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DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur-' 
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 
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A new Elastic Tracking (ET) algorithm is proposed for finding 
tracks in very high multiplicity and noisy environments. It is 
based on a dynamical reinterpretation and generalization of the 
Radon transform and is related to elastic net algorithms for geo
metrical optimization. ET performs an adaptive nonlinear fit to 
noisy data with a variahle number of tracks. Its numerics is more 
efficient than that of the traditional Radon or Hough transform 
method because it avoids binning of phase space and the costly 
search for valid minima. Spurious local minima are avoided in ET 
by introducing a time-dependent effective potential. The method 

,is shown to be very robust to noise and measurement error and 
extends tracking ca.pahilities to much higher track densities tha.n 
possible via local road finding or even the novel Denby-Peterson 
(DP) neural network tracking algorithms. 
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1 Introduction 

Detecting curves within a complex pattern of points is a classic problem 
in pattern recognition and computer vision with many important practical 
applications[l]. In the context of high energy and nuclear physics, a common 
problem is the detection of the ionization paths of many charged particles in a 
device such as a bubble, streamer, or time projection chamber and the deter
mination of particle momenta by fitting physical trajectories consistent with 
known electric and magnetic fields (see e.g. [2]). Of course, many local and 
global methods have been developed to solve this problem[l, 3, 4]. Thusfar, 
most experiments had to cope only with rather low multiplicities and track 
densities, and conventional tracking methods have proven adequate. How
ever, there is a need to develop more powerful methods to cope with the 
increasingly complex pattern recognition tasks that future high energy and 
nuclear experiments may face. For example, future heavy ion experiments 
[5] at RHICjBNL and LHCjCERN could be confronted with trying to track 
up to 104 charged particles per event. Our aim was to explore theoretical 
limitations of present tracking methods and to propose a new elastic track
ing (ET) method that extends present tracking capabilities to much higher 
track densities. By track density, Pt1'Qck, we mean the average ratio of the dis
tance between measured points along a track to the distance between points 
belonging to different tracks or random noise points. 

This work was also motivated by the pioneering work of Denby [6] and 
Peterson [7] on applications of Hopfield type neural networks [8, 9] to tracking 
and other pattern recognition tasks in high energy physics (see also [10]). 
Since the performance of such neural network tracking methods has not yet 
been compared to that of more conventional algorithms, one aim of our work 
was to carry out such a comparison. In particular, we used as a benchmark 
the conventional local Road Finder (RF) algorithm [4]. 

A detailed description of the a.lgorithms and techniques we used and the 
results can be found in Ref. [12]. 

2 Elastic Tracking 

Elastic Tracking is based on a reinterpretation and dynamical generalization 
of the Radon transform. The Radon Transform just counts the number of 
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data points inside a tube around a trajectory. Scanning the feature space and 
calculating the Radon Transforms for all possible trajectory parameters P will 
give a function depending on p with maxima at points where the parameters 
fit to a real track. This procedure is very expensive if high resolution is 
desired or the feature space is high dimensional (> 2). 

To avoid the problem of scanning the entire feature space, we proposed 
a dynamic approach to the problem of looking for the maxima of the Radon 
transform. We employ template trajectories (e.g. helices or straight lines) 
and assign a positive charge distribution along the track. That track is then 
allowed to interact with the negative (ionization) charge distribution mea
sured by the experimental device. The problem is then reduced to minimizing 
the energy of this template trajectory. Given a distribution of data points 
p( x) this energy is evaluated as 

E(pT' t) = - J dxdx' p(x)\I(x '- x', t)PT(X') , (1) 

The minimum of this function is found by solving the (gradient· descent) 
equations of motion for the template parameters, which in our case is the 
three momentum PT of the particle producing the ionization density: 

dpTldt = -VpTE(pT,t) , (2) 

There is of course considerable freedom in the choice of the effective potential. 
We adopt for convenience a simple Lorentzian f~rm, 

(3) 

with a time dependent range 

w(t) = b + (a - b) exp( -tic) (4) 

A slow iteration time dependence of the range is introduced to get a global 
view on a scale a at an early stage of the iteration process and to focus later on 
more closely to the track being converged to. This also avoids getting caught 
in local minima. The natUl:al scale for the asymptotic range is b rv ~x, where 
~x is the rms measurement error of the data points. 

In this way ET performs a nonlinear adaptive fit. The nonlinearity in 
(3) reduces greatly the sensitivity to outlier points from other tracks or noise 
when the interaction length w(t) approacbes its final small value b. 
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Once convergence is achieved for one track, another one could be looked 
for by starting with a new random initial template and waiting until a new 
valid minimum is found. However, convergence for new tracks can be speeded 
up by introducing multiple elastic track dynamics. Since two trajectories 
should not converge to the same track, an effective repulsive interaction be
tween trajectories should be introduced. The repulsive interaction can be 
taken into account by evolving the present template in the screened field due 
to the positive charge distribution of all already converged tracks as well as 
the negative distribution generated by the data points. In effect a converged 
track neutralizes the ionization density around that track making it easier 
for later tracks to converge to new solutions. 

V-Ie emphasize that ETcan be used with the unprocessed real charge dis
tributions measured by TPC's and other particle detectors without expensive 
and error producing preprocessing steps. It also eliminates the need for post
processing usually needed to fit the track parameters since the output of ET 
is directly the particle momentum (and possibly the vertex origin). This is 
a major advantage against probably all other methods which need real dis
crete data points to construct tracks and fitting algorithms to get the track 
parameters. 

3 Other Methods 

3.1 Road Finder 

To compare the performance of ET with that of more conventional ap
proaches we implemented two other methods of trackfinding. One is the 
conventional and widely used so called Road Finding a1gorithm (RF), which 
we like to call the "Follow Your Nose" method. The principle is very simple 
and also very efficient if track density is low. 

We start by picking three nearly collinear points in a low density region of 
the detector. Projecting this line in direction of the vertex, a chain of points 
is to be built up as long as a point is found inside a certain cone along the 
projected line and distance from the last point in the chain. If more than one 
point is found inside the cone both are ignored. Ea.ch point has to be labeled 
if it is was touched once, since it can belong only to one track. Labeling and 
skipping however can introduce gaps large enough that it doesn't make sense 
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to continue searching. Therefore the result of this procedure will be a set of 
tracklets to be combined to tracks afterwards. Fitting track parameters has 
to be done in addition at the very end. 

3.2 Denby - Peterson Net 

Another approach was proposed recently by Denby [6J and Peterson [7J. They 
constructed a Hopfield type net with a neuron as a link between a pair of 
data points, that should relax to a state where only neurons relating to valid 
links should be on. Therefore a weight function has to be constructed that 
penalizes heavily kinks and long links. The energy function is given by 

with the weight function 

1 
E = ;- L: SijS.ik IVijk , 

2 "k '.I" 

(5) 

(6) 

where we took A = 4, B = 0.5, and n = 16. Here Oijk is the angle between 
the links rij and rjk. The dynamics of the net evolve according to the mean 
field equations 

1 1 fJE 
Sij = :)(1 + tanh( -T ~)) , 

~ uS?'J 
(7) 

which are solved by iteration. 

4 Results 

Numerical simulations have shown tha.t ET performs substantially better in 
case of real hard problems e.g. very high track densities. Figure 1 shows what 
a hard problem is. Using all information about the long range correlations 
in the data ET can resolve all tracks with correct multiplicity even in an 
environment with 100% noise. In Figure 2 the three methods are shown in 
comparison. The Road Finder fails first, than the Denby-Peterson Net and 
ET performs perfect in all cases. 

Since this high track densities can be created in 2D with less data points 
(N) than in 3D we have chosen a 2 dimensiona.l geometry for computational 
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efficiency. In 3D TPC's of the future however the data will be as dense as 
it is shown in Figure 1 and very high speed computers will be necessary to 
handle the data. 

It has to be noted tha.t the Road Finder is a.lways the fastest algorithm, 
since it scales rv N 2 with a small pref~.ctor. ET scales also with rv N 2 but 
with a much higher prefactor and the problem of determining convergence of 
the algorithm. The DP Net scales at least with rv f·P and takes longest in 
almost all cases. 

Considering these results ET appears to be an especially promising data 
analysis method for highly correlated data with lots of noise. Parallel hard
ware implementations however could it make even applicable for real time 
problems. 
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mann, W. Keupper, and K Frankel are gratefully acknowledged. Discussions 
on tracking methods and TPC detectors with H. Matis, G. Rai, P. Jacobs, 
J. Carroll, H. H. Wieman, H.G. Ritter, .J. Harris, and A. Poskanzer are also 
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Denby-Peterson net Elastic Tracking 

Figure 1: A real hard problem: 20 tracks with 
100 percent noise. 
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Figure 2: Road Finder, Denby Peterson Net and ET in 2 
dimensions 

for multiplicities of 3,5,10 and 15_ 
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