
r 

, . r , ~ , 

~".' (. 

, ' .' 

LBL-30486 
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 
Mathematics Department 

To be submitted for publication 

Numerical Results on the Stability of a Drop 
Trapped between Parallel Planes 

T.I. Vogel 

March 1991 

Prepared for tbe U.s. Department of Energy under Contract Number DE-AC03· 76SFO0098 

- --
-tt("') 
0 ..... r 
;; ;; 0 n D 
~~ Z 

I-' 

~ !l.I ("') 
to eTO 
to to -0 
;r;1f! -< 
If! - --
to 
I-' 

0. 
:.0 

01 
lSI 

r 
r III ..... r 
0"("') I 
"'S 0 t·J 
!l.I"O lSI 
"'S-< ~ 
-< CD . f!) !j> 



DISCLAIMER 

This document was prepared as an account of work sponsored 
by the United States Government. Neither the United States 
Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial products process, or 
service by its trade name, trademark, manufacturer, or other
wise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government 
or any agency thereof, or The Regents of the University of Cali
fornia. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States 
Government or any agency thereof or The Regents of the 
University of California and shall not be used for advertising or 
product endorsement purposes. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 

.. . , 

• 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



I'·~ 

NUMERICAL RESULTS ON THE STABILITY OF A DROP 
TRAPPED BETWEEN PARALLEL PLANES'" 

Thomas I. Vogel 

Department of Mathematics 
Texas A&M University 

College Station, TX 77843 
and 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

March 1991 

LBL-30486 

... This work was supported in part by the National Science Foundation under grant DMS-8801515 and by the 
_ Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under 
contract DE-AC03-76SF-00098. 



'j 

Numerical Results on the Stability of a Drop 
Trapped Between Parallel Planes 

Thomas 1. Vogel 

§l. Introduction. 

The physical situation considered in this paper is that of a drop of liquid forming a 
bridge between two parallel, homogeneous planes as in the picture below. 

contact angle (angle between normals' 

wetted region --+-~ -t--t--wetted region 

contact curve 
contact curve 

I am continuing work begun in [4] and [5], and the present paper is an expansion of the 
numerical results in §5 of [5]. 

We seek local minima of 

J(J) = 271" lh fvh + (J')2dx - aI7l"j2(0) - a271"f2(h) 

sub ject to the constraint 

J(J) = 71" lh f 2 dx = V 

where al and a2 are material constants, and V is the volume of the drop. From the first 
variation it follows that 

(1.1) 

.. 

M(J) = ~ ( f" 3 _ 1 ) = H, 
2 (1 + (/1)2)2 f (1 + (fl)2)t 

/,(0) = - cot /1, 

/' ( h) = cot /2, 

1 



for some constant H, where "}'1 and "}'2 are the (physically determined) contact angles with 
III and II2 • Functions satisfying (1.1) are stationary but not necessarily stable. In [4] 
it is shown that if a solution to (1.1) satisfies the following two conditions, the drop it 
represents is stable. 

1) The Sturm-Liouville problem 

L t/J = _ ft/J' ( )' 
( ) - (1 + (f')2)J 

t/J ----...-1 = ).t/J, 
f (+(f')2)2 

t/J'(O) = t/J'(h) = 0 

has precisely one negative eigenvalue, and 
2) Suppose that f(x) = f(xjeo) may be embedded in a smoothly parametrized family 

f(x; e) of solutions to (1.1) with "}'1 and "}'2 fixed, but H depending on e. Then the 
second condition for stability is that H'(eo)V'(eo) > 0, where Vee) is the volume of 
the drop corresponding to f(x; e). 

IT (1.2) has two negative eigenvalues, or if H'(eo)V'(eo) < 0, then the drop is not 
stable. The present paper investigates stability of trapped drops with varying contact 
angles using the above criteria. 

§2. Explanation of H vs. V Plots (Figures 1 - 7) 

The method of calculation is outlined in §5 of [5]. Some of the angles' plotted also 
appeared in [5]. However, those graphs were prepared by a draftsman from computer plots. 
The graphs presented here are straight from a computer, and thus would not have been' 
inadvertantly smoothed. The plots in the present paper were drawn by PICSURE using 
data generated as in [5]. 

Each point (H, V) on one of the curves represents the mean curvature and volume 
of a solution to (1.1). Figures 1 and 2 show that for "Yl = "}'2 = 20° and "}'l = "}'2 = 
30°, instability occurs before the appearance of an inflection on the boundary (which 
corresponds to the bifurcation. See §3.) For nearby unequal angles, the instability occurs 
at larger volumes, again due to condition 2 failing. One sees that the bifurcation of "}'l = "}'2 

splits as the contact angles become unequal. Although it is not apparent from these plots, 
the curves representing stable drops will have a vertical asymptote at Hoo , which will be 
one half of the curvature of the circular arc making the correct contact angles with x = 0 
and x = 1. One can determine that H 00 = H cos "}'l + cos "}'2)' 

Figures 3 and 4 show that for "}'1 = "}'2 = 40° and "}'1 = "}'2 = 70°, instability seems to 
occur because of condition 1 failing, i.e., we can reach the bifurcation (at which ).1 changes 
sign) apparently before ;~ changes sign. The caveat is added since conceivably ;~ could 
change sign twice in the family of curves without inflections. Certainly this behavior was 
not observed, and for convex drops §4 of [5] proves that it cannot occur. 

Figure 5 covers a larger area in the H - V plane than the previous figures. It is easy 
to show that the H - V curve for cylinders is V = 4-;2' I computed H vs. V for a number 
of unduloids with one inflection (the right-most curve marked unduloid). The rest of the 
unduloid curves may be obtained from the one-inflection family as follows. For the case 
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'.,1 

1'1 = 1'2 = 900
, an unduloid with k inflections may obtained by lining up k copies of an 

unduloid with one inflection and then scaling. The picture below illustrates the process 
by taking 3 copies of an unduloid with one inflection (one reversed) to obtain an unduloid 
with three inflections on the interval [0,1]. 

1.0 1.0 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0.0 -f--r-----r--r-----,r----1 

0.0 0.2 0.4 0.6 0.8 1.0 
0.0 +--r---..L....y--""T"""'----,r----1 

0.0 0.2 0.4 0.6 0.8 1.0 

. One inflection Three inBections 

If (H, V) is the mean curvature of the" building block" unduloid, then the mean 
curvature and volume of the resulting unduloid is (kH, -b V). This scaling was used to 
construct the H - V curves for the other families of unduloids. 

Figures 6 and 7 show that drops for 1'1 = 1'2 = 1200 and 1'1 = 1'2 = 1400 are stable· 
until the bifurcation. This is guaranteed by Theorem 4.2 of [5]. For 1'1 = 1190 ,1'2 = 1210

, 

instability is due to condition 2 failing. The previously mentioned theorem shows that 
an inflection must have appeared before this instability, and indeed this was observed 
numerically. In general, if 1'1 = 1'2, the appearance of an inflection signals the occurence 
of a bifurcation (see below), whereas if 1'1 i: 1'2, these are unrelated. 

§3. Investigation of Bifurcation for Equal Contact Angles 

To investigate the bifurcation for equal contact angles, I exploited the fact that it 
coincides with the appearance of inflections on the boundary. This deserves a proof. 

Theorem: If 1'1 = 1'2 i: 900
, then the profile with second derivative vanishing on the 

boundary represents a bifurcation between a family a zero-inflection profiles, a family of 
two-inBection profiles, and two families of one-inflection profiles. 

Proof: Using formulas from [2], the inclination angle <Pinf at the inflection for any unduloid 
will satisfy 

• 2 A. (rmax - rmin)2 sIn 'f'inf = 
rmax + rmin 

where rmax is the maximum radius of the unduloid and rmin is the minimum radius of the 
unduloid. For the critical unduloid that I claim is the point of bifurcation, we must have 

• 2(7r ) (rmax-rmin)2 sm - - l' = , 
2 rmax + rmin 
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where 1'1 = 1'2 = l' is the contact angle. Recall that unduloids are obtained by tracing 
a focus of an ellipse as it is rolled without slipping along the axis of rotation. Therefore, 
rmax is a + c, and rmin = a - c, where a, b, and c are the standard quantities for the ellipse 
generating the critical unduloid. Thus 

• 2 (1(' ) c2 
sm '2 - l' = a2 • 

Keeping a fixed, we may increase c by a small amount, which will cause I <Pinf I to 
increase from If -1'1. This will split the points at which <P equals ± (f - 1') into two pairs, 
as in the picture below. The marked points are where the profiles have inclination ±30°, 
so that the unduloid would have contact angle 60° if cut there. 

1.0 1.0 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0.0 ~--r----r--r--~--' 0.0 ~--r----r--.---r----' 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Critical unduloid for l' = 60°, with h=l Increased c, same a 

Taking one point from each pair and considering the part of the unduloid between 
these two points, we can obtain a section of the new unduloid with 0 or 2 inflections or 
two unduloids with one inflection. In general, the length of the section of the unduloid 
thus obtained will be close to but not equal to h. We must therefore scale the unduloid 
slightly to obtain a section of length h making the correct contact angles. By changing c 
an arbitrarily small amount, we obtain by this construction solutions to (1.1) with 0, 1, or 
2 inflections uniformly close to the critical unduloid, showing that a bifurcation occurs. 

Thus, to find V and H for the bifurcation point for 1'1 = '"'12 = '"'I is the same as to find V 

,", 

and H for the unduloid for which an inflection point appears on the boundary. In general, ,"' 
computing the profile directly becomes quite difficult as we approach the bifurcation. I 
was able to avoid this difficulty by working with contact angles '"'II = '"'I, '"'12 = 90°. By \,.; 
reflecting across the plane x = h, this corresponds to an unduloid making contact angles 
'"'II = '"'12 = '"'I on the planes x = 0 and x = 2h. Scaling, we see that a stationary surface 
with contact angles 1'1 = '"'I, '"'12 = 90°, mean curvature H and volume V corresponds to 
a stationary surface with 1'1 = '"'12 = '"'I, mean curvature 2H and volume V/4. The point 
of dealing with '"'II = '"'I, '"'12 = 90° is that for this case the appearance of an inflection on 
the left plane does not signal a bifurcation. We may, therefore, compute the profile with 
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1'1 = 1', 1'2 = 90° and an inflection at x = 0 without trouble, and then scale to find V and 
H for the bifurcation of 1'1 = 1'2 = 1'. 

Figure 8 shows the volume at the bifurcation for 1'1 = 1'2 = 1'. The computed minimum 
occurs at 90°, agreeing with computations of W. C. Carter [1]. A proof of this fact will 
appear in [3]. Figure 9 shows the mean curvature at the bifurcation. Figure 10 combines 
the information in Figure 8 and 9. It is a parametrized curve in the H - V plane, where 
(Hb), V( 1')) is the location of the bifurcation point of 1'1 = 1'2 = 1'. 

Figure 11 and 12 concern the slope of the curve {O inflections} U {2 inflections} at the 
bifurcation. This is of interest, since if ~ at the bifurcation is negative, instability must 
be due to condition 2 failing. I have computed that for 1'1 = 1'2 < 31.14°, ~ < 0 at the 
bifurcation, and for 1'1 = 1'2 > 31.14°, -91 > 0 at the bifurcation. Figure 12 indicates that 
the slope at the bifurcation is not monotone as a function of 1'. In fact, the data indicate 
that at l' = 90° there is a local minimum. As yet, this is unproven. 

Acknowledgements: The author was partially supported by the National Science Foun
dation (DMS-8801515). Some of the research was performed at Lawrence Berkeley Labora
tory supported by the Applied Mathematical Sciences Subprogram of the Office of Energy 
Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098. 
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H vs a V for gam1 'and gom2 near 30 
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H vs. v for gornn1o 1 =garnt1102=40 
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H vs. V for gOITlma 1 =gonlmo2=70 
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Figure 12 
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