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ABSTRACT
Using pertufbation theory and the Vertex‘function for the
jqining and Separationvof strihgs, we calcﬁlate momentum independent
part of the orientable loop diagram in the string pictufe of the
~orbital dual model. The calculation is done for the case where

space~time has the critiéal dimensionality.

I, INTRODUCTION -
. 1)

1he quantum-thédry of a relativistic.string provides a

space-time picture underlying dual models. With the development of

2’3), ohe»can apply quantum-mechanical

the bath integrai formulation
methods to systems of interacting strings to qalculate;scattering
amplitude in higher orders of perturbation theory.

The functional integral férmuiation'gives us the momentum

2}3), Dut

dependent part of the amplitude inva straightforward manner
‘the momentum independent'part (the so-called volume element) is
difficult to derive from it. As with ordinary Quantum—mechanical

systems, alternative forms of pertﬁrbation theory can be used to

calculate the volume element. Using perturbation theory with the



-
vertex function for three strings, calculated by Mandelstam 2),'we
‘find the volume element for the loop diagram.
Loop calculations in the context of the operator'formalism

e )

~‘of dual models have been performed by several authors "7/, Hsue,

 Sakita, and Virasoro 5)‘have_ represented the one-loop amplitude as a

functional integral over an amnulus. Recently Brink and Fairlie 6)
~ have studied;thevioop amplitude purely within the funciional
_formalisﬁ. Their calculation is very illuﬁinating about the ogigin
of the'parﬁition funciion iﬁ the volume element; but it is not
"complétely riéorous and they make assumptioné concernihg one féctor
"in the volume elemént.' |

We have used the fact thaﬁ'the volume element_is indépendent
of the external momenta and.have choéen a spécial configuratiOh in
which all incoming énd oﬁtgoing stfings aré infinitesimally short and
have zero (d—2)—momentum. vIn that case it‘is straighﬁforward to
calculate the loop amplitude directiy.' Comparing the amplitude with

momentum dependent part, which has been caleulated for any general

2)

graph by Mandelstam ~°, we read off the volume element.
In Sec. II the problem and the method is discussed. In .
Sec, III the perturbation theory calculation is performed and the

volume element for the loop is found."In the appendix the neglect

-of cerfain-integration regions in the loop diagram is justifiedf

II. LOOP IN THE STRING PICTURE
An ofientable loop- diagram in the string picture corresponds
- to thé splitting and recombination of one of the intermediate strings.

This is represented as a slit in the (g,r) plane of the two



g

dimensional surface representing the motion of the string in space

. time (fig. 1). The momentum-dependent part for a contiguration like

2)

that‘of'fig. 1 has been calculated .and~is equal to

L,2 r#s

r at '%i (or '%f) on any region conformally equivalent to the

'Exp%;la 2: PrPsN<Z£;Zs?> where Z_ - 1is the projection of the string

region of fig. 1 *, N is the Neumann function for that region and
Pr is the d-momentum of the string r. |

Rl can be conformally transformed onto a semiannulus in the
lower (or upper) half plane, with the strings at %i (%f) trans-
.forming onto the points Zi's on the positive real axis. The region
R1 can also be.conformally transformed to the region shown in fig. 3
(R3), which can itSelf be transforﬁed to region of fig. 4 (R4) by
rcutting the cylinder in. R3 along the dotted line and opening~it.

2)

Since the amplitude is invariant under conformal trans-
formations,Athe amplitungvcalculated_from any of the diagrams in
vfigs, 1, 2, 3, and 4 are equal. We shall apply perturbation theoryfto
_ fegionfRA but we can transform the result to fhe variables corres-

ponding to the semiannular configurétion. So we have

' . ~(PT -PT_ N 1,-1,)
I 4T, +evdr_ U, e 12 IniT 210
2 . n 1 .
(P=__P" ' FLPT
-(P7_-PT . )... -
X'VZe 23 ini+l) @ e

(1)

We refer to this region as R1, and to regions figs, 2, 3, and 4

as R2, R3, and R4,
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where P;ni.'refers to the_incoming'particles, p “to the inter-

;ni+l
mediateAstates betwegn vertices 1 .and i+l and: ?i is the initial or
final tiﬁe for the string i. We do not have factor of i 1in the

- exponents b.eca.use we are .using a Wick rota_ted T.‘ The symbol I
stands fér summation over all possible intermediate strings. Since

the states at To and T, for the intermediate strings correspond

+1
to the same state.in the cylinder diagram, we take the trace over
these.states when working with the region R4.

In the éxpression (1) we have an integration over (n-L)
interaction tiﬁes.' One Qf the inﬁeraction times (e.g., Tl) can be:
kept fixed. Since the tganslation in. T .only phéngeé the integrand

: . —iT 5 P(")
'just by ‘a phasé- e- r=lr , the integration over T, would

1
Jead to a 8-function in the variable P(n).

Vertex function

- The vertex functioﬁ for three strings has bgen calculated in
ref._z.- For the case where an infiniﬁely short unexcifed string with
pi = 0 joins a string with level number n and: any momentum, the
vertex,vanishes'unleSS'the third string is in the same excited state
as the second. In this cgsevthe vertex is simply: \

o, o PT+P5—P;

: sl 2, 1 ' _ 3 '
V123 o T o () | oy = =(oy + o)

al(P1+P2'P3) a-al(Pl+P2_P3)

R

- But



P- = Pi _ l = :..:.L_
! 2" &
1
Cand ' - ) : (2)
@A)
P, =~ = P
3
80
. -2no.. /o
B -1 3 1
Vi23, = o o, = e ) | (3)

Wé see that the vertex is. very simple in this case, Making
use of this fact we take all external particles in (fig. 4) to be
infinitely short unexcitéd strings with zero d-2 momentum.

Neumann function and momentum dependent part of the integrand

Since the points: rlele. ~and r2e16 of fig. 2 transform

onto the same points of figs. 1 or 4 we may require that

: UN(rlele,Z') = N(rzele,Z').~ The analysis of ref. 2 goes through if

N(rlele,zf)'= N(rzele,z') + (a function independent of 2Z') and
leads to the same result. The boundary conditions are the same as

before; BN(Z,Z')/BNZ must be independent of Z' on the real Z-axis.

The function satisfying these conditions is as followsf

OO

G063 9
,(/1_.;.@( )

(modulo functions of 7Z) (4)

N(Z,2') = fn

n Z/w Qn(Z‘Z /w )
in W

- 20n Z/w
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where w = f2/rl. For the rest of the disauséion we fix the outer

B! = l,so._w = r2.
Using this Neumann function we find, after some algebra that

2)

radius of the semiannulus and set »r

“the momentum-dependent part

- ( / | , . : < ZJ\,‘Z'OSr
a.,/c, + a./o. ) {in |1l - &~
A T _ Z.

3 e il

i<j(ZJ<Zi)

for unexcited strings With Pi =0 1is

| R . :
. (/' Zj 0 n 7%-2n 7%- _J
X 1-.--Z—.—-w. __,Q-,;l—-(:)-—_—b- fn w . | . (5)
"“\. 1 s . ) _

Interaction times in terms of Zr'S'

If all a's were strictly zero the transformation from
region R4 to R2 would be 'p' = -¢n Z2. In this case the point Er

on the semiannulus corresponding to an interaction time T, woulda

‘,coincide with Zr.' When o, is small but not zero Zr - Zr is of

order of',ar and we need a transformation from R2 to R4 which is

correct to order a,'sihce'the energy' P~ is proportional to al.- E

. v s : _— 1 o
This transformaﬁlon_ls asvfollows p' = 2: 5 G 7? (Z,Zs) - G in Z,
where ‘7] is a complex function whose real part is the Neumann

funetion and - is the value of o for the intermediate string.

oy |
T corresponds to a point Zr (close to Zr) where the derivative

of p' with respect to Z vanishes

1 ) CX.O ' .
S : Z
T
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Taking only dominant terms (to zeroth order in the a's) we get

' o ‘ / o
o —t .2 0+2-='Zr1+a3\, . . (6)
0/

ne

g -z, % i
r T T
o . 1 = _ -
Therefore T = -oy in 7+ }; 5o  MZ,2,) = - tn Z +
. {— -
+Z-2-0L N(Z Z)+0L Rn]. w/r((l—w)
s¥r .
-
- (%n 7_/w)*/in w.? .
Using (6) we get:v
o . arzr
Zn —er Y
0
and _ : (7)
Tf = - a in Z E: - a N(Z Z )+
‘s#r
‘ | _ . - <: Zr»:)z
_ o 4 n ~—
vo | tn=Z+ | = (1o W) o L
T o Z n w
0 { r!_
R

ITTI, LOOP AMPLITUDE
In this section we use eq. (1) to calculate the loop amplitude
" for scattering of short strings. In the appendix we show that the

_contribution from the region where T (fig. 7) tends to zero

<T
r+l

when the a's =+ 0 (like a power of o). Hence, in the expression

(1), we only have to integrate over the regions where

1

0 = 3 < T, < eee < T (fig, 5). If the momentum of the long string
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(-
PO

all the intermediate states.will be. pa, from (2), Theretore,

is initially Pol, , the value.of P for the long string in

between the interaction times T, and T ..,

where m is the‘number bf’incomiﬁg.parficles. . Since the level
number and momentum of the intermediaﬁe'string is uﬁchénged, the
summétion oVer_allvpéssible‘states of the'intermediate reduces to
one term. Inserting the §ertéx factors, we find for the integrand

of (1)

- R T E)

Equation (8) Continued on Next Page



Equatioh (8) Continued : _
n .‘ ‘-rr. - __ar - n |
I = Exp (Z = - n o - POITn+ exp Z .
. r:l r . O o ' :

_ L ‘ v n
In the last step overall energy conservation; 2: 2= is used.
. ) ‘ =1 OL

"From (8) it is clear'why one needs the .Tr in terms of the Zr's to

first order .in the g's.

The only part in the integrand which depends on n and p 1
| (-) (<) _ PR en- °
is Exp —PU v Tn+1 where PO ="—__3ﬁ:__—_" ihe sum over

intermediate states is then:

h]

dPo dP dd 2. P ZE: 6<éP P 2 _ (n - 1i>
0

all
- excitations .
% EXp(fPO Tn+l)
- [ aP o i~
- 0 442 p B |- Bzl
2p” ot . - ot B
0 all _ 2PO /
excitations - - ,
» T
. % Exp{ -n _?:l . (9)
‘ . ZPO

o ' o : _p 'forg
From the transformation p' = - %y fn Z we have Z =

R S TR S .
and w=e 0 L. nt+l ' 0 . Fquation (9) then becomes:
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RN B ,ﬂr ( 1 >d—2 : e )d-Z
: 2 o, w ' n T '
Jo Q 1-w | nfl/ao

We wish to change the integration from 'ao :po w, Using the
| 7Tn+l/a0
relations w = e we get ddo/a

0= ~dw/winw, and (9) is

equal to

+
o} -
}...!
[N
c
=
e |
N
1
=<
jo 3t B
e
~
N
i 18
T
-
ESA[
_,1%
N

Collecting the above results and inserting T, in terms of ‘Zr
from (7) into (8) and changing variables from"Tr's to Z.'s,

we obtain the result:

| o o | N ]
11 /l‘/lf'dzi dw ( W d/2 /r" 1 d-2
AT = =
2 g -Zi ﬂw2 -n w ! 1 - W
' i=2 ‘ N / N n=l

1 o . }‘  w = ﬁ 2
X Exp Z §-a2.N(Zr,ZS) & Exp{ n ETK{\WKl’T w ) -
- S r
n=1

s
s#r

(fn Zr/w)2 |

in w

The Zifs are ordered so that 1 =7 > 7
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We may isolate the momentum-dependent part and rewrite the

expression as:

= n=1 -~ ¥
A 'f g—m GSL/ N2 (fn Zr/w)2 L
x Exp [id aln 2—it \ (1 - w - T {
— 1 |'r
T (o~ n=1 J

4l -w
I 1 Gz
4t 24 = ' .
ol T (al {0 -] - Loz’
1 r L ? n=1 o

which agrees with the opératorial method calcﬁlation. Since we
have assumed that the intermediafé.state haé transverse degrees of
tfreedom only, we have restricted_oursélves fo 26 dimensional space.
One can treat a nonplanarvorientable diagfam in exactly the same

way by concidering the configuration in (fig. 6).



~12-

 ACKNOWLEDGENT
I wisn.to'thank Pféfessor S, Mandelstam for his interest and
. inva1uébLe advice and guidance, without which this wofk wouldn't have
been completed. I also want io thank him for reading the manuseript.

I would 1like to‘thank J. Torres Hernandez for proof reading.



13-

APPENDIX
Here we wish to justify the neglect of diagrams with

T, <T, T >s, Consider vertices as in (fig. 7) where

T r+l

preggdes Tr.

-We want to show that, in the limit where the length of the
strings goes to zero the contribution of diagrams as tig. 7 is
infinitely small compared to the diagram that we have been considering
in the text (the graph with T, <'TS. if r < s). If the length
of the strings are of order e, theﬁ the‘verfex A s proportional

. o  a, -0, -0, Yoy +l/ay-1/0) v,
to. a, o, (al + a2)

B 1is proportional to e-l. When Tf'< el both vertices are

of order I€_1. We can also consider the integral corresponding to

>~ 0(1)  and

. the diagrams like fig. 7. In this situation the shaded region
" transforms to a small neighborhood of Zr and Zr+1’ and these two

points‘are very ciose to each other too [close means (Zr+1 - Zr)

-

is of order of e). The irtegrand involves a factor as

1 1 1N/ '3 |
exp (—-—--—---...}Q - T ) ~ exp{ = T_ >X(term
| »{ al + a2 ul a2 r r+l _ | 2€ 1+l
which is function of Tr). Tr+l integration will give a term of

T ' . : .
r 3 2 3 :
order e.(ijlm_ exp §E‘Trfl >3 € exp Egirri) . . Theretore -the

the ratio of a diagram like (fig. 7) over the graph that we have

been considering is E"l‘e/e:"2 = 62. This justifies the neglect of

(fig. 7) in our calculation of volume element.
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FIGURE CAPTiONS

1. Space—time surface corresﬁonding to a léop;
2. Semiannulus in thé 1owef halt plane.
3, Cylinder diagram

(a) 1long strings"

(b) short strings.
4. -Cut cylinder.
5. Loop for short strings.:
6, Diagrams for nonplanar string loop.

7. Configuration in w@ich 'Tr+l < T
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