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Abstract 

The energy loss dE / dx for a heavy lepton propagating through a high 

temperature QED plasma is calculated to leading order in the QED cou­

pling constant. The screening effects of the plasma are computed consis­

tently using a resummation of perturbation theory in the small momentum 

transfer region. At large momentum transfer, recoil effects are properly 

taken into account. Our complete leading order calculation differs signif­

icantly from previous calculations. 
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I. Introduction· 

One promising signature for the formation of a quark-gluon plasma in relativistic 

heavy-ion collisions is a change in the characteristics of the jets emitted in the colli­

sion. For example, the energy loss dE / dx for a jet propagating through a quark-gluon 

plasma could be rather different from one propagating through hadronic matter. 1,2 

The asymptotic freedom of QeD suggests that for a quark-gluon plasma at suffi­

ciently high temperature T, .the energy loss dE/dx should be computable using per­

turbation theory in the running coupling constant 9s(T). Unfortunately dE / dx can 

not be computed by straightforwardly evaluating the lowest order tree level Feynman 

diagrams for scattering off of thermal quarks and gluons in the plasma, because of 

infrared divergences due to the long-range interactions mediated by the gluon. These 

long-range interactions are screened in the plasma and in order to compute dE / dx 

to leading order in 9s, it is necessary to resum the thermal loop corrections which 

provide the screening. 

It is an open question whether a perturbative calculation can provide a quanti­

tative prediction for dE / dx at the temperatures achievable in heavy ion collisions, 

which will not be much higher than the deconfinement transition temperature. There 

is reason for optimism, because perturbative predictions of static properties of the 

quark-gluon plasma are in reasonable accord with lattice gauge theory calculations, 

even at temperatures rather close to the phase transition.3 Regardless of the answer, 

perturbation theory is valuable as a qualitative guide to the behavior of the plasma. 

While lattice gauge theory allows systematic calculations of the static properties of 

the plasma, it is completely impractical for measuring dynamical properties such as 

dE / dx. If supplemented by appropriate resummation techniques, perturbation the­

ory can be used to systematically calculate dynamical as well as static properties at 

high temperature. 

The first perturbative estimate of dE / dx in a quark-gluon plasma was made by 

Bjorken.1 A high energy quark or gluon loses energy by scattering off of thermal quarks 

and gluons in the plasma. In the tree level calculation of dE / dx, gluon exchange 

diagrams give rise to logarithmically infrared divergent integrals over the momentum 

transfer q of the gluon. Bjorken estimated dE / dx by keeping only the logarithmically 

divergent integral over q and imposing physically reasonable upper and lower limits 

qrnax and qmin. Although Bjorken only discussed dE / dx for light quarks and gluons, 
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the corresponding estimate for a heavy quark with velocity v in the high temperature 

limit is 
dE 87r( nf) 2T2[1 1-v

2
Z 1+V]Z qmax - ~ - 1 + - as - - og-_· og--, 

dx 3 6 V 2v2 1 - V qmin 
(1) 

where as = g;/47r and nf is the number of light quark flavors. In the case of a 

light quark with v = 1, Bjorken's estimates for the upper and lower limits were 

qmax = V4TE, where E is the energy of the quark, and qmin = M, where M is some 

constant energy scale on the order of 0.5 - 1.0GeV. 

A complete calculation of dE / dx to leading order in gs should eliminate the am­

biguities due to the choices of qmin and qmax in the approximation (1), with the upper 

and lower cutoffs on the logarithmic integral being provided automatically by the 

physics. A complete calculation is essential to make (1) into a quantitative estimate 

of dE/dx. While the dependence of qmax and qmin on the variables g8, T, E, and v, 

could be determined by simple physical reasoning, it is certainly not trivial and indeed 

previous estimates have been in error. Furthermore the neglect in (1) of leading order 

contributions other than those multiplied by the log(qmax/qmin) is only valid to the 

extent that they are made small by suitable choices of the multiplicative constants in 

qmin and qmax' These constants can only be determined by a complete calculation of 

dE / dx to leading order in gs. 

A significant step in this direction was recently made by Thoma and Gyulas8y,4 

who calculated dE / dx for a heavy quark using plasma physics techniques. They 

correctly included the plasma effects that screen the infrared divergences due to the 

long range Coulomb and magnetic interactions, and thus obtained a result that was 

free of the ambiguity associated with the choice ofthe lower limit qmin in (1). However 

their result still suffered from an ambiguity associated with the choice of upper limit 

qmax in (1). Furthermore their calculation did not allow for recoil of the scattered 

thermal quark or gluon, which becomes important when the momentum transfer q 

becomes hard. Thus while it was a complete and correct calculation of the soft q 

contribution to dE / dx, the calculation of Thoma and Gyulassy did not treat the 

hard momentum transfer contribution correctly. 

The resummation methods required to calculate dE / dx to leading order in g8 have 

only recently been developed. Their development was stimulated by the 'plasmon 

problem', that one-loop calculations of the gluon damping rate give gauge-dependent 

answers. Braaten and Pisarski5 resolved the problem by showing that thermal correc-
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tions from higher loop diagrams contribute to the damping rate at leading order in 9s 

and must be resummed. They developed a method for carrying out the resummation, 

proved that the result was gauge invariantS, and computed the damping rate. explicitly 

to leading order in 9s.6 The resummation method was based on a distinction between 

'hard' momenta of order T and 'soft' momenta of order 9sT. If a tree amplitude has 

soft external momenta of order 9sT, the o~e loop thermal corrections proportional to 

T2 contribute at the same order in 9s as the tree amplitude. It is these corrections 

that must be resummed. They are called 'hard thermal loops', because they arise 

from integration regions where the loop momentum is hard. The resummation of 

the geometric series of hard thermal loop corrections to a propagator results in an 

effective propagator for soft particles. Braaten and Pisarski5 developed a resummed 

perturbation expansion in which effective propagators are used for soft particles and 

tree level propagators are used for hard particles. If all lines entering a vertex are 

soft, then it is replaced by an effective vertex which includes a hard thermal lo~p 

correction. 

The effective propagator for soft gluons was calculated long ago by Klimov and 

Weldon.7,8 It screens the static Coulomb interaction, thus eliminating infrared diver­

gences due to the long range Coulomb force. The inverse of the electric screening 

length is V1 + n f /6 9sT. The purely stati~ magnetic interaction is not screened, 

but there is screening at nonzero frequencies. 8 The inverse of the magnetic screening 

length behaves like w 1
/
3 as the frequency w goes to zero. The approach to zero is 

sufficiently slow that the dynamical screening cuts off the infrared divergence due to 

the long range magnetic interaction if the divergence is only logarithmic, as is the 

case for transport coefficients.9 Thoma and Gyulassy showed that it is also true for 

dE/dx.4 

A new method for computing the effects of screening in a hot gauge theory has 

recently been developed by Braaten and Yuan.lO It is applicable to any quantity for 

which the dynamical screening of the magnetic interaction cuts off the static magnetic 

divergence at the scale 9sT, and therefore can be applied to dE/dx. An arbitrary mo­

mentum scale q* is introduced to separate the hard and soft regions of the momentum 

transfer q. The contribution from hard momentum transfer q > q* is computed using 

a tree level propagator for the exchanged gluon, while the contribution from the soft 

region q < q* is computed using an effective gluon propagator. The dependence on 

the arbitrary scale q* cancels upon adding the hard and soft contributions to get the 
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complete result to leading order in 98' 

In this paper we apply the method of Braaten and YuanlO to compute to leading 

order in the QED coupling constant e the energy loss dE/dx for a heavy lepton 

propagating through a hot QED plasma of electrons, positrons, and photons. We 

focus on hot QED instead of hot QCD because it is simpler and the main purpose 

of the paper is to expose the calculational methods required to compute dE / dx. 

The calculation of the energy loss for a heavy quark propagating through a hot 

quark-gluon plasma is a straightforward extension of the QED calculation. It will be 

presented elsewhere together with the phenomenological implications for heavy ion 

collisions.ll 

The outline of the paper is as follows. In Section II, the energy loss dE / dx is 

defined in terms of field theoretical quantities which can be expressed perturbatively 

as sums of Feynman diagrams. In Section III, the contribution to dE / dx from the 

exchange of photons with hard momentum transfer q is calculated. A lower limit q* 

on the momentum transfer is used to cutoff the infrared divergences. In Section IV, 

the soft q contribution to dE /dx is computed using the imaginary time formalism 

of thermal field theory. An effective photon propagator provides the screening that 

cuts off the infrared divergences at the scale eT. In Section V, an alternative method 

for calculating the soft contribution without using the imaginary time formalisnl is 

presented. In Section VI, the hard and soft contributions are added to give the 

complete result for dE / dx to leading order in e. The additional calculations required 

to extend this result to the QC D plasma are described. 

II. Field Theoretic Definition of dE / dx 

Our first task is to express the energy loss dE / dx of a heavy fermion in terms of 

field theoretic quantities. The calculation of dE / dx then reduces to analyzing and 

evaluating Feynman diagrams. We will present two formulas for dE / dx. The first 

formula expresses dE / dx in terms of a weighted integral of the differential interaction 

rate. It is used in Section III to compute the hard contribution to dE / dx. The 

second formula expresses dE / dx in terms of the imaginary part of the self energy of 

the heavy fermion, which is a quantity that can be computed using the imaginary 

time formalism. This formula is used in Section IV to compute the soft contribution 
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to dEldx. 

We consider a high energy muon of mass M,., and momentum p propagating 

through a plasma of electrons, positrons, and photons in thermal equilibrium at a 

temperature T. The muon has energy E and velocityv = piE. We assume that 

me « eT and set the electron mass me to zero. We also assume that T « M,."p 

and work to leading order in TI M,., and Tip. The muon loses energy by scattering off 

of thermal electrons, positrons, and photons. The interaction rate r(E) for the muon 

can be expressed in terms of Feynman diagrams in the standard way. For example 

the contribution to r(E) from the process e- f.l --+ e- f.l is 

r(E) 
1 d3 p' d3k d3 k' 

2E j (21f)32E,j (21f)32k nF(k) j (21f)32k,(1- nF(k')) 

(21f)484(P + f{ - P' - f{')~ ~ IMI2 , 
sptns 

(2) 

where P = (E,p) and f{ = (k, k) are the 4-momenta of the incoming muon and 

electron, respectively, while P' a~d f{' are the momenta of the outgoing muon and 

electron. The phase space is weighted by a Fermi distribution nF( k) = (ek / T + 1 )-1 
for the incoming electron and a Pauli-blocking factor 1 - nF(k') for the outgoing 

electron. The matrix element M is given by a sum of Feynman diagrams, beginning 

with the tree level diagram in Figure 1. The square of M is summed over the spins of 

the electrons and the outgoing muon and averaged over the spin of the initial muon. 

The average time between muon interactions is I/r, so the average distance trav­

elled by the muon between interactions is 6x = vir, where v is the velocity of the 

muon. The average energy lost by the muon per interaction is 

6E = ~ roo dE'(E _ E') df . 
r 1M/-' dE' 

(3) 

The integral extends over all final state muon energies E', because there is a small 

probability that the muon will gain energy in the collision. The rate of energy loss 

dEldx per distance travelled is the ratio of 6E to 6x: 

dE = ~ roo dE' (E _ E') df 
dx v 1M/-' .. dE' . 

(4) 

For example, the contribution to dE I dx from the process e- f.l --+ e- f.l is given by (2) 

with (E - E')lv inserted in the integrand. 
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The factor of E - E' in (4) is essential in making dE / dx calculable with presently 

available methods for resumming perturbation theory. If the interaction rate r is 

calculated using the tree level scattering diagram in Figure 1, it has a quadratic 

infra.red divergence. The extra factor of E - E' makes the infrared divergence in dE / dx 

only logarithmic. The use of an effective propagator for the exchanged photon softens 

the divergences, so that r is only logarithmically divergent12 while dE / dx becomes 

infrared finite. 4 Thus for dE / dx, infrared divergences are screened by plasma effects 

at the scale eT, and the resummation of hard thermal loops is sufficient to calculate it 

to leading order in e. For r, screening also involves the smaller energy scale e2T, and 

its calculation to leading order in e requires more elaborate resummation methods. 13 

The energy loss can also be expressed in terms of the muon self energy ~(P). 

As shown by Weldon14
, the interaction rate averaged over the two spin states of the 

llluon IS 

r(E) = __ 1 1 EfT L u(P, s )Im~(E + ie, p)u(P, s) , 
2E 1 + e- s 

(5) 

where u(P, s) is the spinor for a muon with 4-momentum P = (E, p) and spin s. 

Representing the sum over the spin s by a Dirac trace, the interaction rate becomes 

The imaginary part of ~(P) can be expressed as a sum of integrals over phase space 

weighted by statistical distributions.14 The integrands are squares of amplitudes for 

processes of the form X f1- --7 X' Il, where X and X' are initial and final states contain­

ing one or more electrons, positrons, or photons. For each such term, the energy of 

the final state muon E' can be identified, and dE / dx is obtained as in (4) by inserting 

(E - E')/v inside the integrand in Im~. 

The advantage of the formula (6) for r(E) is that ~(P) can be calculated using 

the imaginary time formalism for thermal field theory. This is important, because 

the resummation methods required to compute the effects of screening have been 

developed using the imaginary time formalism and have not yet been extended to the 

real time formalism. 

The formula (4) gives the energy loss of a heavy fermion. At relativistic temper­

atures, the energy loss of a light particle, such as a high energy electron or photon, 

is not as easy to define. The problem is tha.t there is a significant probability for 
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a high energy electron or photon to lose a large fraction of its energy without that 

energy being dispersed in the plasma. For example, a high energy electron with 

4-momentum P can scatter off of a thermal electron, positron, or photon via the 

processes e- e± ---+ e- e± and e-, ---+ e-, and produce a pair of almost collinear par­

ticles with momenta (1 - x)P and xP. While the electron loses a fraction x of its 

energy and momentum, this energy and momentum is not dispersed into the plasma . 

Instead it is merely transferred to a collinear particle. In this ultrarelativistic situa­

tion, the concept of dE I dx for an individual light particle loses its usefulness. It is 

more appropriate to consider dE I dx for a jet, which is defined to be a collection of 

particles with collinear momenta. A scattering event in which a high energy electron 

splits into a collinear pair of particles corresponds to evolution of the jet and not to 

a large loss of energy. The problem of defining dE I dx for the jet associated with a 

high energy light particle and calculating it to leading order in the coupling constant 

is under investigationY In this paper, we consider only the energy loss of a heavy 

particle where kinematics prevents splitting into collinear particles. 

III. Hard contribution to dEldx 

The method of calculating the effects of screening developed by Braaten and 

Yuan lO involves introducing an arbitrary momentum scale q* to separate the region 

of hard momentum transfer q rv T from the soft region q rv eT. It should be chosen 

so that eT « q* « T, which is possible in the weak coupling limit e ---+ O. The 

contribution from the hard region q > q* is calculated using tree level scattering dia­

grams. The lower limit q* acts as an infrared cutoff, so the result of integrating over 

hard q has the form Ahard + B log(Tlq*). The contribution from soft momentum 

transfer q < q* is computed using an effective photon propagator, which cuts off the 

logarithmic divergence at the scale eT. In order to match onto the hard contribution, 

the result of integrating over soft q must have the form B log( q* leT) + Asoft . The 

dependence on the arbitrary scale q* cancels between the soft and hard contributions, 

and the complete result to leading order in e is Ahard + B log(11 e) + Asoft. The loga­

rithm of lie is simply a reflection of the fact that this quantity recieves contributions 

from all momentum scales from T down to eT. 

In this Section, we calculate the hard contribution to dEldx. At temperatures T 

much smaller than the muon mass AI/l' the only processes that contribute to dEldx 
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at leading order in e are scattering from electrons and positrons: e± J.l ~ e± J.l. The 

only other process that is not obviously of higher order in e is Compton scattering: 

'J.l ~ 'J.l. The tree level Feynman diagrams for, J.l ~ 'J.l are shown in Figure 2, and 

the matrix element is 

(7) 

where P, s, I<, and), are the 4-momenta and spins of the incoming muon and photon, 

and the corresponding primed variables refer to the outgoing muon and electron. 

Since the incoming photon is thermal, factors of I< in the numerator give rise to 

terms that are suppressed by T / MJ1 and can be dropped. Using the Dirac equation 

(P ., - MJ1)u(P, s) = 0, the matrix element in (7) reduces to 

Since pi c::: P to leading order in T / M J1 , there is a cancellation between the two 

diagrams in Figure 2. Thus the contribution to dE / dx from Compton scattering is 

suppressed by (T / 1'V[J1)2. 

The calculation of the hard contribution to dE / dx from e± J.l ~ e± J.l is straight­

forward. It is given by inserting (E - E')/v inside the integral in (2) and multiplying 

by 2 to take into account scattering of e+ as well as e-: 

(
dE) 1 d3p' d3k d3k' I 

dx hard = E J (27r )32E' J (27r )32k nF( k) J (27r )32k' (1 - nF( k )) 

(27r)484(P + I< - pi _ I<') ~ L IMI2 W f)(q - q*) , 
2. V sptns 

(9) 

where w = E - E' and if = fi- Ii are the energy and momentum of the virtual photon. 

The f)-function imposes the restriction to the region of hard momentum transfer 

q > q*. The differential interaction rate df / d3q is an observable and hence gauge 

invariant. As a consequence, the separation of f or dE / dx into contributions from 

soft and hard momentum transfer q is also gauge invariant. Thus each contribution 

can be calculated in any convenient gauge. In this Section, we use covariant Feynman 
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gauge to calculate the hard contribution to dE I dx. In Section IV, Coulomb gauge 

will be used to calculate the soft contribution. 

The matrix element M in (9) is given by the tree diagram in Figure 1. In Feynman 

gauge, the matrix element is 

2 

iM = - ~2 ii(P', s'hILu(P, s) ii(K', >"hILu(K, >.) , (10) 

where Q = (w, if) and Q2 = w2 - q2. Squaring the matrix element, averaging over the 

spin s of the incoming muon, and summing over the spins s', >., and)..' of the other 

three particles, we get 

~ L IMI2 = 16
e
:(P.KP'.K'+P.K'P'.K-M;K.K'). (11) 

2 . Q sp,ns 

The muon is assumed to have large momentum p > > T as well as large mass MIL > > 
T. The Fermi distribution nF(k) in (9) restricts the energy k to be at most of order 

T. Conservation of energy and momentum, together with the condition p, MIL » T 

then constrains the energy k' to also be on the order of T. Dropping terms suppressed 

by kip and k'lp, the expression in (11) reduces to 

where v = pi E is the velocity of the muon. The momentum <5"-function can be used 

to compute the integral over p'. Using E' ~ E - v· if, the energy <5"-function reduces 

to <5" (w - V . if). The expression (9) for dE I dx has now been reduced to 

(
dE) 47re4 J d3

k 1 J d3
k' 1 w 

dx hard = -V- (27rp knF(k) (27r)3 k,(1 - nF(k'))<5"(w - V· if) (W2 - q2)2 

(2(k-v.k)(k'-V.P) + I~V2(W2_q2))e(q_q*), (13) 

where w = k' - k and if = k' - k. In the Pauli-blocking factor 1 - nF(k'), the 

term nF( k') can be dropped because the corresponding term in the integrand is odd 

under the interchange of k and k' and integrates to zero. This simplification makes 

it possible to evaluate the integrals in (13) analytically. 
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In order to simplify the expression (13) further, it is convenient to make use of . 

the fact that dE / dx is independent of the direction of v. We can therefore average 

the integrand over the directions of v. The integrals that are required are 

(14) 

Jdo' c( -+ ~ i 1 f)( 2 2 2)WAi -u W - v . qJV = - v q - w -q , 
~ ~q q 

(15) 

J do' c( -+ .... ) i j _ 1 f)( 2 2 2) (V2q2 - w
2 

cij + 3w
2 

- v
2
q2 Ai Aj) -u w - v . q v v - - v q - w u q q , 

41f 2vq 2q2 2q2 
(16) 

where f do' represents integration over the angles of v. At this point, it is convenient 

to change the remaining integration variables from k, k', and cosf) = k· k' to k, q, 

and w. The formula (13) for dE / dx reduces to 

(
dE) e4 looo (1 2k/(1+V) dq j+Vq 12k/(1-V) dq l+Vq ) - - -- dknp(k) - dww+ - dww 
dx hard - 41f3V 2 0 q* q2 -vq 2k/(1+v) q2 q-2k 

( 
3W2 v2 1 - v2 q2 k( k + W) 2 k( k + W) ) - - - - + 3 - (1 - V ) • 
4q2 4 2 q2 - w2 q2 q2 _ w2 (17) 

The limits of integration arise from taking into account the restriction -vq < w < +vq 

from the f)-functions in the integrals (14)-(16), the restriction to hard momentum 

transfer q > q*, and w > q - 2k which follows from w = k' - k and q = If' - fl. The 

integrals over wand q can be evaluated analytically. The only integral which is not 

elementary is 

r2k
/(1-V) dq ~/og_k_ = Sp (1 + V) _ Sp (1 - V) + ~/og 1 + V log 1 - v

2
, (18) 

J2k/(1+v) q q - k 2 2 2 1 - V 4 

where Sp( x) is the dilogarithm or Spence function: 

l
x 1 

Sp(x) = - dt-Iog(l-t). 
o t 

The remaining integrals over k can also be evaluated analytically: 

roo k 1f2T2 (2T ('(2) ) 
Jo dk np(k) k log q* = 12 log-;; + 1 -, + ((2) , 

10 
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where I ~ 0.57722 is Euler's constant and ((z) is Riemann's zeta function with 

('(2)/((2) ~ -0.56996. The final result for the contribution to dE/dx from hard 

momentum transfer is 

(
dE) =e4T2 { [~ _ 1 - v

2 109~] ( 4T 1 2 3 ('(2)) 
d 24 2 2 1 10g-q* - -2 10g(1 - v ) + -2 - I + '"(2) , 

X hard 71" V V - V ." 

- Sp -- - Sp -- + -Iog--Iog - -v . 1- v
2 

[ (1 + V) (1 - V) 1 1 + V 1 - v2] 2} 
4v2 2 2 2 1 - V 4 3 

(22) 

A logarithmic infrared divergence appears as q* --+ O. A calculation in Coulomb gauge 

would reveal that the divergence recieves contributions both from Coulomb scattering 

and from magnetic scattering. The Coulomb contribution to the expression in square 

brackets multiplying log( 4T / q*) is 2v /3, and the remainder comes from the magnetic 

interaction. 

The hard contribution to dE / dx can be written more compactly in the form 

(
dE) e4T2 [1 1 - v

2 1 + V] (T E ) - = -- - - 10g-- log- + 10g- + A hard( v) , 
dx hard 2471" V 2v2 1 - V q* MJ.£ 

(23) 

where we have used E/MJ.£ = I/Vl - v2 • The function Ahard(V) decreases monotoni­

cally as a function of the velocity from 1.239 at V = 0 to 1.072 at v = 1. If we wish 

to approximate (23) by replacing the expression in parenthesis by a simple logarithm 

log(qmax/q*) as in (1), the value of qmax that minimizes the maximum error over the 

entire range 0 < v < 1 is qmax = 3.2 T / VI - v 2 • This value of qmax has a dependence 

on V that differs significantly from the estimate qmax = 4Tpj(E-p+4T) ~ 4Tv/(I-v) 

of Thoma and Gyulassy4, which was based on a consideration of the maximum energy 

transferred in the scattering process. 

IV. Soft Contribution to dE j dx 

The soft contribution to dE j dx has already been calculated correctly by Thoma 

and Gyulassy, using a method borrowed from plasma physics.4 To use their result 

in our calculation, it is necessary only to impose an upper limit q* on the integral 

over the momentum transfer in their expression for dE j dx. In this Section, we verify 

their result by repeating the calculation using the imaginary time formalism for ther­

mal field theory. The advantage of this approach is that the resummation methods 
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required to calculate the soft contributionS have only been developed systematically 

within the imaginary time formalism. For example, the power counting methods of 

Ref. [5] can be used to verify that our calculation does indeed include all terms of 

leading order in e. The disadvantage is that the imaginary time formalism involves 

calculation in Euclidean space followed by analytic continuation to Minkowski space, 

which is not very conducive to intuitive interpretation. This will be remedied in Sec­

tion V, where an alternative field theoretic calculation, which is more intuitive but 

less rigorous, will be presented. 

To calculate dE / dx using the imaginary time formalism, we begin with Weldon's 

formula (6), which expresses the interaction rate f(E) in terms of the muon self 

energy ~(P). The hard contribution calculated in Section III comes from the two­

loop self energy diagram in Figure 3. The imaginary part of ~ comes from cutting the 

diagram through the virtual muon line and the two electron lines, thus producing the 

square of the diagram in Figure 1. In the integration region where the momentum if 

flowing through the photon line is soft, hard thermal loop corrections to the photon 

propagator contribute at leading order in e and must be resummed. The resulting 

diagram is shown in Figure 4, where the blob on the soft photon line represents an 

effective photon propagator ~ILV(Q). The effective propagator is obtained by summing 

the geometric series of one loop self energy corrections proportional to e2T2, as shown 

diagrammatically in Figure 5. The diagram in Figure 4 includes all loop corrections 

that contribute to the imaginary part of ~(P) at leading order in e, as can be verified 

using the power counting rules developed in Ref. [5]. 

In Minkowski space, the Feynman rules for the self energy diagram in Figure 4 

gIve 

~(P) = ie
2 J (~:~4 ~!LV(QhIL (P _ Q/ ,_ MIL Iv . (24) 

To compute the thermal contributions in the imaginary time formalism, we make the 

replacement f dqo/27r -+ iT L qo ' where the sum is over the discrete imaginary values 

qo = i2n7rT for the photon energy. The sum over qo is evaluated for discrete imaginary 

values Po = i(2n + 1 )7rT of the muon energy, and only then is Po analytically continued 

to the real Minkowski energy Po = E + it required in (6). 

The hard and soft contributions to dE / dx are separately gauge invariant. The 

most convenient gauge for evaluating the soft contribution is Coulomb gauge, where 
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the only nonzero components of the effective propagator are 

(25) 

(26) 

The 4-momentum of the photon is Q = (qo,ij) ar:d q = if/q. The longitudinal and 

transverse effective propagators are7 

~e(w,q)-1 = l - ~m2 (w 10gW + q - 2) , 
2 '} q w-q 

(27) 

-1 2 2 3 2 (w(w2 _ q2 ) w+q W2) 
~t(w,q) = W - q + -2 m,,! 2 3 10g-- - 2 q w - q q 

(28) 

Inserting (25) and (26) into the self energy (24), the trace required in (6) becomes 

(~e(Q) [p& + p2 - Poqo - p. if+ M;] + 2~t(Q) [P& - Poqo + p. if - (p. q)2 -111;] ) . 
(29) 

The easiest way to compute the sum over qo is to introduce spectral representations 

for the propagators. For the muon propagator, the spectral representation is 

1 = __ 1_ r/T 
dT'e(PO-qo)'T' [(1 _ nF(E'))e-EI'T' _ nF(E')e+E1'T1] 

(P - Q)2 - M~ 2E' io . , 
(30) 

where E' = jM~ + (p - ifF. For the effective propagators in (27) and (28), the 

spectral representations are 

(31) 

(32) 

where nB(w) = (ew/ T - 1)-1 is the Bose distribution. The spectral functions are 

defined by pe(w, q) = -Im~e(w+iE, i/)/7r and Pt(w, q) = -Im~t(w+iE, i/)/7r, and are 

given explicitly in Ref. [15]. They are odd functions of wand we define them to be 
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positive for positive w. Their support consists of the spacelike interval -q < w < +q, 

together with 8-function contributions at the timelike points w = ±wc( q) for Pc and 

w = ±Wt(q) for Pt. The functions wc(q) and Wt(q) are the dispersion relations for 

longitudinal photons, or plasmons, and transverse photons, respectively. For spacelike 

frequencies Iwl < q, the spectral functions are proportional to the squares of the 

effective propagators in (27) and (28): 

(33) 

(34) 

After introducing the spectral representations, the sum over qo reduces to the 8-

function 8(7 - 7') or its derivative. After using the 8-function to integrate over 7', 

the integral over 7 yields an energy denominator: 

1
1~ 1 

d7e(Po'fE '-w)'T = (e(PO'fE '-w)/T_l) , . 
o Po=fE-w 

(35) 

At the discrete imaginary energies Po = i(2n + 1)7rT, we have ePo / T = -1. Only 

after using this identity to eliminate the exponential of Po can the muon energy be 

analytically continued to the value Po = E +if required in (6). The imaginary part of 

the self energy "L,(P) in (6) comes from the imaginary part of the energy denominator 

in (35): 

Im(E ./ E =-i7r8(E=fE'-w). +zc =f '-w 
(36) 

The imaginary part of the trace in (29) now reduces to 

2~' [(1- nF(E')) 8(E - E' - w) - nF(E') 8(E + E' - w)] 

(pc(w,q) (2E 2 -Ew-p.q) + 2pt(w,q) (p2 _Ew+p.q_(p.q)2) ). (37) 

The expression (37) is the result of evaluating the diagram in Figure 4 without 

any approximations. We now simplify it using the assumption that MI-"p» T. The 
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second o-function can not contribute for w less than or on the order of T, so it can 

be dropped. The Fermi distribution nF(E') is exponentially suppressed, so it can 

also be deleted. Using E' ~ E - iJ· q, the first o-function reduces to o(w - iJ· ?/), 

which constrains the frequency w to the spacelike interval -vq < w < +vq. Using 

this o-function to evaluate the angular integral for q and inserting (37) into Weldon's 

formula (6), the interaction rate reduces to 

e
2 100' j+vq 

( W2) r(E) = - dq q dW(l + nB(W)) P£(w, q) + (v2 
- 2" )Pt(W, q) 

27rV 0 -vq q 
(38) 

We first determine the order of magnitude of the contribution to r in (38) from 

the integration region where q and ware hard. With q and w of order T, the effective 

propagators appearing in the spectral functions (33) and (34) reduce to the tree level 

propagators D,.£ ~ 1/q2 and D,.t ~ 1/(w2 - q2). Aside from a multiplicative factor 

of m,; in the spectral functions, the only scale in the integral is T. By dimensional 

analysis since r has dimensions of energy, the hard contribution to r must be of 

order e2m~/T '" e4T. This estimate is identical to that which would be obtained 

by considering the contribution to the interaction rate from the tree level scattering 

process in Figure 1. We next consider the contribution to r from the integration 

region where q and ware soft. Since w is of order eT, we can expand the Bose factor 

in (38) around w = 0, 
T 1 
w + '2 + ... , (39) 

and keep only the leading term T /w. Aside from this explicit factor of T, the only 

scale in the integral is eT. By dimensional analysis, the soft contribution to r must 

be of order e2T. Thus the hard contribution to r is suppressed relative to the soft 

contribution by a factor of e2
• Unfortunately, the transverse term in the integral 

in (38) has a logarithmic infrared divergence from the endpoint q ---t O. This arises 

because the dynamical screening of the magnetic interaction provided by the trans­

verse effective propagator (28) is not sufficient to completely screen the divergence 

from the long range static magnetic interaction. The logarithmic divergence is a big 

improvement over the quadratic infrared divergence that appears if the interaction 

rate r is calculated from the tree level scattering diagram in Figure 1. Nevertheless 

it indicates that the screening involves not only the scale eT but also the scale e2T. 

Thus the resummation of hard thermal loops is not sufficient to calculate r to leading 
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order in e. It is necessary to develop more powerful resummation methods that can 

handle the scale e2T .13 

The soft contribution to dE/dx is obtained from (38) by inserting the factor w/v 

inside the integral and imposing an upper limit q* on the momentum transfer q. Since 

Iwl < vq, w is also restricted to be soft, and the Bose factor can be expanded as in 

(39). In the case of dE/dx, the T/w term in (39) does not contribute because it 

gives a term in the integrand which is an odd function of wand integrates to O. The 

leading contribution comes instead from the 1/2 term in (39). As noted by Thoma 

and Gyulassy4, the net result is that the soft contribution to dE / dx differs from r( E) 

in (38) by a factor of w2 /2vT in the integrand: 

(
dE) e2 lq> j+vq ( w2) -d = -4 2 dq q dw w Pc(w, q) + (v 2 

- 2" )Pt(w, q) 
x soft 7rV 0 -vq q 

( 40) 

This result agrees up to a color factor and change in coupling constant with that 

of Thoma and Gyulassy4 for the quark-gluon plasma. They calculated dE / dx for 

a heavy quark by computing the chromoelectric field induced by a classical source 

consisting of a colored point charge moving at fixed velocity. The agreement holds 

only after using the small w approximation in (40), which is equivalent to a high 

temperature approximation. A similar correspondence between a high temperature 

approximation and a classical approximation has been observed by Heinz16 in the 

case of the gluon polarization function and the color response function. 

To further simplify (40), it is convenient to change integration variables from q and 

w to q and x = w / q. The integral over q can then be evaluated analytically revealing 

a logarithmic dependence on q*. In the logarithmic term, the integral over x can also 

be evaluated analytically. Our final result for the soft contribution to dE / dx is 

(
dE) _ 3e

2 2([1 1-v
2

1 l+v]1 q* - - -m -- og-- og-
dx soft 87r -y V 2v2 1 '- v . m-y 

- :21a
v 

dx x2 
[log 3~X + ~log(l + Qe(x)2) + Qe(x) (~- atan(Qc(x)))] 

- 2~21av dx x
2v

1

2 

~ :22 [log 3:X + ~log(l + Qt(X)2) + Qt(x) (~- atan(Qt(x)))]) , 

(41) 
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where the functions Qe(x) and Qt(x) are 

Qe(x) = ~ (-log 1 + x +~) , 
7r I-x x 

( 42) 

1 ( 1 + x 2X) Qt(x) = - 10g-
1

- + 1 2 
7r -x -x 

( 43) 

The remaining integrals over x in (41) must be evaluated numerically. Note that the 

dependence on the arbitrary scale q* cancels between the hard contribution in (22) 

and the soft contribution in (41). 

The soft contribution to dE I dx in (41) can be written more compactly in the form 

(
dE) e

4
T2 [1 1 - v

2 1 + v 1 (q* ) - = -- - - 10g-- 10g- + Asoft(v) , 
dx soft 247r V 2v 2 1 - v eT. 

(44) 

where we have used m-y = eT 13. The function A soft ( v) begins at 0.049 at v = 0, 

increases to a maximum of 0.292 at v = 0.96, and then decreases to 0.256 at v = 1. 

If we wish to approximate the expression 10g(q* leT) + Asoft(v) in (44) by a simple 

logarithm 10g( q* I qmin) as in (1), the choice of qmin that minimizes the maximum error 

over the range 0 < v < 1 is qmin = 0.84 eT. 

v. Alternative calculation of the soft contribution 

In this Section, we repeat the calculation of the soft contribution to dE I dx using 

a more intuitive approach. Our starting point is (9), which gives the contribution to 

dE I dx from e± f.l --t e± f.l scattering. In the region of phase space where the exchanged 

photon in Figure 1 has soft momentum, hard thermal loop corrections to the photon 

propagator are not higher order in e and must be resummed. We assume that the 

net effect of the resummation is that the photon propagator in Figure 1 is replaced 

by the effective propagator ~(Q)J.LV, as illustrated in Figure 6. Our justification for 

this prescription is that it reproduces the results obtained in Section IV using the 

imaginary time formalism. 

This prescription has been used previously without justification by Baym et al.9
, 

who showed that it provides sufficient screening to eliminate infrared divergences from 

transport coefficients. However the prescription can not be trivially derived from the 

Feynman rules of the real time formalism for thermal field theory. It also can not be 
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derived easily from the corresponding result in the imaginary time formalism. For 

example, Weldon's formula (6) gives an exact relation between the muon interaction 

rate r( E) calculated from the tree level diagram in Figure 1 and the two loop diagram 

for the muon self energy l:.(P) in Figure 3. There is no corresponding exact relation 

beween r calculated from the resummed diagram in Figure 6 and the resummed 

diagram for l:. in Figure 4. These quantities satisfy Weldon's formula only in the limit 

of soft momentum transfer. While our results suggest that the simple prescription of 

using an effective propagator for the photon is correct, a rigorous justification must 

await the development of resummation methods for the real time formalism that are 

as powerful as the resummation methods for the imaginary time formalism developed 

in Ref. [5]. 

The calculation of the contribution to dE / dx from the Feynman diagram in Figure 

6 is most easily calculated in Coulomb gauge, where the only nonzero components of 

the effective propagator are given in (25) and (26). The matrix element in Coulomb 

gauge IS 

iM = e2 ,6,£( Q)u(P', s')'''/u(P, s )u(K', ).')'/u(K,).) 

+ e2 ,6,t(Q) (8ii - qiqi) u(P',s')'iu(p,s)u(I{',).'hiu(K,).). (45) 

This matrix element must be squared, averaged over the initial muon spin s, and 

summed over the other spins. Evaluating the resulting Dirac traces and using the 

conditions lItfJ.t, P > > T to simplify the expression, we get 

+ 2Re(,6,£(Q),6,t(Q)*)E [k(p. k' - p. qq. k') + k'(p. k - p. qq. k)] 

+ l,6,t(Q)12 [2(p. k - p. qq. k)(p. k' - p. qq. k') - (kk' - k· k')(p2 - p. qq. p)]) 
(46) 

Using the momentum 8-function in (9) to integrate over ii and using lItfJ.t,p » T to 

reduce the energy 8-function to 8(w - iJ· ij), the soft contribution to the energy loss 

reduces to 

18 



," 

Note that L IMI2 in (46) is symmetric under the interchange off and f'. The 

integrand in (47) can therefore be symmetrized by replacing the thermal distribution 

factors nF(k)(1- nF(k')) by (nF(k) - nF(k'))/2. 

We now make use of the restriction of the momentum transfer q to the soft region 

q < q*. The leading order contributions to the integrals in (47) come from the region 

where k and k' are hard (i.e., of order T) while their difference w = k' - k is soft (i.e., 

of order eT). The thermal distribution factor can be expanded to lowest order in w: 

nF(k) - nF(k') __ w , (k) 
2 - 2 nF + .... ( 48) 

After changing the integration variable f' in (47) to if and using the approximation 

k' = k - k . if, the energy loss reduces to 

( ~!). = 8V~2 J (~:q)3(v.qy2e(q*-q) J (~:k)3 :2(-n~(k))8(v·if-k.if)~ ~ IMI2 . 
soft sptns 

The matrix element in (46) can also be simplified by setting k' = k: 

+ l~t(QW(v. k - v· qq. k)2] 

The integrals over the angles of fare 

J dO A 

-8(w - k· if) 
471" ' 

1 
2q , 

= 0, 

d
ll ( ) 2 ( 2) ( 2 ) H ' ... ' W,' 1 w 2 W J -8(w - k· if) v· k - -q . k = - 1 - - v - - , 

471" q 4q q2 q2 

(49) 

(50) 

(51 ) 

(52) 

(53) 

where w = v· if and dO is the angular integration element for k. The integral over 

the magnitude of k is 
(54) 
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Changing the remaining integration variables in (49) from q and cos() = v· q to q and 

w = v· q, the soft contribution to dE / dx reduces to 

(
dE) = e

4
T22 rq

• dq j+vq 

dw w2 [1~c(QW + 
dx soft 2471'v Jo -vq 

~ (1- ::) (v 2 
- ::) l~t(Q)12] 

(55) 

This agrees with the result (40) in the imaginary time formalism after inserting (33) 

and (34) for the spectral functions pc and Pt in (40) and setting m'Y = eT/3. 

VI. Complete leading order result for dE/dx 

The complete result for dE / dx to leading order in e and T / Ai[J.L for a heavy lepton 

propagating through a hot QED plasma is the sum of the hard contribution in (23) 

and the soft contribution in (44): 

dE = e4
T2 [~ _ 1 - v2

Zog 1 + v] (E 1 ) 
dx 2471' V 2v 2 1 _ v Zog MJ.L + Zog~ + A(v) , (56) 

where A( v) = Ahard( v) + Asoft ( v). The dependence on the arbitrary scale q* that 

separates the hard and soft regions of the momentum transfer q cancels, leaving a 

logarithm of 1/ e. This logarithm is simply an indication that dE / dx receives con­

tributions from momentum transfers ranging from the hard scale T down to the soft 

scale eT. The dependence of the function A ( v) on the velocity v is shown in Figure 

7, together with the hard and soft contributions. A(v) increases from A(O) = 1.288 

at v = 0 to a maximum of 1.478 at v = 0.88 and then decreases to A(l) = 1.328 at 

v = 1. It never deviates by more than 0.17 from its value at v = 1. 

The energy loss dE / dx as a function of the heavy quark velocity v is shown as a 

solid line in Figure 8, where it is compared with the results of previous calculations 

adapted for the QED plasma. The dotted curve in Figure 8 is the analog of Bjorken'sl 

estimate (1) for the quark-gluon plasma: 

dE 

dx 
e

4
T2 [1 1 - v2

Z 
1 + v]z qmax 

-- - - 2 og-- og--. 
2471' V 2v 1 - V qmin 

(57) 

Following Bjorken, we set qmax = J4T E and qmin = M, but we choose M to be 

the inverse Debye screening length: M = J3m')'. The dashed curve is the analog of 

Thoma. a.nd Gyulassy's4 result for the quark-gluon plasma. It is the soft contribution 
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to dE/dx given in (41) with q* = 4Tp/(E - p + 4T). Unlike the complete leading 

order result in (56), the approximations of Bjorken and of Thoma and Gyulassy 

depend not only on v but also logarithmically on the ratio MJ1,/T. For the purpose 

of illustration in Figure 7, we have set MJ1,/T = 10. Both of the previous calculations 

differ significantly from the complete leading order result. Bjorken's approximation 

significantly overestimates dE / dx over most of the range of velocity. The calculation 

of Thoma and Gyulassy underestimates dE / dx for v < 0.7 and overestimates it for 

v> 0.7. 

Vve discuss briefly the validity of the calculation at limiting values of the heavy 

lepton velocity v. At small v, the calculation breaks down for v on the order of T / lvlw 

Since the thermal velocity for a heavy particle is JT / MJ1,' the velocity at which the 

calculation breaks down is subthermal and dE / dx is not of much physical interest in 

this case. The approximations in our calculation also break down for 1 - v on the 

order of T / Mw In addition, the logarithm of E / MJ1, in (56) becomes large as v -+ l. 

If it becomes too large, it may be necessary to sum up the leading logarithms from 

higher orders in e using renormalization group methods. 

'rVe have concentrated on the energy loss dE / dx for a heavy lepton propagating 

through a hot QED plasma in order to illustrate the calculational methods required. 

The same methods can be used to calculate the energy loss for a heavy quark propa­

gating through a hot quark-gluon plasma, a problem of direct relevance to heavy ion 

collisions1
,2. The explicit calculation of dE / dx to leading order in the QC D coupling 

constant gs will be presented elsewherell . Here we simply outline the calculations 

that are required. We represent the heavy quark by the symbol Q, while light quarks 

and gluons are represented by q and g. The heavy quark loses energy by scattering 

off of thermal quarks and gluons via the processes qQ -+ qQ and gQ -+ gQ. As in 

the QED calculation, we introduce an arbitrary scale q* to separate the hard and 

soft regions of the momentum transfer. The soft momentum transfer contribution 

has already been calculated by Thoma and Gyulassy.4 It can also be calculated in 

the imaginary time formalism as in Section IV by evaluating the Feynman diagram 

in Figure 4 with the effective photon propagator replaced by an effective gluon prop­

a.gator. The result is identical to (41) except that it is multiplied by a color factor 

4/3, e is replaced by gs, and ml' is replaced by the thermal rest mass of the gluon: 

mg = J1 + nj/6 gsT/V3. 
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The hard momentum transfer contribution to dE / dx is calculated using tree level 

Feynman diagrams. The contribution from scattering from light quarks qQ _ qQ 

comes from the diagram in Figure 1 with the photon line replaced by a gluon. The 

calculation is identical to that in Section III except for color factors, and the result for 

each of the n f flavors of light quarks is (22) multiplied by a color factor of 2/3 and with 

e replaced by g8' The only contribution to dE / dx that requires additional calculation 

is that from the scattering of gluons with hard momentum transfer: gQ - gQ. The 

Feynman diagrams include the Compton scattering diagrams analogous to those in 

Figure 2 together with an additional diagram containing a 3-gluon vertex. While 

the two Compton scattering diagrams cancel in QED, the cancellation is upset in 

QCD by color factors. Thus all three diagrams contribute to dE/dx, although the 

logarithmic dependence on q* comes only from the 3-gluon vertex diagram. The 

evaluation of these diagrams will complete the calculation of dE / dx for a heavy quark 

to leading order in g8' The calculations are in progress and the results, together with 

phenomenological implications for heavy ion collisions, will be presented elsewherell . 

This work was begun at the Nuclear Theory Institute at Seattle during the pro­

gram on Hard QCD Probes of Dense Nuclear and Hadronic Matter in October, 1990. 

We thank the Institute for its hospitality and we thank the organizer of the program, 

Miklos Gyulassy, for valuable discussions. 
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Figure Captions 

1. Tree level Feynman diagram for the scattering process e- J.l ---+ e- J.l. 

2. Tree level Feynman diagrams for the scattering process 1J.l ---+ I J.l. 

3. Two loop Feynman diagram for the muon self energy ~(P). 

4. Feynman diagram for the muon self energy ~(P) with effective photon propagator. 

5. Diagrammatic definition of the effective photon propagator. 

6. Feynman diagram for the scattering process e- J1 ---+ e- J.l with effective photon 

propagator. 

7. The function A( v) defined in (56) as a function of the muon velocity v (solid 

curve). It is the sum of Ahard(V) (dashed curve) and Asoft(v) (dotted curve). 

8. Energy loss dE / dx of the muon as a function of its velocity v. The complete 

leading order result (solid line) is compared to previous calculations by Thoma and 

Gyulassy (dashed curve) and Bjorken (dotted curve). 
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