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Abstract 

The thermodynamic functions and scaling exponents (including the Kolmogorov and Flory 
exponents) of a vortex filament in thermal equilibrium are calculated, giving a quantitative content 
to earlier qualitative analyses. The numerical results uncover a percolation, property of vortex fila
ments near the maximum entropy state. The implications of the results for the onset of turbulence, 
for the structure of its inertial range, and for superfiuid vortices are discussed. In particular, it 

is shown that vortex stretching pushes a -vortex system to ,a polymeric state and a Kolmogorov 

spectrum. 
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Introduction 

In an earlier paper [9] it was suggested that some properties of turbulent flow as well as of 

superfluid flow can be studied through the analysis of the statistical equilibria of vortex filaments. In 

particular, it was suggested that the inertial range of scales is in approximate thermal equilibrium, 

and it was shown that the vortex equilibrium of maximum entropy has a Kolmogorov spectrum. 

Other properties of turbulent vortices, in particular vortex folding, were also explained by an 

equilibrium model, and an analogy with an ansatz recently proposed in an XY model and in 
superfluidity was pointed out. 

The goal of the present paper is to flesh out these ideas with a quantitative analysis of vor

tex equilibria. In particular, the energy and the entropy will be calculated as a function of the 

temperature and the vortex length, and the scaling exponents, in particular the Flory and Kol

mogorov exponents for a filament, will be tabulated. A single filament will be considered, for 

reasons explained below. The calculations reveal an interesting percolation property of vortex fil
aments near the maximum entropy state that consists of "polymeric" configurations and has a 

Kolmogorov spectrum. This percolation property provides an explanation of the mechanics that 

create the maximum entropy state; in brief, the maximum entropy state lies at the boundary be

tween positive and negative temperature states; a vortex of negative temperature is driven towards 

that boundary by vortex stretching, and a vortex of positive temperature is driven towards that 
boundary by an energy cascade. 

A review of the properties of vortex filaments 

Consider a "vortex" filament that consists of N oriented links that coincides with the edges 

of a regular cubic lattice of mesh h in three space dimensions. Do not require the filament to be 

closed (see the discussion below). Ensure that the filament is self-avoiding, i.e., that no point is 

the end point of more than two links, and thus in particular, no two links coincide. Let i be a 
multi-index that denotes the location of a link, and let f be the corresponding "vorticity" vector. 

-t 

For simplicity, assume the filament was "circulation" 1, and thus f is a vector oflength h pointing 
~ 

in one of six directions. (This construction is carried out in detail in [3],[6].) Assume that the 
energy of the filament is given by 

1 "''''~ .. ~. 
E = 811" L-t L-t 17--):1' 

i #i 
(1) 

where Ii - jl is the distance between i and j. The expression (1) is a plausible lattice cartoon of 
the energy of a vortex system [15]: 

1 J J ,~(x). ~(x') 
Energy = - d;£ d;£ I I' 811" ;£ - ;£' 

where { is the vorticity field and ;£ is the spatial variable. 

In equation (1) we neglect the "self-energy" of the segment, i.e., the contribution to the that 

portion of the six-dimensional (;£, i) space where ;£ and i belong to the same link. As discussed 
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in [3],[4],[6], the self-energy is negligible for a vortex of finite length, or having a smooth core, or if 

it is suffici~ntly smooth in the direction of its axis. We shall assume that one ofthese conditions is 

satisfied. 
Assume that the probability of obtaining a given vortex configuration is proportional to the 

Gibbs' weight exp(-E/T), where E is the energy (1) and T is a temperature. Both positive and 

negative va1ues of T must be allowed [9], as in the statistical mechanics of vortices in the plane 
[21]; remember that a negative temperature is "hotter" than a positive temperat'ure [16]. Consider 

a vortex filament of N links, and define the quantity 

10g(rN} 
J.ll,N = 10gN ' 

where rN is the end-to-end length of the vortex, and ( ) denotes an average with respect to the 

Gibbs weight. Let J.ll be the limit of J.ll,N as N -T 00. If T = ±oo, all configurations of equal 
length are equally probable; self-avoiding configurations of equal weight are a standard model of 

polymer statistics [11], and we shall consistently call the case T = ±oo the polymeric case. In the 

polymeric case J.ll is the Flory exponent, J.ll ~ 0.59 [18]. We shall call J.ll,N the "Flory exponent" 

even ifT f:: 00 and even in the cases where the limit N -T 00 has not yet been reached. 

,"Forlatge N, r == (rN) rv NI-'l, and thus N rv r1/1-'1. It follows that Dl = 1/J.ll is the fractal 
d,im(msion of the filament. If the filament has a non-trivial cross-section and 5. has a support of 

dimension Do, then Do - Dl is the fractal dimension of a generalized cross-section of the filame~t . 
. Hefine the function 

and let 

<p(r) = ~ ~ .. ~., 
L.J = -J 

li-jl:5r 

(2) 

<p( r) is the integral of the two point correlation function of 5. over a sphere of radius r; its derivative 
divided by the area of the surface of the sphere is the two point correlation function, and a Fourier 
transform then yields an energy spectrum for the resulting velocity field of the form E(k) rv k-1 /J1.2 

for large k, where J.l2 = limJ.l2,N as N -T 00. If the support of the vorticity has dimension Do, a 
simple accounting for the cross-section yields E( k) rv k-'Y, where 'Y, the generalized Kolmogorov 

exponent, is'Y = Do - Dl + D 2, D2 == 1/ J.l2 (see [9]). We shall refer to the expression Do - D1,N + 
D 2,N, where D1,N = 1/ J.ll,N, D2,N = 1/ J.l2,N, as the Kolmogorov exponent even when N is finite. 
We shaH assume that the simplified expression 

satisfies J.l~,N rv J.l2,N; J.l' is easier to calculate. J.ll,N, J.l2,N satisfy the following inequalities: 

o ::; J.ll,N ::; 1, 

1 ::; J.l2,N < 00, 

3 



which follow from their definitions. 

At equilibrium, it is plausible to assume that Do = 3 [8]; the results below and in [9] show that 

at T = 00, Do - Dl + D2 '" 1.69, close enough to the Kolmogorov value I = 5/3 for us to assert 
that at T = 00 the energy spectrum has the Kolmogorov form. The relation T-l = as/aE, where 

S is the entropy and E = (E), shows that at T = 00 S has a maximum. Thus the equilibrium of 

maximum entropy has a Kolmogorov spectrum. We shall also show below that T = ±oo is the lowest 

accessible temperature (it is a low temperature because it is lower than all negative temperatures), 

and that vortex stretching lowers temperature. Thus vortex stretching drives a vortex to its lowest 

temperature and largest entropy state. A more detailed discussion of the dynamics will be given 

below. 

Numerical algorithms and computational errors 

To generate self-avoiding walks (SAWs) with the Gibbs weight exp(-E/T), we couple a Monte

Carlo pivot algorithm [14],[18] with Metropolis rejection. In the pivot algorithm one constructs a 

sequence of equal probability SAWs (= polymers) by repeatedly trying to fold the previous member 

in the sequence and accepting the outcome if it is self-avoiding. The algorithm requires O(N) opera
tions to produce a new polymer independent of earlier ones. To impose the weighting, one calculates 

the energy Enew of a proposed self-avoiding configuration, and, remembering the energy Eold of the 

previous configuration, one accepts the new one with probability p = min [1, exp((Enew - Eold)/T)]. 
The calculation of the energy requires O(N2) operations, as the fast summation algorithms that 

have become available are ineffective with relatively small values of rand N, and thus the calcula

tions with T finite must be much less extensive than what can be done with T = 00. Fortunately, 

it will turn out that only qualitative information is really needed at T finite. For further details, 

see [9],[18]. 

To start a Monte-Carlo run one needs an initial state. We shall start with a straight line of 
N links (which is certainly self-avoiding) and before beginning to calculate averages, perform N 
Monte-Carlo steps just to begin the process of forgetting the initial conditions. 

The dependence of the results on N, the number of links in the filament, and' on T will be 

discussed in detail below. We wish now to discuss briefly the dependence of the results on n, the 

number of Monte-Carlo steps. With n too small, the phase space is inadequately covered and 

statistical error appears. We shall be making numerous runs with various values of T and Nand 
can afford to make a few longer runs to assess the error. One expects the error to grow as ITI 
decreases (because the probability p can then be small and new configurations are generated at a 
lower rate), and with N (critical slowing down, see e.g. [18]). These expectations are fulfilled. 

One way to measure the error is to compare the results of a very long run with the results 

of a run of standard length. Another way is to make a number of independent runs and calculate 
the standard deviations of the results (which should scale with n-1 / 2 ). The two methods give 

consistent answers. We need most accuracy at T = 00 and shall use n = 3.106 at that value of T. 

The errors in the mean energy, the entropy, J-Ll and J-L2 are then around 1% for 50 ::; N ::; 350. At 
T = +1, with n = 3.105 , the errors vary between 2 and 3 percent, and at T = -1, with n = 3.105 , 

they vary between 2% at N = 100 and 10% at N = 350. For values of ITI between 0.4 and 1, 
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and n = 3 .105 or n = 3· 106 , the results are unreliable but suggestive, and for ITI < 0.4 they are 

completely unreliable. The errors in J.Lz grow fastest as ITI decreases J.Lz and will not be displayed 

when they are too large. 
We shall be evaluating the entropy by a variant of an algorithm due to Meirovitch [19]. Consider 

m neigh1}oringlinks on the filament, and their relative configurations GIl Gz, .•• ,Cq • Estimate SIN, 

the entropy per link, by 

where P( Gi ) is the probability of the i-th configuration estimated as the frequency of its occurrence 

in a Monte-Carlo run. We shall usually use m = 3 and q = 150 (= the number of SAW's of 3 links). 

An increase in m and q has no perceptible effect on the results. The algorithm has been validated 

in the case of a random walk with independent increments (where SIN = log6) and its analogue 

has been thoroughly testeti in a two-dimensional Ising model. 

It is the availability of the pivot algorithm and its modification that makes us adhere to the 

study of an unclosed filament. There does not seem to be an algorithm of similar efficiency that can 

be used to study a closed loop. Open filaments are natural in one of the applications below, and 

must be explained away in the two others. The explanation is that an open filament can be closed 

by a few bendings which should not affect the thermodynamic functions unduly. No quantitative 

assessment of this explanation is available. 

The thermodynamic functions 

We begin by plotting the calculated mean energy (E) and mean entropy (SN) of a single 

filament of an N links as a function of T and N. For simplicity, we pick a mesh spacing on the 

lattice h = 1. We shall write for short E for (EN) and S for (SN). 
In figure 1 we display the variation of E as a function of f3 = liT for -2.5 ~ f3 ~ 2.5. Note 

that as f3 varies from -2.5 to 0 and then to 2.5, T varies from 0.4 to infinity, and then from infinity 
to-2.5 (the sign of infinity is immaterial); thus T is monotonically increasing. Note that E is 

increasing with T for all values of N. In figure 2 we display the variation of E with N for fixed 

values of T. Note that the increase of E with N is sublinear for T > 0 and superlinear for T < o. 
To hammer home this important point we display in figure 3 the ratio E(2N)1 E(N) as a function 

of f3 for N = 150. When that ratio is less than 2 the growth of E is sublinear and when the ratio 
is larger than 2 the growth is superlinear. The data points are not error-free (see the preceding 

section) and the solid curve is drawn in a way that seems plausible to the naked eye. The fact that 

for T = 00, E(2N)IE(N) = 2 is one of the scaling properties of the energy (1) discussed in [4]. 
Consider the dependence of the curves in figure 1 on h. Suppose h is halved and N doubled, 

so that Nh is constant. E in (1) is a linear function of h (because I~il, I~il, and Ii - jl are each 
linear functions of h). If N is doubled, E grows by more than 2 for T < 0 and by less than 2 for 

E T > 0, thus the net effect of doubling N and halving h is to decrease E for T > 0 and increase 

E for T < o. The curves in figure l c grow more steeply for T < 0 and are flatter for T > o. The 
curve for T = ±oo is invariant. 

In figure 4 we display the variation of the entropy per link SIN as a function of f3 for N = 351. 
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Note that S has a maximum at T = ±oo (13 = 0), as expected. The slope of S is much smaller 

on the positive T side than on the negative T side, as can be expected from the larger values of E 
for T < 0 and from the relation T- 1 = as/aE. Further, note that SIN varies little with N in the 
range where the calculation can be trusted, and thus S increases with N. The larger the filament, 

the larger its entropy. In the caseT = 00 the filament is a polymer, and is that context this result 

is well known [11]. The connection of this observation with known facts about vortex stretching is 

discussed below in the section on the onset of turbulence. 

A single filament calculation should be a faithful representation of the behavior of a member of a 

sufficiently dilute suspension of such filaments. The dependence of E and S on the number of links 

in several nearby, strongly interacting filaments should be roughly the same as the dependence 

on N exhibited here. Since in the classical (Le., non quantum) vortex case there is no relation 
between T and filament density, one can pick arbitrarily the division of N links between a number 

of neighboring filaments, and the choice we made here of considering a single one is easy and 

reasonable. The relation of the resulting independent filament model to the independent loop 

approximation in superfluidity is discussed in [9]. 

The scaling laws and vortex percolation 

In figures 6 and 7 we display the variation of J.ll,N and J.l2,N with N for various values of (3. 

Observe first that 

and 

lim J.l2,N = { :2 
N-+oo 

00 

T<O 
T=oo 
T> 0, 

T<O 
T=oo 
T> 0, 

where J.ll is the Flory exponent J.ll = 0.592 ± 0.005 and J.l2 = 2.70 ± 0.05. The limiting values for 
T finite are the maximum and minimum values that J.ll,N,J.l2,N can take, and are reached if the 

trends in figures 6 and 7 continue. The corresponding limiting values of'Y are: 

lim 'YN = { oo~o N-+oo 

where 'Yo = 1.68 ± 0.0l. 

T<O 
T=oo 
T> 0, 

Before discussing the meaning of these limits, note that if one remains within a range of wave 
numbers k such that L -1 < k < h -1, where L is a length typical of the overall extent of the vortex 

filament, the scaling analysis in the review section above holds and yields a spectrum of the form 

E(k) '" k-'YN, where 'YN is a function of N (or equivalently, of the total energy). On these scales, 

the spectrum appears to be multifractal [24]. It is clear that for any N, if T < 0 then 'YN > 'Yo, 

and if T > 0, 'YN < 'Yo. 
The meaning of the limiting values J.ll' J.l2, 'Y is quite clear: If a vortex at negative temperature 

has a high energy (or is very long) it becomes smooth (J.ll = 1) and its spectrum corresponds to 
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the spectrum of a smooth flow , ~ 3 [5]. The value, = 3 is picked out because our calculation of 

the spectrum was based on a filament model; more general smooth vortices may have larger ,'so 

The meaning of the limits for T > 0 is less transparent. Consider JLl. If JLl = 0, r rv NO, i.e., 

the end-to-end length of the vortex does not increase with N, and the vortex rolls up into a tight 

"ball". This means that the vortex will not span large dista~ces. The temperature T = 00 ((3 = 0) 

is thus a percolation threshold: infinitely extended vortices can exist on one side but not on the 

other. The threshold corresponds to a maximum entropy and to polymeric configurations (for a 

relevant introduction to percolation, see [12]). 

Consider again what happens if N is increased while the length of the vortex Nh remains fixed. 

E in (1) is a linear function of h. If h is halved and N is doubled, E more than doubles for T < 0 

and grows by less than a factor of2 for T > 0 (figure 3). Thus E increases for T < 0 and JLl,N"N 

move further from the polymeric values JLl, ,0, while for T < 0 JLl,N and ,N approach JLl and ,0· 

Note that T = 00 is the maximum entropy state, as is usual, but it is a low temperature 

state. T = 00 is the lowest temperature accessible to a long filament. Furthermore, ,0 is the only 

exponent less than 3 for which E(k) rv k-"'I holds as k - 00 independently of lattice spacing. 

Application to the onset of turbulence 

Consider a flow with a few well defined vortices that is nearly stationary (for example, a thin 

vortex ring propagating at a constant velocity to which a small perturbation has been recently 
applied). Initially, the rate of growth of line length is not large, and the vortices can be viewed 

as having an approximately constant length. The time evolution of the vortex system is then 

approximately scanning the possible states of a constant length vortex filament system, and averages 
can be calculated as if the system were at equilibrium. That equilibrium is slowly drifting because 

of the change in vortex length. 

The initial temperature T of the system is negative, with ITI small, since the vortex lines are 
smooth. The increase in vortex length corresponds to an increase in entropy (see above). This 

observation is in agreement with the conclusions in earlier work [7],[8] that vortex line length or 

integral quantities that measure it can be used as entropies for a vortex system. An interesting 

converse is provided by Cocke's result [10], which can be interpreted as stating that line length in 
isotropic homogeneous incompressible flow increases when the entropy increases [7]. 

Since (E) is an increasing function of both T and N, an increase in N requires a decrease in 
T. In figure 8 we plot the values of f3 = T-l needed to keep (E) constant as N is increased for 

two values of (E). These values are obtained by considering what happens along a horizontal line 

in figure 1. Note that as h - 0, the curves to the right of the curve f3 = 0 become flatter, and 
thus a large change in N corresponds, for T > 0, to a small change in T. The curve for (3 = 0 is 
thus an approximate barrier, the more so as N increases or h decreases. This fact is reflected in 

figure 8. Note that the asymptote is not T = 0 but a finite value that approaches T = 00 ((3 = 0) 

as (E) or N is increased. If N is increased while h is decreased the polymeric boundary is reached 

sooner, as can also be deduced from the earlier discussion of the limit h - O. An increase in N 

corresponds to vortex stretching (with an attendant energy cascade), while a decrease in h with 

N h = constant describes an energy cascade to small scales without overall stretching; thus vortex 
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stretching causes the temperature to decrease to T = 00, while the energy cascade prevents it from 

crossing over to T > O. In the present discussion, only the left part of the figure can correspond to 

a flow that satisfies our assumption of near equilibrium; in a time dependent calculation the rate 

of change of N typically increases and thus the rest of the curve has a suggestive but maybe not a 

deductive value. 

As T decreases, J.ll,N decreases and thus the Hausdorff dimension D1 , which measures the 

folding of the vortex on scales larger than h, increases. In figure 9 we plot the values of J.ll,N 

as a function of N for two values of (E). J.ll,N decreases and the vortex must fold. For heuristic 

discussions of this phenomenon, see [3],[4],[7]. In a time dependent flow, the increase in Dl manifests 

itself in the formation of small-scale "hairpins" or loops, as documented also in the solutions of the 

Euler or Navier-Stokes equations, see e.g. [1],[2],[17]. 

One can conclude that T = 00 is the lowest temperature available to the system, in agreement 

with the conclusion that turbulence is a low temperature phenomenon [5]. Maximum entropy 

occurs at infinite temperature, as one expects; what is unexpected is that this infinite temperature 

. is a low temperature. 

Note further that oE/oN decreases as T decreases, in agreement with the observation that 

vortex stretching facilitates further stretching (see for example the discussion of this fact in [2]). 

The inertial range 

vVe can once again apply the assumption of near equilibrium once fully developed turbulence 
has been established. According to the model developed in [9], the inertial range of scales can be 

viewed as a thermal equilibrium at small scales perturbed through the addition of energy at its 
large scale end and the removal of energy at the small scale end. The calculation in [9] shows that 

the perturbation is not large. 

Consider first the small scale (large wave number k) equilibrium. Its temperature must be 

T = 00 (and thus / = /0) for several reasons: 

(1) /0 is the only non-trivial exponent / such that E = k--Y is a possible approximation to the 
spectrum for all k large enough. 

(2) Vortex stretching pushes the vortex system towards T = 00; the persistence of an initial range 

to k ~ 00 and the impossibility of having very long vortices below the percolation threshold 

forbids a crossing to T > O. Note that macroscopic vortices appear infinitely long <;>n inertial 
scales. 

(3) It is plausible that what is actually observed at equilibrium is a maximum probability (and 

thus a maximum entropy) state. Note that in two-dimensional flow maximum entropy states 

describe well what is actually observed [22]. 

The perturbation of this equilibrium by a small viscosity was described in [9]. The addition 
of viscosity cuts off the large k part of the spectrum and makes possible some transitions to the 

positive T range. Numerical experiments with time dependent flow, to be presented elsewhere, show 

that the convoluted vortex lines near J.ll '" 0.6 respond by reconnecting and changing topology. An 
energy cascade and vortex reconnection are thus closely connected. Note that the picture of the 

inertial range that is offered here differs radically from earlier ones. 
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This picture does agree with the observation in [20] that in many fluid systems the maximum 

entropy and the minimum dissipation states coincide. 

Superfluid 4He and the A-point 

The A-transition from a superfluid to a normal state in 4He in three space dimensions has been 

characterized by the growth of small vortex loops into macroscoptic vortex loops [23],[25],[26], in 

analogy with the Kosterlitz-Thouless mechanism familiar from two space dimensions [13]. Shenoy 
[23] analyzed the transition by a Kosterlitz-Thouless renormalization scheme into which he intro

duced an ansatz that can be interpreted as assuming that at the transition III rv 0.6, our value at 

T= 00. 

It is attractive to consider the A-transition as a percolation threshold. For T < T>. the vortices 

are small, for T ~ T>. they can acquire an infinite radius. At the percolation threshold, we have 

seen that III ,.... 0.6. 
However, there are differences. At the A point, T is small (T = k· Tf = 1.38.10-16 x 2.18 ergs 

where k = Boltzmann's constant). To claim that this temperature is relatively large one would 

need an estimate of h, which we have not identified. In the superfluid case, the interactions between 

the vortices and other excitations are large enough to keep the temperature positive and constant. 

Vortex loops can appear as a result of thermal fluctuations, and a given loop polarizes the medium 
and decreases the interaction energy. We do not yet know how to account for all these effects and 

unambiguously relate the Shenoy ansatz to the previous discussion. 

Conclusions 

We believe that the discussion in this paper provides a convincing testimony to the usefulness 
of vortex statistics in the study of turbulence and of quantum fluids, and in particular, makes 

plausible the near-equilibrium theory of the inertial range. 
There are other applications for this analysis. One direction that we are pursuing is the 

thermodynamical analysis of numerical methods, in particular vortex methods, so as to ensure 

their long-time convergence in a turbulent regime. 
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