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It is shown that planned collider experiments will decisively test the color SU(5) model of Foot and· 
Hernandez. Constraints from cosmology and from neutral kaon mixing imply that the exotic charge-1/2 
fermions of this model cannot all be given masses above about 1 TeV. These quirks carry a new strong confin
ing force. Searches for the leptonicdecay products of quirkonium at LEP II will probe quirk masses up to near 
the beam energy. Searches at planned hadron colliders will be sensitive to quirk masses all the way up to the 
Te V upper bound. 
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1. Introduction 

A basic belief which underlies much contemporary particle physics is that 

a new level of physics will emerge in the TeV domain. The best motivated 

schemes are those which address the origin of the weak scale. However, the 

elaborate and well studied schemes of technicolor and supersymmetry may not 

be correct. It is then of interest to pose another question: are there extensions of 

the standard model which are sufficiently simple that they can be tested in the 

near future? Although such models do not give answers to presently perceived 

theoretical difficulties of the standard model, they do provide pictures of how 

physics in the TeV domain may appear. The vast majority of such models add 

new fermions or scalars within the framework ofSU(3) XSU(2) XU(I), or extend 

the SU(2) X U(I) electroweak gauge group. In this paper we follow a much less 

traveled route: that of extending the color SU(3) interaction. In the course of 

our investigation, we encounter new primordial relics: glueball-like metastable 

states whose cosmological il11plications are interesting in their own right as well 

as serving to constrain the model. 

We study the color SU(5) model of Foot and Hernandez [1]. An interesting 

feature of this model is that the color SU(5) breaking scale can be roughly the 

same as the weak breaking scale. Despite the presence of new gauge bosons 

and fermions, whose interactions are largely constrained by the theory, present 

experimental data does not provide stringent tests of the model. For example, 

the model contains a heavy neutral Z' gauge boson that can be much lighter 

than typical Z' bosons from such schemes as & unification. Precise electroweak 

experiments provide only very mild constraints on the Z' because it naturally 

has a small mixing angle with the Z and because it couples predominantly to 

quarks and not leptons [2]. Searches for bumps in the dijet spectrum at hadron 

collider provide the best constraints on the Z' mass [3]: Mz, > 100 GeV from 

eDF and Mz, > 280 GeV from UA2, which are quite mild. Furthermore, the 

Z' is expected to be heavier than the Z. The Z' originates' predominantly 

from the SU(5) color group so that its mass is proportional to the strong gatige 

coupling constant. 
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In this paper we argue that the masses of the new gauge bosons and 

fermions of the color SU(5) model cannot all be made very large. We show 

that there are exotic fermions of charge 1/2 which lie in the TeV range or be

low. We consider production rates and signatures for such particles at LEP II 

and at hadron colliders. 

The first constraint on the spectrum of the new physics comes from pri

mordial nucleosynthesis. When the extended color SU(5) group breaks at the 

weak scale it leaves two gauge groups which are never broken: the usual color 

SU(3) and a new SU(2) force which is also confining. This new force produces 

glueball-like states which are long lived because there are no light fermions 

which carry this SU(2) force. If the lifetime of these glueballs exceeds 1 second 

they contribute to the energy density of the universe during the nucleosynthesis 

era and exclude the model. A shorter lifetime requires the masses of the new 

heavy gauge bosons and fermions to not be too large. 

A complementary constraint can be imposed from kaon mixing, since the 

exotic quantum numbers can also run around an internal loop between asymp

totic neutral kaon states. Here the forbidden combination is heavy fermions 

(which preclude a GIM-like cancellation between flavors) in conjunction with 

light broken gauge generators (whose propagators fail to suppress the loop di

agrams). Since flavor-changing neutral currents are so highly suppressed, this 

test is stringent enough to rule out very low energy symmetry-breaking for any 

tolerable fermion masses, in the absence of some unexplained family symmetry 

that would make those masses nearly degenerate. Better still, in conjunction 

with the cosmological limit, it completely ties down the fermionic sector. If the 

color gauge group is extended in the way envisaged by Foot and Hernandez, 

then there must be exotic fermions in the TeV range or below. Tracking them 

down at eDF and the sse is then an exciting possibility. 

The organization of our paper is as follows: in section 2 we review the 

particle content of the model, and propose some new nomenclature; in section 3, 

we find expressions for the mass of the lightest confined bound states under 

v~rious assumptions. In section 4 we examine the evolution of these states in 

the early universe, and delimit the conditions under which their energy density 
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is cosmologically troublesome. In section 5 we study their possible decay modes, 

and in each case find a region in parameter space for which the decays are fast 

enough to save the standard nucleosynthesis results. In section 6 we discuss the 

limits from the neutral kaon system. In section 7 we examine the fate of heavy 

fermion pairs produced at colliders, and argue that they form nonrelativistic 

bound states which are usually forced to decay to visible particles of sharply 

defined energy; the characteristic signatures of these decays are compared to 

their standard-model backgrounds in section 8. Finally, we sketch out the 

progress that has been made in understanding these models, and speculate 

briefly about directions for future research. 

2. The Model 

Foot and Hernandez [1] have speculated that the standard model (SM) 

arises from a larger gauge group, specifically 

SU(5)c X SU(2)L X U(I)'. (2.1) 

The reader is referred to previous work [2] for details about this model and 

its low-energy implications; we shall only summarize the contents of the model 

in this section. The theory contains three families of fermions, each of which 

transforms under the gauge groups as 

QL:(5,2)i3; UR:(5,1)-i; Dh:(5,1)!; £L:(1,2)_;; eh:(I,I)t. 

(2.2) 

It also contains two scalars, which transform as 

X:(10,1)!; </>:(1,2);. (2.3) 

The Yukawa interactions take the form: 

J2ML cAc i"I J2MR;o - J2Mu cA -
.cYuk =--X "lL"lL+ --XURIYk+ --</> "lLUR 

w w V 

J2Mv.J.A - J2Me-+ --'fA«LDR + --</>iLeR + h.c .. 
v v 

(2.4) 
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When X acquires a vacuum expectation value w at some large scale, it 

breaks the group structure of the theory down to 

SU(3)c X SU(2)H X SU(2)L X U(l)y. (2.5) 

(Hypercharge arises from a linear combination of SU(5) and U(I)' generators). 

Under this group, the fermions transform as 

QL:(3,1,2)i; Uh:(3,1,1)_~; dh:(3,1,I)t; iL:(1,1,2)_;; e'k:(l,l,lh; 

QL :(1,2,2)0; UR: (1,2,1);; DR: (1,2,1)_;. 
(2.6) 

The first five fields are those of the SM; the remaining three are new 

fermions which feel a new colorlike force. We will call these fermions quirks, 

and their new quantum number hue. 

At the first stage of symmetry breaking, all twenty-five gauge bosons of 

SU(5)c X U(l)' will acquire mass except for the eight gluons 9 of SU(3)c, the 

three huons h of SU(2)H and the linear combination which generates hyper

charge. The orthogonal linear combination will be (up to small mixing with the 

Z) a heavy Z-like particle which we call the Z'. The remaining twelve degrees 

of freedom are massive gauge bosons 

X: (3,2,1)_i (2.7) 

which mediate quirk-quark transitions. Of the twenty real degrees of freedom of 

X, thirteen become the longitudinal pieces of the X's and the Z', one becomes 

a heavy Higgs-like particle which couples only to quirks, and the remaining six 

form a heavy scalar 

X3: (3,1,1)_t· (2.8) 

The other scalar </> is just the standard Higgs doublet. It acquires a vac

uum expectation value v::! 246 GeV, giving quarks and quirks SU(2)L-breaking 

masses. The symmetry-breaking at this stage is identical to the SM except that 

the Z and Z' mix to a small degree. In the end, the unbroken gauge group is 

SU(3)c X SU(2)H X U(I)Q; the SU(2)H acts nontrivially only on the nonstan

dard particles. 
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The quirk mass terms are of the form 

- - C ML lV1U L + h.c. 
[mass = (ULDR) (MD MR UR ~K ) (DC) (2.9) 

For three generations, the entries in the above matrix are themselves 3 X 3 

matrices. Mu and MD are simply the SM up and down mass matrices, while 

ML and MR are arbitrary except that ML must be symmetric in an SU(2)L 

eigenstate basis. We denote the 6 X 6 mass matrix of (2.9) by M, and observe 

that M can be diagonalized by unitary transformations U and V, so that 

Mij = UlJ(MJ(VJ(j' (2.10) 

where MJ( are the masses of the physical quirks. 

3. Confinement and the HuebalrMass 

Since there are fewer than eleven flavors of quirks, SU(2)H is asymptot

ically free but confining at low energies, so it will be useful to determine the 

confinement scale A2. We start with the experimentally-determined value of 

the strong interaction gauge coupling a3 at the 100 GeV scale, and use the 

renormalization group to evolve it up to the SU(5)c unification scale. We then 

match the SU(2)H and SU(3)c gauge couplings, and run the former down be

low the lightest quirk mass to determine A2. We relegate the details of this 

straightforward but lengthy calculation to Appendix A, where we find an ex

pression (AA) for A2 in the MS scheme in terms of the various masses and 

gauge couplings 

To estimate an upper bound on A2 we will assume that all of the quirks 

have perturbative Yukawa couplings, which guarantees MQ/w-;;;,V4-i. Since 

the X mass is given by !95W, this translates into the bound 

M¢ 4 -< . M1 a5(Mx) 
(3.1) 

Note that in writing a5(Mx) we have neglected the different running of a2 and 

a3 between Mx and MQ (i.e., prior to their unification), since their ratio at 
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Mx differs from unity by corrections of order tv alna (using (3.1) and the 

renormalization group equation). For the same reason we will set a2(Mx) = 

a3(Mx) = a5(Mx) = a5(MQ). The top is at most a factor of two above 

100GeV, so we can set QJ(1nt) = a3(100). The X3 scalar is not likely to be 

lighter than 100 Ge V, and in any case hardly influences the result. Finally, 

a3(100) is measured [4] to be approximately a3(100) = 0.110 ± 0.010, so we 

can conservatively assume a3(100) < 0.125. Combining these estimates we find 

that the confinement scale for SU(2)H is limited by 

A 07G V [1nt]-n [Mx]-rt [!!!:9..]-it [a5(Mx)]-tH [a2(mq)]-a 
2 <. e 100 TeV TeV 0.125 0.125 . 

(3.2) 

Since no quirks have a mass below or near the confinement scale A2, we 

expect the lightest particles in the (long-distance) SU(2)H spectrum to be bound 

hue-singlet states of the massless huons. We call these hueballs H, in analogy 

with the glueballs of QCD. Lattice gauge calculations [5] indicate that the 

lightest huehall has JPC = 0++ and a mass mH = (3.60 ± 0.35)Amom, where 

Amom, the value of A in the momentum regularization scheme, is related to the 

MS value by [6] Amom ~ 3AMS" We therefore find, using (3.2), the upper bound 

mH < 8.3GeV [1nt ]-n [Mx]-rt [fflQ] -it [a5(Mx)]-tH [a2(fflQ)]-1A 
100 TeV TeV 0.125 0.125 

(3.3) 

Equation (3.3) is valid if there are four heavy quirks and two light ones. 

If there are five heavy quirks and a single light quirk the dependence on Mx 

becomes very weak, so we may set Mx = 1 TeV and obtain 

mH<IOGev[fflQ]n [a2(fflQ)]-A 
TeV 0.125 . 

(3.4) 

4. Hueballs and Cosmology 

Because the 0++ hueball is the lightest particle in the SU(2)H sector, it 

cannot decay strongly (here "strongly" means via SU(2)H interactions). Its 
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decay, through loops of quirks or heavy gauge bosons, will be considerably sup

pressed. If its mass is a few Ge V, and if it is long-lived, then it could dominate 

the universe at the time of nucleosynthesis. The cosmological constraints on 

this model follow from the requirement that the highly successful predictions 

of primordial nucleosynthesis calculations not be upset by the contribution of 

the hueballs to the energy density of the universe. We first calculate this con

tribution relative to the contribution of one neutrino species, using the various 

entropies to relate the temperatures in the SM and hue ball sectors. We then 

impose agreement with the astrophysical determination of 4He abundance to 

set an upper bound of one second on the hueballlifetime. 

In the Big Bang scenario at very early times, all particles are in thermal 

equilibrium. In particular, at temperatures above the lightest quirk mass mq, 

quirks can mediate energy exchange between photons and huons, as shown in fig. 

1. While the lightest quirks annihilate, the temperature T of the hue sector 

tracks the temperature T of ordinary matter, T = T. As the temperature 

drops, ordinary particles eventually decouple from the huons. Suppose that 

this occurs at a temperature of 30 Ge V, which is roughly correct if the lightest 

quirk weighs a Te V. We can calculate the entropy present in the two sectors: 

S _ 271"2 
- 45 geffr and S' = 271"2 rI T3 

45 Yeff , (4.1) 

where geff and deff are the effective number of degrees of freedom in the two 

sectors at decoupling. If we count the top and Higgs as contributing only about 

half their normal amount and the Wand Z particles as contributing about 

two-thirds their normal amount (because T ~ Tnt ~ mw ~ mz ~ 1'nHiggs) , 

then geff = 98 and deff = 6. Since T = T' at this point, the ratios of entropy 

will just be 
S' g,' 3 _ = -!ill: = _. 
S geff 49 

(4.2) 

From now on the two sectors are never again in thermal contact. As the universe 

expands, the entropy per co-moving volume will remain constant in each sector, 

assuming that thermal equilibrium is maintained at all times within each sector. 

This is probably false, but not because the interactions involved are too slow. 
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Rather, we recall that during a first order phase transition the sector undergoing 

this transition is briefly out of thermal equilibrium while the false vacuum state 

is maintained ("supercooling"), and then entropy is increased in the transition 

to the true vacuum ("reheating"). The QeD phase transition is probably first 

order while a pure-gauge SU(2) theory is believed to be second order [7]. Hence 

S (but not S') may be increased by some factor e during the transition era: 

below both critical temperatures the ratio of entropies will be given by 

S' 3 
S= 49( 

(4.3) 

By the time the temperature T has dropped to about an MeV, the SM sec

tor consists primarily of photons, electrons and positrons, and three generations 

of neutrinos, yielding geff = 10.75. At this temperature the neutrinos decouple. 

Each neutrino species contributes an entropy density Sv and an energy density 

pv given by 
271"2 • ~ • ']'3; 

Sv = 45 4 
3 

pv = "4SvT. ( 4.4)' 

The ratio of entropy in the SU(2)H sector to the entropy per neutrino species 

becomes 
S' S' S 3 10.75 3 
Sv = S Sv = 4ge 1.75 ~ 8f (4.5) 

Let us now focus on the hueball sector. As we drop below the SU(2)H 

confinement scale, the huon energy is clumped into hueballs, and as the tem

perature drops further eventually only 0++ hue balls remain. These cannot 

annihilate strongly into lighter particles (we will discuss hueball decay below), 

though three of them can annihilate into two. Such number changing pro

cesses ensure that the hue ball field will not acquire a chemical potential. As 

the universe expands the temperature of the hueballs drops until they may be 

treated as a non-relativistic, non-interacting gas of spinless particles, for which 

the entropy and energy densities are given by 

5/2T l/2 (mH). 
S' mH exp - T' ' = ,- ... ~/" rI = S'T. (4.6) 
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Hence the ratio of energy density in hueballs to that in one neutrino species 

at or below an MeV may be expressed as 

rl 4TS' 4T'3 T 
pv = 3 T Sv ~ 3 T 8~ = 2~T· (4.7) 

Using our previous expressions for Sv, S' and S' / Sv, we can relate the temper

ature in the two sectorst: 

(
mH) _ 60y'2 I: (mH)3 (mH)I/2 

exp T' - 71r\/i'" T T' . (4.8) 

Eliminating T' between (4.7) and (4.8), we find 

rl mH [ (mH) (rl)]-1 Pv ~ 5T~ In 1.6T + 0.6In~ + 0.2 In pv ' (4.9) 

which can be solved recursively for the desired ratio rl / pv at any desired tem

perature T. Recall that this equation assumes that T%::, MeV < A,' A' and that 

the hueballs have not yet decayed. 

Examination of (4.9) shows that the mass density of hue balls compared 

to neutrinos increases as the temperature decreases. Indeed, setting T = To 
(the preset neutrino temperature) shows that hueballs of mass mH ~ 2.7~(1 + 
. 09 In ~) ke V would have just the critical density at the present to close the 

universe: they would comprise the dark matter. However, from the scaling 

of 0:2 we learn that such a small A2 requires the six quirks to have masses 

of order 10-12 Mx, which drives the unification scale w to the GUT scale. 

Such a scenario would have few low-energy phenomenological consequences, and 

Yukawa couplings of order 10-12 seem unappealing. We prefer to insist that w 

be far below the GUT scale; as a result the hueballs must weigh more than a 

few keV, and therefore must decay if only to avoid over closing the universe. 

t Note that this formula has no solution for T > Tmax == .456e/3mH, while 
for T ~ Tmax it gives T ~ 2mH for which our non-relativistic approximation 

fails. If we are are to use this expression we must demand, say, T'(T) < tmH 
which means we can only consider neutrino temperatures T < .14ge/3mH. In 
particular, at the onset of nucleosynthesis we will consider only hue balls of mass 
mH > 4.7~-1/3 MeV. 
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How quickly must they decay? That depends on the mass of the hueball 

and the factor ~ of entropy dumping that occurs in the SM s~ctor. One critical 

time is during nucleosynthesis, when the universe is approximately one second 

old and has a temperature of tV 0.7 MeV. This is when the processes which 

interconvert neutrons and protons freeze out. The freezeout temperature is in

creased if the energy density is increased because the universe expands faster 

and so freezeout is reached sooner, that is, at a higher temperature. A higher 

freezeout temperature implies more neutrons are left, which in turn raises the 

predicted 4He abundance. The increase in p that would result from an addi

tional neutrino species already strains the agreement between the calculated 

and observed abundance of 4He in the universe [8]. Hence, the hueball density 

must satisfy 

rl (T=0.7MeV)%::,1. 
pv 

(4.10) 

The value obtained for the ratio in (4.10) depends both on mH and on f 
Demanding rl < pv and T = 0.7 MeV in (4.9) translates approximately into 

~ > .09 (:e; )(.85) exp (6.9:;V) (4.11) 

for mH of at least 10 MeV. The actual value of ~ is very difficult to determine . 

For our purposes, however, a crude estimate will suffice. Such an estimate 

can be made by requiring that the degree of supercooling during the transition 

be insufficient to inflate the universe, since such inflation would leave most of 

the universe today in the QCD plasma state [9]. From this requirement it 

follows that entropy is at most doubled during reheating. Of course, since our 

knowledge of the dynamics involved in the QCD phase transition is far from 

complete,' various unexpected scenarios may well have transpired during this 

period of the early universe, such as condensation of quark matter droplets 

[10] or formation of primordial black holes [11]. Barring such "nonstandard" 

conjectures, however, we can take as a conservative upper bound ~ < 10. From 

(4.11) we see that we cannot meet this bound, i.e., we will have difficulties with 

primordial nucleosynthesis, if the hueball mass is heavier than about 250 MeV. 

These problems can be avoided if the hue ball decays in less than one second. 
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As will be demonstrated in the next section, the hueball decay rate scales 

as at least the seventh power of. its mass, so light hue balls will last much longer 

than heavy ones. If the hueball weighs'" 250 MeV -10 GeV, then it must decay 

in one second or less, for the high value of ~ that would be needed to avoid 

nucleosynthesis problems seems highly implausible. If it weighs a few hundred 

Me V or less, then perhaps it is allowed to live longer than a second without 

upsetting the neutron to proton ratio. However, 104 seconds later, when the 

temperature drops to 10 keY, 250 MeV hueballs would certainly dominate the 

universe and spoil later nucleosynthesis calculations. Moreover, the decay of 

such a light hueball into 'Y'Y or pions will distort the microwave background 

unless it occurs before 106 seconds. Because of the strong dependence of >the 

lifetime on the mass, forcing a 250 Me V or lighter hueball to decay in less 

than 104 or even 106 seconds is a much stronger constraint than demanding 

that a 10GeV hue ball decay in less than one second (and certainly stronger 

than forcing a 250 MeV hueball to decay in 1 second). Since the hueball could 

weigh as much as 10 GeV we can only impose this weakest constraint, namely 

TH < 1 sec. 

5. Hueball Decay 

The hueball decays only through loops of heavy gauge bosons and quirks. 

Some of the diagrams which contribute to hueball decay are shown in fig. 2. At 

low energies hue ball decay is mediated by effective interactions of the form: 

Oqq '" H~qq, ~'V H2-' p,!:I vqq '" aqz'Y vp,q, OGG '" H~ Gf, , and OFF'" 1PaJ1l, 
(5.1) 

where Ha , Ga , and F are the huon, gluon, and photon field strengths, respec

tively. 

Since the first of these is of lower dimension; it presumably dominates the 

decay rate. However, it also violates SU(2)L, and hence must have an amplitude 

proportional to the SU(2)L-breaking masses which may suppress it relative to 

the other operators through small masses and/or small mixing angles. The 
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lowest-order diagram contributing to Oqq is shown in fig. 2a. We assume that 

at least one of the six quirks is lighter than the X, and perform the calculation in 

four steps: integrating out the X; scaling down to the quirk mass; integrating 

out the quirk; and scaling down to the hueball mass. We treat the external 

quark legs as massless to be conservative. For concreteness, we also assume 

that the external quarks are down-type; a similar calculation can be used to 

determine the decay rate to up-type quarks. The various steps are carried out 

in detail in Appendix B, with the result: 

r(H -+didj) mt-I1/J(0)12IM_112 (~ 2 
121rMj. ij a3 mH) a2(mH) 

(5.2) 

X a3(Tnt)1.1fra2('mQ)ta5(Mxr~, 

where 1jJ(0) is the overlap wave function for the two huons. 

What do we substitute for 11jJ(o)l2? Presumably this will be something 

like the reciprocal of the "volume" of the hueball. Lattice calculations [12] 

indicate that the hue ball has a charge density radius of at least 4/mH, so 

assuming a hydrogen-like wave function, we can expect that the decay rate will 

be something like 

:F 7 IM- 11
2 

r(H -+didj ) = mH
U4 ij a3(mH)~a2("!lH)2a3(Tnt)Hra2('mQ)ta5(Mx)~, 

(5.3) 

where F ~ 10-4• Note that (5.3) displays the advertised seventh-power depen

denceon the hueball mass. 

If the quirk masses are large compared to the quark masses, then Mil 
will tend to be small. Since Tnt < 250GeV and 'fnQ > 43GeV we can use 

m~ > Tnt'Tnb to expand M-l in powers of ~uark/'mQ. To leading order, 

Mil = (Mi1)ik(Mu)kl(Mii1)lj. (5.4) 

By far the largest mass in the up mass matrix is the top mass. The magnitude 

of Mil will depend on the masses and mixing angles of the quirks, but we 
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can get a bound on this matrix element by noting that no mixing angle can be 

greater than unity, so that 

-1 Tnt(mg) 
Mi/ < mil Tnt mR = m~ , (5.5) 

where mL and mR are the lightest eigenstates of the matrices ML and MR 

and m~ is their product. We see that for this mode of hueball decay to be 

efficient, there must be at least two light quirks. There must also be large 

mixing between the gen"erations-although this seems unlikely, we must allow 

for this possibility. 

In (5.5) we need to evaluate Tnt(p) at the quirk mass; because of renor

malization, this will not necessarily be equal to the physical top mass Tnt. The 

relation between the two is given by 

Tnt(mQ) = Tnt [a5(MX)]; [a2(mg)] i 
a3(Tnt) as(Mx) 

(5.6) 

Substituting equations (5.6), (5.5) and (3.3) into equation (5.3), we find 

f < 5.6x10ssec- l [~~]H [~~]W[:r~ 
xa3(mH)~a2(mH)2 [a2(mg)]-m [a2(mg)] W 

0.125 as(Mx) 

(5.7) 

Since mH is several times the confinement scale, substitution indicates that 

a2(mH) is much less than one. However, the lightest hueball is, by definition, 

in thenon-perturbative regime for the SU(2)H theory, so we conservatively 

estimate a2(mH) < 1. Since we are approximating a3(100) ~ 0.125, we also 

use a3( mH) ~ 0.2. Finally, we assume Tnt < 200 Ge V and f > lsec- l and 

obtain the limit 

(~) ( Mx )7/4 
2TeV 10TeV < 1 [forf(-+qq) > lsec- l ]. (5.8) 

This limit can be strengthened considerably if we assurne that small angles 

occur in ML and MR connecting the top quirk with the down (or strange) 
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quirk. Our experience with quarks implies that such small mixings are likely. If 

all of the angles are less than twice those appearing in the standard Cabibbo

Kobayashi-Maskawa matrix (0.12 or smaller), this limit is improved to 

( 
mq ) ( Mx )7/4 

90GeV 10TeV < 1 
[for f( -+ qq) > lsec- I ] . (5.9) 

This is the limit if hueballs decay predominantly by diagrams of the type 

in fig. 2a. To calculate the rate through diagrams such as those in fig. 2b 

requires two steps, which again we leave for Appendix B. The resulting decay 

rate, calculated using the same assumptions as before, is 

f(H -+ ''1''1) = Pa(mH)2a2(mH)
2m'k 

m8 ' Q 
(5.10) 

where we expect P ~ 2.7xlO-8 . Note that for this decay we need only one 

light quirk, and that no mixing angles are involved. Substituting (3.4) for the 

hueball mass, we find 

f(H -+"rr) < 2.2 X 10-3 sec- I [!!!!:l.]-H [a2(mq)]-a 
TeV 0.125 

(5.11) 

Assuming the hueball decays in less than one second, this gives a limit 

mg < 430GeV [for f( -+ II) > lsec- I
] . (5.12) 

We have also made an estimate of the decay rate using diagrams such as 

those in fig. 2c, where the hueball decays into two gluons which must then 

hadronize. If this is the decay mode chosen by the hueball, then its lifetime is 

less than one second if 

Mx < 1.7TeV [for f( -+ gg) > lsec- l ] . (5.13) 

It should be emphasized that only one of the inequalities (5.8), (5.12), or 

(5.13) need be satisfied for there to be no conflict with big-bang cosmology. 

These three limits (together with the strengthened limit (5.9» are graphed 

together in fig. 3. 
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6. Kaon Mixing 

Many extensions of the standard model have potentially detectable effects 

in the kaon sector, and the SU(5)c model is no exception. Several diagrams 

contribute to the J(L-J(S mass difference. In general these lead to quite compli

cated expressions for this difference. To help simplify the expressions, we will 

assume that all quirks are heavy compared to the quarks, but much lighter than 

the X. If the quirks are much heavier than the quarks, then the mass matrix 

(2.9) takes on an essentially block-diagonal form, and the quirk sector decou

pIes into separate QL and QR mass eigenstates. The matrices U and V which 

diagonalize the full quirk mass matrix will also have a nearly block-diagonal 

form. These assumptions are not essential to estimating kaon mixing, but they 

make the equations manageable. 

Several diagrams contribute to kaon mixing, but the contribution which is 

naively the largest comes from box diagrams of the type shown ~n fig. 4, where 

a QL goes around one side of the box and a QR appears on the other side. 

These diagrams lead to an effective four quark interaction 

2 3 3 ( ) 4a2 _ _ XIYJ XI 
Leff = Mt (sP+d)(sP_d) LL6(J In - , 

X I=lJ=l XI-YJ YJ 
(6.1) 

where ~I = U!IUld, (J = VJJVJs, XI = MlRI/MJc, and YJ = MLJ/Wx. The 

sum on I (J) runs over only the three mass eigenstates of MR (ML). Because 

of unitarity, E~I = E(J = 0, so that if all of the Xl'S or all of the YJ's are 

equal, this expression will vanish. Such a degeneracy, however, is difficult to 

arrange naturally. If we use the vacuum saturation approximation, and treat 

the strange quark as heavy compared to the down quark but light compared to 

the kaon, then the operator (6.1) will contribute to the kaon mass difference an 

amount 

6.mK = 2a~~(mJ(Re{LL~I(J XIYJ In (XI)} . 
msM} I J X I - YJ YJ 

(6.2) 

We cannot reliably evaluate this expression because we know nothing about 

the masses or mixings of the quirks. If the quarks are any guide, it would be 
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surprising if ~I or (J were always very small. In the quark sector, we have values 

of order ~I = 0.2 coming from the Cabibbo angle. Suppose we assume that at 

least one of the QL andQR has a mixing of at least half the magnitude of that 

in the standard Cabibbo-Kobayashi-Maskawa matrix connecting the first two 

generations, so that ~I(J > 0.01 for some I and J. It is easily shown that 

XIYJ In (XI) > min(xI,YJ) . 
XI- YJ YJ 

(6.3) 

Then assuming there is no accidental cancellation occurring, there should be a 

contribution to the kaon mass difference of at least 

n. 3 2 0.02~J KmK11lQ 
6.mK~ m~Mi (6.4) 

Assuming this does not exceed the measured kaon mass difference, 6.mK 

3.5x 10-6 e V, implies that the quirk mass is limited by about 

!!!9.. ( Mx )2 
TeV ~1.4 10TeV (6.5) 

This limit is also graphed in fig. 3. Note that the limits graphed in fig. 3 imply 

that the quirks are lighter (probably much lighter) than the gauge bosons. 

Experimentally, this implies that it is much easier to pair produce quirks than 

it is to look for the Z' resonance in hadron colliders. If we use both the kaon 

limit (6.5) and the strengthened decay limit (5.9), then the lightest quirk must 

be lighter than 420 Ge V. 

7. Quirkonium 

The most promising way to probe the SU(5)c model at accelerators is to 

pair produce the lightest quirks. Since these are long lived, they will bind to 

form quirkonium resonances. In this section we first discuss the signatures such 

resonances might produce, and then estimate the relevant event rates at e+e-

, and hadron colliders. 

It can be seen from fig. 3 that it is possible for all the quirkonium reso

nances to lie above 10TeV, and be inaccessible. However, the kaon naturality 
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. constraint strongly suggests that some will lie below 2 Te V, and probably be

low 0.5 Te V. These are very conservative bounds. If the heaviest quirks are not 

much heavier than the Z' then the renormalization group scaling gives a lighter 

hueball and cosmology then forces the lightest quirkonium beneath about 1 

Te V. Furthermore, if the central value for the strong gauge coupling is used for 

input, as(mw) = .11, the lightest quirkonium will be lighter than about 200 

GeV, and will be accessible to LEP II. Thus while it is not possible to exclude 

the possibility that all the quirkonia of this model are above 10 TeV, it is highly 

plausible that the lightest quirks will not be more than a factor of two heavier 

than the current limit from Z decay. 

For simplicity we assume that one quirk is significantly lighter than the 

others. It is a Dirac fermion of charge 1/2. Its mass is the smallest eigenvalue 

of the matrix in equation (2.9). We assume that this "mass eigenstate is pre

dominantly a "left quirk" t Q L = (ElL, Di) or a "right quirk" Q R = (IYk, U R). 

This occurs naturally if the mass splitting between the lightest eigenvalues of 

ML and MR is large compared to the top mass, or if the top quirk does not mix 

much with the lightest quirks. These assumptions are to simplify our calcula

tions of the signatures; we do not expect our conclusions to be much changed if 

there were several light quirks with each mass eigenstate a mixture of left and 

right quirks. 

What happens when a quirk pair is produced in a collision? Suppose that 

the pair invariant mass is well above the threshold of"" 2mq, but below 4mq. 

The case of a heavy quark pair is not analogous at all: the gluon string between 

the pair fragments by light quark pair production. This cannot happen with 

quirks: there are no lighter quirks and hence the huon string cannot break. The 

system can be viewed as a highly excited quirkonium state. The de-excitation 

of this quirkonium will occur in two distinct stages. In the first stage the 

string is longer than Ail and the quirkonium is in the linear regime of the 

t Of course, the handedness subscripts here serve only to denote the field 

degrees of freedom enumerated in eq. (2.6). Each mass eigenstate has both 
chiralities as required for a Dirac fermion. 
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potential. De-excitation will begin by hueball emission. There is little we can 

calculate here; the string is long and the multipole expansion breaks down. 

However, since the string is made out of hue, we clearly expect huon emission 

to dominate, and to occur rapidly. Since the string is extended, the hueballs 

can carry away significant angular momentum leaving the quirkonium with 

very high J. Our expectation is that many hueballs will be emitted from the 

oscillating string and as many in any given direction as in the opposite one, so 

that there is no significant change in the laboratory velocity of the quirkonium. 

The hueball emission will lead to substantial missing energy but only small 

missing transverse momentum. Once the excitation energy drops beneath the 

hueball mass, Eex < mH, de-excitation occurs by photon emission from the 

oscillating charged quirks. As long as Eex > A2 the picture is still that of 

a string with large J. The linear potential has energy spacings characterized 

by the scale A2(A2/rnq)I/3. We are not sure whether many soft photons or a 

few photons with energy a sizable fraction of mH will be emitted. Fortunately 

this is not important since the signature we expect will come from the visible 

annihilation of the quirk pair. Such annihilation is very unlikely to occur during 

the era of a long oscillating string. 

When Eex drops beneath 9~rnq/64, where a2 = a2(rnq), and the spatial 

extent of the system becomes less than Ail, the second stage begins: the quirks 

are now moving in the one-huon exchange Coulomb potential -3a2/4r. The 

size restriction translates into a limit on the quantum numbers: nl ~ a2rnq/ A2. 

Throughout this section it will be useful to consider typical values of parameters 

as: a2(rnq) = .1, rnq = 100GeV and A2 = 100MeV. For these values nl~100 

characterizes the Coulomb region. 

Prior to entering the Coulomb region the discussion was qualitative; once 

. in the Coulomb region calculations can be made. The picture we have sketched 

for the string era serves to justify the assumptions which we need for the initial 

conditions as the quirkonium enters the Coulomb domain. In particular we 

assume that the quirks have survived and not annihilated, that they have a high 

orbital quantum number l and that the spin states are statistically populated 
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with the ratio of S = 1 to S = 0 states being 3 : 1. We now turn to the 

de-excitation in the Coulomb domain. 

Annihilation of quirks to huons Q"lJ -t hh is small for high-l states be

cause ¢t( r) ex: (a2mqr)t near the origin and the annihilation is proportional to 

I¢t(r ~ 1/mq)l2. We find that annihilation from a quirkonium state l gives 

rt(hh) ~ a~+2lmq (7.1) 

which is to be compared with a typical E1 electromagnetic transition rate 

rt(E1) ~ aa~mq (7.2) 

Annihilation is unimportant for l ~ 2 and need be considered only for the S 

and P states. The dominant E1 transitions have I~ll = 1, so that multiple 

emission occurs before the P states are reached. The crucial question then is 

what happens to quirkonia in the states n3 P and n l P. 

One might worry that the eventual fate of the vast majority of all quirkonia. 

is annihilation to invisible hueballs, so that the dominant signature is missing 

energy together with some soft transition radiation photons. This is completely 

incorrect: there is a parity which forbids many of the quirkonium states from 

annihilating to any number of huons. Charge conjugation, C, on the huons can 

be chosen to be (hI, h2, h3) -t (-hI, h2, -h3). Define R to be a rotation by 1r 

about the T2 axis of SU(2)H. The hi have the same R quantum numbers as C 

quantum numbers so that all are G = RC even. The quirkonia are all SU(2)H 

singlets and therefore R-even, hence they have G = C = (-1 )l+8. Quirkonia 

with odd l + s cannot decay to only huons. The G-odd singlet P states, nIp, 

cascade predominantly to the singlet S states which are G-even and are lost to 

hueballs. The important remaining question is the fate of the triplet P states, 

n3 P. These are G-even and could annihilate to hh or cascade to the S states 

via an El transition: In this latter case they will end up annihilating visibly 

via virtual 'Y and Z. 
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The fate of the n3 PJ states requires a more careful calculation than the es-

timates of equations (7.1) and (7.2). Assuming equal populations of the (J, mJ) 

states we find average decay rates 

Y'(n3 P -t hh) = ~8· a! 1~I(OW 
mQ 

Y'(n3P-t 13S) = %A;31(1Irln)12
, 

(7.3) 

where k is the energy of the emitted photon, and Hnl (0) is the derivative of the 

radial wave function at the origin. Evaluating the matrix elements and taking 

the ratio, we find rlS/rhh = F(n)a/r4" where F(n) varies from 1.9 for n = 2 

to 1.2 for n = 00. So the electromagnetic transition always dominates the huon 

decay. We conclude that the majority of 3 P states will eventually become 3 S 

states. These are G-odd and cannot annihilate to hue balls , and will instead 

eventually give annihilations primarily via virtual 'Y and Z. 

In the above discussion we have ignored M1 spin flip transitions because 

for all nl states we find the Ml transition is much smaller than the E1 transi-

tion. This is especially true for high nand l so that we can take the S quantum 

number to be fixed during the Coulomb de-excitation. We conclude that 75% 

of the total quirk pair production rate will result in the annihilation of a quirko-

. 
nium resonance involving standard model particles. When the decay is to pairs 

of visible particles, the invariant mass of the resulting pair will be 2mq to an 

accuracy much better than the detector resolution. 
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The decay rates of the 3 S states are given by 

1W.21·"(0)12 p3(4m4 + 20m2 m2 + 3m4 ) 
re S -+ W+W-) = 'f-'\ Q w Q W 

6m~ [(4m~-m~)2+m~r~] (C-sin2 OW)2 

( 2m~-m~sin2 OW)2-2C 
X 2 2 2mQ -mw 

re S -+ ZO Higgs) = 211"a
2

11/;{o)l2(P2 + 3m~)P , 
3~ [(4m~ - m~)2 + m~r~] (C-sin2 OW)2 

11"2 - 9 
re S -+ hh,) = -2 2 a~al1/;(0)12, 

mQ 

reS -+ hhZO) = 11"2 -9 a~al1/;(0)12 (C-C~S2 Ow) 
2m~ C-sm2 0w 

2 21 12 ( )2 r 3 -+ - _ 161m mQ 1/;(0) QJm~ T3J - CQJ 
(S f f) - 3[( 4m~ _ m~)2 + m~r~] L 4m~ + C - sin2 Ow ' 

(7.4) 

where the last two expressions do not include threshold effects, h stands for a 

huon, P is the momentum of either of the decay products, the sum in the last 

term is over colors and chiralities of the outgoing fermions, and C = 0 (C = 1) 

for quirkonium made from QL (QR). Fig. 5 shows the various branching ratios 

for quirks of mass up to 1 TeV. The easy identifiability of lepton pairs whose 

invariant mass will be consistently twice the quirk mass, together with the 

relatively large branching ratio, implies that lepton pairs will be the most easily 

identified signal of quirk production. 

8. Experimental Signatures 

The unpolarized cross section for quirk pair production is given by 

(1 - -+Q _ 1I"a2s(3-{J2){3 (QJm~ T3J - CQ,)2 
(ff Q)-art _ _ 2\?,_2n2," +C '20 ,(8.1) ~ s -sm W . 

where s is the square of the center of mass energy, {3 is the velocity of the 

outgoing quirks, and the sum is carried out over the two chiralities of the 
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fermions. If the quirks are light enough, they will appear in Z decay. Its partial 

width into quirks is 4(C - cos2 OW)2 times that for one neutrino species if the 

quirks are not too close to half the Z-mass. All quirk events would result in 

quirkonium, which would decay primarily to pairs of particles with a mass twice 

the quirk mass. If the quirk mass is not much bigger than about 43 Ge V, these 

events should be numerous and easily separated from standard Z-decays. There 

. is no significant physics background to worry about. We therefore conclude that 

LEP puts a limit on the lightest quirk of 

~ > 43GeV . (8.2) 

When LEP II begins operation at .;s up to 200 Ge V, higher quirk masses 

will be easily detectable. For quirk masses in the range 40 - 95GeV, the cross 

section to quirks is between 1 and 3 picobarns. When we include the 75% prob

ability that the quirkonium ends up in a 3 S state, together with the branching 

ratio to muons, the effective cross-section to muons lies in the range .03 -.10 pb, 

which should be easily detectable. The background from W-pairs decaying to 

like-type leptons is only about .16 pb, and the cross-section from Z-pairs, one 

of which decays invisibly while the other decays to leptons, is only about .01 pb. 

The cross-section for T pairs which then both decay to muons is roughly .07 pb. 

All these background events should be readily distinguishable from quirk events. 

If candidates are detected, the collider could be run in the neighborhood of twice 

the quirk mass, looking for the large resonance from the IS state. 

For larger quirk masses, only hadron colliders have the energy to produce 

quirks. Unlike a lepton collider, a hadron collider produces a large background 

from standard Drell-Van production at all energies. The signal of quirk pair 

production would be a peak in the invariant mass of muon (or electron) pairs. 

Fig. 6 shows the cross-section for quirk pair production times the branching 

ratio to muon pairs at the Tevatron and the sse. The integrated luminosity 

for these machines is effectively doubled if electron and muon data can be 

combined. For left-type quirks, the Tevatron may be able to detect quirks with 

a mass in the range 55 - 70 GeV if the expected 14%/ JE( GeV) resolution 

can be obtained on the mass of .the lepton pairs and an integrated luminosity 
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exceeding 50 pb -1 is reached. No effective improvement on the mass limit for 

right-type quirks is likely at the Tevatron. 

In contrast to the Tevatron, the SSC can easily discover or exclude quirks 

of both right- and left-type. If the SSC can attain design luminosity, and if 1 % 

resolution can be attained on the invariant mass of muon and electron pairs, 

there is no reason the SSC could not detect or discover quirk pairs throughout 

most of the probable range of parameter space. Within a decade, we could 

convincingly confirm or exclude this model. 

9. Conclusions 

The phenomenological successes of the standard model at currently attain

able energies carry with them no guarantee of uniqueness. Models like color 

SU(5) demonstrate that even surviving unbroken symmetries can be concealed 

if their quantum numbers are not carried by the light fermions, and that natural 

hierarchies of symmetry breaking can occur at Te V scales without fine tuning 

in the scalar sector. There is ample room for new and surprising physics far 

below the hypothetical GUT scale. 

In earlier work on these models attention was focused on the gauge bosonic 

sector, which has proved so helpful to our quantitative understanding of the 

standard model. However, the results of the current work suggest strongly that 

the quirks will be the lightest carriers of net hue, and that their production (or 

absence) will be the first and decisive test for models of this type. 

The color SU(5) model provides a simple extension of the standard model 

at the weak scale. The interactions of the new fermions and gauge bosons are 

predicted by the theory, but their masses are not. Masses in the range of the 

weak scale are to be expected, but the form of the interactions is such that it 

is not surprising that the new particles have not yet been found. 

In this paper we have argued that cosmological and flavor-changing con

straints on this model imply that it will be tested at planned colliders. Big 

bang nucleosynthesis implies that the heavy new fermions and gauge bosons 

cannot all be made heavy. Mixing of the neutral kaons further indicates that 
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the new fermions will be lighter than the new Z' gauge boson, and will be the 

most visible consequences of the theory. These quirks have charge 1/2 and are 

bound together by a new strong confining force. Searches for the leptonic decay 

products of quirkonium at LEP II will probe quirk masses up to near the beam 

energy. Planned hadronic colliders will extend this search into the Te V region 

for quirk masses. Either quirkonium will be found or the model will become 

untenable. 
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Appendix A. Calculation of the SU(2)H Confinement Scale 

In this appendix we use various experimental and theoretical inputs to 

determine the low~energy running of the SU(2)H gauge coupling constant, and 

hence the hue confinement scale A2. This is, of course, a renormalization scheme 

dependent quantity. We choose to work in the MS scheme. The gauge coupling 

a = 92/47r depends on the renormalization point I" according to 

_d [a(p,)] = -a [a(p,)]
2 
+ b [a(p,)]

3 
+ 0 ([a(p,)] 4) 

dIn 1"2 47r 47r 47r 47r' 
(A.l) 

where for an SU(N) theory with nj fermions and no scalars [13], a = ¥N -inj 

and b = ¥N2 - \3 Nnj + nj/N. We define A by the approximate solution to 

the two-loop equation (A.l): 

47r 2 2 b 
a(p,) ~ a In (I" / A ) + a In (In (1"2 / A 2») 

~ a In(p,2/A2) - ~ln (a [a~~)]) (A.2) 

or 
(

-47r) '" (A2)a [a(p,)]b/a exp ( _ - - ab/a 
a 1") 1"2 47r . 

At any scale I" we will adopt an effective theory by keeping only those 

particles with masses less than 1". Matching the theories below and above 

I" = M involves matching the values of a in the two theories at the scale M. If 

the theory above (below) M has coefficients a+ (a_) and b+ (b_) in eq. (A.l), 

making a continuous at the threshold M requires the two A's to be related by 

[~]~ ~ [~]~ ~[~~][~-~ J.:fi (a+)G+ = II? (a_)G- -- . 
lVl- . 47r 

(A.3) 

By iteratively applying this formula at successive thresholds we can calculate 

the value of A at any scale. Suppose for simplicity that the quirks lighter than 

the X bosons have a COIDII1on mass 'TrlQ while the rest have a common mass 

MQ, so 'TrlQ ~ Mx ~ MQ. We begin by calculating A for QeD with five 

flavors, using the measured value of the QeD coupling. We then match at the 
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top mass to obtain A for six-flavor QeD. The next threshold for QeD is at 

Mx, above which the running of the coupling is due to all the gauge bosons 

of SU(5) with six light flavors. Now above MQ both the SU(3)c and SU(2)H 

couplings run as an SU(5) with six flavors, so if they are to be equal they must 

in particular match at MQ. That is how we arrive at the value of A in the 

SU(2)H sector just below MQ. From MQ down to Mx the hue sector coupling 

also runs like an SU(5), but with only the light quirk flavors. At Mx we match 

to SU(2)H with the same small number of quirks, and finally at 'TrlQ we obtain 

the A2 appropriate to SU(2)H without any light quirks; that is, the desired 

confinement scale. 

For concreteness, assume that four of the quirks are heavy and two are 

light. Then the value of A2 at low energies can be expressed as 

A2 _ (. -37r ) [100] n [MQ] rr ['TrlQ] n [100] -II [MX3] n 
100 - exp lla3(100) Tnt Mx 100 Mx 100 

X [2
3
2]f1r [a3~~0)r& [a3~~)]1Wf [a3~~X)r15 

X [as(MQ)] -Wf [a2(Mx )] mt [a2('TrlQ)]-jA 
47r 47r 47r ' 

(AA) 

where we have included the one-loop dependence on the mass of the colored 

scalar X3 (and 100 means 100 GeV). 

Appendix B. Effective Hueball Decay Operators 

We first evolve the quark-anti quark decay operator Oqq shown to lowest 

order in fig. 2a. At energies below the X mass, the X interaction appears as 

an effective four-point interaction of the quarks and quirks, as in fig. Ala. We 

keep only those terms which connect to dLidRj, since only they can contribute 

to Oqq, and obtain the four-fermion interaction 

_ 2 
04-fermion(Mx) = 2; V;~UJj{QJP_IJldj) (diP+/IJQr) + h.c. 

X 
47ras t - -

= Mt V;rUJj (QJP-Qr) (diP+dj) + h.c., 
X 
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where P± = (1 ± ,s) /2 is the chirality projection operator, di is the down-type 

quark field for family i, Q [ is the l'th quirk field and 9s is the gauge coupling 

of the X boson at the scale Mx. 

At lower energies, we need to renormalize this effective interaction by con

sidering the effects of attaching huons and gluons to the quirks and quarks. To 

one loop this operator runs according to 

din 04-Cermion 9 1 
din J.l2 = - l61l' 0.2 - :;0.3. (B.2) 

With six quarks and two quirks lighter than the X, the couplings 0.3 and 0.2 

run according to 

so 

dlna2 3 
-----0.2 
dIn J.l2 - 21l' 

and 
din 0.3 7 
din J.l2 = - 41l' 0.3, 

3 4 
dln04-cermion = 'Sdlna2 + 7dlna3. 

Hence 04-Cermion at any scale J.l < Mx is given by 

(B.3) 

(BA) 

04-Cermion(J.l) = ~ a3(J.l)~a2(J.l)ias(Mx)~Vi~UJj (QJP-QI) (diP+dj)+h.c. 
X 

(B.5) 

Next, we integrate out the quirk which appears in the I-loop diagram of 

fig. Alb to obtain the operator connecting two external huons to two quarks. 

Because we are interested in the decay of the 0++ glueball, we keep only the 

scalar part: 

_ Oqq(mq) = L l;~Uin ({hP_dj ) a2(mq)H::vHa~v 
[ [x 

X a3(mq)~a2(mq)ias(Mx)t\ + h.c. 

= (~i4j (diP_dj) a2(mq)H~ a3(mq)~u2(mq)iu(Mx)t\ + h.c. 

(B.6) 

Finally, we run this operator down to the hueball mass according to loops 

such as those shown in fig. Ale. As demonstrated by Grinstein and Randall 

[14], the product of the beta function with 1Pa does not rescale. To leading 

27 

-j 

order, this means that H;.(mH) = H~(mq) . a2(mq)/a2(mH). When we also 

take into account the rescaling of the external quark lines, we find 

/" (' ) (M-l)i j (d- P d H2 H vqq mH = 1<) u2 i - j) aa2(mH)a3(mH) 
X (B.7) 

a3(Tntpha2(mq)i a(Mx)t\ + h.c. 

The effective interaction (B.7) will contribute to hueball decay, but it is 

difficult to determine the matrix element of H~ between the ot+ hue ball state 

and the vacuum. If we treat the hueball as a weakly bound state of two on-shell 

huans, then the decay rate to quarks will be given by 

mkl,!/\O) 12 -1 2 
r(H ~(hdj) = 1<)_u4 !Mij ! a3(mH)~ 

(B.8) 
U2( mH )2U3( Tnt) -tit U2( mq) i us( Mx) ~, 

where 1/1(0) is the overlap wave function for the two huons. This approximation 

is not necessarily very accurate, but it does give us some idea of the decay rate. 

We proceed similarly for the two photon decay operator OFF of fig. 2b. 

We integrate out the quirks, and then rescale the operator down to the hueball 

scale. After the first step we find the effective interaction 

OFF(rnq) = u(~~~~mq) [!(F~vPW)(HaaI3H~I3) + (FJ.'vH~V)2 
(B.9) 

+ 1~( fJ.'vaI3F J.'v H~I3)2 + 3~(f~vaI3FJ.'v Fal3)(fUfYY7'H~P Hr)]. 

where a is the electromagnetic coupling. 

Rescaling this operator down to the hueball mass is nontrivial because the 

effective Lagrangian contains several operators which rescale in different ways. 

We first decompose the various interactions into irreducible parts, as fol

lows: 

F~vFal3 = n(9J.'a9vl3 - 9J.'139va)[FupFP] - f4fJ.'val3[fPUI'7' FpuFI'7'] 

+ [two index tensor piece] + [four index tensor piece]. 
(B.lO) 

The product of two H's can be similarly decomposed. Each of these operators 

will renormalize multiplicatively, and they will not mix with each other. 
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The symmetry properties of the pseudoscalar and four-index pieces assure 

that they cannot annihilate the 0++ hueball, but the other two operators can. 

The product of the two-index tensor parts gives zero, however, when we calcu

late the matrix element between a hueball and two on-shell photons. Hence we 

need only keep the scalar parts of F2 and H2: 

o ( ) - a( mQ)a2( mQ) R2 F2 
FF mQ - 480m¢ a' 

(B.ll) 

It is relatively simple to rescale these, since a(J.L)F2(J.L) and a2(J.L)H;,(J.L) once 

again do not rescale: 

a(mH)a2(mH) H~F2. 
OFF(mH) = 480m¢ (B.12) 
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FIGURES 

Fig. I. Typical diagrams leading to quirk-mediated energy (:xchallge he

tween huons and photons in the early universe. 

Fig. 2. Loop diagrams which lead to hueball decay into (a) quark-antiquark 

pairs. (b) photons or (c) gluons. 

Fig. 3. The two dimensional parameter space spanned by the quirk and X 
ma.'1ses. showing the various astrophysical and experimental constraints. The 

shaded regions arc excluded by nUcleosynthesis bounds, by requiring perturba

tivity, by kaon mixi~ or by UA2 jet data. The region below and to the left of 

the dashed line will be accessible to LEP II, whereas the regions below and to 

the left of the axes in this figure are already excluded by collider results. 

Fig. 4. The quirk and X contribution to the KL - Ks mass difference. 

Fig. 5. The various branching ratios of the 3 S quirkonium state. The solid 

(dashed) lines correspond to left-handed (right-handed) quirks. 

Fig. 6. Cross sect.ion times branching ratio into muons for quirk production 

at. t.he Tevatroll alld at the sse, as a function of the dimuoll illvariallt mass. 

The solid curves are q X Br for left-handed quirks in pb, the dashed curves 

are the corresponding curves for right-handed quirks, while the dotted curves 

show the expected Drell-Van background (dq/dm) in-pb/GeV, where m is the 

invariant dimuon mass. 

Fig. A 1. The various steps in deriving the effective operator leading to 

hueball decay into a quark-antiquark pair. 
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