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THE MECHANISM OF SPECTRAL SENSITIZATION IN THE LIGHT OF ELECTROCHEMICAL
EXPERIMENTS THE SYSTEM ZINC OXIDE RHODAMINE B o | .

By He]hut»Tributsch
Laboratory of Chemical Biodynamics, Lawrence_Radiation_Laboratory,

University of Ca]ifornia, Berkeley, California 94720

and Ewald Da]troizon

Institut fir Physik&]iécne Chemie, TecnanChe}UniverSitat, Minchen, Germany

The electrochemical téchnidde; in which semiconductors are used as one
electrbdeiof'an eTectrochemicaT'ce]]Iwith}sensitizing dyes adsorbing at
the semiconductor Surface‘frdm the eTeCtrolyte;'is”very well suited for a
vsystematchinvestigatfon of sensitizatiOn reactions. A survey of the in-
f.fofmétioh'is 91Ven:wnich can be derived from already eXisting experimental -
‘data. The results show that both exchange of electrons and energy transfer
are possible between excited.dyesmolecu]eé and.semicondUCtors,vand that tne
' mecnaniém'of sensitizatton‘nas_to be determined for the particuTar System |
invaved;' The mechanish of'spectraT senSTthatfon.pvanO by Rhodamine B is
studied in some detail. The Rhodamine BQSensitized photocurrent acrpss the
ZnQ/eTectrp]yte interface is strongly dependent on the pH Va]ue of the
eTeCtrOTyte It is shown that this effect is produced by a pH dependent
double ]ayer and not by a pH dependent change of an e]ectron1c property of
Rhodam1ne B The potentla] Jump in the doub]e ]ayer cannot 1nf]uence energy
transfer react1ons, however, eTectron transfer is affected Consequent]y,
'exc1ted Rhodamine B at a ZnO-electrolyte Jnferface sens1t1zes this semi-
‘conductor by electron transfer into the conductipn band. This conclusion

s suppprted by calculation of the pHFdependence of sensitization.
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I;“yIntroductiOn"

A]though the process of spectral senSitizatiOn-of inorganic semiconductors

:4by adsorbed dyes has been the subJect of 1ntens1ve 1nvest1gat1on for more than

50 years, 1ts mechan1sm is still a matter of controversy. Ample exper1menta]
evidence for tWo;mechanisms - primary electron transfer and primary energy |

1 5

transfer - has been suggested A dec1s1ve 1n+=rpretat1on of exper1menta1

data in terms of a spec1a1 mechan1sm of spectra] sens1t1zat1on has turned out to

be extreme]y difficult. Only recent]y, exper1ments in which sens1t1zat1on of

,s11ver brom1de cou]d be obtaIned across 1so1at1ng mo]ecu]ar layers, could be ex-

A
p]a1ned conv1nc1ng]y 1n terms of an energy transfer mechan1sm of sensitization.

These exper1ments, however, do not include the 1mportant.case where sensitizing

molecules are in direct contact with the substrate.

~The. difficd]ties met in the studies of the mechanism of spectral sensiti-
zation are ma1n]y due to the fact that sens1t1zat1on effects were usually
stud1ed at sem1conductor surfaces in contact with a vacuum or a gas , Experi-

menta] methods of 1nvest1gat1on, app11cab1e to such a system (_;g surface

conduct1v1ty, photograph1c effects) are hard]y su1tab]e for the study of hetero- v

geneous photochemjcal react1ons:_,ne1ther the physical situation in the semi-

conductor surface (space-charge‘]ayer; concentration of charge carriers in the

‘_surface):can:be controllediand varied in a well-defined way, nor can photo-

chemica]_reaction parameters (molecular environment of photoactive molecules)
easily be changed and the turnover of reacting molecules determined:

' | To obtain-the’advantage,ofga more f]exib]e'and adequate system for thel

vinvestigation of the meChanism and the kinetics of spectra1 sensitization,

attempts have been made to study sens1t1zat1on reactions at surfaces of inorganic

sem]conductors wh1ch are in contact w1th an e]ectro]yte and used as e]ectrode of

w
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.
an e]ectrochem1ca1 ce11.7°15 1n the same arrangement, sensitization effects
at organic semiconductors have been 1nvestigated 7,16

Experimenta] indications that senSitization effects can also be observed

at semiconductor-electrolyte interfaces are. very old. As early as 1893 it was

found by Rigollot]7 that copper e]ectrodes, ox1dized by g]ow1ng, when p]aced in

contact w1th an e]ectro]yte and “dyed“, showed a sen51tized photoeffect It

is now difficult to decide whether Rigollot has seen a Bequerel effect which

.may arise from a semiconductor property of the dye ]ayer and can also be ‘seen

18

w1th dye ]ayers, dep051ted at p]atinum eiectrodes, or whether he-saw a real

sen51t12at10n effect which was producedby monomeric dye molecules adsorbed to

a semiconducting cuprous oxide 1ayer at his e]ectrodes

Oniy in recent times has the e]ectrochem1ca1 method become practical for
the 1nyestigation of spectra1 sen51t12ation, because only in the last two
decades has the e]ectrochemica] behaviour -of semiconducting e]ectrodes become .
sufficientiy e]ucidated;'andfsUitabTelsinglencrystal semiconductors become
available for investigatiOns.'.' | v |

The technique of studying sensitization reactions at inorganic semicon-

" .ductors which are used as one electrode of an electrochemical ceT]7']5 turned

out to be Very effective, main]y for the fo]]owing reasonS'v

1) The space charge 1ayer and thus the concentration of carriers in the
surface of the semiconductor e]ectrode can be convenient]y controlled and
varied by means- of the electrode potentia] which can be measured against a
reference e]ectrode _ ' ‘ - _‘ , /

2) Excited dye mo]eCu]es_generate avSensitized photocurrent across the
semiconductor-eiectro]yte interface which is controllabie withrthe e]ectrode

potential.
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3) Chemica1 agents‘Can conveniently be added to the eTectrolyte; they
were found to 1nf]uence the sens1t1zat1on effect in a specific way.
| 4) The appearance of sensitized- photocurrents 'across the sem1conductor
sunface is coupled with a chemical turnover of agents which part1c1pate in
‘the sensitiéafion‘reaetion, The Faraday law can therefore be used to
determine reactants. | |
5) ‘Various techniques of electrochemical kinetics can-be applied. to
.investigate the mechanism of sbectra]-sensitization: dynamic current-voltage
characteristies, potentia]-jump experiments, a]ternative current experiments
~ (capacity measurements), experiments at rotating disc electrodes (diffusion
controlled reactions), -change of composition of electrolyte, etc.

‘Sensitization effects, produced by excifed.dyes, have been found at various

inorganic (p- and neeonducting) semiconductor electrodes (ZnO 7-12,15 (g 14515

(19)  cu,0,'* Gans, ' gap,1® SnOz,]g Sic'®). Dyes of very different classes (tri-

phenylmethane, phencarboxon1um, cyan1ne, f]uoresce1ne dyes, dyes of the

GaAs,

ch]orophy]] group) showed sensitizing activity, provxded sem1conductors with
appnopriate electronic structure are used as semfcondudtdr electrodes. |

- In their interactibn‘with semiconductor electrodes, sensitizing dyes have
shown a remarkaE]e_specificity: excited Rhodamine B, for examb]e, generates
'e]ectrons.in the'condubtion bands of-ZnO and CdS (both n—fype semiconductors),
thus giving rise to sens1t1zed anodic photocurrents when a positive potent1a]
is app]1ed to the e]ectrode With GaP or Cu20 (p—type) as e]ectrodes, ‘the
same dye generates holes in the va]ence band of the sem1conductor, thus pro-
ducing a cathod1c sensitized photocurrent, when a negat1ve potent1a] is
applied to the electrode. SIm]Jar]y, pseudo;isocyanine aggregates, which

show a very narrow characteristic polymer band in their spectrum, generate .
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e}ectronsbin the conduction band of Zn0 and holes in thevvaTence.band of
GaP. Methy]ene blue, which generates holes invp-GaP, however, doesvnot
shdw'noticeabiensensitiZation of In0. On-the other hand, molecules of the
chiorOphy11ygroup,_which‘generate electrons in the conduction band of n0,
do not shon‘sensitization of p-GaP. |
A]thdugh'eXCited,dye:m01ecu1es'at-seniconductor,e]ectrodes'sensitiie

anodic or.cathodfc electronic phctdcurrentsvacross'thecsemiconductor-e]ectrolyte
interfaCe,'and'althOUQh‘these”sensitized photocurrentshref]ect the oxidation
or reducticn"of some participants of the sensitization reaction, this does
not prove a sensitization by‘e]ectronytransfer. In principle, both sensiti-
'zatiOn by.e]ectron transfer and by energy'transfer to suitable acceptors in
~ the sem1conductor surface can generate a photocurrent across an electrode
surface. Th1s 1s shown in F1gures 1 and 2 for both p- and n- conduct1ng semi-
ﬂconductor e]ectrodes .

| If the process of.sensitization occurs by exthangehOf electrons between
one:of'the ejectron-]evéis'of-the’ekcited-dye’md]ecules and one of the energy
bands of the seni conductor (electron injectioh intchOnduction band or hole
einjection tnto valence band) (Fig. 1), there has to be an energetiC'corre]atfon-
between energy bands of the sem1conductor and electronic levels of the exc1ted
molecule. Dur1ng the process of sensit. zat1on, the sens1t1z1ng dye becomes
'oxidized‘or reduced In the case of a pr1mary energy transfer by d1po]e -dipole,
vd1po]e quadrupo]e or exchange 1nteract1on, a cor“elatlon of energy 1evels of
'thendye andithe sem1conductor_1s.nqt»needed. However, suitable energy
-acceptors‘haVe:to be present within the semfccnductor surface. Since in the
investigated cases the transferred,energy is'uSually:smaller than-the energy

gap between valence bandfand conduction band of the semiconductor, the energy
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acceptorsvwill_constitUte 1rregu1arities orﬁimpurities in the crysta] lattice
or surface states} Also in the case of a pr1mary energy transfer a sensi-
tized photocurrent across the sem]condurtor surface can be generated provided
holes (or e]ectrons) wh1ch are produced at d1screte levels w1th1n the energyv
gap can reach the electrode surface (Fig. 2), and initiate a suitab]e electro-
chemical reaction which enables the transition from”e]ectronic into onic
conduction (e.g. oxidation or reduction of the sensitizing dye).
-_fhe,e]ectrOChemical technique offersvvarious experiments to dfstinguish
between sensitization by electron transfer or by energy transfer.. In most
cases which have been 1nvest1gated up to now, experiments support a sens1t1—
zation mechanism by direct injection of e]ectrons or holes into the conductlon

10,13

or valence band of the semicondUctor electrode. _ However, in a few cases,

strong evidence for the occurrence of energy'transferfreections from excited
dyes to the semiconductor has also been found. ]3

Among others, the fo]]ow1ng exper1menta1 evidence can be c1ted in support

. of a m°chan1sm of spectra] sens1t1zat1on by electron transfer:

a) Reactions of sens1t1z1ng dyes \lth redox agents | Redox agents wh1ch
are known to reduce exc1ted sensitizing mo]ecu]es in homogeneous solution, or
at least form.  complexes with them,remarkab]yv*ncrease e]ectron 1iberation
in an n—type semiconductor electrode (Zn0), suppress the consumpt1on of the
sens1t121ng dye (~_g.ch10rophy11 in the presence of hydroqu1none]5), and get
oxidized themselves. This behaviour can only be explained by a reaction in
which the sensitizing dye exchanges. electrons with both semiconductor and
reducing agent. | | o | |

b) Comparison of guantum efficiency of spectral sensitization and of
the semiconductor bulk photoeffect. The quantum efficiency for charge separatfon

after photon‘absorption in p-GaP is only 1% (due to surface recombination of
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e]ectron ho]e pa1rs) The'ouantum'efficienoy'of spectra?'sensitization (e.g.
Rhodam1ne B), however, reaches va]ues of approx1mate]y 304‘]3' Since energy
transfer-would generate e]ectron hole pa1rs in the same way aS‘photon'absorp-
t1on, th1s d1fference in quantum eff1c1ency 1s very d1ff1cu]t to understand
It can, however, be eas1]y understood if ho]es are 1nJected by Rhodamine B
s1nce there are no surp]us e]ectrons 1n p- GaP to recomb1ne with them

c) K1net1cs of 1mpur1ty-]eve1 photocurrents If sens1t1zat1on would -
occur by energy transfer, the transport of ho]es or e]ectrons over 1mpur1ty
Tevels and the1r e]ectrochem1ca] reactions at the semi conductor surface would
enter as rate 11m1t1ng steps 1n the kinetics of sen51t1zed e]ectrode photo-'
currents (F1g 2) The k1net1cs of 1mpur1ty photocurrents can be studied
| 1ndependent]y in the absence of sens1t1z1ng dye ‘when the sem1conductor is
11]um1nated beyond the absorptlon edge 1n the tail of absorpt1on It does
not show any s1m11ar1ty to that of sens1t1zed photocurrents It is espec1a]1y
o remarkab]e that sens1t1zed photocurrents (g;g. Rhodam1ne B, chlorophyl] a at
Zn0, and'Rhodamine'B at GaP) reach avlimfting,’light-denendent saturation value
at veryviowfe1ectrode ootentia]s;vwhereas imourity-level photoourrents strongly
1ncrease w1th the app]1ed potentIa] over a- ]arge range of potent1a] The
kinetics of sens1t1zed photocurrents is,. however, easw]y exp]alnable in terms
of a sens1t12at1on by e]ectron or hole transfer. On the other hand there are
also clear 1nd1cat1ons that energy transfer. react1ons between adsorbed dyes .
vand a sem1conductor are poss1b1e under favorab]e cond1t1ons This conc]us1on
is derlved from exper1ments w1th ga111um phosph1de e]ectrodes to which dyes
: ]1ke Rhodam1ne B, rose benga]e or. crysta] v1o]et were adsorbed 13 |

It has been observed that the spectra of sens1t1zed photocurrents; which

have been found to be generated by hole injection from the adsorbed dyes into
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the valence band of fhe semiconductor, were cut off in the spéctra] region
of the edge of.fhe absorption of the semiconductor. .The only possible ex-
p]anationvfor thevcut;off of a part of the sensitization band was the action
of énergy transfer reactions frdm the thermally non-equi]ibratéd exci'ted
molecules ‘to acceptor levels in the'semiconductor*vwhich begin to reach a
high density hear the absokptibn}edge. In contrést to the hole injection,
the quantum"efficiency for charge liberation énd thus generation of sensitized
photocurrents by energy tranéfer'kemafned Tow because of the high reédmbination
‘probability for electron hb]é pairs in the electrode surface.

Thus, the experimental eVidence:shows that both sensitization mechanisms,
éTeCfron_(or.ho]e)'transfer and energy transfer are possible. In the case of
an electron eXchange, an energetical correlation between the levels of the
excited dyes aha the énergy-bands of the semiconductors must exist; in the
case of energy transfer reactions, suitable acceptor levels in sufficiently
high density have to be present in the semiconductor surface.

: As'indftated by the experiments wifh GaP electrodes, a high probability
of energy trénsfer is not sufficient for a high quantum efficiency of sensiti-
zation by energy transfer; it is also necessary that one of the leve]s:of the
acceptor belongs to an energy band and that thé‘probébi]ity for a recombination
of electron hole pairs is Tow.

In the case of sensitization by electron or hole injection, it has been
. found that a quantum}efficiency of ‘more than ten peréeht'can be reached
under favorable conditions (hole injection in the preSence of oxidizing
agents, electron 1njectibn,in the presence of reducing agents). In the ab-
sence of reducing agents, the efficiency of sensitization reaches values in
the order of a few percent. .It'is clear thét these values of quantum effi-

ciency are average values. Recent experiments with chlorophyll molecules
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adsorbed to semiconductor e]ectro]yte 1nterfaces have shown that adsorbed

mo]ecu]es are d1str1buted over a varwety of adsorpt1on s1tes w1th d1fferent

.probab1]1ty for sens1t1zat1on and that a port1on of mo]ecules.m1ghtrbe ad-

sorbed at such unfavorable sites that they practically do not participate at -

all in sens1t1zat1on react1ons 15 Therefore, sens1t1zat10n effects shou]d

" have average quantum eff1c1enc1es of less than one, even under very favorab]e

| cond1t10nsv(1n the-presence:of su1tab]e redox‘agents,_opt1ma1 rea]1zab1e

surface cohditidns) (See,- however, ref. 12. )-
The su1tab1]1ty of e]ectrochemlcaI ‘measurements for the determ1nat10n of :

the mechan1sm of spectral sens1t1zat1on for 1nd1v1dual sem1conductor/dye

- systems shou]d be demonstrated here for the case of Rhodam1ne B adsorbed. at

Zn0, a system which has -already rece1ved cons1derab1e attent1on 10, ]2

II. FEXperimentai Section -

As semicondUCtors, pTate;shaped ZnO‘sing1elcrysta]s,'obtainedvfrom the

- 3-M Company, were used. The preparatlon of the crysta]s and the e]ectro—
~ chemical cell arrangement which a]]owed the crysta] to rotate to control the.

| d1ffus1on of dye mo]ecu]es to the surface of the e]ectrode and of react1on

products away from the surface (rotat1ng d1sc e]ectrode) have been descr1bed
e]sewhere ]0 A simple scheme of the arrangement 1n shown 1n F1g 3. The

e]ectrode surface was prepared by gr1nd1ng, and was subsequent]y etched in the

’ e]ectro]yte used,_ Both po]ar surfaces, _0001 .andu 0007 , were>used in the

experiments and no qua]itative‘differences were found. In the experiments,, the

electrode: surface’ was 1]1um1nated across' the rotat1ng sem1conductor electrode

The e]ectrode potent1a] was contro]]ed iga1nst aln Ka]ome] e]ectrode_(not dep1cted i
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Fig 3). As eiectro]yte, 1 M KC1 was'used The. pH of the e]ectro]yte vias
adJusted by add1t1on of small quant1t1es of acid (HC]) or -base (KOH). The
electro]yte was f]ushed with n1trogen ' » | ‘
Absorpt1on ‘and f]uorescence measurements of Rhodam1ne B have been per-

<formed 1n the same electro]yte as used for the e]ectrochem1ca1 exper1ments

» (aqueous 1 M KC])

III. Measurements

When Rhodamine B is excited at the surface of a Zn0 single crystal
: _eTectrode (pos1t1ve e]ectrode potent1a1), anodic photocurrents are sens1t1zed
across the e]ectrode surface The photocurrents reach a maximum' at Rhodam1ne

-3

concentrat1on of approx1mate]y 107 iM"in’the-e]ectro]yte 10 The'ana]ysis of

the spectrum of sens1t1zed photocurrents shows that both Rhodamine B monomers

| _and d1mers contr1bute to the photocurrent At a Rhodam1ne B concentrat1on of

-6 Min the e]ectro]yte (when on]y a very sma]] fract1on of the e]ectrode

107
surface 1s-covered by adsorbed\Rhodam1ne,B) the'sens1t1zat1on spectrum corres-
ponds to that of Rhodamine B monomers. The maXimum of,the Rhodamine B sensiti-
zatioh, howeuer, is shifted towards longer wave]engths,.when compared with the
VabsorptiOn peak of Rhodamihe'B in the e1ectrolyte (Fig. 4) This allows the
conc]us1on that photocurrents are sensitized by adsorbed dye molecules only.
-'Th1s conc]us1on is supported by the observat1on that add1t1on of methano] to
5the:aqueous e]ectro]yte;(wh1ch 1ncreasesaso]ub111ty), effect1ve1y decreases
,thodamihe'B—sensitized.photocurrents,v It is a]so_Supported by the obserVation'

that additTOn"of salt‘(KC])fto the electrolyte increases sensitization.
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" The product1on of a sens1t1zed anodic photocurrent is accompan1ed by

9,12

the ox1dat1on of the sens1t121ng Rhodam1ne B molecule. Thjs conclusion

is supportedvby Quantitativefmeasurements'of the b]eaching'of'Rhodamine'B
in the electrolyte;vby.studies of'the'kfnetic"behavior‘of'Sensitized photo-
currents:after onset of_illumfnation,;and by the observationvof'diffusion-
]imited,phctoCUrrents atihigh lidht‘fntenSities (experiments at'rotating disc
electrodes) The consumpt1on of the dye dur1ng the sens1t1zat1on reactlon '
can also be observed v1sua11y at the semiconductor surface after longer
per1ods of photocurrent generat1on by excited Rhodamlne B. In illuminated
’areas of the e]ectrode surface a red dyed ]ayer of react1on products is -
deposited. - | | | | | |

| EspeCially remarkabTe is a strong'dependence of the Rhodamineis-sensitized
photocurrent on' the pH of the e]ectro]yte With'fncreasing pH valueh the
.photocurrent decreases between pH 2 and pH 10 by two orders of magn1tude
(Fig. 5). The dependence of the injected photocurrents fo]]ows an exponent1a]
law{ when allythiourea is added to the e]ectro]yte, the photocurrents’
increase, however, maintain thelr 1ogar1thm1c pH- dependence When the elec-

trode surface is not renewed with every change of the pH of the e]ectro]yte

R .(renewal made before every measurement of F1gure 5) but the pH gradua]]y

fchanges by add1t1on of acid or base, the pH dependence of sensitized photo-
currents shows-a hysteres1s When the exper1ment starts with an alkaline

, e]ectro]yte and gradua]]y ac1d 1s added the value of. sens1t1zed photocurrents
does not fo]]ow the ]ogar1thm1c line,. but a loop be]ow th1s ]1ne Slm11ar1y,
when an ac1d1f1ed e]ectro]yte is slowly neutra11zed, the va]ues fo]]ow a

]oop above the line: Renewa} of the surface br1ngs the values of the sens1-‘

t1zed photocurrents back to the 1ogar1thm1c 11ne
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" The observation of a hysteresis of the pH dependence of Rhodamine B-
sensiti;ed bhotocurrents c]eérly indicates that a'pH;dependent ddub1e ]ayer
at the Zhd surface is involved in the sensitization reaction. It is known
from'capacity measuremenfszo’Z]vthat this pH-debendent double layer actua]]yv
exists, and, when'praduced at'highvor Tow pH, equi]ibrates only very slowly
at neutral pH. - | | o

To get furthér}indicétiohs of whether}theva depehdencé is caused by a
pH-dependent property of the semiconductor surface or of a property of the
dye, the pH dependence 6f the energy transfer property of Rhodamine B was
détermihed, According to well known ke]aiidns on'energy transfer reactions,
this examination requires the measurement of the pH dependehce.df the Rhoda-.

mine B absorption, fluorescence, concentration-dependence of fluorescence and

_ dimerization. It was found that the absorption spectrum of Rhodamine B is

practically independent of pH between pH 3 and 12." Towards lower pH the
absorption $10w1y‘decreases:because of increasing protonation and bleaching
of Rhodamine B. A similar relative independence of pH was found for the
intensity andVthe»speﬁtra]'distribution of the fluorescence in a wide range |
of concentrafion (Fig. 6). These results imply the conclusion that a pH-
dependent prbpérty of Rhodamiﬁe B in its ground state or excited state cannot
account forgthe observed pH dépendence of Rhodamine B-sensitized photdcurrents

at Zn0 electrodes.

Discussion

Since absorption, fluorescence, and concentration quenching of fluores-

cence (in part caused by the formation of non-fluorescing dimers) is constant
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“between pH'3 and pH 10, it Can‘be'concluded that the energy transfer capacity

of exc1ted Rhodam1ne B mo]ecu]es 1tse1f is not dependent on the proton concen-
tration’ 1n th1s range. Therefore the strong pH dependence of Rhodam1ne B-
sens1t1zed photocurrents has to be caused by a pH dependent property of the

in0 surface

From other 1nvest1gat1ons,20 ?] it is known that there is actua]]y a

surface parameter of a ZnO e]ectrode wh1ch is strong]y dependent on the pH

va]ue ofvthe-eIectrOIyte, it is a pH-dependent doub]e layer which. is produced :

by an exchange of H' and OH ions between the Zn0 surface and the electrolyte.

The dependence of the'doublev]ayer (Helmholtz layer) on the pH can be obtained
by determining the f]atband potentia] (electrode potentia]; at which the

space charge layer in the e]ectrode surface van1shes) by means of capacity
measurements ’ R | |

Accord1ng to Lohman,22

the potent1a] drop in the doub1e ]ayer of Ino0 is,
11near]y dependent on the pH of the electro]yte A re]at1on for the potent1a1
drop in the He]mholtz ]ayer has been der1ved and was found to be very we]]
in accordance w1th exper1menta1 data: N o |
L s RT DR o o | _
by, = const 2 pH | (])
Since the pHQdependent double layer appears to be the only plausible reason

for the obserVedistrong pH dependence Of»Rhodamine B-sensitfzed‘photocurrents,

an important conclusion for the mechanism of sensitization can be drawn: .

A gradUa]”change of senSitized photocurrents with pH over more“than two orders
of magnitude cannot be 1nterpreted w1th an energy transfer mechan1sm of spectra]

sensitization. A potential drop in the Helmholtz 1ayer cannot 1nf]uence
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energy tranSfer;'and:seCOndary phenomenavlike:changes in the refraction index
or_the'adsorptionrstatefcouid not account fOr.thefmagnitude of. the effect.,

An'eiectron transfer mechanism of'speCtralvsensitization, on the other
hand; is completely consistent'with.the:observed pH dependence of spectral
»sensitiiatiOn. This wiT]'be:sh0wn by theffoTToWing calculation:

The ca]cu]at1on of the transfer of an electron from an excited molecule

to an. e]ectrode may be performed along 51m11ar lines of: thought as the ”

22,23 24

and at e]ectrodes
25

(22524) e]ectron transfer between ground state mo]ecu]es in so]ut1on
(25) In ana]ogy to e]ectron transfer reactions from ground state: mo]ecu]es,
| severa] theoret1ca1 treatments are, in pr1nc1p]e, app11cab1e to sens1t1zat1on
react1ons by e]ectron transfer ‘ ” | » |
, ' a) A ca]cu]at1on can be. based on ‘the theory of abso]ute rates, and pro-
26) | cedures of thermodynam1cs and stat1st1ca1 mechan1cs may be app]1ed 22,26
_ Contr1but1ons of quantum mechan1ca1 1nteract1ons dur1ng the e]ectron transfer
react1on'may be jntroduced as correctjons 1nto the act1vat1on energy of-the _
activated compTexes.' This treatment is main]yvapplicabfe to electron transfer
| reactions'with strong electronic interaction of the reactants (adiabatic
e]ectron transfer), and'thus‘high(electron transfer probabi]ity.
| b) A quantum mechaniCa] approach can be made which~fs*main1y app]icab]e'
to e]ectron transfer react1ons with weaker e]ectron1c 1nteract1on between'
reactants (nonjad1abat1c e]ectron transfer);and‘uses perturbat1on'theory for

the caléulation of e]ectron-tra‘nsferrates.23

‘When simp]ified and restricted
to appropriate cases, the results of the perturbation calculations can be
Shown to']ead t0'ana1ogou5‘re]ations like theuthermodynamica]-statistiCaT

25

approach; whichlis more'easi]y'eva]uated. For both.adjabatic and non-adia-

batic electron transfer reactions,the e]ectronic energy in the activated



v

(27)

. | ’-]s-v .
complex is not.as:high'as the classical potentia1 energy barrier. Hence,
electron transfer is a quantumtmeChanica]‘tUnne]tng process, in which the
e]ectron passes through ‘the potent1a1 barrier rather than over it. This
s1tuat1on has ]ed to attempts to ca]cu]ate transm1SS1on coefficients by

another approach, name]y

c) In terms of the penetrat1on of the potent1a1 barr1er by a p]ane wave27

(tunne]]nggcoeff1c1ents). (This approach has also a]ready been used for the

ca]cu]ationtof sensitization by electron transfer. ) However the height and

~ shape of the energy barrler ‘and the total energy of the electron, which are

needed for the ca]cu]at1on of. tunne]1ng, are difficult quantities to estimate
re]iably BeSides,'this approach .does not permit'onejto take account of
poss1b1e sp1n- or symmetry- forb1dden trans1t1ons

| Convent1ona1 t1me dependent perturbat1on methods are more rea]1st1c and
a thermodynam1ca] stat1st1ca] approach (corrected for quantum mechan1ca] inter-

act1ons) is eas1er to hand]e This ]atter approach ( ), which should be

app]1ed here, is based on the assumpt1on that the theory of absolute rates is

app]1cab]e and that rate constants.may be written as:

= . -A - .1 =AG .
- (x = transmission coefficienv; « i 1 = adiabatic electron transfer;
k<< 1= non-adiabatic’é]ectron transfer; YA =:collision frequency)
Consequent1y, the'photocurrent-sensitized by transfer of e]ectrons from excited
Rhodam1ne B 1nto a Zn0 e]ectrode at suff1c1ent1y h1gh anod1c potent1a1 (sensi-

tized photocurrent is quantum-]1m1ted) can be wr1tten as

a
- in their exciteddstate)

. . . o . | N
J=kD, (D_ = concentration of adsorbed dye mo]ecu]es o (3)
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A'quantitativé‘éaTCulatfon of electron trahsfer is very complicated, as
the invo]véd free.energy of>actiVationfis compoéed of a series of contributing

free energy changes which arise from several mechanisms of interaction:

&

G* - E G1¢ : : . | | (4)
_— ~ =1 s S ' _ : .

An important féctor in the activation enérgy 6f_aﬁ electron transfer
~reaction in solution and at electrode/electrolyte interfaces is the state of
so]vatatiohgof the reactants. ,Outer?sphere activ&ted complexes (inner coordi-
nation shells of reaétahts left intact as to number énd kind of 1igands,
however, usUai]y'distorted) or inner¥sphere complexes (inner shell Tigand
rep]aced) may_be_forﬁéd dufihg"é?eéﬁfon transfer, and the corresponding free
energies of reéfrangemehi: will conf?ibuté‘to the energy of activation. Further
contributions arise from the free enérgyléhahge due to coulombic interaction
of reactants at the nuclear éonfigurafioh of the collision complex, from
Quantum:meéhanfééi exéhangevintéraétiohs and'frbm’a'¢hange of entrdpy‘due'to
change of electronic quantum.numbersvduring e]ectr@h transfer. In én electron
transfer reaction af an electrode SUrfpée, additional contributions to the
free enefgy of activation are éssentia]: free energy of>adsorption, free
energy_changes due to image forces and polarization, and especially, potential
" gradients in the dodb]é layer'(Helmhoth ]ayer)'af'thé é]éctrode surface.

In the preseht'sfudy of the influence of a'pH-dependénf double Tlayer on | ®
sensitized electron transfer, only the latter contribution needs to be con-
sidered explicitly: This doubie layer may be Tooked upon as én inner ligand
‘]ayer of the'ZnO é]eCfrOde'which'hasvto be su}mouhted during the electron
transfer reaction._}cdnsequent]y, the pH-dependent potential jump (1) in this

layer has to be considered in the free energy of activation:
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a6F —s 1AGO# + a"'-F°A\yH’ ' o - (5)
~In this relation, a is a factor (0 < a < 1),'dependentfon the shape of the
activation barrier, which determines the fraction of the potential drop which
actdaTIyFCOntribufes to the actiVation'energy (Fig, 7). An influence of the -
pH on other'parameters which contnibute‘to the freeuenengy‘of activation is
not ev1dent and w111 be neg]ected here The sensjtized photocurrent may
v thus be wr1tten as |
L --'ﬁT- -,A 0 aFA‘i’H _
: ) :
and with re]atidn_(])'for:the:pptentdaT drop in the double layer, after writing

the logarithm:

: ]Og j =v - (H) _.AGO# k + Cénst + -lo k D
9 : § P T s RT 2, '3"‘R'T' 9
e | ', o (6)
log j = (pH) + 1 AG k IL}

| with a‘X 0.21, relatipn (6) exact]y deserfbes'the pbserved pH.dependence ef
_»Rhodam1ne B- sens1tized photocurrents (Fig. 5 ) The para]]e] sh1ft of the
photocurrent dependence, caused by the presence of a suitable reduc1ng agenf '
(a]]y]-th1ourea) in the e]ectro]yte is also described by relation. (6) and
confirms the assumed mechan1sm of supersens1t1zat1on by these agents 10
reducing . agents m1ght react with excited mo]ecu]es by form1ng complexes or by
directly reduc1ng them, thus decreasing the act1vat1on energy (AG *) for

e]ectron transfer_or delaying (or prevent1ng) the recomb1nat10n of the excited

electron (increase of total collision number [kOJ),



Th1s ca]cu]at1on of the pH dependence of Rhodam1ne B- sens1t1zed photo-
currents at a Zn0 e]ectrode conf1rms our conc]us1on ‘that Rhodam]ne B sens1t1zes
1Zn0 by transfer of an e]ectron from 1ts exc1ted ]eve] 1nto the conduction band
of the sem1conductor Th1s mechan1sm of spectra] sen51t1zat1on s very well
f1n accordance w1th other exper1menta1 resu]ts prev1ous]y mentloned, and is

cons1stent w1th conc]us1ons from other 1nvest1gators 12 ‘In add1t1on the small

jfactor of a obta1ned'means-that electron transfer occurs only acress a fract1on

_of the pH dependent doub]e layer, 1nd1cat1ng that the Rhodam1ne B wave function

"1s in c]ose contact w1th the e]ectrode surface, and e]ectron transfer occurs

'from within. the He]mho]tz layer

The resu]ts wh1ch have been obta1ned for a sem1conductor wh1ch is in con-

tact w1th an e]ectro]yte “cannot eas11y be genera]1zed and app]1ed to sens1t1-
zat1on effects at san1conductor gas 1nterfaces, at which many of the experiments
1n the past have been performed At least w1th respect to the cond1t1ons

'vex1st1ng in photograph1c emu]s1ons, however, a sem1conductor/e]ectro]yte 1nter-

face seems to be a more rea11st1c system to study sens1t1zat1on effects than a .

-

~clean sem1conductor surface in a h1gh vacuum. and it is ev1dent that the e]ectro—

'chem1ca] technlque w1th its f]ex1b111ty w1th respect to k1net1c stud1es and the
poss1b111ty to change reaction parameters eas11y and 1n a contro]]ed way, will

‘_al]ow a systemat1c 1nvest1gat1on and e]uc1dat1on of the mechan1sm of spectra]

sens1t1zat1on.
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Figuke'Legends

fjgt;jJ d Ehergy—potentia],séheme forﬁsemicohdUétef and adsorbed dye during
e . senSitizationvby e]ectron t?ansfer i (D* = exc1ted dye; CB = conduction
| band;i Vé % valente'band;d'EF Ferm1 ]eve] R = reduc1n§ egent;_'o =
oxidizing agent). d | | | D
a) Seneitiiation by electron injectiOn at nftype'semicondUCtorf'
b)‘Seneftizefioh by hbie:injéctioﬁ at p—tybe sem{cenduetdr.
.Eig;;g;_'eEnergy-potentiel Scheme for semiconductor_and adsorbed dye during
seneitization by energy transfer. |

a) Sens1t1zat1on of anod1c photocurrent at n- type sem1conductor

b) Sens1t1zat1on of cathod1c photocurrent at p- type sem1conductor

Fig. 3. Scheme'of e]ectrochemical cell (rotating e]ecfrode erranQEment) for

thevinvestigation beSpectra] sensitization. 1 = rotating electrode
'sUppoff, 2 = sem1conductor s1ng]e cnystal electrode, 3 = e]ectrode lh
surface to wh1ch dye mo]ecules adsorb 4 = e]ectro]yte in wh1ch sens1t1-
zing dyes are d1sso]ved 5 = Pt-counter e]ectrode, 6 = metal contact

for semiconductor e]ectrode; 7= g11d1ng electric contact.
Fig; 4. Comparison of absorption spectrum (dotted ]ine)‘end spectrum of
sens1t1zed photocurrents (at ZnO) of Rhodam1ne B. Absorpt1on spectrum

taken in aqueous 1 M KC] 10‘5 M Rhodam1ne B. Sen51t1zat1on spectrum

. o e]ectro]yte. J M KC], 1076 u Rhodam1ne B.
b o Fig. 5. Dependence of Rhodam1ne B- sens1t1zed photocurrent at a Zn0 e]ectrode

:on the pH of the e]ectro]yte, E1ectrode potent1a1 +0.5 Volt; e]ectro~

-4

lyte: 1 M KC1. Open squares, 107% M Rhodamine B; open cikc]es, 107

‘Rhodamine B plus 10‘? M.aTTylthiourea.



-22-

Fig. 6. 'Dependence ofthodamine B.fluorescence intensity (at 582 nm)
on the pH of the-solution at various concentrations. Solution:

CTMKCT in HO. - o o

~ Fig. 7. Influence of a potentiaT‘jumb, Ay, in the double 1ayer‘on the
free energy of activation (AGO*)Ffor the transfer of an electron
' from an excited level of'a-dye (D*) into the’conductioh band of a

_ semjcondhctor (zZn0).
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