding
calculations of Adler [1978] indicate that D3 defects yield two
states in the gap, a lower filed state DO and an upper empty state
D- separated by U. An electron removed from a DO center converts it
to D+ center. The D* and D-centers are spin paired and exhibit no
ESR signal unlike the DO center which is paramagnetic and can be
observed by its characteristic ESR signal (g=2.0055). The ground
state and several of the defect centers in a-Si are shown in Fig. 2.5.

Hydrogenated amorphous silicon, a-Sii.x:Hx, has an average
coordination number z = 4-3x, so that a typical concentration of 20%
hydrogen decreases z from 4 to 3.4 thus inducing a considerable
reduction in overall strain [Adler et al., 1985]. This reduction mani-
fests itself by sharp decrease in local bond distortion and defects.
In addition, the Si-H bond strength is approximately 3.4 eV which is
about 40% greater than Si-Si bond strength of 2.4 eV. Since H is
moré elctronegative than Si, Si-H bonding states are deep in the a-
Si:H valence band while Si-H antibonding orbitals are not too far
from the conduction band mobility edge.

If unoccupied defect center D+ is taken at zero energy and the

12
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Sir ' o

(c) <

\/

Do (sp?) 03 0%

Fig. 2.5. Schematic of local bonding configurations of ground state
and several defect centers in a-Si (a) ground state, Dz? (b) neutral

dangling bond Dg (c) positively charged defect center, Dg (d)
negatively charged defect ceter,?3. The bond angles shown are o =
109.5°, B=120° y=95° ; sp and p are the spectral notations of
orbitals [Adler, 1984]. .

energy of neutral defect center is denoted by E4 it will take energy
Ec-Eg to excite an electron from a neutral defect center to the con-

13



duction band. A negative defect center D- has both electrons present
and the two electrons repel each other, the second electron is at
energy Eg+U. Only an energy of Ec-Eg4-U is needed to excite it to the
conduction band. The three states D+ DO and D- all possess a

minimum energy configuration which is necessarily distinct.

A | /Ec

E
~ " Tail or Shallow
_ states due to disorder

T 03
Ueff - — — Eg States due
| 0 to defects
Dx
S

g?E)

Fig. 2.6. Schematic of the density of states of intrinsic a-Si for Uggs
> 0.

The correlation energy, U, can be defined as the energy

required for the reaction
2 DO D+ + D-

14
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without any local atomic relaxation. However, in reality the local -
environment around D+ and D-states will relax, lowering the energy
of both states and therefore the value of U. The minimum energy
needed to create an oppositely charged D+-D- defect pair from two
DO centers is the effective correlation energy, Ueft. The evidence that
Uess is positive in a-Si:H is provided by the ESR data [Dersch et al.,
1981]. However, the possibility of negative Uesf in a-Si:H has been
argued by some authors [Adler, 1983 ]. The density of states (DOS)

diagram for amorphous silicon with Ueff > 0 is shown in Fig. 2.6.
2.3.1 Growth conditions and density of states

Good quality hydrogenated amorphous silicon is deposited by

a glow discharge method ( also called plasma enhanced chemical

SiHg — @
PH3 &
BoHs —@—

[ Plasma |
~Film |
Substrate

RF

=

Fig. 2.7. Schematic diagram of glow discharge deposition system.
The deposition is commonly done at 13.56 MHz.

15



vapour deposition). Fig. 2.7 shows a schematic diagram of the
deposition system. Intrinsic a-Si:H is deposited using silane gas

(SiH4). Phosphine (PH3) or Diborane (BoHg) gases are introduced for n

or p type doping.

T T T T T T T
10201 : N
~—~ Ts= 310K

-
I
>

@ otel .
™
)
£
T
'
—~~
(343
-

o 10181 Ts=400K N

Ts= 520K
\
107+ Ts= 570K .
N
Ev Ec
I 1 1
1.6 1.4 1.2 1.0 0.0

Fig. 2.8. Localized state density, g(E), for glow discharge a-Si:H. Ts
is the substrate temperature. Full lines are obtained from the field
effect data and the arrows indicate the Fermi level position of the
samples. [Madan, 1973; Spear, 1973; Madan et al.,, 1976].
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The density of states (DOS) in the gap of glow-discharge
deposited hydrogenated amorphous silicon is critically controlled by
the deposition temperature, Ts, of the substrate [Spear et al., 1972].
The DOS decreases by orders of magnitude when Ts is increased from
3000 kto 570° k as shown in Fig. 2.8 [Madan, 1988]. The vast change
in the DOS with change in Tg is attributed to ‘basic structural
changes occuring in the material. The films produced at low Tg
generally have more H concentration, in excess of 30%, leading to
formation of polymeric type structures with a greater number of Si-

Ho and Si-H3 groups as shown in Fig. 2.9 [Lucovsky et al., 1979]. It is

X SiHy \/i/ ‘SiHz

(a)
° H

e S5ij
(b) |
(c) :
Fig. 2.9. Local bonding geometries. (a) isolated groups, (b)
monohydide configurations in which SiH groups are attached to

second or nearest neighbor, and (c) polymeric structures based on
SiH2 units [Lucovsky et al., 1979].

17



the fundamental change from polymeric type structure for films
deposited at low Ts to monohydride type at higher Ts that has a
major effect on the reduction of the DOS. The best quality a-Si:H has

an H concentration of ~ 10%. Hydrogenation decreases the defect
density from ~ 1018 c¢m-3 in pure amorphous silicon (a-Si) to ~ 1015

cm-3in hydrogenated amorphous silicon.

H H |
» | H
\S]‘/ v H\Si//.H
RSN N
Si si —> i L
VN /N N
H " H \L
\ / H H-H
H\ Si H H \31: ’
51/ \Si/ Nsi” H\ /

Fig. 2.10. Schematic of the model proposed to explain the hydrogen
elimination process from the a-Si:H film during growth [Kampas and
Griffith, 1981].

The quality of the film-is influenced by the pressure of the gas
during deposition since high gas pressure enhances gas phase
polymerisation with ‘consequent increase in Si-Ho and Si-Hs group- |
ings within the film [Kampas, 1982]. In génefal the hydrogen content,

18



CH, of a-Si based alloy is approximately in the 'range of 10-30 at%
which is much smaller than H/Si ratio (=4) for a pure SiH4 plasma.
Kampas and Griffith [1981] suggested a model for the growth
_ kinetics of a-Si:H film explaining the hydrogen elimination process
- from the film and the polyhydride formation. According to the model
the SiH2 free radicals react with the Si-H bond on the growing
surface and produce an activated complex that can eliminate H»
moIéCUIes. The amount of hydrogen reméining in the film s
determined by a competition between Hgo elimination and
geactivation of the complex. Further, the authors concluded that
changes in the deposition parameters that control the deposition
rate also increase the atomic hydrogen flux on the growing surfacev,
which results in a higher hyﬂdrogen content in the film. Fig. 2.10
shows a schematic of the SiH» addition, Hz elimination and cross-

linking sequence proposed by the authors.
2.4 Electrical transport in amorphous silicon

It is vitally important to understand the processes behind the
electrical transport in a-Si:H. As mentioned earlier the transport is
strongly influenced by the states in the band gap which can be
divided into two parts (a) tail states which vresult from disorder (b)
mid-gap states due to point defects. The role of these states in the

conductivity of the material is discussed below.

2.4.1 Conductivity in extended states
19



Transport in the extended states is a result of carriers excited
beyond the mobility edge into states at or around Ec The conduc-

tivity, o, for a semiconductor can be expressed as

o = e gE) u(E) {E)dE 1)

where g(E) is the density of states, u(E) is the mobility and f(E) is
the Fermi function.

The extended state mobility in amorphous silicon has been a
subject of controversy. It is generally agreed that the directly
measurable quantity, the drift mobility, pp, is reIative'Iy small of
the order of 1 cm2/V-s for electrons at room temperature. But the
drift mobility is only a fraction of the band mobility, uo, since it is
limited by the trapping of carriers. The two are related by [Tiedje et

al., 1980]

Ny
® N+,

Hp = H (2.2)

where ng and n; are the concentrations of free and trapped carriers
respectively. The value of pgy extracted from pp is ~ 10 cm2/V-s
[Tiedje et al., 1981] or ~ 500 cm?/V-s [Silver et al., 1982] depending
upon the inferred density of states g(E). One view is that conduction
beyond the mobility edge proceeds with a scattering event every
second or third neighbor. The other view is that the band mobility is
of the same order as that of crystalline silicon (c-Si) but large den-

20



sities of traps greatly reduce the drift mobility. The complete
absence of geminate recombination; geminate recombination is the
namé given to the process whereby two thermalized oppositely-
charged particles attempt to escape from each other in the presence
of their mutual Coulomb attraction [Adler et al., 1985]; indicating
extremely rapid separation of photo-generated carriers, and recent
work on multilayer structures [Abeles and Tiedje, 1983] suggesting
delocalized wave functions with coherence lengths in excess of 30
A0 are strong evidence in support of higher values of band mobilities.
HoWever, commonly accepted value of pg, derived from transient
photoconductivity experiments, is of the order of 10.

If it is assumed that conduction is due to carriers within kT of

the mobility edge Ecthen from eq. (2.1)

— o =ef "o sexpl-(E~E)/KTIdE @9
~eg(E.)oexpl-E~E)/kT][ " oE
=eg(E it o KTexpi-{E.~E):/K ] (2.4)

The temperature dependence of E.-E; can be expressed as
(Ec"Ef)T:(Ec‘Ef)o_‘SFT

and using eq. (2.4) we have
o =eg(E)u, kTe ™ exp[-(E,~E,)o/ k T] (2.5

21



The pre-exponential factor in eq. (2.6) has been a subject of

controversy.
& =0 ,exPIHE~E)/ K T] 9
10 ¢ y . -+
- 1
)
>
o~
E
)
' 1 -1
>
e o
-
o N
o]
=
- 1072
w
o
(a]
10 -3
3 4 5 6 7
1000/ T

Fig. 2.11(a). Temperature dependence of the electron drift mobility
for an electric field of 104 V/cm (closed circles) and 2 x 104 V/cm
(open circles). The solid (broken) line is a fit to the low- (high-)
field data with T¢g = 3120 K, pg = 13 cm?2/V-s andv = 4.6 x 1011 s-1,
The insets are representative photocurrent decays at 300° and 1900
K plotted as Log | vs Log t; the time scale is microseconds [Tiedje et
al., 1981].
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Fig. 2.11 (b). Temperature dependence of the hole drift mobility for
an electric field of 5.8 x 104 V/cm. The solid line is a fit to the data
based on eq. (2.8a) with T = 500° K, po - 0.67 cm2/V-s and v =
1.6x1012 s-1. The insets are representative photocurrent decays at
3590 and 270° K plotted as Log | vs Log t; the time scale is in
microseconds [Tiedje et al. , 1981].

Mott [1985] argues that oyin a non-crystalline semiconductor

system should be given by
o, = 0.03 €%/ nL, (2.7

where L; is the inelastic diffusion length, consequence of electron-

23



phonon interaction. Using the experimental values of the time
| between collisions Mott concludes that the pre-exponential factor o
=16 Q-1 cm-1 énd the extended state mobility pg= 8 cm2/V-s which
are consistent with most experimental values.

The value of up is obtained from time of flight (TOF)
experiments where carrier mobility is measured as a function of
tempera'ture [Tiedje et al., 1,981]. Fig. 2.11(a,b) shows plot of
eleétron and hol'e mobility as ‘a function of 1/T respectively and fit
to the data based on eq. (2_.8).» |

1 ' .1

1o L

Y @ , V3 T<T, (2.8)
0

where o = T/T, and the drift mobility is pg (1-T/T) for T > T,. Here,
kT, is an energy which characterizes the width of the exponential
band tail. From the fit to the data it is estiméted that uo for
electrons is ~ 13 cm2/V-s and for holes is ~ 0.67 cm2/V-s. It is also
seen that. at low temperaiures the electroh'photocurrent transient
exhibits the power law decay characteristics df dispersive
transport (lower inset in Fig. 2.11 (a)). However,' the hole transport
is dispersive over the entire temperature range and the activation

energy is ~ 0.35 eV.
2.4.2 Conductivity in tail states

The tail states in amorphous semiconductors are the conse-
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qguence of disorder and lie in the energy range Ej <E <E¢ and Ey <E <Ep
for the conduction and valence bands respectively as shown in Fig.
2.12.

The conductivity at an arbvitrary energy E = Ex for the conduc-

AN /
Ec
F Tail ‘(
a states ~ 0.7-0.8eY
D-
Ee r~02ev/ - — ——>—
Do Band Gap
1.7-1.8¢eY
Eb "~
E, \ l
g(E)

Fig. 2.12. Schematic of the density of states of a-Si:H [Street].

tion band tail can be written as

o =e] 1 (E) 9(E) f(E)dE 2.9

=ty | 9E) expL(E~E)/KT dE

where phop is the hopping mobility, consequence of transport of
carriers in the localized states by tunnelling from an occupied to an
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unoccupied state [Adler et al., 1985].
Cohen [1970] showed that hopping mobility, phop, is given by

1 eR?
H vep =0 pn (S )eXPl Wi/ K T] (210)

where R is the hopping distance and Wy is the energy difference

between the initial and final states [see appendix 1].

2.4.3 Variable range hopping conducvtivity

B
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7 R 2
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Fig. 2.13. (a) Hopping of a carrier from state A below the Fermi
energy to state B above it. (b) At low T, long range less energetic
hops are favoured.

Thermally activated hopping conduction of carriers between
localized states situated in the mid-gap region Ep <E < Ez occurs at
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low T, or at high T in materials with high defect density. Fig. 2.13
shows this kind of transport whereA a carrier hops from state A
below the Fermi energy to state B above it. The hopping conductivity
at Efis given by [appendix 1]

A
—) (219

o hop =O'06Xp(—- 1
4

T

1

Eq. (211 is known as Motts T* law [Mott, 1968].

2.4.4 Electrical transport in a-Si:H
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Fig. 2.14. Plot of In op vs 1/T for typical glow discharge (GD) a-Si:H
[Madan, 1988].
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Glow discharge a-Si:H has a low defect density, several orders

of magnitude lower than a-Si. As seen in Fig. 2.14 the Arrhenius
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Fig. 2.15. Temperature dependence of (a) Electron drift mobility up.
(b) Conductivity op in a glow discharge a-Si:H deposited at Ts = 5000
K. Tcis the temperature at which change in transport behaviour is
seen [LeComber and Spear, 1970].
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plot (dark conductivity op vs 1/T ) exhibits,' a straight line behaviour
and a well defined activation energy Ep = Eqc-Ef is obtained. The
‘conductivity, o, can be expressed by eq. (2.6) with activation energy
- Ep ~ 0.8 eV for intrinsic a-Si:H. Intrinsic a-Si:H is slightly n-type
and activated behaviour is due to extended state conduction above Eg.
This is in contrast to a-Si where unique activation energy is hard to
define and conductivity is dominated by thermally activated hopping
within the defect states. The change in transport mechanism in a-
Si:H from extended states conduction to thermally activated hopping
in the tail states was first reported by LeComber et al. [1974]'
showing that the drift mobility on a In up vs I/T plot had a kink at T
~ 2500 K as shown in Fig. 2.15(a). The same kink was observed in a In
op vs 1/T plot as shown in Fig. 2.15(b). The data was interpreted
in terms of the existence of two regions. In the region (1) the
conductivity showed activated behaviour with the activation energy
Ep - Ec-Efgiven by eq. (2.6) and the region (2) where conductivity
changed to thermally activated hopping behaviour with the activa-
tion energy given by Ep=Ex-E#+W. The In up vs 1/T plot was also
interpreted in terms of the change in conduction from the extended
states behaviour with activation energy Ec-Ea (- 0.2 eV) for region
(1) to a thermally activated hopping mode within localized states
with the activation energy ~ 0.1 eV for region (2). The photo-
conductivity nﬁeasurements of Spear et al. [1974] also showed such a
kink.

The evidence of In op vs T-1/4 behaviour predicted by eq. (2.11)
is not seen in glow discharge a-Si:H although this behavior is found
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in highly defective material such as elemental evaporated Si.
2.5 Material parameters of a-Si:H for device applications

The quantities of interest in using a-Si:H for device
applications are carrier mobility, carrier lifetime usually expressed
as mobility-lifetime product and the dangling bond density [Qureshi
et al., 1988]. While carrier mobility determines device speed and,
together with carrier lifetime, vdetermines the charge collection
behaviour of a device, the defect density is crucial in shaping the
electric field in the device under the inﬂuehce of which carrier
drifts. Therefore, the rdle of these parameters in a device fabricated
from a-Si:H cannot be over emphasized. These parameters bear
direct relationship to material qvuality, and their measurement is

crucial in judging the quality of a-Si:H.

2.5.1 Drift mobility by transient photoconductivity method

The drift mobility is measured by time of flight (TOF) where
carriers are injected at one point in the sample and their transit
under the influence of electric field across the sample is studied by
measuring the transit time tr. An expression for carrier mobility

under uniform electric field F is obtained as below.
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The carrier velocity, v, is given by
v=ppF
where i, is the drift mobility and F is the electric field. Also

V=—
t+

Thus, for uniform electric field F=V/d , we have

d2

e 212
#D VtT ( )

Some important considerations in drift mobility measurements are :
(a)} The mean free path Xg of light must be short compared to sample
thickness, d, so that carriers are generated on one end of the sample
and the signal is primarily due to transit of only one type of carrier.
This condition is satisfied by using appropriate wave length light.
We use 510 nm laser light (Xg ~ 0.2 um in a-Si:H) to study diodes 12
um or more thick.

(b) The photo-injected charge must be small so that the electric
field in the sample i's not perturbed by it [Street, 1983]. This can be
“ensured by reducing the light intensity. A rule of thumb used to avoid
these space charge effects is that the injected charge be
approximately an order of magnitude smaller than charge (CV)
across the sample.

(¢) The relaxation time, tre|=gper/c, Where ggis the permitivity of
vacuum, g is the dielectric constant of arﬁorphous silicon and ¢ is
the conductivity, must be much larger than the transit time tr of
carriers. This condition is easily sétisfied in intrinsic a-Si:H and >the
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mobility of both types of carriers can be measured by injecting Iight
from the n or p side of a p-i-n diode. The relaxation time for

intrinsic a-Si:H is of the order of a milisecond or longer, estimated

from eq. (2.13) [Tiedje et al., 1980]
t=107"? exp [E/kT], | (21 3)
where tis the thermal release time and E is the energy (measured

from the conduction band) of a state in the gap occupied by an

electron. The relaxation time for a-Si:H can also be estimated from
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Fig. 2.16. Schematic illustrating the principle behind drift mobility
measurement. (a) Drift of electrons across the sample. (b) Time
delay between pulsed bias and laser light.
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resistivity and the dielectric constant (c ~ 10-10 Q-1 cm-1, gpeg ~
10-12 F/ecm). Once relaxation occurs under applied bias, space charge
| is created in the sample, resulting in the shaping of the electric
field. However, in a T.O.F experiment the condition of a  uniform
electric field is satisfied by pulsing the bias and then injecting the
charge several microseconds after the applied bias, as illustrated
in Fig 2.16(b). The sample is allowed to reach thermal equilibrium
which usually takes several seconds, before the sequence is
repeated. Typical electron transient at room temperature is shown

in Fig. 2.16(a).
2.5.2 Gaussian transport

Transport of electrons at room temperature is non-dispersive
and is described by Gaussian statistics [Scher et al.,, 1975]. The time
development of the injected carriers can be described in terms of
mean displacement | from the illuminated surface as shown in Fig.
2.17. The parameter B characterizes the spread of charge sheet about .
the mean. The charge density as a function of position and time
during the transit can be described by [Leal Ferreira , 1977]

px 1) =A-t-11,-2-exp[—(x—x0)2/ B ] (214)

where x, refers to the location where the charge sheet is created.
For Gaussian transport, spread of the charge sheet by diffusion about
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Fig. 2.17. Schematic representation of carrier propagation under
Gaussian conditions, Top: Position of representative carriers in the
sample bulk at t= 0 (') , t < tT () and t ~t7 (*). Middle: Charge
distribution in sample bulk at t=0, t < tt and t ~ t1. Bottom: Current
pulse in external circuit induced by charge displacement. Units
normalized to tt and it = i(t). Dashed line represents transient
current for lower applied bias field, i.e. longer transit time. (1)
shows charge sheet just after injection, (2) indicates charge is
traversing through the bulk but not reached the farther contact and
(3) shows that a fraction of injected charge has already reached the
farther contact [Pfister and Scher, 1978].
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the mean can be written as

1/2
El-zt—=t""2 (215)

By . Eye (216)

For non-dispersive transport transit time is defined as the time at
which current drops by 50%. This is the time for the center of the

gaussian charge sheet to traverse distance d.
2.5.3 Dispersive (non-Gaussian) transport

In this mode of transport the shape of the current transient is
independent of transit time tr, aproperty usually referred to as
universality [Scher et al. , 1975]. The charge sheet does not grow
symmetrically about its mean position. Some of the injected
carriers drift rapidly into the sample. A significant fraction of
carriers suffer scattering and get immobilized for times of the
order of transit time tr. The charge packet grows asymmetrically
where the leading edge penetrates deep into the sample and the
maximum point of charge density moves slowly away from the
generation point. The spread and the mean position of charge have
the same time dependence giving B/l=constant [Scher et al., 1975].
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Fig. 2.18. Schematic representation of carrier propagation under
ideal non-Gaussian conditions. Top: Position of representative
carriers in the sample bulk at t=0 ('), t<tt () and t~t1 (*). Middle:
Charge distribution in sample bulk at t=0, t<tt and t ~ t. Bottom:
Current pulse in external circuit induced by charge displacement in
linear wunits (left) and logarithmic units (right). Dashed line
represents transient current for lower applied bias field, i.e. longer
transit time. (1) shows charge sheet just after injection, (2)
indicates charge is traversing through the bulk but not reached the
farther contact and (3) shows that a fraction of injected charge has
already reached the farther contact [Pfister and Scher, 1978].
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The current transient in the case of dispersive transport has
two slopes (1-a) and (1+a) when plotted as a log i(t) vs log t plot, .
as shown in Fig.‘ 2.18. Here o is the dispersion parameter. This
behaviour has been modelled by Scher et al. [1975]. The transit time

in this case is defined by the point of intersection of two slopes.

2.5.4 Mobility-lifetime product

The mobility-lifetime product pt is a useful parameter as it
determines the mean drift length, ptF, of carriers before capture. It
is a directly measurable quantity and is obtained by -measuring
charge collection as a function of electric field, F. Under uniform
electric field the charge collection is given by the Hecht equation
[Street, 1983]

| F d
Judt =q = Qe 7 glt-expl-——r] (217)

where Qg is the injected charge due to one type of carrier and d is
the sample thickness. The experiment for put measurement is done
under pulsed bias conditions and the charge collection data is fitted

to the Hecht equation. The ut product is obtained from the fit.

2.5.5 DC bias transient
~The defect centers in a-Si:H release charge causing the
electric field in the sample to become nonuniform in a time of the
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Fig. 2.19. Examples of the internal-electric field profile for Cr and
Pt contacts to the same sample. The times marked correspond to
those of the transient response. The vaues of W are obtained from
the charge-collection measurements. N(E) is derived from the expo-
nential region of the field profile [Street, 1983]. '

order of a second

field which is caused by the presence of space charge. The field

follows the drop off given by the Poisson equation (dF/dx=-p/egper)

#-Si:H DEPLETION-LAYER PROFILE

=

10-9 sec

N(E) =43 X 10" em=3 ov-?
! utg),~3x 1077 emv

OEPTH {um)

after DC bias is applied [Street, 1983]. The photo-

excited carriers move under the
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where p is the charge density in the sample. The transient photo-
current produced by motion of photo-excited carriers in this

nonuniform field is, therefore, a direct measure of the electric field
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Fig. 2.20. Measurements of the field and potential profiles for two
samples with higher defect density and Pd electrodes. The values of
Ng are obtained from ESR measurement [Street, 1983].

inside the sample. The transient response under DC bias decreases
monotonically as electrons move across the sample.
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The shape of the photocurrent transient relates to the shape of
the electric field inside the sample and, therefore, to the ionized
defect density. This has been demonstrated in the work of Street
[1983]. Fig. 2.19 shows the depletion field as a function of depth into
sample. The defect density is derived from the exponential region of
the field profile.The measurements were done on a-Si:H samples
with n+ bottom contact and chromium contact on top of the i layer.
Similar measurements made on samples with Pd contacts are shown
in Fig. 2.20. |

DC photoconductivity measurements  on thick p-i-n diodes
intended for radiation detection apvplication purposes are of interest
‘tov measure the ionized dangling bond density which shapes the
electric field in the diode. The electric field, F, is the agent for
drifting the charge across the sample and the drift length is ‘given by
the product ptF. Since in an a-Si:H detector the electric field is
nonuniform, carriers will move across the field region until they
reach the low field region. In the Iow.field region motion of charges
is determined by diffusion rather than drift and carriers are
eventually trapped or they recombine. Therefore, it is safe to
assume that the carriers stop at the end of the depletioh layer and
are not collected. So in an a-Si:H diode the extent of the electric

field in the bulk plays a crucial role in its usefulness as a detector.
2.6 Measurement of material parameters

A time of flight experimental setup was built to measure the
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material parameters discussed in section 2.5. Fig. 2.21 is a
schematic diagram of the setup. My interest was to study the
material parameters of thick p-i-n diodes intended for radiation
detection applications. Further, these parameters can be measured
to better degree of accuracy in thick samples.

The setup consists of a Nitrogen-Dye laser combination. The
laser is triggered externally by a trigger pulse from a high voltage
pulser. For pulsed bias measurements the trigger pulse is delayed so
that laser fires 50-100 pus after bias is applied across the

amorphous silicon diode under study. For DC bias measurements

TRIGGER
PHOTO N
.\)l I0DE /{b— Sstgg;ege
N2 /””g D YE ;\\\\V" AR NY ZX R 243 0
LASER LASER
3 Diode
- | Pe |
LASER ‘
TRIGGER HV
P PULSER
DELAY PULSER
T
HV

Fig. 2.21. Time of flight experimental setup with Nitrogen-Dye laser
unit used to measure material parameters. The laser is 3 ns (FWHM)
producing 510 nm light (MFP ~ 0.2 um in a-Si:H).
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diode bias is derived from a regular power supply. The oscilloscope
trigger pulse is generated from the light pulse that excites the dye
laser by using a photodiode. The signal from the amorphous silicon
diode is amplified by a wide-band amplifier before it is fed to

oscilloscope for storage and analysis.

2.6.1 Drift mobility measurement
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Fig. 2.22 Transient photocurrent electron signal at different pulsed
bias voltages using 510 nm light. Non-dispersive transit of elec-
trons across 27 um p-i-n diode is seen clearly.

Carrier drift mobility is measured by pulsing the bias voltage

applied to the diode under study for a duration of ~ 10 ms. The
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laser aimed at either the p or n side of the diode is pulsed 50 - 100
microseconds after bias is applied. Pulsing of the bias shqrtly
before the laser pulse is essential to establish a uniform electric
field in the diode as explained in section 2.5.1. The transit time for
non-dispersive transport where a cl;large packet spreads by diffusion
(electrons at room temperature) is measured from thé photocurrent
transient as the time when the current falls to 50% value. In this
case light is incident on the p side of the sample so that the holes
are collected at the same end and the electrons traverse the sample.
Fig. 2.22 shows a typical current transient plotted on a log-log plot

at different bias voltages.
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Fig. 2.23. Transient potocurrent hole signal from 27 pm p-i-n diode
at different pulsed bias voltages. Hole mobility is dispersive with
dispersion parameter o ~ 0.6 at 300 V.
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Hole transport is dispersive as discussed in section 2.5.3. The
transient behaviour in case of dispersive transport is given by eq.
(2.18a,b) [Scher et al., 1975]. The transit time is measured by
plotting the photocurrent transient on a log-log plot and transit
time is taken as the time where the two slopes intersect. Fig 2.23
shows the hole transient at different pulsed bias voltages. A hole

dispersion parameter o ~ 0.6 was estimated for the sample.

F @) = t0 t<t, (218 a)
L) = t ) t>t, (218 b)

where the dispersion parameter o is 0 <o <1.

2.6.2. Measurement of mobilty-lifetime product (ur)

As discussed in section 2.5.4 the ur product is measured
from a charge collection experiment and fitting collected charge vs

bias voltage data to eq. (2.17). Fig. 2.24 shows such a fit to the data.

A value of pgete = 1.5 x 107 cm2/V was obtained.

Similarly, the pt product of holes is obtained by making a fit
to eq. (2.17). A value of unty, =4 x 10-8 €M2/V was obtained for the
sample of Fig. 2.24. |
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Fig. 2.24. Measurement of electron pt product through a fit to the
Hecht equation.

2.6.3. Defect density measurement

Fig. 2.25 shows a typical DC bias photocurrent transient from
which the dangling bond density was calculated using eq. (2.19) [see
appendix 2]. For a p-i-n diode values of the ionized defect density
were found to be in the range of 6-8x1014 cm-3, approximately 1/3
of the defect density measured by ESR.

€0€, In [ige(ty) /i (t)]

N, = 219
: qu t, -t ( )
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where Nd' is the ionized dangling bond density. igc(t1) and ige(t2) are

the values of the decaying photocurrent transient at times t; and t,

p is the mobility, g,is the relative permitivity of silicon and q is

the electronic charge.
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Fig. 2.25. Transient photocurrent electron signal at different DC bias
voltages from a 27 um p-i-n diode using 510 nm light.

Table 2.1 summarizes typical values of material parameters

measured on thick a-Si:H p-i-n diodes in a T.O.F experiment. Electron

spin density is also listed.
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Thickness 28 27 31 2
(rm)

| Type Cr-n-i-p Sn0-p-i-n | Sp0-p-i-n
Ke (cm2 /vs) 1.4 1.2 1.2
pe Te (cm2 /v) 1.1x1077 1.2x 1077 1.5x 1077
Ky (cm2/vs) 0.003 0.004 0.004
r”h Th (cm2/Y) 2.7x 1078 12x 10-8 4x 1078 '
Ng (cm-3) (ToF)| 6x 104 7x 104 i
Ng (em-3)(ESR)| 2x10'° i, _

Table 2.1. Typical measured parameters of thick a-Si:H p-i-n diodes
from a number of diodes studied using setup of Fig. 2.21. Defect
density measurement on 31.2 um diode could not be done due to large
diode capacitance. Carrier mobility and mobility-lifetime product
values are in agreement with values reported in literature on thin a-
Si:H diodes. ESR measurements were done at Xerox PARC. Cr and SnO
represent Chromuim and Tin Oxide contacts.

The value of the ionized defect density, Nd*, obtained for a-Si:H'
p-i-n diodes by this method is ~1/3 of the defect density value, Ng,
measured by ESR which measures the density of neutral defects in

the sample. The same result was obtained by increasing the defect

density of a sample by a factor of ~ 2 by heating and then measuring
Nd* and Ng. A comparison of Ny and Ng values on subsequent
annealing further corroborated the result that only a fraction of the

defects ( ~ 1/3) is ionized when diode is biased into deep depletion.
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This result can be explained on the basis of the energy of the defects
and on the shift of the Fermi energy which results from- the deple-
tion bias. On depletion the Fermi energy must move down towards
the center of the band gap of the i layer as it is slightly n typ‘e. The
observed ionized fraction would correspond to a shift of the Fermi
energy of ~ 0.1 eV [Qureshi et al., 1989]. ’
However, the work of Matsuura [1988] who used c¢-Si-i-n
structure for defect density measurement by heterojunction-.,
monitored capacitance (HMC) method shows that the measured .
defect density is in agreement with the ESR measurement thdugh the
work of Street et al. [1990] is in support of the observation that -
only a fraction of the defects are ionized. This underscores the
caution required in interpreting the defect density and field profile
measurements by DC photoconductivity method for a-Si:H p-i-n
structure. Whether the effect can be the result of the sample
structure (e.g. high resistivity of the p layer effecting how rapidly
the DC bias transient falls) might be worth further investigation.
A quantity of interest, the utNg product, follows from the basic
expression relating the capture processes with the trap-limited
transport in amorphous semiconductor. Street [1982, 1984] has

shown that this product is given by [appendix 3]

1 e

HelNs = 5 o

2 2.2
o - (2.20)

where a is the carrier scattering length (in a-Si:H ~ 10 Ao for
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electrons and ~5 A° for holes), ¢ is the capture cross section and T is
the temperature. The product utNg = 2.2 x 108 cm-1V-1 is calculated

for electrons from column 2 of Table 2.1.
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3 Leakage current and noise of a-Si:H p-i-n diode

‘The current—voltage (I-V) characteristics of a reversed biased

a-Si:H diode is of considerable interest for two reasons.

1. The leakage current .is important for noise considerations when

the diode is used as a radiation detector. V

2. Power dissipation in a diode array especially when used as small

high density pixels must be kept to a minimum.

10°°
Diode 1
29 pm a-Si:H p-i-n diode 50 ©
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Fig. 3.1(a). Typical |-V curve of an a-Si:H diode under reverse bias..

The area around the metallic dot on its face was etched to prevent
any surface leakage.
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The |-V characteristics of a large number of a-Si:H p-i-n
diodes fabricated by glow discharge deposition have been studied.
Typical |-V characteristics under reverse bias are shown in Fig.

3.1(a,b). Fig. 3.1(b) is a plot of | vs V ona log-log plot. The plot has
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Fig. 3.1(b). I-V curve of diode 1 on log-log plot. Eq. (3.1) fits the data
with fitting parameters ki = 5.028x10-12 and ko = 0.437.

two distinct regions labelled as (1) and (2). The regibn' (1) is low
bias region extending from 0.3 to 50 V. Region (2) extends from 50
~to 550 V where current increases monotonically over the voitage
range. T.he measured data is fitted to eq. (3.1).
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| = k exp (k, W) (31)

where V is the bias voltage. kq and ko are fitting parameters. As is
seen in Fig. 3.1(b) the above equation fits the data remarkably well

particularly at high bias voltage.

Table 3.1 shows measured and calculated noise (FWHM) of the
diode. The_leakage current and noise listed in the table were
measured on the setup shown in Fig. 3.2. An LBL dual shaping
“amplifier with CR-(RC)4 (pseudo-Gaussian) shaping [Goulding, 1972]
at 3 us shaping time was used. The charge sensitive preamplifier
used was a Tennelec TC 171 with no shaping.

The noise in column 3 of Table 3.1 was calculated from the

shot noise equation [Goulding et al., 1982].

TPes]t — Preamp pual Shap-
USer]  atten- TC 171  ingAmp
HY uator : ' :

PC PHA

Fig. 3.2. Schematic of experimental set up used for measurement of
leakage current and noise listed in Table 3.1.
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bias currént Negi Nm
(v) (A) (e-) (e-)
0 0 - 4000
100 | 7x10-10 4007 4200
200 6x10-9 4068 4170

300 | 2.3x10-8 | 4253 | 4320
400 | 6.2x1078 | 4652 | 4650

500 | 1.5x10°7 | 5445 5450
550 | 2.35x10°7| 6110 5950

Table 3.1. Measured and calculated noise (FWHM) for 29 um diode of
Fig. 3.1. The noise is calculated from the shot noise equation for the
LBL dual shaping amplifier with CR-(RC)4 (pseudo-Gaussian) shaping
at 3 us shaping time as discussed in the text. A remarkable
agreement is seen between the measured and calculated noise.

. |
N> = 0.9 %h (3.9

where 7t is the shaping time, | is the leakage current and q is the
electronic charge, and the noise component at 0 V bias added in
quadrature. It is seen that the measured noise agrees remarkably
well with the calculated noise. This shows that for a well behaved
a-Si:H p-i-n diode, noise is completely accounted for by the shot
noise and the noise component at 0 V bias for CR-(RC)4 (pseudo- |
~Gaussian) shaping at 3 us shaping time. A sample calculation of the
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noise at 400 V bias is given below.

Sample calculation of noise at 400 V bias:
The shot noise equation for CR-RC shaping is given by

2

<N?e> = i—a Iz

where | is the leakage current, ¢ is the shaping time, q is the elec-
tronic charge and ¢ =2.718. The above equation can be written as

<N%> = 1153x10"® 7 (us) KA) (rms)? (3.3)

At 400 V bias | = 6.240°Aand ¢ = 3 us.

Therefore, <Nfs> = 3.459x1 0¥ x 6.2x10°% = 2.14x10°
For CR-(RC)* shaping we have [Goulding, 1972]

N2 . .

exape 99 g4

<Noe>q. o 187

Iz

Therefore, <N% > = 0.9 r = 0.48 x 214x10°

CR-

<N,> = 0.69 x 1.463x10° (rms)
=1009.3 (rms)
= 10093 x 235 = 2372 e (FWHM)

Therefore, Now = v [4000° + 23722] = 4650 e (FWHM)
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Fig. 3.3. Measured and calculated noise (FWHM) on another 29 um

diode from the same production run as diode 1 for 3 us shaping time
and CR-(RC)4 shaping. Here noise at 0 V bias is lower by a factor of
2. ' «

Fig. 3.3. shows the calculated and measured noise of a 29 wm p-
i-n diode having smaller noise component at 0 V. It is seen that the
calculated noise closely follows the measured noise over the
operating voltage range of the diode. The noise data is listed in

Table 3.2.
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bias [ current| Ncg Ny [bias |current| Ngg Nm
(v) | (nA) (e7) | (e) | (v | (hA) | (e-) (e-)

0 0 - 2005 |160 | 3.6 2085 | 2284
10 - - 2157 | 220 | 95 2209 | 2482
20 - - 2190 |260 | 157 | 2334 | 2517
30 0.1 2007 | 2205 [300 | 246 | 2501 | 2799
40 0.1 2007 | 2172|360 | 45.3 | 2853 | 3158

S0 0.2 2010 2341 {400 | 67 3180 | 3443
60 0.3 2011 2325 [460 | 117 3839 | 4046

90 0.7 2020 (2224 {500 {167 3897 4382
120 1.6 2041 2288

Table 3.2. Calculated and measured noise at 3 us shaping time for a
29 um a-Si:H p-i-n diode using an LBL dual shaping amplifier with
CR-(RC)4 shaping.

The |-V curve of the diode is shown in Fig. 3.4. The eq. (3.1) is
fitted to the data as shown in the figure. The increase in leakage
current with bias described by éq. (3.1) has the same dependence
on voltage as one would expect if this increase were due to the
Poole-Frenkel effect [Hill, 1971] involving excitation of carriers
from neutral defects. In the Poole-Frenkel effect the ionization
energy of a defect center is decreased by the applied field F, in the

direction of the field by BF1/2. Electron emission can take place over
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Fig. 3.4. |-V curve of a 29 um diode under reverse bias. The 'n\oise_ .
data is listed in table 3.2. The data is fitted to eq. (3.1). The fitting
parameters are k1 = 1.745x10-11 and ko = 0.41. .

Fig. 3.5. The Poole-Frenkel effect. The ionization energy, E;, of a
defect center is decreased by the applied field F, in the direction of

the field. The coefficient B is the Poole-Frenkel constant [Hill,
1971]. -
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the top of the reduced barrier as in (a), or by tunnelling as in (b) of

Fig. 3.5.

These measurements clearly suggest that in real devices the
detector leakage current for a well behaved diode at the operating
bias is the dominant contributor to noise in the form of shot noise

for CR-(RC)4 shaping.

The noise at 0 V bias is contributed by two factors. One is the
result of loading of the diode capacitance on the charge sensitive
amplifier commonly known as the delta noise, given by [Goulding et

al., 1982].

(3.4)

where C is the'equivalent capacitance of the diode and the amplifier
input stage, 1 is the shaping time , g, is the transconductance, k is
the Boltzman constant and q is the ‘electronic charge. The second
noise component is due to thermal noise. Thi_s noise component needs
to be probed further.

Further, as diode area is reduced , say by a factor of 10, one
expects from equations (3.3) and (3.4) a reduction in the step (shot)
and delta noise approximately by factors of 3.16 and 10 respectively

making the contribution of step noise component more dominant.
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4 ‘Radiation hardness of a-Si:H

Radiation hardness is an important consideratio_n when a
device is to be used in a high radiation environment. Crystalline Si
radiation detectors ére known to degrade in their performance on
prolonged exposure to radiatién. One important consequence of
irradiation is the introduction of energy levels in the band gap which
then act as traps for the carriers causing a reduction in the carrier
lifetime and change in the electrical resistivity of the device. The
reverse leakage current increases and so does the noise of the
device. These effects are seen in crystalline silicon detectors at
particle (neutron) fluences ~ 1012 cm-2. This degradation of the
device in a high radiation environment is undesirable from
performance and economic considerations. It is of particular concern
in high energy accelerator applications. |

Hydrogenated amorphous silicon diodes have been shown to be
significantly less susceptable to radiation damage owing to their
inherent disorder. Most of the early studies were done on thin diodes

(~1 um) for solar cell applications.
4.1 Radiation damage by electrons and alpha particles

Street [1979] has shown that the damage caused by 1 Mev electrons

and 100 Kev alpha particles is predominantly in the creation of

singly occupied DO dangling bonds and the broadening of the tail
5 . ,



sfate distribution. Both of these effects can be annealed out. The
radiation induced effects were studied by electron spin resonance
and luminescence. It was found that the electron or ion bombardment
introduced defects which were predominahtly singly occupied
dangling bonds (DO) which acted as recombination centers and
qguenched the photoluminescence in a-Si:H. The vtrend was seen to
reverse on annealing.

The damage due to energetic electrons and ions is primarily
the displacement of nuclei. The maximum fractional energy transfer
is given by 4mM/(m+M)2. Since a-Si:H has two types of atoms
(hydrogen ~ 10%) collision with both types of atoms results although
energy transfer in electron-hydrogen collision is more than in
electron-silicon collision. The removal of hydrogen results in a
single dangling bond and because of small size of hydrogen atom re-
construction of Si bonds is less likely to occur. Due to the stren-
gth of the Si-H bond hydrogen will bond to the Si network. On the
other hand a displaced Si atom is likely to leave behind a
divacancy and a weak bond which results in localized energy

states in the gap [Street ,1979].
4.2 Radiation damage by gamma rays

Recently gamma ray irradiation effects on undoped a-Si:H .from
1016-1017 photons cm-2 using a Co80 source have been reported by
Imagawa et al. [1989]. This study showed a signi'ficant increase of
- D+ defect centers on irradiation which could partly be annealed out.
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Fig. 4.1. Dark conductivity (closed circles) and photo conductivity
(open circles) as a function of gamma ray total dose. Solid line :

after irradiation; broken line : after annealing at 180° C for 2 hours
[Imagawa et al., 1989].

The photo and dark conductivities increased by two orders of
magnitude after irradiation as shown in Fig. 4.1. The activation
energy (see section 2.4.4) decreased from 0.7 eV to 0.4-0.5 eV by
gamma ray irradiation as shown in Fig. 4.2 and the samples were
found p type which meant that the Fermi energy moved down towards
the valence band and this behavior was due to the change of charge
states of the defects from DO to D+. Table 4.1 shows the dependence
of the DO, D-, D+, and total defects on the t.otal dose . The data listed
in the table shows that the total defects and the neutral dangling
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Fig. 4.2. Activation energy of the dark conductiVity as a function of
gamma ray dose. Curve A: After irradiation; curve B: after annealing

at 180° C for 2 hours [Imagawa et al., 1989].

Total dose Gap states (em~1 ey~1)
(photons /cm2 ) THS TES Total
(po +D-) (DO +D+) D~-D+ D+ +D-~ defects
0 1.9x1016  1.3x1016  6x1015 - 3.2x10'6
1016 1.2x1015 2.6x1016 - 1.4x1016 3.8x10!6
17 i '
10 8.4x10'S  zox1016 - 2.4x10'6 4x1016

Table 4.1. The dependence of the DO, D-, D*, and total defects on the
total dose. THS is trapped hole states and TES is trapped electron
states [Imagawa et al., 1989].
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bonds DO do not change appreciably after irradiation although D+
defects increase. This feature is consistant with the lowering of
the Fermi energy for p-type behaviour and the increase in
conductivity on irradiation with gamma ray photons.

The defect creation mechanism due to energetic gamma rays is
expected to be due to electronic excitation and direct atomic
displacement although the effect due to the latter should be less
dominant because of no direct momentum transfer. The increase in
the D+ defect centers is interpreted as the result of change in the
charge states of already existing dangling bonds (D® and D-) by the
processes DO — D+ + e and D' DO + e and since the increase in the
DO states is small it is believed that the dominant effect of gamma
ray irradiation is due to electronic excitation unlike the case of

electron or ion irradiation which cause atomic displacement.
4.3 Radiation damage by neutrons

Radiation damage of a-Si:H p-i-n diodes was studied using 1
Mev neutrons from the Triga reactor facility at U. C. Berkeley.
Neutron irradiation causes displaéemen_t damage in the material. An
elastic or inelastic collision with a nucleus can result in displace-
ment of an atom from its position. The threshoid energy for dis-
placement in Si is ~ 15 eV [Sandia report, 1985]. In many collisions
the energy transferred to a knock-on atom is large so that its
collision with other atoms causes secondary displacements. The

total displacement cross section, o4, of neutrons for Si is shown in
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Fig. 4.3. Displacement cross section (including primary and secon-
dary displacements) vs neutron energy for silicon [Sandia report,
1985]. '
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Fig. 4.4. Schematic of the setup used for leakage current and noise
measurement.
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Fig 4.3. |
The total number of displacéments n per unit volume is given
by |
n=o Na o4

where @ is the particle fluence, NA is the atom density and od is the

total displacement cross section.

Neutron fluences were measured by standard Ni activation
techniques. The damage stﬁdies were done on 5 um and 12 um thick
a-Si:H p-i-n diodes, irradiated with neutron fluences ranging from
1012 to ~ 4x10'% cm2. The damage was studied in terms of changes
in leakage current, noise, and ability to detect alpha particles. The
effect on defect density could not be measured because the tin oxide
coating on glass substrate of the samples masked the ESR signal.

Experimental setup used for leakage current, noise and signal
measurement is shown in Fig. 4.4. The noise calibration was done
using two test pulse amplitudes superimposed on each measurement
of signal and noise. The 5 um _diodes were exposed in steps to
fluences of 1012 cm-2 and 1073 cm-2. The pulse height speétrUm of
the alpha signal before irradiation and after 1013 cm-2 exposure is
shown in Fig. 4.5(a,b). It is clear that there is no appreciable
degradation of signal and noise of th‘e diodes.

A more detailed experiment was done on 12 pm diodes exposing
them in steps to fluences ranging from 5x10'2cm-2 to ~ 4x1014
cm-2. The leakage current, noise and alpha signal from 6 Mev alpha
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Fig. 4.5(a). Pulse height spectrum of 6 Mev alpha signal before
irradiation. .

sdurce measured after each exposure are shown in Fig. 4.6(a,b).

There is no degradation in noise while a 20% change in alpha signal

is seen. The leakage current increases by a factor of 10 at low bias

voltage. The samples were annealed at 180° C for two hours. The

diodes fully recovered after annealing and their performance was

indistinguishable from that before irradiation. An intermediate ann-
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Fig. 4.5(b). Pulse height spectrum of 6 Mev alpha signal after 1013
cm-2, 1 Mev neutron exposure. The signal pulse width broadened by a
factor of 2. The detector was mounted at 60° to the alpha particle
direction. The 20% difference in alpha signal from pre-irradiated
value is probably due to uncertainty in angular orientation.

'ea|ing procedure done after 8.9x10'3 cm-2 fluence did not influence
the result. It is believed that annealing enhénCes motion of hydrogen
in the 'n_etwovrk' and facilitates ‘reconstfuction of broken bonds
[Crandall, 1989]. |
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Fig. 4.6(a). Degradation in leakage current of a 12 pm p-i-n diode on
exposure to 5x1012 - 4x10'4 cm2 fast neutron fluences. The curves
are drawn with the smoothing routine of CA-Tellagraf [Computer
Associates, San Diego, CA).
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Fig. 4.6(b). Degradation in noise of a 12 um p-i-n diode on exposure
to 5x1012.- 4x1014 cm-2 fast neutron fluences. Effect of exposure
on 6 Mev alpha signal is also seen. The curves are drawn with the
smoothing routine of CA-Tellagraf [Computer Associates, San Diego,

CA.

For comparison, a crystalline diode, 255 pum thick, was
irradiated under identical circumstances. The effects on leakage
current,’ noise and alpha signals were studied.- Fig. 4.7 shows the
degradation in leakage current at 1012 and 1013 cm-2 fluences.
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Fig. 4.7. Effect of 1x1012 and 1x1013 cm-2 fast neutron fluences on
leakage current of a 255 um crystalline diode. Leakage current
increases by about a factor of 5 for 1x1013 cm-2 fluence. The curves
are drawn with the smoothing routine of CA-Tellagraf [Computer
Associates, San Diego, CA].

Fig. 4.8(a,b,c) shows the effect on noise and alpha signal at 1012 and
1013 cm-2 fluences. Some degradation in noise and signal was seen
at 1012 cm-2 fluence. However, at 1013 cm-2 fluence the diode
failed. No alpha signal was detected. The experiment was repeated
with another crystalline diode and the effects were reproducible.
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Fig. 4.8(a). Alpha signal in a 255 um crystalline diode before
irradiation. ' '
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Fig. 4.8(b). Alpha signal after irradiation with 1x1012 cm-2 fast

neutron fluence. About 10% degradation in signal size was observed.
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Fig.' 4.8(c). No alpha signal is detected after irradiation with 1013
cm-2 neutron fluence. Significant degradation in diode noise is

observed.

In conclusion, the neutron irradiation experiment revealed that

a-Si:H diodes are appreciably radiation resistant to 1 Mev neutron

fluences in excess of 4x1014 cm-2. This was not found to be the case

with crystalline diodes which failed at 1013 cm-2 fluence. These

results were published in part in [Perez-Mendez et al., 1987] and
[Perez-Mendez et al., 1988].
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4.4 Radiation damage by protons

It is known that protons have higher total cross section for
displacement as compared to neutrons. Fig. 4.9 shows total

displacement cross section of protons as a function of energy for Si.
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Fig. 4.9. Displacement cross section (including primary and
secondary displacements) vs proton energy for silicon [Sandia
report, 1985].

For instance a comparison with Fig. 4.3 shows that the total
displacement cross section for 1 Mev protons is about 50 times
larger than 1 Mev neutrons. Therefore, one would expect more
dam_ai_ge' from protdn irradiation of a-Si:H than from neutrons as the
number of broken bonds would be larger. Hanakvet al. [1987] , using 1
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Mev protons, concluded that a-Si:H diodes (solar cells) were 50 to
100 times more radiation resistant than c¢-Si and GaAs cells. It was
concluded that nuclear collisions by 1 Mev protons with Si was the

primary mechanism for defect creation in a-SitH diodes. The cross
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Fig. 4.10(a). Effect of 1.4 Mev proton irradiation on leakage current
of a 12.6 um n-i-p diode exposed to 1x1012 - 1x1074 cm2 fluences.
The leakage current increases by two orders of magnitude over the
fluence range. Annealing at 180° C lead to partial recovery. The
curves are drawn with the smoothing routine of CA-Tellagraf
[Computer Associates, San Diego, CA].
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Fig. 4.10(b). Effect of 1.4 Mev proton irradiation on noise of diode
described in Fig. 4.10(a). Annealing at 180° C lead to partial
recovery. The curves are drawn with the smoothing routine of CA-
Tellagraf [Computer Associates, San Diego, CA].

section for (p,Si) collision for displacement, 3.4x1020 cm-2, is a
factor of two larger in comparison to (p,p) collision which is
1.9x10-20 ¢cm-2. However, in a device grade a-Si:H the concentration
of hydrogen is about 10%. Therefore, the number of Si primary knock
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-ons is twenty times larger than the number of hydrogen knock-ons.

Radiation damage of a-Si:H diodes by 1.4 Mev protons from Van
de Graaff accelerator at LBL was studied in terms of leakage current
and noise. An a-Si:H p-i-n diode was subjected to 1.4 Mev proton
fluences ranging from 1012 ¢cm-2 to 104 cm2. The results of
this study are shown in Fig. 4.10(a,b). The damage is seen to be
appreciably greater in comparison to neutrons of comparable energy
discussed in section 4.3. Annealing at 180° C for 2 hours lead to

partial recovery.

The damage in a thick a-Si:H p-i-n diode (27 um with etched
top surface to prevent surface leakage) by 1.4 Mev protons is shown
in Fig. 4.11. Little degradation in leakage current and noise is seen
at 1012 cm-2 fluence. However, at proton, fluence of 1013 cm-2 leak-
age current and noise behaviour of the diode is significantly degra-
ded. Table 4.2 shows the calculated and measured noise after 1x1013
cm-2 fluence. The experimental setup of Fig. 3.2 (éetup 2) was used
for this measurement. A remarkable agreement between the calcul-
ated and measured noise is seen in accordance with the discussions
in Chapter 3 and the increased noise contribution is primarily from
the increase in the shot noise component.

76



10

1077

Leakage current (A)
(o]

10

10000

8000

6000

Noise (electrons)

(a)

1.4 Mev proton
27 um a-Si:H p-i-n

>

irradiation
A A

A A
«20

& o ©

cm 2, setup 1

2 em 2, setup 2

3 -
cm

2, setup 2

(b)

600

o Pre-irrad,

0 1x10'2 cm”

12

& 1x10 “em’

a 1x101acm

1x1013cm'

noise, setup 2

2 I 2 '] L L I . A JL

setup 1

2, setup 1

2, setup 2 4

-2 A O

, setup 2 e
-

, calculate?A/A +

o $

2

100

200

300 400

Bias (V)

500

Fig. 4.11. (a) Leakage current (diode surface etched). (b) Noise after

1.4 Mev proton

irradiation.

Setup 1

used an Amptek A225

preamplifier with 2.5 us shaping time (shaping function not known).
Setup 2 is the same as described in Fig. 3.2. The noise calculated
from the measured leakage current (Chapter 3) for 1x1013 cm-2
fluence agrees well with the measured noise.

77



bias | current| N N,
(v) | (nA) (e-) (e”)
0 0 - 3309
S0 1.6 3330 3328
100 6.6 3398 | 3358
150 | 144 3501 3454
200 | 26.7 3658 3629
250 | 46.5 3896 3902
300 | 79.8 4267 4349
350 |137.8 4846 4883
375 182 5444 5285

400 | 235 5685 5760
425 | 3035 6209 6549

Table 4.2. Calculated and measured noise (FWHM) after 1013 cm-2
proton irradiation. Set up of Fig. 3.2 was used at 3 pus shaping time
and CR-(RC)4 shaping. Diode was 27 um thick from the same
production run as shown in Table 3.1. Irradiation was done using Van
de Graaff accelerator at LBL.

A comparison between 1 Mev neutron and 1.4 Mev proton
irradiation shows that ~ 5x1014 cm-2 neutron fluence produces less
than 10% degradation in leakage current and noise. Irradiation With
1x1013 cm-2 proton fluence degrades leakage current by a factor of
~ 25. The noise at the operating bias is degraded by ~ 40%. No
significant degradation in noise is seen at 1012 cm-2 fluence.
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4.4.1 Effect of proton irradiation on carrier mobility and

lifetime

Protons of 1.4 Mev energy were used to study the effect of
successive irradiations at 1012 , 1013 and 1074 cm-2 fluences on
carrier mobility and lifetime in a 27 um a-Si:H p-i-n diode. Fig. 4.12
shows the change in the shape of the electron photocurrent trans-
ient after each irradiation obtained by performing a time of flight

experiment using the setup of Fig. 2.21.

40
27 um p-i-n diode
35 ® Pre-irrad
@ 30 o 10'2 cm®@
C -
-_-:f o5 a 1013 cm 2
o 14 -2
P~ o 10 " cm
820 5
oot A o é
fas ® 84844
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S 10 FPe <><><>°°°°<><><>
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2 0 63
& ° o6,
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Fig. 4.12. Electron photocurrent transient from 510 nm laser light
after various proton irradiation fluences at 100 V pulsed bias using
time of flight experimental setup of Fig. 2.21.
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Measurements show how carrier mobility and lifetime are
affected by irradiation as in Fig. 4.13(a,b,c,d). The current transient
was fitted to a drift-diffusion equation given below.

() = A [exp(-c,t)] erfc [%:_/t_?gl)_] (41)

where the fitting parameter cy is inverse of lifetime , co defines
the width of the Gaussian and c3 is inverse of velocity.

_ Proton irradiation changed electron mobility from pre-
irradiated value of 1.03 c¢cm2/V-s to 0.98 cm2/V-s at 1x1014 cm?2/V-
s, a decrease of less than 5%. However, electron lifetime decreases
from its pre-irradiated value of 232 ns to 60.8 ns at 1x1014 cm-2
fluence by about a factor of 4. This decrease in electron lifetime is

expected as irradiation increases defect density in the material.
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Fig. 4.13. Photocurrent signal at various fluencesv and fitted data. (a)

u=1.02 cm2/V-s, 1= 232 + 29 ns, (b) pu=1.03 cm2/V-s, 1=160 * 9 ns,

(c) u=1.02 cm?2/V-s, 1=140 * 10 ns (d) u=0.98 cm2/V-s, 1=61 + 1 ns.
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5 o ~ Charge collection

The induced charge dQ in an external circuit produced when a
charge q is displaced by a distance dx in a semiconductof detector
bounded by two parallel plane electrodes with. separation d is given
by [Tove et al.;, 1964] |

a3 - - (59
d - . _
The total distance moved by an excited electron or a}hole is" given in
terms of the electric field F, the lifetime t and the mobility u as
Xna=H T F (5.2
Complete collection of charge' occurs when Xmax IS la.rger than the
detector {hickness. Therefore, three key factors in the collection of
charge in a detector are Carrier mobility, n, carrier lifetime, t, and
the electric field, F,. In(,an a-Si:H p-i-n diode i layer being the active
detector region, the electric field distribution in this region is of
paramount interest. As pointed' out in section 1.1, the fact thét a ‘v
large density of charged centers exist in the i Iayer>when the d.iode
is under DC 'bias, the electric field would no longer be uniform,
unlike a crystalline p-i-n diode where the electric field in the

intrinsic layer is uniform. The field configuration in the i layer of an
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Fig. 5.1. Electric field profile, calculated from eq. (5.3a,b), across a .
10 um a-Si:H diode assuming various ionized dangling bond densities
and a D.C. bias of 100 V. The calculations assumed V¢ =10 V [Perez-
Mendez et al., 1987].

a-Si:H p-i-n diode is obtained by solving the Poisson equation. The

model calculations in [Kaplan et al., 1986] assume that the charge

density, po, is constant when voltage is above a certain critical value

V¢ (deep depletion region). The Poisson equation then has the form
d?V Po

a2 = - E;‘— V >» Vc (538.)
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where pg = eNg” ; Ng* being the density of ionized defects. If Ng'is
constant, then the electric field falls off linearly. At low potential,
the gap states are only partially ionized and the Poisson equation is
of the form

2\/.
av _ e V<V

5.3b
dx? Ef ¢ (5:30)
N,
Vv

c

where p(V) =enVandn = ; V., being the critical voltage. |

Based on the above model the calculated electric field distribution

ina 10 um a-Si:H diode is shown in Fig. 5.1.

5.1 Experimental studies on charge collection in a-Si:H

diodes.

The earliest experiments on the detection of charged particles
in hydrogenated amorphous silicon were done at LBL when 2-15 um
a-Si:H diodes were used to detect alpha particles [Kaplan et al.,
1986]. The charge collection in theée diodes did not plateau as bias
was increased. It was soon realised that particles with large dE/dx,
e.qg. 4.6 Mev aIph.a' particles with dE/dx ~ 150 Kev/um, produced
heavily ionized column of charge (e,h pairs) along the particle track
[Perez-Mend_ez et al.,1987]. Because of low mobilities of carriers in
a-Si:H the electrons and holes would tend to recombine before the
electric field separated them and caused them to drift across the
diode for collection. This effect is known to exist in crystalline
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semiconductor diodes when fission fragments cbmprise the incident
radiation [Knoll, 1979]. A clear demonstration of this effect in
amorphous silicon diodes (some authors call it plasma effect [Equer
et al., 1988]) was seen by turning the detector at an angle to the
incident particle which helped the charge separation by the electric
field and resulted in higher charge collection. The increase in charge
collection on turning a 5 um diode at 60° to the alpha beam (for
particle range > diode thickn'ess) was found to be larger than the

geometrical increase in path length. Similar effects were seen in

1
= signal from Sum a-Si:H
theor. signal from Sum Si XTAL
0.8 '
=
0.6 |- © 0 deg., 100 volts
® 0 deg., 150 volts s
v O 60 deg., 100 volts »
B 60 deg., 150 volis
04 o
dn 4.6—Mev o
| . '
02 | 2—-Mev p -
f o
1—Mev p o
0 - - n i i n e 1 e Y & I e 1 A A L A
2 10 100 250

dE/dx (keV/ um)

Fig 5.2. Charge collection efficiency vs dE/dx of particles for a 5 um
p-i-n diode.
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the detection of 1 and 2 Mev protons in 5 um a-Si:H p-i-n diodes

although the plasma effect was not found to be as severe as in the

Particle| Energy Q/q dE/dx ¢
(Mev) (e-h pairs) | (Kev/pm) | (d= Sum)
2 20470 26 0.57
Protons
1 20372 40 0.37
Alphas | 4.6 33170 147 0.16

Table 5.1(a). Charge collecﬁon efficiency, e, as a function of dE/dx
for protons and alpha particles. The data was taken at LBL.

Particle| Energy Q/q dE/dx ¢
(Mev) (e-h pairs) | (Kev/pm) [ (d=0.5pm)

1.8 2400 29 0.58
1.2 1475 33 0.32

n .
Protons] 4 1030 45 016
0.8 940 47 0.14
0.58 600 56 0.078
0.4 640 67 0.068
1.6 1570 250 0.046
Alohas | 12 1550 280 0.040
g 0.81 1680 305 0.040
0.45 1640 305 0.038

Table 5.1(b). Charge collection efficiency, e, as a function of dE/dx
for protons and alpha particles [Equer et al. ,1988].
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caée of alpha particles the reason being the smaller dE/dx of 1 and 2
Mev protons in Silicon (1 Mev protons, dE/dx ~ 39 Kev/um ; 2 Mev
protons, dE/dx ~ 25 Kev/um) in comparison with alpha particles. Fig.
5.2 shows the charge collection efficiency as a function of dE/dx of’
various particles at 0° and 600 angles for a 5 um diode. '

A more detailed study of the charge collection characteristics
of a-Si:H diodes with alpha particles and protons of energy in the
range of 400 Kev to 5.8 Mev was subsequently done by Equer et al.
[1988].

Table 5.1 shows the charge collection efficiency of protons and
alpha particles of various energies and how the charge collection
efficiency significantly decreases with increase in dE/dx. Some

analysis of the plasma effect is given in [Fujieda, 1990].

5.2 Minimum ionizing particle detection

In high energy physics applications amorphous silicon
technology was thought to offer promising possibilities as a large
area low cost radiation detector. For high energy physics
applications, detection of minimum or near minimum ionizing
particles is of interest. However, detection of minimum ionizing
particles above noise requires thicknesses of tens of microns which
could be depleted at reasonable bias. Initially, a-Si:H diodes of only
a few micron thickness were available. It is appropriate here to
throw some light on what is meant by a minimum ionizing particle in
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general.

5.2.1 Minimum ionizing particle

If stopping power, dE/dx, of a particle going' {hrough some
medium is plotted as a function of energy, E, a plot similar to one
shown in Fig. 5.3 is obtained from what is known as Bethe formula

given by [Segre, 1977]

dE  4r Z%€* 2mv?

&~ T " s

- °] (5.4)

where

z = particle z

v = particle velocity

m = electron mass

n, = electron density in the medium
= ionization potential
B = v/c
e = electron charge

At very low energies, when particle energy is comparable with
the orbiting electron energy, the incident electron gets bound to a
site resulting in rapid fall off of ionization. On the other hand
ionization increases at high energies due to relativistic effects. At
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Fig. 5.3. Variation of stopping power with particle energy [Marmier
and Sheldon, 1969].
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Fig. 5.4. Total (ionization and radiation losses) stopping power for
electrons in air, water, aluminum and lead. For Lead, the
contribution from ionization is also shown [Heitler,1954].
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medium energies the stopping power falls off as 1/v2 or 1/E. A
broad minimum in stopping power is seen around 2-3 x the rest
mass of the particle. This is a useful rule of thumb to estimate the
energy of a minimum ionizing particle. For example protons whose
rest mass is 938 Mev are minimum ionizing at ~ 2 Gev. An alpha
particle (mgc2 = 3727 Mev) at ~ 7 Gev is 4 x minimum. For
comparison tabulated value of minimum ionizing proton is 2.3 Gev in
Si and .the minimum energy loss is 1.67 Mev-cm2/g. An electron
(mgc2 = 0.511 Mev) is minimum ionizing at 1-2 Mev energy. Fig. 5.v4
shows the stopping power of electrons in various media [Enge, 1966].
It is seen that a minimum ionizing elecfron has energy between 1-2
Mev in Al which will also be the case for Si as its z and density is
similar to Al

B4
H

5.2.2 Charge creation by interacting particle in a-Si:H

One important step towards realising the goal of using a-Si:H
for minimum ionizing particle detection was to demonstrate that
such particles could be detected by it. Considering the magnitude of
trap density, ~ 1015 cm-3, present in the material, one could wonder
if particles with small dE/dx would be detected. That is, are there
threshold effects that limit the minimum detectable pulse of charge
in hydrogenated amorphous silicon diodes ? _

The minimum ionizing particles deposit Ithe least amount of
energy, (AE)min, per unit track length of the particle. Therefore, the
average number of electron-hole pairs, nmin, created in the process
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would be the bare minimum and is given by

n. = ———ot | | (5.5)

where W is the average energy required to produce an electron-hole
pair in the medium. The minimum energy loss of protons in silicon is
1.67 Mev-cmZ2/g which is 0.38 Kev/um using density of 2.3 g/cm3 for
silicon.

The average energy required to produce an electron-hole pair in
a-Si:H has been of considerable interest over the last few years.
Kilein [1968] showed that there exists a remarkable correlation
between the W value and the band gap of crystalline semiconductors.

This correlation is shown in Fig. 5.5 and can be expressed as
W = 28E; + r(hoR) 05 < rlhw ) <1.0eV (5.6)

The second‘ term in the equation is attributed to phonon loss.
Whether this correlation is applicable to amorphous silicon has been
én open question. Spear [1969] studied W value of a-Se and found W
~ 18 eV. This meant for a-Se W is = 7 Eg instead of = 2.8 Eg (Eg < 3
eV) according to the above correlation. More recently Pochet et al.
[1989] have put a conservative limit on the W value of a-Si:H bet-
~ween 3.4 eV and 4.5 eV. Assuming that the correlation of Klein is
applicable and W is = 4.8 eV, the average number of e-h pairs
produced from a minimum ionizing proton is = 80 per micron. This
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Fig. 5.5. The average energy required to form one electron-hole pair
W vs bandgap for different crystalline semiconductor materials

[Klein, 1968].

number would be = 105 e-h pairs per micron if the W value of
crystalline silicon is used. Based on these numbers, in an a-Si:H
diode 30 um thick the total expected number of e-h pairs produced
by a minimum ionizing proton would be about 2400 - 3000. In a diode
with noise between 3000 to 4000 electrons (diode noise discussed
in chapter 3) signal this size would be buried in noise. Therefore a
minimum ionizing particle in thinner diodes could not be ordinarily
detected. |
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A signal-averaging technique was used to make the minimum
ionizing particle observable. In such an averaging process the signal,
S, averaged N times remains S while random noise is reduced by
square root of N thus -improving the overall signal to noise by
square root .of N (see, for example, Tektronix Oscilloscope 2430

manual; [Knoll, 1979])
5.2.3 Minimum ionizing particle measurement
The éignal averaging technique was implemented by using a

Tektronix 2430 Oscilloscope. The schematic of the experimental

setup used is shown in Fig. 5.6.

Sr-90 @ Test
BetaGun % # Pulser
Splitter Tektronix
Collim-
ator Q Attenustor Scope 2430

GPIB
ED |

a-Si:H

A
i

Preamp Amp Trigger

c-Si

D
/@/

PC

]
Vi

Fig. 5.6. Experimental setup used for the detection of minimum
ionizing particles by a-Si:H diode. Sr-90 gun source was used.
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Beta particles from a 4 mCi Sr-90 gun source were used in a
coincidence experiment between an a-Si:H diode and a crystalline
diode. As seen from Fig. 54 a 2 Mev beta particle from Sr-90 is
closé to a minimum ionizing p'article. A beta particle going through
the a-Si:H diode and the crystal diode produced a trigger pulse in the
crystal diode. This pulse was used to trigger the oscilloscope whicvh

then acquired the signal produced by the a-Si:H diode.
As a check on the measurement technique a 150 um crystalline
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Fig. 5.7. Pulse height spectrum from beta particles in v150 um
crystalline diode using setup of Fig. 5.6. The oscilloscope was used
in normal mode and amplifier shaping time was 0.5 pus.
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silicon diode was used in place of the a-Si:H diode. Crystalline
silicon being well understood provided a useful check on the
measurement technique. The coincidence experiment was done
between the two crystalline diodes using beta particles from Sr-90
source. To ensure that each particle that produced a trigger went
through the front diode, the size of the diode was made larger in
diameter compared to the rear diode in addition to using a fine
collimator. Fig. 5.7 shows pulse height spectrum obtained by
using two crystalline silicon diodes in the coincidence experiment
with 2430 Oscilloscope in normal mode (no averaging). For almost
every trigger a signal in the front crystalline diode is seen above
background. The calibrated signal from a beta particle in its transit
through 150 pum diode was 14,914 + 56 e- which amounts to signal

of 99.4 + 0.37 electron-hole pairs per micron of crystalline silicon,

a number one would expect.

The beta signal in a-Si:H diode was measured at 3 pus shaping
time and 256 signal-averages were used. A desk-top microcomputer
was used for pulse height analysis. Signal amplitude was determined
from the digitized trace by averaging four channels at the pulse peak
time and subtracting the average base-line counts per channel. The
resultant amplitude was then accumulated for many signals until
pulse-height spectrum was obtained. Test pulser pulses were used
to calibrate the signal. Fig. 5.8 shows pulse height distribution of
256-signal averaged pulses on a 31 um diode at 300 V bias. The
signal is seen clearly above background. Fig. 5.9 shows beta signal in
this diode as a function of bias.
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Fig. 5.9. Beta signal as a function of voltage for a 31.2 um a-Si:H p-
i-n diode. The diode noise was ~ 4000 electrons at 400 V; diode

capacitance ~ 125 pF. Signal averages of 256 were used.

97



5.2.4 Beta signhals at short shaping times ranging from 20

ns - 500 ns

As pointed out in chapter 1 the mobility of electrons and holes
in a-Si:H is small; ~ 1 cm2/V-s for electrons and < 0.01 cm2/V-s for
holes. Consequently, one would expect that for short shaping times
and reasonable electric fields only electrons are collected. A
measurement was done to study the charge collection from beta

particles as a function of shaping times ranging from 20 ns to 500

2000
Beta signal on 31.2 pm p-i-n diode

1800 P ® 350 v .
- ® 450 v
£1600 s 500 v ;
+3 ¢
g :
\%)31400 # +
B1200 f ¢
D
w

1000 F +

800 '] 1 2 B8 llll 1 2 1 R_E 0 0L Z
10 100 1000

Shaping time (ns)

Fig. 5.10. Sr-90 beta signal as a function of shaping time. The
shaping time used were 20, 50, 100, 200 and 500 ns. Tennelec TC
171 was used as preamp and the amplifier was timing filter
amplifier (EG&G). The measurements were done using the setup of
Fig. 5.6.
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ns. A 31.2 um p-i-n diode described in the previous section was used.

The charge collection data using light showed that the diode was
fully depleted at ~ 350 V bias [Fujieda et al., 1988]. The measur-

ements were done at 350 and 450 V bias. Fig. 5.10 shows the mea-

sured beta signal on this diode as a function of shaping time.

31.2 um diode at 450 V bias

o
[»]
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Fig. 5.11. Charge collection efficiency as a function shaping time in
a 31.2 um a-Si:H p-i-n diode at 450 V bias. Calculation assumes
uniform energy deposition by a minimum ionizing particle with no
plasma effect and uses measured values of material parameters
from Table 2.1 and the ionized defect density of 6 x 1014 cm-2.
Details of calculation are in [Perez-Mendez et al., 1990].
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It is seen from Fig. 5.10 that a sizeabie electron signal (1400
to 1500 e-) is collected at shaping times ranging from 50 to 100 ns.
At these shaping times the contribution from holes is expected to be
small as shown in -Fig.' 5.11 where the fraction of charge collected is
ploted as a function of shaping time in a 31.2 um diode at 450 V
bias. Measured values of material parameters tabulated in column 3
of table 2.1 were used. Charge collection as a function of bias at 50
ns shaping time is shown in Fig. 5.12. A small incréase in signal is
seen from 450 V to 500 V bias and the charge collected is approxi-

mately 1400 electrons. It is also interesting to see from Fig. 5.9 and

1600 _
: ® Beta signal at 50 ns shaping time
1500 bk 31.2 um p-i-n diode
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O
o2
\d)/ )
= 1300 P
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Fig. 5.12. Beta signal at 50 ns as a function of bias.
100 |



Fig. 5.10 that the charge collected at 450 V bias does not increase
appreciably when shaping time is increased from 0.5 ps to 3 ps.
Using the measured value of signal éize at 100 ns shaping time (i.e.
1486 + 43 e) from Fig. 5.10. and the calculated fraction of charge
collected (i.e. 0.45 + 0.02) from Fig. 5.11, the charge created by}a
beta particle going through the material is estimated to be 106 * 6
e-h pairs per rhicron. This }nurvnber is similar to What one expects in

the case of crystalline silicon.

5.2.5 Recent experiment with beta particles

Receﬁtly beta pulses with signal amplitudes exceeding noise
by a factor of 4 or more have beén observed at shaping times rangihg
from 0.5 us to 6 us. These large pulses form about 15% of the total
count rate. The experimental set up used for signal and noise
measurement is shown in Fig. 5.13. The pulses were first detected
on a 29 um a-Si:H p-i-n diode described in Fig. 3.2. The pulse-height
spectrum of beta signal from Sr-90 beta gun source at 300 V bias
and 3 pus shaping time is shown in 'Fig. 5.13. Beta pulses were seen at
bias voltage as low as 150 V. An oscilloscope. trace of such a beta
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Fig. 5.13. Schematic of experimental setup used to measure beta
signal and diode noise. The preamp has no shaping and the dual amp
has (pseudo-Gaussian) CR-(RC)4 shaping.
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Fig. 5.14. Pulse height spectrum of beta pulses with two calibration
pulses measured on a 29 um a-Si:H p-i-n diode. Detector noise is
2960 electrons. Calibration: 1876 electrons per channel; PHA lower
level discriminator set to O.
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Oscilloscope trace of beta pulse
300 V, 29 um a-Si:H p-i-n diode
150 3 us shaping time :

0 20 40 60
Time (us)

Fig. 5.15. Digital oscilloscope trace of a beta pulse at 300 V, 3 ps
shaping time detected in a 29 um a-Si:H p-i-n diode.

pulse is shown in Fig. 5.15.

The pulse-height spectrum with' the beta source removed is
shown in Fig. 5.16. No signal was observed.

A coincidence experiment was done to verify that large pulses
were truly associated with beta particles. A 150 um crystalline
diode and the a-Si:H diode were used for the coincidence experiment
shown in Fig. 5.17. The large pulses from the a-Si:H diode were used
as trigger. A beta ray traversing the crystalline diode and also
producing a large beta pulse in the a-Si:H diode caused the system to
trigger. No trigger pulses were seen with beta source removed from
the detector box. The signal size 'in the crystalline detectér agreed
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Fig. 5.16. Pulse height spectrum with Sr-90 beta source removed. All
settings were same as in Fig. 5.14.
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Fig. 5.17. Experimental set up used for coincidence between xtal and

a-Si:H diodes.
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reasonably well with the energy deposited in the diode by a beta ray
traversing through the diode and producing a trigger pulse in the a-
Si:H diode.

It is not yet clear what mechanism is responsible for
producing these large pulses from beta particles in a-Si:H diode. One
possible explanation is that the energy deposited by an electron
traversing a thin target is distributed asymmetrically about the
most probable value. The distribution is essentially Gaussian on the
lower energy side, but has a tail on the higher ehergy side and is
known as Landau distribution [Segre, 1977 p 51; vLindhard-et al. ,
1963; Goldwasser et al. , 1952]. The pulses could also be from low

energy electrons which have higher dE/dx (Fig. 5.4).

5.3 High energy alpha experiment

This experiment was designed to measure signals produced in
a-Si:H detectors by energetic particles and demonstrate the use-
fulness of a-Si:H detectors in high energy particle detection app-
lications. The signals produced in a-Si:H diodes by high energy alpha
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beams (860 Mev) from Bevatron accelerator at LBL were measured at
short shaping times (50 and 100 ns). The choice of energy was purely
based on the availability. The 860 Mev alpha particles have dE/dx (~
13.9 Mev-cm2/g or 3.2 Kev/um) which is about eight times the
minimum ionizing alpha particle. The signal at these shaping times
is expected to be primarily from electron collection while the
contribution from the holes is anticipated to be small. This is due to
the large difference in the mobility of electrons and holes. The hole
mobility is a factor of 100 or so s»maller than the electron mobility.
The mobilty-lifetime product of holes is a factor of 3 to 4 smaller
corhpared to that of electrons. A sizeable fraction of hole signal is
lost even for shaping times as large as several microseconds [Pochet
et al, 1989].

Fig. 5.18 shows the measured signal as a function of bias at 50
and 100 ns shaping times when an 860 Mev alpha particle traverses
through a 12.5 um a-Si:H p-i-n diode in a coincidence experiment.
The experimental setup used was similar to one shown in Fig. 5.6. To
check for consistancy the 860 Mev alpha signal was measured
by the setup of Fig. 5.6 when the a-Si:H diode was replaced by a 150
um crystalline diode. The measured signal in a fully depleted xtal
diode at 0.5 us shaping time was 137,044 * 39 electrons. Using
dE/dx value of 13.95 Mev-cm2/g for 860 Mev alpha particles in 150 +
5 um thick diode gives a W value of 3.51 £ 0.16 eV. . |

Fig. 5.18 shows measured signal in a 12.5 um a-Si:H diode at
50 and 100 ns shaping times as a function of bias when an 860 Mev
alpha particle goes through the diode.
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6 L 860 Mev alpha signal in a-Si:H p-i-n diode
5 :_ © 50 ns shaping time
0 . o 100 ns c
5, F _
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Fig. 5.18. Measured signal when an 860 Mev alpha particle goes

through a 12.5 um a-Si:H p-i-n diode.

The preliminary experiment with thicker a-Si:H diode (31.2

um) using 860 Mev alpha beam showed probable presence of plasma

Bias Signal (Ke-)

()| 0o, (d4=312+ 02 pm) | 600 + 20, (d=62.4+ 4 m)

450 99+ 03 23.3+ 07

Table 5.2. 860 Mev alpha signal at 0° and 60° to the beam. Increased
signal size at 60° by a factor greater than 2 is probably due to
presence of some recombination effects. '
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effect discussed in section 5.1. The measured signal at 0° and 60°
+ 20 inclination to the beam is shown in Table 5.2. The increése in
600 signal was seen to be more than a factor of 2, an indication of
the probable presence of recombination effects at 13.9 Mev-cm2/g
dE/dx value. |

The alpha signal was seen above system noise without
averaging. Table 5.3 shows alpha signal measured at 350 V bias and
100 ns shaping time in normal mode and averages of 16 at 60°
inclination to the beam. The two values were found to be in good

agreement.

Ezif;s Signal (Ke™) , 600 inclination
v |

Normal 16 averages

350 210+ 1.7 204+ 05

Table 5.3. 860 Mev alpha signal measured in normal and averaging
mode to check for consistancy. The agreement evidently is quite
“good.

" The loss of signal due to recombination effects at ~ 8 x dE/dx
of minimum ionizing particle needs to be ascertained and further ex-
perimentation is required before the W value is inferred from these
measurements. The measurements, without taking into consideration
recombination effects, showed a spread in the effective W value
ranging from 3.9 to 4.7 eV.
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Conclusion

'Properties of hydrogenated amorphous silicon diodes relevant
to radiation detection applications were studied. The interest in
}using hydrogenated amorphous silicon for radiation detection appli-
cations in physics and medicine was motivated by the fact that
hydrogenated amorphous silicon can be deposited over large area at

relatively low cost compared to crystalline silicon.
1. Material rameter

The material parameters of interest namely, carrier mobility,
u, .Iifetime, t, and the defect density, Ny, of thick a-Si:H p-i-n diodes
- were studied by time of flight (transient photoconductivity)
experiments. The mobility and mobility-lifetime product values on
thick diodes were comparable to values reported on thin diodes for
solar cells. The ionized defect density, Ny', of p-i-n diodes measured

by transient photoconductivity method under DC bias was found to be

only ~1/3 of the total defect density as measured by ESR.

2. Leakage current and noise

The leakage current under reverse bias of well behaved a-Si:H
p-i-n diodes was studied. The leakage current is important from
noise and power dissipation considerations. The increase in leakage -
| 109 |



current with bias has the same dependence on voltage as one would
expect if this increase were due to the "Poole-Frenkel effect”
involving excitation of carriers from neutral defects. The noise of
the diode over the operating voltage range is completely explained in
terms of the "shot noise” component and the noise component at 0 V
bias (delta and thermal noise) added in quadrature. The leakage
current makes dominant contribution to noise in the form of shot

noise for CR-(RC)4 (pseudo-Gaussian) shaping at 3 us.

The irradiation effects of 1 Mev neutrons and protons on thick
a-Si:H p-i-n diodes were studied in terms of degradation in leakage
current and noise. This study showed that a-Si:H diodes were radia-
tion resistant to neutron fluences in excess of 4x1014 cm-2. No
appreciable change in leakage current and noise was seen while
alpha signal degraded by about 20%. The diodes fully recovered after
annealing at 180° C for two hours.

Proton irradiation (1.4 Mev) produced little degradation in
leakage current and noise at 1012 cm-2 fluence. However, at proton
fluence of 1013 cm-2 leakage current and noiée was significantly
degraded.

A comparison between 5x1014 cm-2 neutron fluence and 1013
cm-2 proton fluence reveals that leakage current in case of neutrons
increases by 10-20% with neglegible increase in noise. Proton
irradiation increases leakage current by a factor of 10 to 25 with
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significant increase in noise as a result of increase in shot noise
contribution.

Proton irradiétion was also used to stu.dy effects on electron
mobility and lifetime with increasing fluence. The diode subjected
to 1.4 Mev proton fluence ranging from 1072 cm-2 to 1014 cm-2
showed that no appreciable change was seen in electron mobility on
irradiation. However, electron lifetime decreased from 232 ns by
about a factor of 4 to 60 ns at 1014 cm-2. This decrease in carrier
lifetime is associated with an increase in defect centers on irra-

diation.
4. Char llection

Minimum ionizing particles, for example 1-2 Mev electrons,
were detected in thick (~ 31 um) a-Si:H p-i-n diode at 3 pus shaping
time. These particles were detected by signal averaging technique
implemented to improve the signal to noise ratio in a diode with
large capacitance. It was demonstrated that if one were to rely on
signal from electrons alone the device speed could be much higher as
most electrons are collected in shaping time ranging from 50 to 100
ns with small contribution to signal from hole collection. This
result was also confirmed by measurements with 860 Mev alpha
particles at short shaping times. As thicker fully depleted diodes
are realised more energy is deposited in the diode with increase in
signal to noise ratio due to reduced capacitance. In such a device
electrons alone would produce large enough signal making a faster |
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device more realistic.

Measurements showed a minimum ionizing beta particle
produced ~ 104 e-h pairs per micron of a-Si:H, consistant with the
value for crystalline silicon. Measurements with 860 Mev alpha par-
ticles (~ 8 x minimum ionizing dE/dx) showed that the energy
expended per e-h pair, W value, in a-Si:H is smaller than predicted
from the Klein's curve for crystalline semiconductors. Preliminary
measurements with 860 Mev alpha particles showed a spread in the
~effective W value ranging from 3.9 to 4.7 eV. These estimates were
obtained from signal measurements at short shaping timeé (100 ns)
and model calculations of the fraction of electrons and holes
collected using measured values of material parameters. Further
work is required to determine a better value of the W value of a-
Si:H.

Heavily ionizing particles, e.g. alpha particles, produce a
saturation effect (plasma effect) in hydrogenated amorphous silicon
diodes. This phenomenon is similar to the effect produced by fission
fragments in crystalline silicon detectors. As a consequence of this
effect the collected charge is not proportional to the energy
deposited in the diode. The effect is neglegible for minimum ionizing
particles.

The work reported in this thesis shows that hydrogenated
amorphous silicon p-i-n diodes hold good promise for radiation

detection applications.
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Appendix 1

The probability p that electron jumps from state A to state B
through scattering with a phonon depends on ' '
(1) The probability of finding a phonon with an excitation energy W
and is given by the Boltzman factor ~ exp(-W/kT), where W is the
energy difference between the two states.
(2) Attempt to escape frequency vph.
(3) The probability of electron transfer from one state to another

E A /\C Wi> Wo
Wi

(a) | (b)

Fig. 2.13. (a) Hopping of a carrier from state A below the Fermi
energy to state B above it. (b) At low T, long range less energetic
hops are favoured. ’

which depends on the overlapping of wave functions and is given by
exp(-2aR). R is the jump distance and o is a quantity representing
rate of fall of wave function at a site.
Total probability p is g.iven by

P = v, exp(-2 o R-W/KT)
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From Einstein's relation,
eD

ko= and using an expression for diffusion

1
ngz [Cohen, 1970], we have

coefficient , D

2 2
u = %% and o = ney = 96— pR% N(E,)

where N(E;) is the density of states at the Fermi energy.

Substituting for p we have
e? 2 W
o= —6"1)ph NE,) exp(-_ 2 R-ﬁ)

As T is lowered the energy of phonons decreases and more energetic
phonon assisted hops become less favourable. Carriers tend to hop

larger distances.

To find the most probable hopping distance let

N(W) = No. of states per unit volume per unit
energy, then the number of states within energy W and within

distance R is given by

4
3

7 R° NW) W

For electron to hop from a state just below the Fermi energy to av

state just above it this number should be at least 1.

Therefore,
3
4n R*NE)

and P = v,, expl-2x R-{%n R® N(E)kT} ).
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The most probable jump distance R, is given by minimizing the
exponent with respect to R.

Let,

and

we have

where

X=-2a R-{g—n R°NE KT}

dX
&’ -0

9 1
]Z
8t a N(E,) kT

Fzmin = [

A
p=v ph exp(——-)
s 1

A=21 x [‘3‘k— N(E,)J*

and the hopping conductivity is given by

A
o hop =0 Oexp(_'_f)
T4

1

Eq. (21 1) is known as Motts T* law.
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Appendix 2

Let

vpp = Pulse bias signal
vgc(t) = DC bias signal

tr = Transit time |

n = Mobility = d/Egtt = d2/Vtr

R = Resistance across which signal is measured

n = Carrier density

A = Diode area

q = Electronic charge

lgc(t) = Signal current under DC bias
lpb = Signal current under pulsed bias
Vo = Pulsed bias across diode

Eg = Pulsed field = Vgy/d

Let

Vob=Rlpp=RgAnv=RqAnpEy=RQupEg

where Q = n g A.

Under DC bias

Vac () =R lge(t) =RgAnv =RqgAnp Egelt)
or
Vac(t) = R Q p Eqe(t)

From eq.s (1) and (2) we have
Egc(t) = Eo vdc(t)/vpp
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or
t
x = [E ) o

X = U J'(;EO\\,/dc(to dt1

pb

d
Voo b

[ veelty dt (4)

Assuming the electric field falls off linearly we can write the
depletion thickness as

2 Voeg
= L 5
d qu ( )
d agN,
dx E£,
gN,
E(x) = -
() = - “xwe
For E(x) = 0 at x = X,
_ gN,
PP
Therefore,
- N
E(X) = - (x-x,) (6)
EE,

117



V= gis pEX) = - s (X-Xq)
££, dx gt
qNg o X-X4
EE, X4—X
—r—In (=&—=) = -t
qNy u ( X4

Using eq. (6) we have

Ef |y [8oer(X) 1_] -t

qNg g N, X4
Using eq.s (3) and (5)
. 80€r In [ EOErEO Vdc(t)] = -t
qN; u aN, 2V, e, Veb
‘ q N,

Ef, In [Vdc(t)] + €L, In [!g] _ €fr In [q Nd ‘2 VO Ef, ] =-1
aNy u Vob qN, u d aNy u € v q Ny

For time duration t and t, we have

Vdc(t1)
N ~ 808r "n [ Vdc(tZ) ] (7)
° qu t,—t,

where eg, =12 x 8.85x07"* F/cm.

Expressing result in terms of current signal we have eq. (2.19).
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Appendix 3

In crystalline semiconductors, deep trapping is described in
terms of a capture cross section ¢, with carriers at the edge of the
band having a thermal velocity v, and Ng is the defect density.

o' =0 VN, ()

where 1f is the free-carrier lifetime. Eq. (1) assumes that the
scattering length, a, is larger than the capture radius d (o= nd?2). If
instead a<d, then capture is dominated by diffusion and the rate is
given by the formula [Waite, 1957] :

t. = 4z dDN, | 2)

where D is the diffuson coefficient. In amorphous semiconductors of
interest, a and d are likely to have similar magnitudes.

Another difference is that free carriers in an amorphous semi-
conductor are not at the bottom of a band, with thermal velocity.
Instead they move at the mobility edge E. with minimum metallic
conductivity, omin, given by [Mott and Davis, 1979]

0., = 0.025 €%/ ha

Free carrier mobility at the mobility edge E, is given by

_ €D
Ho= k7
1 1 h 1 &
D=_ 2=—' 2=——
6Vela 6(ma2)al 6 m

where v, is the electronic frequency (=#/ma?).
Therefore,
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lﬁ(ﬁ_)
Ho= 8 m kT
1 e
.uo—g.ﬁav (3)

The third effect that must be taken into account is that the
drift mobility in an amorphous semiconductor is trap limited by
band-tail states, so that [Street, 1984]

TE= U/l (4) -

Thus, combining eqgs. (1) and (4) , we have

— =0 VN 5
T L o D (5)
From egs. (3) and (5) we get
1 e a
Hr o = 5k 5
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'Table 1 dE/dx of heavy particles in silicon
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HEAVY PARTICLES IN SILICON
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Table 2 - Range of heavy particles in silicon
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Table 3 dE/dx and range of electrons in silicon
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ENERGY

MEV

0,010
0.015
0.020
- 04028

04030

C.035
0.040
Q.045
0,050
0055

0,060
04065
0.070
0.075
0.,08¢C

0.085
0+09C
0.095

0.100
0.150

0.200
0.250

«300
0.350
0.400

0.450
0.500
0,550
0.600
0650

0.700

0.750

0.800
0.850
0.500

0950
1.000
1.100
1.200
1,300

COLLISION

MEY CM2/G

1,692 01
1.253E 01
1,011E 0Ol
8.570E 00
T7.491E 0O

6.693E 00

6.077E 00 .

5.586E 00
5.185& 00
4,851E 00

4,568t 0O
4,326€ 0O
4,1186E 00
3.9328 00

3,769E GO

3.625E GO

3.495E Q0

3.3798 00

3.273E 00
24592 00

2.246E 00
2.039E 00
1.904E 00
1.805E 00
1.,739E 00

1.68%9E 00
1,651 00

1«621E QO

1,598E 00
1.,580E 00

1.,565E 00
1.553E 00
l.5#44E 00
1.536E 00
1.530E 00

1.525€E 00
1.522E 00
1.516E 00
1.514E 00
1.513E 00

Table 4.-Continued
ELECTRONS IN SILICON

STOPPING POWER

RADIATION
MEY CM2/G

9.576E-03
G459E~-03
9 344E=03
9.286E-03
9.252E-03

9.223E-03
9e241E~03
9.280E-03
9.333E~-03
9.396E-03

94467E-03
9.5““6'03

‘Fe626E~03

9.713E-02

903035‘03

909°6E_03
1.000E-02
1.010£-02
loOZOE‘OZ
1,12%£-02

1.230E-0Q2
1.348E-02
1.472E~02
14602E-02
1 .7306‘02

1.860E-02
1,989E~02
2.117E-02
2.245E-02
24372E-02

‘2.499E-02

24626E-02
2.753E~02
2.887E-02
3.014E-02

3,140E-02
3.267E-02
3,519€-02
3,772E-02
4,024E-02

130

TOTAL
MEY CM2/G

1.693E 01
1.254E 01
1.012E 01
8.579E 00
7.501E 00

6.702E QO
6.086E 00
£.595€ 00
5.194E 00
4,860E 0O

4,578E 00
4,335E 00
4.125€ 00
3,942E 00
3,779E 00

3,635€ 00
3.505E 00
3.389E 00
3,284E 00
2.603E 00

2.258E 00
2,053E 00
1,919E 00
1.821E 00
1.756E Q0

1.7C7E @0
1.,671E 00
1,642 00
1.620E 00
1.603E 00

1.590E 00
1.579E 00
1.571E 00
1,565 00
1.560E 00

1.557E 00
1.554€E 00
1.552E 00
1.551E 00
1.553€E 00

 RANGE

G/CM2

3 404E-0Q4
6¢933E-04
101‘OE‘°3
1.679E-03
2¢304E-03

34011E~03
34795E-03

44653E-03"

5.581£-03
6577E-03

7e¢638E~03
84761E-0Q3
Ge904E~-0Q3
1.118E-02
1s248E-02

l1e383E-02
1.523E-02
le668E-02
1.818E-62
3.550E-02

5.625E-02
7e955E-02
1.048E-01
l.316E-01
14596E-01

14885601
2.181E-01

- 24483E-01

2+790E-01
3.100E-01

3.413E-01
36729E-01
4.046E~-0Q1
44365E~01
4.685E-01

5.006E-01
5327E-01
5.971E-01
6.616E-01
7.260E-01

’

RADIATION
Y1ELD

“.389E-0“
5¢392E-04
64321E-04
T4198E-04

82034E-04
8,839E-04
S+622E-04
1,03%9€£-03
lell4E-0Q3

1,188E-03
1,261E-03
1¢333E~-03
1040“5-03
l,474E-03

le544£~Q3
le613E-03
106825-03
1¢750E-03
24406E-03

3,027E~03
34624E-03
44207E-03
4o78B4E-03
54352E-03

5.909E‘03
6.459E-03
6e999E£-03
7¢530E~03
8.053E-03

8.567E-03
9.074E~-03
905745‘03
1.007E-0Z
10056E‘°2

1.104E-02
1.152E-02
1e246E-02
1.338E-02
1,428E-02

o



¥

ENERGY

MEV

1,400
1,500
1.600
1,700
1.800

1.500
2,000
2.200
2.400
2+600

2,800
3,000
3,500
4,000
4,500

5.000
5.500
6.000
6.500
7.000

7.500
8.000
8.500
9.000
9.500

10.000
20,000
30,000
404000
50,000

60,000
80.000
100.000
200,000
300,000

400,000
500.000
600,000
800.000
1000.000

COLLISION
MEY CM2/6

1.513E 00
1,514E 00
1.516E 00
1.519E 00
1,521t 00

1.525E 0O
1,528E 00
1.534E 00
1.5415£ 00
1.548E 00

1.555E QO
1.562E€ 00
1,578E 00
1.593E 00
1.606E 00

1.618E Q0
1.629E 00
1.63%E 00
1.649E 00
1.657€ 00

1.665E 00

1,673 00
1.680E 00
1,686E 00
1.692€ 00

1.698E 00
1.773E 00
1,812E 00
1.83%E 00
1.859E 00

1.875E 00
1,899E 00
1.917€ 00
1.972E 00
2.004E 00

2.026E 00
2.043E 00
2.057E 00
2.079E 00
2.096E 00

Table 4.-Continued
ELECTRONS IN SILICON

STOPPING POWER

RADIATION
MEV CM2/G

4.275E-02
4,527E-02
4.778E-02
5.011E~02
5.264E-02

5.521E=02
5.779E-02
6.303E-02
6.8358-02
Te374E-02

7.891E-02
8.“45E"02
9.874E-02
1.,136E-01
10292E-01

lo449E-01
1,610£E-~01
14773E-01
1.939E‘01
2.107E-01

2.277E-01
20“49E‘°1
24623E-01
2.815E-01
2.993E~01

3.172E-01
6.976E~01
1.101E 00
l1.515€ 00
1,936t 00

2.362€ 00
3.224E 00
4,093E 00
8.504E 00
1.296E 01

l.743E 01
2.192€ 01
2.641E 01
3.540E 01
4,439E 01
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TOTAL
MEV CM2/6

1.556E 00

1.560€ 00
1.564E 00
1.569E 00
1.574E 00

1.580E 00
1.586E 00
1.5%8E 00
1.610E 0O
1.622E 00

1,634E 00
1.647E 00
1.677E 00
1. 706E 00
1.,735E 00

1.763E 00
1.790E 00
1.817€E 00
1.843E 00
1.868E 00

1.893E 00
1,918 QO
1,942 00
1.968E 00
1,992 00

2.016E 00
2.470E 00
2.913E 00
3.354E 00
3.795€ 00

4,237E 00
5.,123E 00
6,010 00
1,048E 01
1.,496E 01

1.946E 01
2.396E 01
2.846E 01
3.748E 01
4,649E O1

RANGE

G/Cm2

T7.904E-01
B4546E-01
9.186E-01
9,824E-01
l.046E 00

1.,109E 00
14173E 00
1298E 00
l.423E 00
1.547E 00

14670E 00

1. 792E 00
2.092E Q0
2,388t 00
2679E 00

2.964E 00
3.248E 00
3.523E Q0
3.796E 00
4,066E 00

4¢332E 00
44594E 00
&4.,853E 00

5.109E 00

54362E 00

5611E Q0
1.008E 01
1.380E 01
1. 700E 01
1.980E 01

20229E 01
24658E 01
3.,018€ 01

4.,263E 01
5.057E 01

5.642E 01
6.104E 01
6.486E 01
T«097F 01
7.575E 01

RADIATION
YIELD

14517E-02
14604E-02
1¢690E-02
le774E-02
1857E-02

1939E-02
2¢021E-02
20182E-902
2e342E-Q2
24500E-02

2.656E~-02
2.811E-02

3e196E-02

3.581E-02
3e966E-02

4e353E-02
4o T&OE~-Q2
5:126E-02
SeS512E-02
5.897E-02

6280E-02
6.663E-02

TeQ44E-Q2

Tee25E-02
7.8065-02

8e184E-02
1e¢522E-01
2¢122E-01
2¢632E-01
3,070E~01

3,449E~01
4,076E-01
4,573E~-01
6.076E~01
6.857E~01

Te349E-Q1
7.691E-01
Te945E-01
803915'01
8.541E-01
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