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ABSTRACT 

Using perturbation theory and the vertex function for the 

joining and separation of strings, we calculate momentum independent 

part of the orientable loop diagram in the string picture of the 

orbital dual model. The calculation is done for the case where 

space-time has the critical dimensionality. 

I. INTRODUCTION 

'l'he quantum theory of a relativistic string l) provides a 

space-time picture underlying dual models. With the development of 

the path integral formulation 2,JJ, one can apply quantum-mechanical 

methods to systems of interacting strings to calculate scattering 

amplitude in higher orders of perturbation theory. 

The functional integral formulation gives us the momentum 

dependent part of the amplitude in a ~traightforward manner Z,J), but 

the momentum independent part (the so-called volume element) is 

difficult to derive from it. As with ordinary quantum-mechanical 

systems, alternative forms of perturbation theory can be used to 

calculate the volume element. Using perturbation theory with the 
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vertex function for three strings, calculated by Mandelstam 2 ) we 

r"ind the volume element for the loop diagram. 

Loop calculations in the context of the operator formalism 

. ' of dual models have been performed by several authors 4 ) Hsue, 

Sakita, and Virasoro 5 ) have represented the one-loop amplitude as a 

functional integral over an annulus. Recently Brink and Fairlie 6 ) 

have studied.the loop amplitude purely within the functional , 
formalism. Their calculation is very illuminating about the origin 

of' the.partition function in the voltirtle element, but it is not 

completely rigorous and they make assumptions concerning one factor 

in the volume element. 

We have used the fact that the volume element is independent 

of theexternal momenta and have chosen a special configuration in 

which all incoming and outgoing strings are infinitesimally short and 

have zero (d-2)-momentum. In that case it is straightforward to 

calculate the loop amplitude directly, Comparing the amplitude with 

momentum dependent part, which has been calculated for any general 

graph by Mandelstam 2 >, we read off the volume element. 

In Sec. II the problem and the method is discussed. In 

Sec. III the perturbation theory calculation is performed and the 

volume element for the loop is t'ound. In the appendix the neglect 

of certain integration regions in the loop diagram is justified.~ 

II. LOOP IN THE STRING PICTURE 

An orientable loop diagram iri the string picture corresponds 

to the splitting and recombination of one of the intermediate strings. 

This is represented as a slit in the (o,-r) plane of the two 
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dimensional surface representing the motion of the string in space 

.time (fig. 1 ) . The moment urn-dependent part for a configuration like 

that of fig. 1 has been calculated 2 ) and·is equal to 

Expf-1 L P P N( Z ,Z )} where Z is the projection of the string 
\ 2 rts r s r s r 
l. 

r at Ti (or :rf) on any region conformally equivalent to the 

* region of fig. 1 N is the Neumann ftmction for that region and 

Pr is the d-momentum of the string r. 

Rl can be conformally transformed onto a semiannulus in the 

lower (or upper) half plane, with the strings at Ti (Tf) trans-

forming onto the points Z. 's on the ~ositive real axis. 
1 

The region 

Rl can also be conrormally transformed to the region shown in fig. 3 

(R3), which can itself be transformed to region of fig. 4 (R4) by 

cutting the cylinder in. R3 along the dotted line and opening it. 

Since the amplitude 2 ) is invariant under conformal trans-

formations, the amplitudes calculated from any of the diagrams in 

figs. 1, 2, J, and 4 are equal. We shaH apply perturbation theory to 

region R4 but we can transform the result to the variables corres-

ponding to the semiannular configuration. So we have 

(1) 

* We refer to this region as Rl, and to regions figs, 2, J, and ? 

as R2, RJ, andR4, 
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where P~ . refers to the incomi.ng particles, P:- . 1 ·to the inter-
J.nJ. . 1n1 + 

mediate states between vertices i and i+l 
,... 

and Ti is the initial or 

final time for the string i. We do not have factor of i in the 

exponents because we are using a Wick rotated T. The symbol X 
stands for summation over all possible intermediate strings. Since 

the states at and for the intermediate strings correspond 

to the same state in the cylinder diagram, we take the trace over 

these states when working with the region R4. 

In the expression (1) we have an integration over (n-1) 

interaction times. One of the interaction t:imes (e.g., T
1

) can be· 

kept fixed. Since the translation in T only 9hanges tne integrand 
. n 

just bya phase 
-iT L pC-) 

r=l r e the integration over T
1 

would 

lead to a a-function in the variable (-) p • 

Vertex function 

· The vertex function for three st~ings has been calculated in 

ref. 2. For the case where an infinitely short unexcited string with 

i 
0 joins string with level number and· any momentum, the p = a n 

vertex vanishes unless the third string is in the same excited state 

as the second. In this case the vertex is simply: 

= 

But 
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P.2- 1 -1 
p~ 

1 = ~ 

+ al 2P. 
1 

and (2) 

(pi2) + pil))~ + n - 1 
p; = = 

p..,. 
+ 2 2P2 

so 

v123 
-1 -tna1!a2 

al a2 = e ( 3) 

We see that the vertex is very simple in this case, .Making 

use of this fact we take all external particles in (fig. 4) to be 

infinitely short unexcited strings with zero d-2 momentum. 

Neumann function and momentum dependent part of the integrand 

Since the points and of fig. 2 transform 

onto the same points of figs. l or 4 we may require that 

= N(r
2
ei8,zr ) . . The analysis of ref. 2 goes through if 

- N(r2ei8,zr) +(a function independent of Z') and 

leads to the same result. The boundary conditions are the same as 

before; 8N(Z,Z' )/aN2 must be independent of Z' on the real Z-axis. 

The func.tion satisfying these conditions is as follows: 

N( Z, Z 1 ) = 

(modulo func'tions of z ) (4) 
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where w = r 2/r1 • For the rest of the discussion we fix the outer 

radius of the semiannulus and set r
1 

= 1, so w = r
2

. 

Using this Neumann function we find, after some algebra that 

the momentum-dependent part 2 ) for unexcited strings with P. = 0 is 
1 

(a./a. +a./a.) 
1 J . J 1 

i<j( Z .<Z.) 
J 1 

X 

Interaction times in terms of Z 's 
r 

( 5) 

If all· a's were strictly ze.ro the transformation from 

region R4 to R2 would be p' = -9-n Z. In tnis case the point z 
r 

on the semiannulus corresponding to an interaction time T would 
r 

. coincide with z . .r When is small but not zero z - z r r 
is of 

order of and we need a transformation from R2 to R4 which is 

correct to order a, since the energy P- is proportional to 1 a . 

This transformation is as follows 

where ~17 is a complex function whose real part is the Neumann 

function and . a
0 

is the value of a for the intermediate string. 

Tr corresponds to·a point Z (close to 
r 

of p' with respect to Z vanishes 

ap;az = 

s z 
r 

Z ) where the derivative 
r 

= 0 
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Taking only dominant terms (to zeroth order in the a 1s) we get 

a 
1 

r Z - Z 
r r 

+ L ~a N(Z ,Z) + 
-1 .::. s s srr 

2 
- (.Q.n Z /w) j.Q.n 

r 
l 

WI 
Using (6) we get: 

z 

and 

r 
z = 
r 

0 -+ z. 
r = 

\' 1 -L.. -
2 

a Nt Z , Z ) = s r s s ' 

Tr = - ao .Q.n zr + I: ~ as Nt zs' zr) + 

sir 

+ a [ .Q.n (lr + .Q,n [ ~rr<Xl. '' ( 1-
r a Z I I · · 

0 . r n=l 

III. LOOP AMPLITUDE 

.Q.n Z + 
r 

t6) 

(7) 

In this section we use eq. ( 1) to calcula·te the loop amplitude 

for scattering of short strings. In the appendix we show that the 

contribution from the region where. Tr+l < Tr (fig. 7) tends to zero 

when the a 1 s -+ 0 (like a power of a). Hence, in the expression 

. (1), we only have to integrate over the regions where 

0 = T1 < T2 < ... < Tn (fig, 5), If the momentum of the long string 
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is initially P0\ P~-)' the value of p for the long string in 

all the intermediate states .will be pd, from \ 2). Therefore, 

between the interaction times Tr and Tr+l' 

(-) p. . 
lnl 

(-) ' 

Pinter = 
1 
a. 

l 

= - ( f -1-: + p~- )\ 
i=l l ' ) 

where m is the number of incoming particles .. Since the level 

number and momentum of the intermediate string is unchanged, the 

summation over all possible states of the intermediate reduces to 

one term. Inserting the vertex factors, we find for the integrand 

of t 1) 

I = 
· ·[ n-1 ~ a -1 a -1 · . a -1 

( ~ '\) ( 2 ) · · · ( -E..) Exp - \ . P( -) 
ao ao . ~ao }. f;l o 

~ 
~ ~ (-) 

+L T.P. 
T ) e i l l 

rj 

/ a1 \ -1( a.2 .... -1 (anD-1 [ ( _) 
( -) - ) • . . - Exp - P0 T +l \ ao ao ao . I n 

l 

Equation (8) Continued on Next Page 
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Equation (8) Continued 

P~ Tn+l} ex{+ ~ ~ipi-J 
(8) 

n 
In the last step overall energy conservation; I l... = 0 is used. 

r=l ar 

From ( 8) it is clear why one needs the 1' in terms of the Z 's to r r 

first order in the a's. 

The only part in the 

is Exp[ -P~-) Tn+l) where 

intermediate states is then: 

integrand which dep~nds on n and p
0
1 

P
(-). __ pi2 + n- 1 
0 ~P The sum over 

+ 

L 
all 

excitations 

x Exp( ~P~ Tn+l) 

fdP~ I Exp [-

.2 
dd-2 p 

pl. .-
1 ] = , Tn+l 2P

0 
oi 2P+ all 

exCitations 
. 0 

( '( ~ n+l 
~ Exp - n ~ 

2P
0 

(9) 

From the transformation P1 = - a0 ~n Z we have 

+ 

and = e 
-tn+l/2Pa 

Equation (9) then becomes: 
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1 J dao d-2 -2 --d p. 
ao .l 

= ~J· 00 d:~ ~ '1\c-1 1 n)d-2 c~ ~~)d-2 
0 n=l w \/Tn+l/ao 

We wish to change the integration from a0 to w. Using the 
-Tn+l/ao 

relations w =e. we get da0;a0 = -dw/w9-nw, and (9) is 

equal to 

111 
+ 2 0 

1 G 1T dw 2 _JI, 
nw n 

Collecting the above results and inserting T in terms of Zr 
. r 

from (7) into (8) and changing variables from· T 's . r to Z 's 
r ' 

we obtain the result: 

The 

= 1 f!f~~ dZi ~ 
2 I -Z. 2 ... 

2 
l 1TW 

l= 

z. t s 
l 

are ordered so that 

n)2 w -

1 = z
1 

> z
2 

> z
3 
.•. > z > w. 

- - - n-
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We may isolate the momentLUn-dependent part and rewrite the 

expression as: 

! J 1::,1, dZi dw _].__ c· ::r. ') d/2 c~·~--~( l 0d-2 
2 -Z. 2 -~n w / . 1 _ n . 

2 
l 1TW . W l= n=l 

r - 00 

x Exp 2.~ \~nil ~:tJ (1 

r l -· n-1 

( ~n 

X-n w 

~~-' Exp. L! as N\Z Z ) 
" 2 a r' s 

r 

Comparing with (5) we can read off the volume element to be 

!("'~( 2-) _1 ( 1T .... , d/2c· i':'T 1 wn_)d-2 
2 .1 -Z1 J mi -l!:n w.) I I 1 _ 

l=2 ~ n=l 

00 

T-r (l -

n=l 

which agrees with the operatorial method calculation. Since we 

have assumed that the intermediate state has transverse degrees of 

freedom only, we have restricted_ourselves to 26 dimensional space. 

One can treat a nonplanar orientable diagram in exactly the same 

way by considering the configuration in (fig. 6). 
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APPENDIX 

Here we wish to justify the neglect of diagrams with 

Tr < Ts' r > s. Consider vertices as in (fig. 7) where Tr+l 

precedes T ' r 

We want to show that, in the limit where the length of the 

strings goes to zero the contribution of diagrams as rig. 7 is 

infinitely small compared to the diagram that we have been considering 

in the text (the graph with T < T if r < s). If the length r s· 

of the strings are of' order e:, then the vertex A is proportional 

( a1 a2 
· )1/a +1/a -1/a +a -a -a 1 2 1 2 

to al a2 (al + ) 1 2 - 0( l) and C/.2 -
B is proportional to -1 When < T 1 both vertices £ T are r r+ 

of order -1 
£ We can also consider the integral corresponding to 

the diagrams like fig. 7. ·In this situation the shaded region 

transforms to a small neighborhood of zr and 2r+l' and these two 

points are very close to each other too (close means ( 2r+l - z ) r 

is of order of c) . The irttegrand involves a factor as 

exp [r: 1 ~ 1:..- .2:..) (~ -T :\] ::: exp (
2
.3,.. Tr+l\ x (term \. a1 + a2 a1 a2 · \. r r+lj "- L) 

which is function of Tr). Tr+l integration will give a term of 

order £. ( f_:r exp le:- Tr+l.::. ~ £ exp ic_ Tr) . Therefore the 

the ratio of a diagram like (fig. 7) over the graph that we have 

c- -1, c-jc--2 -- .,.2. been considering is "- "- "' "- This justifies the neglect of 

(fig. 7) in our calculation of volume element. 
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FIGURE CAPTIONS 

Fig. 1.· Space-time surface corresponding to a loop. 

Fig. 2. Semiannulus in the lower half plane. 

Fig, 3. Cylinder diagram 

(a) long strings 

( b ) short strings . 

Fig. 4. · Cut cylinder. 

Fig. 5. Loop for short strings. · 

Fig. 6, Diagrams for nonplanar string loop. 

Fig. 7. Configuration in which Tr+l < Tr' 
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Fig. 2. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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