
1
• t

I ,
, . .. ,

.-

",1

LBL-30425

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Presented at the Conference on Computing in High-Energy
Physics '91, Tsukuba City, Japan, March 11-15, 1991,
and to be published in the Proceedings

The EOS TPC Analysis Shell
~----------------------------------

u. C. Lawrence Berkeley Laboratory
Library, Berkeley D.L. Olson

March 1991 FOR REFERENCE
Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE·AC03· 76SF00098

as
Il.
III .
til
19

r
0'0
'1 0
111'0
'1'<
'<

r
as
r
I

(.J
19
~
tv
til

DISCLAIMER

This document was prepared as an account of work sponsored
by the United States Government. Neither the United States
Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
ar.y inforrnati.on, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products process, or
service by its trade name, trademark, manufacturer, or other
wise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof, or The Regents of the University of Cali
fornia. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government 0: any agency thereof or The Regents of the
University of California and shall not be used for advertising or
product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain COlTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
Califomia. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Govemment or any agency thereof or the Regents of the
University of California.

The EOS TPC Analysis Shell

D.L. Olson

Nuclear Science Division
Lawrence Berkeley Laboratory

University of California
Berkeley, Ca 94720, USA

LBL - 30425

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the
Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE·AC03·
76SF00098

The EOS TPC Analysis Shell

D. L. Olson
Nuclear Science Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, CA 94720
USA.

Submitted to
Computing in High-Energy Physics '91,

Tsukuba City, Japan
March 11-15, 1991

Abstract

Key features of the general purpose event-based-data analysis shell (T AS) for the
EOS TPC at LBL are described including the code development / code management
procedures used. The architecture is designed with a view towards a distributed and
multi-processing environment. TAS is interfaced seamlessly with the CERN PAW
program and provides a consistent environment for both on-line and off-line analysis.
The data model used is relational tables and the data structure definitions are
maintained in a commercial database (INFORMIX). The interface for analysis
modules is specified and enhances group participation in the development process.
The usc of a commercial database as a data dictionary for both the table definitions
and parameters used in the TAS kernel is extremely useful and productive.

1. Introduction

In the course of doing physics research with complex experiments it is common to
develop data analysis programs largely from scratch for each experiment. While it is
true that a large part of the code necessary for data reduction and physics analysis is
unique for each experiment, a fair amount of the interface code is reinvented. There
are serious consequences of reinventing interface code; a) the effort required to
develop it for each case and b) the effort required for people to learn how to use a new
interface. The second reason provided the main motivation for developing the analysis
shell used for the EOS TPC[1] at Lawrence Berkeley Laboratory. Both the
interactive user interface and the program development interface are designed to
enhance program development and data analysis in a group environment.

An overview of TAS is given in the following section including a description of
those aspects of the architecture which are designed for distributed event processing
and mUlti-processing. This is followed by a description of the data structures used
(called tables) and the methods for describing and managing them. Section 4
describes the code management procedures used. Section 5 describes the use of a
commercial relational database (INFORM IX) as a tool for managing parameter
definitions and initial value assignments for data structures used in the development
of the analysis shell.

2. Overview of T AS

TAS is a general purpose analysis program for event-based data processing. It is
designed to handle many of the difficulties arising when doing analysis in a group
environment. The major features contributing to this are:

- a specification for connecting analysis routines (analysis modules),
- a separation of the control and I/O functions from the analysis routines,
- a single point of input for specifying the data structures (tables),
- automatic initialization of the data structures,

and a familiar user interface (KVIP/PAW[2]).
The specification for analysis modules along with the control and IJO functions being
provided externally for these routines enables different analysis modules to be
developed independently and then easily merged into a single analysis program. A
single point of input for specifying the table data structures minimizes the chance for
inconsistent definitions. The automatic initialization with default values, specified at
the time the tables are defined, minimizes the need for file input simply to make the
program mn. By choosing a user interface which has many on-line help features, and
that has become widely used, minimizes the time needed by most people to learn how
to use this analysis shell.

A schematic diagram of TAS is given in Figure 1. There are three separable units
in TAS, the user interface (VI), the processing manager (PM) and the event processor
(EP). The user interface unit consists of KVIP command routines that format data
structures for a message-response command distribution mechanism that
communicates with the processing manager unit The processing manager handles
data I/O functions, event processing control, histogram booking and filling, and
communication with the event processor. The event processor unit contains the
experiment specific analysis modules that access data in the event-buffer tables.

User
Interface
(KUIP)

Graphics
(PAW)

Processing Manager

Input

Event Processor

Analysis Modules

Output

Figure 1. An overview of a TAS application program.
Experiment specific routines are in the analysis modules

section.

2

The design is such that these three units run in a single process (in the first
release) or can be split into a separate process for each unit (in a later release). The
single process mode is very useful for debugging purposes and is envisioned as
always being available. The communication between the VI and PM processes is
seen as a one-to-one connection where the command link has been implemented as a
message-response mechanism (via mailboxes on VAX/VMS). The inter-process
connection for graphics is shared memory so that one always has the VI and PM
processes executing on the same machine. The inter-process PM-EP link is seen as a
one-to-many connection where a single PM process handles distributing events to
many EP processes. This is to be implemented as a message-response command and
data channel to enable EP processes to be distributed on a network. With this type of
implementation the EP processes can equally well be distributed among multiple
processors within the same machine.

The VI-PM asynchronous link is developed because of its value in an on-line
environment where one wants to be accumulating histograms and viewing them at the
same time. The PM-EP link for distributed event processing is seen as appropriate for
off-line data processing so one can take advantage of many nodes on the network in
addition to multiple cpu's in one machine.

A detailed view of the processing manager unit is given in Figure 2. Commands
are received from the VI and distributed locally or sent to the EP.

A user entry is called at a number of different stages of program execution, as
indicated in Fig 2. A flag identifying the stage of execution and the event buffer are
provided to this routine each time it is called.

The data I/O is performed by TAS routines. The source code that depends upon
the particular definitions of the table data-structures is generated automatically by a
database procedure.

to UI
to Graphics

Legend: I User entries I Event loop execution
• • ~o

Figure 2. A functional view of the processing manager
unit showing user entries and the I/O parts of the event

100 .

3

The HBOOK[3] histograming package is used for plots. Plots can be defined
interactively and TAS will automatically fill the plots from the tables in. the event
buffer at the end of processing each event. PAW is used to view the plots and for
analyzing the spectra recorded by TAS.

Table filter routines are executed by the COMIS[4] interpreter and can consist of
either compiled or interpreted routines. They access a single table in the event buffer
and can modify or delete parts of the table, or affect program execution based upon a
return status. The time at which a filter is called during the event loop is specified as
part of the filter definition. Filters which are called before any analysis modules are
called "First" filters and these are executed in the PM. These are called from the PM
to enable cuts on the data that is passed to the EP unit. Additional filters are
executed in the EP.

Figure 3 shows the EP, consisting primarily of analysis modules. Analysis
modules are declared at initialization time along with the access mode they have for a
set of tables. The access mode is either read or write access, depending upon
whether or not the analysis module will only read from the table or write into the table.

to Processing Manager

I Tables I Event loop execution
........ --........ ~

Figure 3. Diagram of event processor showing analysis
modules and table filters.

When the EP gets an event it compares the list of input tables to the list of tables
requested for output (for either plot filling or saving into an output file) and uses the
declared analysis module - table dependencies to determine which analysis modules
to call in order to process the current event. This automatic mode of calling analysis

4

x)

':,..'

modules can be over-ridden by manual switch settings to either force or inhibit calling
of a particular analysis module.

The table filters can be defined and moved around interactively. They are specified
as being called after a particular analysis module. Filters which are specified to be
called after the last analysis module are said to be "Last" filters. The "Last" filters
are called in the EP, unlike the "First" filters which are called in the PM. This is to
permit cuts on the amount of data that is returned to the PM.

3. TAS tables, description and management

The basic data structure used by TAS is a table. An event is described in terms of
a set of tables. These are similar to the 'tables of a relational database or to those of
ADAMO[5]. Each table consists of a set of rows and each row consists of a set of
variables. TAS variables can be either integer or floating point, scalars or vectors.

TAS tables are defined to be either of static or dynamic types. Dynamic tables are
cleared and refilled for each event while static tables are never cleared by TAS itself.
Essentially, dynamic tables are for event data while static tables are for calibration
constants and switches.

The method of defining a table, the variables, initial values, type, etc., is to use an
INFORMIX screen form. One can enter or modify the table definitions easily and the
screen form procedure provides a high degree of verification that will catch a number of
mistakes as they occur. A set of database reports are used to automatically generate
source code for the data structure definitions, initialization, and table-dependent I/O
routines.

4. Program development and code management

Figure 4 shows an outline of the program-development and code-management
methods used for the EOS TPC analysis. Definitions of tables are entered in the TAS
Editor (an INFORMIX screen form). A number of Fortran source files are generated
as reports. These source files are then entered into the CMS library which serves as
the primary source code archive.

The set of source files that are compiled into an object library are identified by a
short list of groups in CMS libraries. There are two procedures which are driven by
this list of CMS groups. The first generates MMS[6] descriptions files that contain
all of the include file dependencies and the second executes these MMS procedures
wh1ch update an object library to be current with the newest source code. The first
procedure needs to be executed only when new source files are added to the library.
The second procedure is executed whenever there is a modification to some of the
sources.

The final step in program development is linking the executable image. A standard
procedure for this is maintained in the EOS group library and it serves as a reference
for individuals who link private versions of the analysis program as part of developing
separate analysis modules.

5

Program Development

r
Table
Editer

Editer
(LSE,EVE)

J
my code

INFORMIX RDBMS

I
Reports (*.INC,*.FOR)

+
CMS Library

t

J
Figure 4. Outline of the program development

rocedures.

5. Use of INFORMIX DMBS as a code development tool

As mentioned above, the commercial database product from INFORM IX is used
during the development of an analysis module as an interactive table-definition editor
and a code generator for table-dependent source files. It is also used in the program
development of the TAS shell itself. In the latter case, it is used for success/error
status parameter definitions and TAS internal command definitions.

For the case of status parameters, a screen form is used to specify parameter
names and associated messages. The actual parameter values are generated
automatically by the database. Reports are used to generate include files of these
parameters and also error-number message-translation routines.

For the TAS internal commands, again a screen form is used to specify names,
messages and initial values. Reports are used to generate include files and command
structure initialization routines.

As program development tools, I have found that using INFORM IX forms and
reports to be very beneficial. The effort required to set them up is very small
compared to the effort required to accomplish the same programming tasks without

6

"

r I

automated tools. In addition, the cost of such a commercial product is not significant
compared to the manpower cost to develop similar automated tools in house.

6. Summary

The analysis shell for the EOS TPC has been designed to facilitate analysis
program development in a group environment. It accomplishes this by using a master
database for data structure definitions, defining a standard interface for analysis
modules, and providing I/O and control functions outside of the specific analysis
routines.

The entire program can run as a single process to facilitate debugging. The
asynchronous link between the user interface and processing manager units is
appropriate in an on-line environment for continuous histograming. The architecture of
the shell is such that it can be extended to support distributed event processing with
single input and output data channels. This is most useful for off-line data processing
to take advantage of many nodes or cpu's.

The use of a commercial relational database as a program development tool, both
for developing the analysis shell itself and as part of physics analysis program
development has turned out to be fairly easy to implement and and very useful. It
saves time for program development and provides mechanisms to minimize many
types of mistakes.

Acknowledgements

This work was supported by the Director, Office of Energy Research, Office of
High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of
Energy under Contract DE-AC03-76SF00098.

[1] The EOS TPC is developed for doing particle identification with momentum analysis and dE/dx in
heavy ion reactions. It operates by reading out an array of 15,000 pads and is designed to handle
multiplicities of up to 200 charged particles per Au+Au event.
[2] KUIP - Kit for an User Interface Package, CERN-DD 1202, 1988,
PA W - Physics Analysis Workstation, CERN-DD, Q121, 1989.
[3] HBOOK Version 4, CERN Program Library, Y250, 1987.
[4] A Fortran interpreter used in PAW. COMIS - Compilation and Interpretation System, User's
Guide, CERN, L21O, 1988. See also the PAW manual.
[5] Aleph Data Model, Aleph Collaboration, CERN.
[6] DEC Module Management System, similar to UNIX make.

7

"" .. 0.

--LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

li.... ~ ...

..,.. ~ ..

