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by 

Andrew Nicholas Cleland 

ABSTRACT 

Experiments investigating the process of macroscopic quantum 

tunneling in a moderately-damped, resistively shunted, Josephson junction 

are described, followed by a discussion of experiments perfonned on very 

small capacitance normal-metal tunnel junctions. The experiments on the 

resistively-shunted Josephson junction were designed to investigate a 

quantum ~rocess, that of the tunneling of the Josephson phase variable under 

a potential barrier, in a system in which dissipation plays a major role in the 

dynamics of motion. All the parameters of the junction were measured using 

- the classical phenomena of thermal activation and resonant activation. 

Theoretical predictions are compared with the experimental results, showing 

good agreement with no adjustable parameters; the tunneling rate in the 

moderately damped (Q == 1) junction is seen to be reduced by a factor of 300 

from that predicted for an undamped junction. The phase is seen to be a good 

quantum-mechanical variable. 

The experiments on small capacitance tunnel junctions extend the 

measurements on the larger-area Josephson junctions from the region in 

which the phase variable has a fairly well-defmed value, i.e. its wavefunction 

has a narrow width, to the region·where its value is almost completely 



unknown. The charge on the junction becomes well-defmed and is predicted 

to quantize the current through the junction, giving rise to the Coulomb 

blockade at low bias. I present the first clear observation of the Coulomb 

blockade in single junctions. The electrical environment of the tunnel 

junction, however, strongly affects the behavior of the junction: higher 

resistance leads are observed to greatly sharpen the Coulomb blockade over 

that seen with lower resistance leads. I present theoretical descriptions of 

how the environment influences the junctions; comparisons with the 

experimental results are in reasonable agreement. 
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CHAPTER 1 

Introduction 

Macroscopic Quantum Tunneling 

Over the past decade there have been a number of theoretical and 

experimental investigations of the application of quantum mechanics to 

electrical circuits, and in particular to Josephson junctions. The fundamental 

principle on which these investigations are based is that any variable, for 

which a classical Hamiltonian description exists, can be quantized. In other 

words, this variable can be described by a quantum wave function and a 

quantum wave equation corresponding to the quantum Hamiltonian. 

Common electrical circuit variables such as the charge on a capacitor or the 

current through an inductor should therefore be quantum variables. 

However, to test the predictions of quantum mechanics for such a variable, 

the experimentalist must distinguish between the classical and the quantum 

behavior of the variable he is measuring. A common example is to create an 

LC simple harmonic oscillator from the parallel combination of a capacitor 

C and an inductor L, and operate it at temperatures low enough that only the 

ground state of the harmonic oscillator is occupied. It is quite difficult to 

demonstrate that the oscillator is actually operating in the quantum regime, 

due to the correspondence limit: all of the excitations of the system are at the 

oscillator resonance frequency, in both the quantum and classical regimes. 

This is because the harmonic oscillator is a linear system: The classical 

equation of motion only involves terms of the first order in the variable of 

1 



2 Chapter 1 Introduction 

interest. It was Leggett who realized that the nonlinearity provided by the 

Josephson coupling in a Josephson tunnel junction makes it relatively easy to 

observe the quantum behavior of the Josephson phase variable (1). This 

coupling transforms the parabolic potential of the LC oscillator into one 

which includes local minima separated from one another by potential 

barriers. The Josephson phase variable is the position of an imaginary 

particle moving in this potential. The Josephson junction is observed to 

behave in a quantum-mechanical fashion when the phase variable tunnels 

underneath a potential barrier, leaving a local potential minimum, which 

causes the junction to switch from the zero-voltage state to the voltage state. 

The transition from the classical behavior of the phase variable at high 

temperatures, to the quantum behavior at low temperatures, is 

experimentally accessible. The phenomenon of the tunneling of a 

macroscopic variable, such as the phase of a Josephson junction, which 

describes the state of all the electrons in the junction, was named 

"macroscopic quantum tunneling" (MQT) by Leggett (1). 

Over the past few years, a number of theoretical works investigating 

this phenomenon were published (2, 3, 4, 5, 6, 7, 8). The theoretical works 

progressed from the simple calculation of Ivanchenko and Zil'berman (2) 

using the Wentzel-Kramers-Brillouin (WKB) technique to calculate the 

tunneling rate in a non-dissipative system at zero temperature, to the more 

sophisticated approach of Caldeira and Leggett (3), which allowed the 

inclusion of weak dissipative effects in the classical and quantum limits. 

Their work was followed by various calculations involving fmite 

temperatures and strong dissipation. The most interesting aspect of these 

calculations was the prediction that the presence of dissipation in the classical 

system would strongly reduce the quantum tunneling rate, by reducing the 

It, 
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Introduction 

width of the wave function describing the Josephson phase variable: The 

stronger the dissipation, the narrower the wave function. 

Experiments measuring the classical thennal activation rate of 

Josephson junctions from the zero-voltage state to the voltage state had been 

carried out earlier, proving the correctness of the detailed classical 

description (9, 10) These experiments furthermore provided the basic 

techniques used for measurements of the quantum tunneling rate, which are 

possible at very low temperatures, of the order of 10 mK (temperatures 

reached. by' a dilution refrigerator). Measurements of the quantum tunneling 

rates were carried out by a number of groups (11, 12, 13, 14, 15, 16, 17). 

The experimental investigations of quantum tunneling concentrated on 

experiments in the very lightly damped regime, with the exception of the 

3 

work of Schwartz et al. (17), which was in the highly damped regime of the"', 

RF SQUID. Only the experiments of Devoret et al. (16) and Schwartz et ale ··t;'!: 

(17) were carried out in a manner which allowed independent measurement 

of all the parameters. These experiments confirmed the general predictions 

for the quantum tunneling rate, with the escape rate flattening out at the 

lowest temperatures. The spectacular observation of quantized energy levels 

by Martinis et al. (15) provided convincing evidence of the correctness of the 

quantum approach. There were however some questions about some of the 

earlier work, due to lack of knowledge of the parameters. Discrepancies 

appeared in the experimental results of Schwartz et ale (17), which later 

appeared to be due to problems in the detennination of the SQUID 

parameters. Later adjustments provided excellent agreement with the theory 

(18). 

The work reported here involved measurements on a single Josephson 

junction, which was fabricated with a parallel metallic resistor to provide a 

. ,,',. 
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4 Chapter 1 Introduction 

moderate level of damping. This work describes the first measurements of 

the effect of moderate damping on the quantum tunneling rate, and also 

confirms the theories of the escape rate in the regime where quantum 

tunneling and thermal activation are of equal importance. All the parameters 

of the junction and its shunt resistor were measured using classical 

phenomena. Together with the work of Schwartz et al. (17), this work 

provides convincing experimental evidence of the effect of dissipation on 

quantum mechanical behavior, in particular of the reduction of the width of 

the wave function due to damping, observable through the reduction of the 

quantum tunneling rate from that predicted in the dissipation-free system. 

Small Capacitance Tunnel Junctions 

The work on macroscopic quantum tunneling led historically' to 

considerations of what would occur if one made Josephson junctions which 

are in the quantum regime at all values of bias current; in the MQT 

experiments, the spread in the wave function of the phase variable is much 

less than 21t, and therefore quantum effects can be observed only when the 

phase potential has a nonlinearity over a length much less than 21t. If one 

reduces the capacitance of a Josephson junction, it is predicted that the 

quantum tunneling rate increases, until at some point the phase variable is 

always tunneling, and its value becomes completely uncertain. The quantum

mechanical conjugate variable to the phase, the charge on the junction, at that 

point becomes the "good" quantum variable. This is analogous to the 

description of an electron, taken from a tight-binding state to a free-running 

state; the position is the appropriate quantum variable in the former case, but 

the momentum is appropriate in the latter. 
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Introduction 

It was discovered that in this limit a large number of interesting effects 

should become observable. In the superconducting state the current-voltage 

(1-V) characteristic was predicted to transform into a radically different 

form, with frequency-locking effects analogous to the Josephson ac effect 

(19). In the normal state, with the inclusion of single-electron tunneling, the 

1-V was also predicted to develop striking features, also including frequency

locking effects (20). 

A number of experiments were subsequently performed, mostly 

concentrating on multiple junctions connected in series (21, 22, 23, 24, 25, 

26). The single junctions in general did not behave in the manner predicted. 

There were also indications from the multiple junction experiments that the 

single junctions were being strongly affected by the external circuit, although 

the detailed mechanism was very unclear. The multiple junction experiments 

of Delsing et ale (25) and Geerligs et ale (26) were interpreted as being 

representative of a single junction isolated from its external environment, 

although this is not at all clear from microscopic considerations; the multiple 

junctions clearly make up a very complex system. The experiment of Fulton 

and Dolan (21) showed how a multiple junction setup could be used to 

channel single electrons through a device, and this was later used to great 

success by other groups (27). 

The experiments reported here were the first to observe the Coulomb 

blockade in a single small-capacitance tunnel junction, and in doing so I 

found a simple explanation for the behavior of the single junctions, which 

takes their external environment into account. Other more sophisticated 

theories were published after this work was first reported. 

5 



6 Chapter 1 Introduction 

The remainder of this thesis is organized as follows: The first half of 

the thesis will deal with the MQT experiment on the resistively-shunted 

Josephson junction. Chapter 2 will introduce the resistively-shunted junction 

(RSJ) model, discuss the classical phenomena of thennal and resonant 

activation, and summarize the theoretical results for quantum tunneling in 

the dissipative Josephson junction. Chapter 3 will describe the experimental 

setup and junction fabrication techniques. In Chapter 4 I give the 

experimental results and comparisons with theory, and conclude the 

discussion of MQT. The second half of the thesis deals with the small

capacitance junction experiments. In Chapter 5 I outline the simple theory 

for the Coulomb blockade and describe the experimental considerations. I 

describe the experimental setup and junction fabrication in Chapter 6. 

Chapter 7 describes the experimental results, and I develop a theory. for the 

results using a quantum Langevin approach. I will also present there the gist 

of the theory of Devoret et ale (28), and point out the possible implications of 

[mite junction tunnel resistance. The conclusions appear in Chapter 8, 

following which are the appendices, dealing with technical details of the 

theory and experiment. 



CHAPTER 2 

Macroscopic Quantum Tunneling: 

Theoretical Description 

In this chapter I introduce the resistively-shunted-junction (RSJ) 

model for the Josephson junction, and I discuss the classical phenomena of 

thermal activation and resonant activation that are used to measure the 

junction parameters. I then give a brief outline of the principal results of the 

theories for macroscopic quantum tunneling in the current-biased Josephson 

junction. 

7 
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2.1 The Resistively Shunted Junction Model 

The resistively shunted junction (RSJ) model of Stewart and 

McCumber (29,30) has proven to be a reasonably accurate description of the 

behavior of Josephson tunnel junctions, and is extremely accurate for 

junctions which have a metallic resistor connected across the junction. The 

model consists of the electrical circuit shown in Fig. 2.1, a parallel 

combination of a capacitor C, an ideal Josephson element J, and a resistor R. 

The circuit has current bias I and includes the resistor current noise Inoise. 

The Josephson element has voltage V and current I], which obey the two 

Josephson relations, 

(2.1) 

and 

I] = 10 sin(o) (2.2) 

where 0 is the Josephson phase variable, equal to the difference in the phases 

of the two superconducting wave functions on opposite sides of the tunnel 

junction, and 10 is the junction critical current. When the equations for all the 

circuit elements are written in terms of the phase variable 0 through Eq. 

(2.1), one obtains the equation of motion for 0, 

liC d20 li 1 do . 
2e dt2 + 2e R dt + 10 sm(o) = I + Inoise • (2.3) 



,. 
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The Resistively Shunted Junction Model 

I c J R I noise 

FIGURE 2.1 Resistively shunted Josephson junction. The tunnel junction is 
modelled as an ideal Josephson element in parallel with an Ohmic resistor and 
a capacitor, the combination driven by a current bias. The resistor includes a 
Johnson-Nyquist noise current source. 

9 



10 Chapter 2 Macroscopic Quantum Tunneling: Theoretical Description 

This equation of motion is identical to that of a particle with mass 

proportional to C, moving in a dissipative environment with friction 

coefficient proportional to 1/R, with an external potential U(O) = -(Io<1>oI21t) 

cos(O) - (<1>oI21t) I 0 (see Fig. 2.2); <1>0 is the flux quantum, <1>0 = h/2e. The 

friction provided by the resistor adds external noise to the system, as a result 

of the fluctuation-dissipation theorem (31), and this is taken into account 

through a fluctuating force proportional to Inoise. 

The general behavior of a junction can be described quite simply with 

this picture. The zero-voltage state of the junction corresponds to the 

situation where the phase variable is localized in one of the metastable 

minima of the potential U(o); it oscillates at the resonance frequency COp of 

the local minimum, 

~27tIo COp = <1>oC (1- s2)1/4 , (2.4) 

where s = 1/10 is the current bias; COp is called the plasma frequency. The 

time-averaged voltage <V> in this oscillating state is equal to zero, as can be 

seen from Eq. (2.1). As one increases the bias current above the critical 

current 10, the minimum in which the phase variable rests disappears, and the 

phase variable begins to run down the potential slope, where <V> is 

nonzero. As one continues to increase the bias current, the voltage <V> 

increases, and eventually approaches the linear asymptote <V> = RI. Note 

that in this running state the instantaneous voltage V(t) includes high 

frequency components at the Josephson frequency 00] = 2e<V>/Ii, and all its 

multiples; these high-frequency components are caused by the undulations in 
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u 

FIGURE 2.2 Tilted washboard potential. The phase particle moves in the 
washboard potential generated by the Josephson coupling energy and bias 
current. 



12 Chapter 2 Macroscopic Quantwn Tunneling: Theoretical Description 

the potential U(O), which alternately speed up and slow down the phase 

variable. In the zero-voltage state, V(t) includes a range of frequencies up to 

COp, the frequencies lower than O>p appearing because of the anharmonic 

shape of the potential minimum. 

The hysteresis observed in the current-voltage characteristics of 

higher resistance tunnel junctions is easily explained by this model. As one 

reduces the bias current 1 below the critical current la, the phase variable will 

continue to run down the potential, if the dissipative effects of the shunt 

resistor are small enough. The phase variable will only retrap in a minimum 

when the energy gain due to the overall slope of the potential becomes less 

than the energy lost in the resistor R; this occurs at 1= (4~Jht) 10, where ~J = 

l/rop,oRC and COp,o = COp(s=O). 

For smaller values of R, the dissipation is greater, and retrapping 

occurs at larger values of 1, until at ~J == 1t/4 the junction I-V is no longer 

hysteretic. The wide variety of I-V characteristics seen in Josephson tunnel 

junctions is thus simply explained by this model. 

There have been numerous tests of the model described here. In 

general, the conclusion is that the zero-bias behavior is well described by the 

RSJ equations, with careful and often empirical choices for the resistor R, but 

that the voltage state usually requires a more careful treatment, due to the 

unavoidable frequency dependence of the dissipative elements found 

expe.rimentally. Furthermore, if the value of the resistor R is larger than 

about 100 0, it has been clearly shown that the wires used to apply the bias 

current and measure the voltage across the junction will always short out that 

resistor; in other words, the parallel impedance of the leads will act to reduce 

and greatly complicate the effective dissipative element in the model. 

("\ 
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2.2 Thermal Activation in the Current-Biased Josephson 

Junction 

One of the sensitive tests of the classical behavior of the phase variable 

is the measurement of the thennal activation rate of the phase variable out of 

the metastable minimum, observed by measuring the switching rate of the 

junction from the zero-voltage state to the voltage state, for bias currents less 

than the junction critical current 10. This process was first investigated by 

Jackel et al. (9) and Fulton and Dunkleberger (10). If one considers the 

motion of the phase variable in the bottom of the metastable potential 

minimum, the current fluctuations in the resistor will maintain the phase 

variable in thennal equilibrium with the resistor. The probability P{E) that 

the phase variable will have energy E in the potential well, given probability 

P(O) for being at the bottom of the well, is approximately given by 

P(E) = P(O)exp( -ElkB T). This result is only approximate because it ignores 

the escape process, which depletes the occupation probability at higher 

energies. One can then intuitively see that the escape rate r should have the 

fonn r(T) = (0)/21t) exp (-~UlkBT), where 0) is an attempt frequency and 

~U'is the barrier height (see Fig. 2.3). It has been shown (32, 33) that the 

exact expression is 

r(T) = Clcl (00p/21C) exp(-~UlkBT) , (2.5) 

with barrier height 

~U = (2'J'1Io<l>oI31C)(1-s)3f2 (s«I) , (2.6) 

13 



14 Chapter 2 Macroscopic QuantwnTunneling: Theoretical Description 

U 

r 

? 
ilU , 

FIGURE 2.3 Parameters describing the motion of the phase particle in a 
local potential minimum. The particle oscillates at the plasma frequency 00p 
in the bottom of the well, with barrier height ~U, and escapes from over the 
barrier at rate r. 
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Thermal Activation in the Cwrent-Biased Josephson Junction 15 

where s = I/Io is the bias tilt, the attempt frequency is the plasma frequency 

from the RSJ model given by Eq. (2.4), and 3cl is a classical prefactor that 

takes into account the occupation depletion at high energies mentioned above, 

3cl has a value near unity. In the range of dissipation applicable to this 

experiment, acl has the expression 

( 
1 )112 1 

3cl = 1 + 4Q2 - 2Q ' (2.7) 

where Q = COpRC is the quality factor of the oscillator. 

Careful measurements of thermal activation rates in all the damping 

regimes (extremely underdamped, moderately damped and very lightly 

damped) agree quite well with Eq. (2.5). Measurements of the escape rate 

can therefore be used to obtain very precise values of the critical current of a 

hysteretic Josephson junction; the experiment described here determined 10 

to 160 parts per million. This is done by measuring the dependence of the 

escape rate r(I) on bias current I at fixed temperature T, and plotting the data 

as (In( COp/21tr) } 2{3 versus I; the result is a straight line with an extrapolated 

intercept at s = 1 (I = 10) (see Fig. 4.1). As the intercept value depends only 

logarithmically on COp, the critical current 10 c~ be determined quite 

precisely. Independent measurements of the resistance R and capacitance C 

then allow one to have all three junction parameters well in hand. 
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2.3 Resonant Activation in the Current-Biased Josephson 

Junction 

Measurements of the resistance and capacitance of a Josephson junction 

are notoriously difficult. The greatest difficulty comes from the fact that the 

motion of the phase variable down the washboard potential involves 

frequencies near DC as well as frequencies up to the Josephson frequency, 

which can be as high as 1012 Hz. For very low frequencies, the junction is 

expected to have a low impedance compared to the leads connected across it, 

and the simple RSJ model should be adequate. However, for motion at 

frequencies of the order of 109 to 1012 Hz, the leads connected across the 

junction can easily provide a shunting impedance of the order of 100 0, 

which can be significantly less than the junction's intrinsic impedance; this 

impedance then becomes the relevant one in the RSJ model. When the 

experimentalist measures an I-V characteristic, he measures the averaged 

phase motion at DC; however, some of the dynamics occur at very high 

frequencies. Extraction of the effective resistance in the RSJ model, using 

only the I-V characteristic, becomes very problematic for high-resistance 

junctions. 

The capacitance is equally difficult to extract (although the current

voltage characteristic does not yield a value, and therefore is not as 

distracting as it is for evaluating the junction resistance). One often fmds 

attempts to extract the capacitance from the area of the junction, using values 

extrapolated from measurements on very large area capacitors with the same 

dielectric material as the tunnel junction. The difficulty with this approach is 

that the stray capacitance from structures near the junction, and again from 

/ . . , 



Resonant Activation in the Current-Biased Josephson Junction 17 

the leads connected to the junction, will not be included in the estimate, and 

make these estimates very unreliable. 

A technique was therefore developed which would yield values of the 

capacitance and resistance of a Josephson junction at the plasma frequency of 

the junction (34); see also (35). The basic idea is to place the junction in the 

zero-voltage state, and measure the thermally-activated escape rate; one then 

applies a weak microwave-frequency current bias in parallel with the 

constant current bias, and measures the escape rate r(ro) as the frequency 00 

of the microwave signal is varied. As one sweeps through the plasma 

frequency COp of the junction, one will resonantly couple energy into the 

junction and therefore measure a peak at a frequency COres in the escape rate 

r(oo); the position of the peak is approximately given by the plasma 

frequency COp, and the width of the peak will be roughly inverse to the quality 

factor Q of the junction resonance, given by Q = COpRC (see Fig. 4.3). One 

therefore obtains simultaneous values of the plasma frequency COp and the Q 

of the junction; from these values and the measurement of the critical current 

Yo (see section 2.2), one can calculate values of the junction resistance and 

capacitance. 

Detailed analysis of the resonant activation phenomenon shows it be be 

quite complex (35); see also references cited therein. The resonance curve 

above the plasma frequency COp cuts off quite sharply, and the width of this 

side of the resonance is strongly dependent on the value of Q; the lower side 

of the resonance is quite broad and only depends weakly on the value of Q. 

The reason for this is that the shape of the potential well has resonance 

frequencies below the plasma frequency, as the resonance frequency drops as 

the energy of the phase particle increases in the well; the plasma frequency 

corresponds to the zero-energy resonance. The range of these lower 

• ¥ ••• ;r:~ 



18 Chapter 2 Macroscopic Quantwn Tunneling: Theoretical Description 

frequencies depends only weakly on the quality factor. For frequencies 

above COp, the phase variable acts just like a harmonic oscillator, and the 

resonance above COp has a width ~oughly proportional to l/Q; measurement 

of the resonance above the plasma frequency therefore gives the Q of the 

junction. Numerical simulations are required for more precise results; 

details are given in the paper cited above. 

Analytic treatments of this phenomenon, especially those of Fonseca 

and Grigolini (36) and Larkin and Ovchinnikov (37), are in reasonable 

agreement with the numerical simulations. 
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2.4 Macroscopic Quantum Tunneling 

As one reduces the temperature T of the junction, holding the barrier 

height ~U constant, the thermal activation theory predicts that the thermally

activated escape rate r(T) will fall exponentially , approaching zero as the 

temperature approaches zero. However, Caldeira and Leggett (3, 38) 

realized that if one assumes that the phase variable obeys quantum mechanics, 

then the escape rate should at some point be dominated by quantum tunneling 

through the potential barrier, and the measured escape rate would then 

become independent of the temperature. 

The basic ideas in the tunneling rate calculation are that the phase 

variable 0, and its canonically conjugate variable, 'the charge q on the 

junction, should obey a commutator relation analogous to that of the position 

and momentum of a physical particle. Furthermore, it should be possible to 

model the dissipative effects in the motion of the phase variable by a 

sufficiently complex Hamiltonian system of equations. Given these two 

ingredients, Caldeira and Leggett. were able to work out an analytic 

expression for the tunneling rate of the phase variable at T = 0, in the 

presence of a small amount of Ohmic dissipation. 

The charge q on the junction capacitance C is given by the semi

classical expression 

q = CV 

liCdo ---- 2e dt' (2.8) 

19 
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The semi-classical Hamiltonian for the system can then be written in terms of 

the charge and the phase variables as 

~ ~ H = 2C + 21t (cos 0 - s) + Hres , (2.9) 

where the bias current I appears as s = I/Io, and Hres is the Hamiltonian for the 

resistor: A workable model for the resistor Hamiltonian is created by 

replacing the resistor with an infmite set of independent harmonic 

oscillators, such that the distribution of oscillator frequencies and their 

coupling to the junction phase variable reproduces the classical behavior of 

the junction, i.e., so that the velocity-dependent friction term in the 

phenomenological equation of motion for 0 is reproduced. The commutator 

relation between the charge operator q and the phase operator 0 is 

[ q , 0 ] = -i2e . (2.10) 

U sing this formalism, after a terrible labor Caldeira and Leggett 

showed that the zero temperature tunneling rate r MQT is approximately given 

by the expression 

rMQT = 3q~ exp(-7.2:~ (1 + O.87/Q)). (T=O) (2.11) 

with the quantum prefactor aq = ~ 1201t(7.2~U/ti<Op), barrier height ~U, 

junction plasma frequency COp, and quality factor Q. This expression holds 

for low damping, Q > 5. In the region of interest for the experiment 
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described here, with Q == 1, analytic expressions are not easily available, and 

one resorts to the numerical results given by Grabert et ai. (39,40). 

There are two very interesting effects described by Eq. (2.11). One is 

the well-known effect of quantum tunneling; in the limit of a dissipation-free 

system (Q = 00), one obtains the WKB expression for the tunneling rate (2). 

The observation of a simple quantum effect, such as tunneling, in the phase 

variable of a Josephson junction is truly remarkable. One can believe that 

any classical variable, including as it does here the charge on an electrical 

device, should in some limit behave quantum mechanically. In other words, 

there is no reason that quantum mechanics should only describe the behavior 

of the position and momentum of particles such as electrons or atoms. 

The other fascinating result of the calculation of Caldeira and Leggett 

(3) is that one fmds that dissipative systems have smaller tunneling rates than 

non-dissipative ones; smaller values of Q lead to lower tunneling rates. This 

is often said to imply that the wave function of a particle in a dissipative 

environment becomes less spread out. This result therefore may shed some 

light, although only in a very vague way, on some of the fundamental 

questions relating to measurement theory in quantum mechanics: If one 

assumes that the measurement apparatus is extremely dissipative, then it will 

behave classically, and the measurement process is then a classical one. 

The crossover between quantum tunneling and thermal activation 

occurs at the temperature Ter, which is given in terms of the plasma 

frequency COp by 

(2.12) 
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where a = 1/2Q. Well above this temperature, the escape from the zero

voltage state occurs primarily through thermal activation, and as one reduces 

the temperature towards Ter the quantum effects become more noticeable. 

Below T cr the escape is dominated by tunneling effects, with temperature 

dependence at low T given by 

In (r(T)tr(O)) oc 1'2 . (2.13) 

Several authors report measurements of the temperature dependence 

of the tunneling rate (12, 13, 14, 15, 17,41). 

The work described here has been reported elsewhere (42). In the 

next section I discuss the experimental details, and the results are described in 

a later section. 

i" 
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CHAPTER 3 

Macroscopic Quantum Tunneling: 

Experimental Design 

In this chapter I describe the experimental setup used to measure the 

MQT escape rate. The design philosophy was to use a junction and a junction 

mount which could be simply characterized in terms of the resistively

shunted-junction (RSJ) model, so that the classical and quantum predictions 

given in the previous chapter could be applied with confidence. 

23 
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3.1 Junction Environment 

Junction Mount 

The experimental setup used for the MQT measurements has been 

extensively described elsewhere (41). The junction mount was designed so 

that the impedance, from the point of view of the junction connected to it, 

would be that of a resistor with an impedance of about 200 n, but the mount 

would include dissipative elements which would absorb high-frequency 

signals, and therefore eliminate reflections from the ends of the mount. 

These. two design aims were met by putting the junction on the end of a 

coaxial line, with a Cu tube forming the outer conductor and a Nb wire 

forming the center conductor. The space between the Cu and the Nb wire 

was filled with a mixture of Stycast 2850 epoxy and fme Cu powder (50 JlIIl 

diameter). The Cu powder in the coaxial line serves as a microwave 

attenuator: The large surface area of the individual Cu grains acts to absorb 

signals, but a native oxide on the grain surface isolates one grain from the 

other. The Cu powder begins absorbing microwave signals above about 0.2 

GHz, and absorbs signals up to at least 12 GHz. The Stycast epoxy ensures 

that the Cu powder is in thermal equilibrium with the dilution refrigerator. 

This mount assembly had a reasonably flat electrical impedance, equal 

to about 200 n above 1 GHz with no obvious resonances, and a signal 

attenuation of about 10 dB above 1 GHz. The design therefore met the dual 

purpose described above. In order to couple weak microwave signals into 

the junction, a microwave injection line was capacitively coupled to the Nb 

center conductor, placed about half-way along the length of the Cu rod. This 

coupling gave about 60 dB of attenuation, and therefore provided a current

bias microwave signal. 
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Microwave Filters 

In order to attenuate signals at frequencies below 1 GHz, where the 

junction mount is transparent to spurious signals, standard RC filters with a 3 

dB point at about 1 MHz were also used. This standard type of filter however 

only works below about 1 GHz. Additional filtering above 1 GHz was 

provided by assemblies consisting of wire spirals potted in Cu powder and 

Stycast epoxy. These microwave filters, in addition to the RC filters, were 

placed in series with the junction mount. A set of filters was placed in the 

liquid 4He bath, and another set bolted to the mixing chamber. The combined 

filter stages gave a total attenuation of about 200 dB above 100 MHz. A 

schematic wiring diagram is shown in Fig. 3.1. A separate set of filters was 

built for use on a 4.2 K cryostat for resonant activation measurements. 

Switching Electronics 

The electronics used to measure the switching distribution of the 

junction has been described elsewhere (41). The method worked as follows: 

The current to the junction was provided by a voltage ramp, and the current 

was measured with a custom-built differential amplifier connected across a 

bias resistor. A schematic for the amplifier is shown in Appendix C. The 

current ramp was passed into the refrigerator cryostat, through the RF and 

microwave filters~ and then through the junction. The refrigerator was used 

as the electrical ground for the current return and the voltage signals. The 

junction voltage was amplified by a Brookdeal 5004 low-noise preamplifier, 

and in turn by a PAR 113 amplifier. When the junction switched to the 

voltage state, the voltage was detected by the trigger of a custom-built 12-bit 

A-to-D converter, causing the A-to-D converter to digitize the value of the 
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FIGURE 3.1 . Schematic of the wiring used for the MQT measurements. 
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current passing through the junction at that moment. The digitized value of 

current was then sent along a set of optical fibers to an LSI-11 computer, 

where the data was stored in a histogram and subsequently manipulated. The 

.. voltage signal from the junction was also used to shut off the current ramp 

biasing the junction; this was done in order to prevent excessive heating of 

the junction and its mount once the junction was in the voltage state (see 

below). Following this, another current ramp would begin for another 

escape rate measurement. 

The data taken with this set-up consisted therefore of a histogram of 

switching events as a function of bias current, taken at a fixed refrigerator 

temperature. An example of such a histogram is shown in Fig. 3.2. 

The current ramp, the A-to-D converter and all the amplifiers were 

powered by 12 V car batteries and placed inside a screened room with the 

dilution refrigerator. The computer was placed outside the screened room 

with plastic optical fibers linking it to the A-to-D converter. There was 

therefore no explicit shared ground between the computer and the other 

electronics. A schematic is shown in Fig. 3.3. 

Data Manipulation 

The method of calculating the escape rate dependence on bias current 

from the histogram of switching events has been described elsewhere (10). 

Given a histogram with N (In) switching events at a bias current In, the escape 

rate r(ln) is given by 

(3.1) 
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where dl/dt is the current ramp rate and M is the histogram bin width; bin 1 

is the bin at the highest value of bias current. A plot of the switching rate as 

calculated from the histogram of Fig. 3.2 is shown in Fig. 3.4. Switching 

distribution histograms typically had 1 ()4 events, and statistical checks on the 

distributions were used to ensure proper operation of the setup. Because of 

junction heating problems (see below), up to 0.5 seconds was allowed to 

elapse after switching off the junction bias current and before beginning 

another current ramp. A histogram therefore could take over an hour to 

accumulate. Care had to be taken to keep the refrigerator temperature stable 

over this period of time. 

Dilution Refrigerator 

The dilution refrigerator used in this experiment consisted of an 

Oxford Model 75 dilution unit, capable of reaching temperatures below 20 

mK, and a homemade insert and gas handling system (the latter was built by 

John Schmidt-and Mark Ferrari). Peripheral to the refrigerator were the 4He 

1 K pot system, a thermometry rack, and a vacuum system for the 

refrigerator vacuum can. 

The dilution refrigerator had a circulation rate of about 60 Jlnloles/sec 

of 90% 3He/4He when it was operating at its base temperature of 18 mK. The 

cooling power was about 1 J.L W at 25 mK. The principal difficulty with this 

refrigerator was that the needle valve which regulated the flow of liquid 4He 

into the 1 K pot would become clogged after about 10 days of operation, and 

the flow rate would become increasingly difficult to regulate after that. We 

made several attempts to solve this problem, but as of this writing the 

problem remained. 
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FIGURE 3.2 Histogram of number of switching events Nevents as a function 
of bias current I, taken at a temperature T = 202 mK. 
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FIGURE 3.4 {In(r0p/21tr(I))}213 as a function of bias current I, calculated 
from the histogram of Fig. 3.2 using Eq. (3.1). The refrigerator 
temperature is T = 202 mK. The straight line intercept on the current axis at 
24.876 JlA is the first-order determination of the critical current 10. 
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Thermometry 

The thennometry on the refrigerator included a set of roughly 

calibrated carbon resistors on the 1 K pot, the still, the plate and the mixing 

chamber, and two more carefully calibrated resistors on the sample mount: a 

Ge resistance thennometer (Lakeshore), which was calibrated from 300 K to 

about 60 mK, and a carbon resistor (made by Matsushita Co.) calibrated 

from 300 K to 18 mK. The Ge resistor and the other carbon resistors on the 

refrigerator were monitored with a Lakeshore conductance bridge. The 

Matsushita resistor was monitored with a homemade resistance bridge, which 

was also capable of regulating the refrigerator temperature to within about 

0.5 mK by feedback heating of a metal film resistor on the mixing chamber. 

The Ge resistance thennometer was calibrated using data taken by 

Fred Wellstood (43): A dc SQUID was used to measure the current noise 

generated in a 71 mn resistor, and the magnitude of this noise used to 

calibrate the Ge thennometer, whose resistance was measured 

simultaneously. The carbon resistor was prepared by grinding down a 100 

n Matsushita resistor to a thickness of about 500 J.l.Il1 and clamping it in a Cu 

mount. The ground-down resistor had a room-temperature resistance of 220 

n, which rose to about 60 kn at 18 mK. It was calibrated against the Ge 

thennometer above 70 mK, and calibrated from 20 mK to 60 mK using a 

6OCo nuclear orientation thennometer. The 6OCo thennometer is an absolute 

thennometer, and the method of use is described by Lounasmaa (44). A 

piece of ferromagnetic single crystal Co (provided by Prof. N .E. Phillips of 

the Chemistry Department) was attached to the mixing chamber, and the rate 

of "(-ray emission from the 6OCo nuclei was measured along the magnetic 

crystal axis. The radiation pattern is temperature-dependent, and the ratio of 

the emission rate at the unknown temperature to the rate at some temperature 
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higher than 60 mK (I used 120 mK) gives one an absolute temperature 

calibration. The higher temperature need not be known with any precision. 

Measurements at a number of points between 18 mK and 60 mK gave a 

resistance calibration accurate to about 0.5 mK. 

4.2 K Measurements 

The resonant activation experiments and precise I -V measurements 

were carried out in a 4.2 K cryostat. A mechanical pump was used to reduce 

the temperature down to 1.2 K, and the bath pressure used as a thermometer. 

The junction remained on the mount described above, and was not disturbed 

between measurements at 4.2 K and measurements on the dilution 

refrigerator. A different set of RF and microwave filters from that on the 

refrigerator was used, but tests of these filters indicated they had over 100 dB 

of attenuation above 100 MHz, easily adequate for measurements down to 1.2 

K. The microwave source used for the resonant activation measurements 

consisted of a set of backward wave oscillators (Hewlett-Packard Co.) which 

together covered the span of frequencies from 1 to 12 GHz. The microwave 

signals were coupled through the capacitive injection point on the junction 

mount. The same A-to-D converter and computer were used for the 

measurements at 4.2 K as for the measurements on the refrigerator, with 

equal care to avoid grounding problems. 
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3.2 Junction Fabrication 

The junctions used for this experiment were fabricated on 5.08 cm 

diameter, <100> orientation Si wafers, 0.35-0.5 mm thick. The Si was p

type, with a room-temperature resistivity of 1 to 5 Q-em. The Si acted as a 

substrate for the junction fabrication, and a 1000 nm Si02 layer was 

thermally grown on the Si surface to provide electrical isolation. I describe 

first some of the basic steps followed in the fabrication procedure, and then 

discuss the detailed fabrication sequence used to produce a complete, 

resistively-shunted, junction. 

Basic Fabrication Procedures 

1. Wafer cleaning: The wafers were soaked in detergent (RBS-35 

detergent from the Pierce Chemical Co.) for 20 minutes and rinsed with 

deionized (DI) water. 

2. Photoresist coating: The wafers were heated briefly in a 70°C oven 

to drive off residual water vapor, and were then exposed to vapor saturated 

with hexamethyl disilazane (HMDS, from the Merck Chemical Co.), a 

photoresist adhesion promoter, for 5 minutes. They were then placed on a 

photoresist spinner, and one of two resist solutions was placed on the surface 

of the wafer. For etch patterns I used Shipley 1450J resist spun at 5000 rpm 

for 30 seconds, and for liftoff patterns I used Shipley 1400-31 spun at 6000 

rpm for 30 seconds. The wafers were then placed on a hotplate for 5 

minutes, either at 70°C for the 1450J resist or at 90°C for the 1400-31 resist. 

The resist then typically had a thickness of 1.2 to 1.5 J.Ull. If the resist was 

intended for a liftoff pattern, a good undercut on the pattern edges was 

desired, and this was accomplished by soaking the baked wafers in a 18-20°C 

/I 
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chlorobenzene bath for 10 minutes, followed by a second 5 minute bake on a 

90°C hotplate. 

3. Pattern definition: The baked wafers were placed on the exposure 

system (a 4x reduction Canon FPA-141 mask aligner), and exposed with the 

mask pattern. The exposure pattern consisted of nine 11 mm x 11 mm dies, 

which were independently aligned. For liftoff patterns I used an exposure 

setting of 4.9 and an f-stop of 1.4, while for etch patterns I used an exposure 

of 5.6. The exposed pattern was developed out in Microposit Developer 

Concentrate (Shipley Co.), either full strength with a 10-15 second 

immersion for the liftoff patterns, or diluted 1: 1 with water and a 50 second 

immersion for the etch patterns. The wafer was rinsed with DI water and 

. checked under an optical microscope. 

4. Evaporations: materials were evaporated in a Varian 3118 

evaporator, which consisted of an oil diffusion pump backed by a mechanical 

pump, both of which had LN2 cold traps at the inputs. Base pressure was 

about 7xlQ-7 Torr, attainable after about 1 hour of pumping. All the 

materials were evaporated by resistive heating of a W boat (or in the case of 

SiO, a Woven), with deposited thickness measured with a quartz crystal 

resonator. The boats were purchased from R.D. Mathis Co., and the crystals 

and crystal monitors were from the Kurt J. Lesker Co. Nb is a refractory 

metal and was deposited by magnetron sputtering (see below). Liftoff of 

undesired material was accomplished by soaking the wafer in acetone until all 

the resist was gone, followed by a second acetone soak for 5 minutes. 

Etching is described below. 
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Detailed Junction Fabrication 

1. Resistor fabrication: the wafers were cleaned, photoresist processed 

for liftoff, and placed in the evaporator. The resistors for this experiment 

were to be about IOn, and this value of resistance was easily fabricated using 

a CuAu alloy (25 wt. % Cu). A measured quantity of Cu and Au (13 pellets of 

10 mesh Cu shot, and a 1/4" length of 1/16" diameter Au wire) was placed in 

a W boat, and the wafers were placed face down on a holder attached to the 

top plate of the evaporator. The spacing from the wafer to the boat was about 

30 cm, with an intervening shutter that was manually controlled with a 

rotating feedthrough in the top plate. In order to ensure that the resistor 

material would adhere to the wafer, a Cr layer was evaporated first from a W 

boat. The Cr and CuAu were evaporated after a 20 minute pumpdown, the 

Cr at a rate of about 0.2 nm/sec for a total thickness of 2-3 nm, and the CuAu 

at a rate of about 1 nm/sec for a total thickness of about 35 nm. This was 

followed by a liftoff. The deposited material had a resistivity of about 4 n 
per square, and the lithography pattern was designed so that the resistor value 

could be chosen at fabrication time. 

2. Nb base electrode fabrication: The wafers were cleaned, and placed 

in a homemade sputter system which consisted of an oil diffusion pump 

backed by a mechanical pump. The diffusion pump had a cold trap at the 

inlet, and the mechanical pump had a molecular sieve trap. The base pressure 

was about lxlQ-6 Torr. The top plate of the stainless steel chamber had a 

magnetron sputter gun with an annular target (made by Sloan) mounted in 

the center, and the wafer sat in a shuttered compartment about 4 cm below 

the Nb sputter target. After a 20 minute pumpdown, Ar gas was bled in at a 

pressure of about 5 to 10 mTorr, and a plasma ignited using a 360 V DC 

,. 
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voltage bias across the sputter gun anode and cathode. Once ignited, the 

plasma typically drew about 4 A. After a 2 minute presputter, the shutter 

was opened abruptly and sputtering continued for 20 seconds, at which point 

the voltage bias was shut off. This procedure resulted in a 200 nm thick Nb 

layer, with a superconducting transition temperature of about 9 K. The Nb

coated wafer was then coated with photoresist and patterned for an etch 

process. Etching was done in a plasma barrel reactor, using an SF602 plasma 

driven by a 180 W RF source, at an SF602 pressure of about 0.4 Torr. 

3. SiO deposition: The wafers were cleaned, and photoresist 

processing was done for a liftoff. The SiO was evaporated in the Varian 

evaporator, with the same geometry as for the CuAu evaporations. The SiO 

was purchased from the R.D. Mathis Co., and a few small chunks were placed 

in a W evaporation oven (also from R.D. Mathis). A 2-3 nm thick layer of 

Cr was evaporated first to promote adhesion. Typical SiO deposition rates 

were about 1 nm/sec with a total thickness of 200 nm. 

4. Junction oxidation and Pbln top electrode deposition: The wafers 

were cleaned and patterned for a liftoff. As the oxidation step was 

notoriously unreliable, the wafers at this point were diced up into the nine 11 

mm x 11 mm chips for individual processing (each chip had a single shunted 

junction and an unshunted junction, the latter used for checking junction 

quality). The dicing was done by hand-scribing the wafer using a diamond

tipped scribe, and breaking the wafer across the edge of a glass slide. The 

wafers had been patterned so that the chip edges were aligned with the Si 

crystal axes. This choice of pattern alignment allows this crude dicing 

method to work. 
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A single patterned chip was placed under an Ion Tech ion mill gun, 

which was mounted on a top plate for the Varian 3118 evaporator. The chip 

would be ion milled to remove the native oxide layer on the Nb base 

electrode, which would otherwise be too thick for Josephson tunneling. 

After a 20 minute pumpdown, the gun was turned on in an Ar pressure of 

about 10 mTorr, with a 300 V bias and a current density of about 0.5 

mNcm2• The chip was ion milled for 40 seconds, and the ion gun was then 

turned off. The system was bled to atmospheric pressure with dry N2, and the 

chip was removed to the oxidationlPbIn mount, which consisted of a large 

anode plate bolted to an evaporator top plate, used with the 3118 evaporator. 

A W evaporation boat with Pb wire and a small quantity of In wire (5 wt. % 

In) had been previously placed in the evaporator, and the system was again 

pumped out. This step was done as rapidly as possible, as exposing the now 

clean Nb base electrode to air causes the Nb to form a oxide layer of 

uncontrollable thickness and quality. 

After pumping for 20 minutes, the junction was oxidized by bleeding 

in an Ar-02 mixture (10% 02) at a pressure of about 7 mTorr. A plasma 

was ignited in the chamber using a Hartley oscillator operating at 7 MHz, 

with amplification provided by an RCA 813 vacuum tube. The oxide 

thickness was controlled by varying the oxidation time, with typical 

oxidation times of 40-50 seconds. Finally the Pb-In mixture was evaporated 

to completion, giving a top electrode of about 200 nm thickness with a 

superconducting transition temperature of about 8 K. 

Junction layout 

The pattern layout of the junctions was designed to give some user 

flexibility in choosing the junction area (with base electrode width of either 5 
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or 10 J1lIl) and in resistor value (anything from 2 to 20 squares). The CuAu 

. resistor was ground-planed by the PbIn top electrode. The SiO layer 

provided electrical isolation between the PbIn groundplane and the CuAu 

resistor. A schematic layout is shown in Fig. 3.5. Typical junction 

parameters were junction critical current Io of 10-30 JlA, junction shunt 

resistance R of 5 to 20 n, and junction capacitance C of 5 to 10 pF. Lead 

connections were made using blobs of In dabbed onto 1 mm2 Nb pads on the 

chip periphery. 

In the process of developing this experiment, several junctions were 

made and run through various parts of the measurement. However, all the 

results presented in the next chapter are for a single, shunted junction. 
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10 J.1m 

1. CuAu resistor with 1 nun 2 cooling 
rm, 30 run thick. 

100 J.1m 

3. SiO insulation layer, 200 
run thick. 

5. Junction assembly 

2. Nb base electrode, 200 run 
thick. 

40 J.1m 

10 J.1m 

4. PbIn top electrode, 150 run 
thick. 
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Imm 

6. Chip layout, showing contact 
pads and cooling fm. 

FIGURE 3.5 Junction fabrication steps for the resistively shunted junction. 
A detailed description is given in the text. 
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,- CHAPTER 4 

Macroscopic Quantum Tunneling: 

Measurements 

In this chapter I describe the various measurements of the junction 

parameters, give the results of those measurements, and then present the data 

from measurements of the switching rate of the phase variable from the zero

voltage state. These data cover a range from the highest temperatures, where 

the classical theory of thermal activation applies, to the lowest temperatures, 

where quantum tunneling was observed to occur. 

41 
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4.1 Measurement of Junction Parameters 

In this section I summarize the results of the various parameter 

measurements performed on the junction, both in the 4.2 K cryostat and on 

the dilution refrigerator. 

Escape Temperature 

Measurements of the switching distribution of the junction from the 

zero-voltage state to the voltage state at a temperature T are parameterized 

by the escape temperature T esc, defmed by the relation 

(4.1) 

where r(T) is the measured escape rate. In the limit of high temperatures T, 

the escape temperature Tesc is approximately equal to T (the relation is only 

approximate because of the classical prefactor act appearing in Eq. (2.5), 

which is not equal to unity). For the junction described here, it is found that 

at high T, Tesc = 0.985 T. As one, reduces the temperature T below the 

crossover temperature Ter (see Chapter 2), the escape temperature flattens 

and approaches a non-zero limit at T = o. 

Critical Current 10 

Measurement of the critical current 10 of the junction is performed by 

measuring the escape rate r at high temperatures T » T cr. Measurements 

of the dependence of the escape rate on the bias current I allow the extraction 

of the critical current. From Eq. (2.5) and (2.6), we see that a plot of 
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{In[ COp(n/27tr(I)] } 2{3 as a function of 1 should be a straight line, with slope 

proportional to T esc, and with intercept on the current axis at 1 == 10 (the 

equality would be exact if Clcl = 1). An example of this measurement in shown 

in Fig. 4.1. The graphically determined critical current 10(1) is corrected for 

the actual prefactor Clc{' yielding the current 10(2); quantum corrections can 

then be applied to yield the current 10(3). A tabulation of these values as a 

function of temperature appears in Table 4.1. In this experiment, the 

classically determined critical current 10(2) was used to interpret the lower 

temperature switching data, so that no assumptions concerning the quantum 

state would be used. The critical current of the junction was found to depend 

weakly on temperature for T > 1 K, and below 1 K was independent of T. 

The value of the critical current 10 was determined to be 

24.873 ± 0.004 JlA below 1 K, obtained by averaging the values of 10(2) 

for the four highest temperatures appearing in Table 4.1. For temperatures 

below 300 mK the quantum corrections were deemed too large to be 

ignored. Above 1 K, where the critical current was needed tQ interpret the 

resonant activation data, 10 was measured prior to each resonant activation 

measurement. 

Capacitance C 

The value of the capacitance of the junction was determined by the 

position of the peak in the resonant activation experiment. Such a 

measurement at 4.2 K is shown in Fig. 4.2. The analytic function given in 

Devoret et al. (35) is plotted as the solid line in that figure. The fitting 

parameters A. = 5 and c = 3.2 used to give the solid line (see the reference p. 

70) correspond to a value of Q = 2.5. The position of the resonant activation 

peak at 9.0 GHz corresponds to a c~pacitance of 4.0 pF, giving a resistance 

.. 
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Temperature 10(1) 10(2) 10(3) cr 
(mK) (gA) (IlA) (!LA) (IlA ) 
830 24.895 24.880 24.882 0.012 
627 24.900 24.887 24.890 0.010 
453 24.882 24.871 24.875 0.007 
333 24.877 24.867 24.872 0.006 
267 24.870 24.861 24.867 0.004 
202 24.876 24.868 24.876 0.003 
158 24.868 24.861 24.871 0.002 
126 24.869 24.862 24.874 0.002 
104 24.867 24.861 24.875 0.002 
93 24.864 24.858 24.873 0.002 
82 24.859 24.853 24.870 0.002 

TABLE 4.1. Measured critical current, as extracted from the escape rate , 
measurements. The first column is the dilution refrigerator temperature, as 
measured with the carbon resistor thermometer. The second column, 10(1), 
is the value of critical current obtained using a classical prefactor act = 1; the 
column 10(2) is obtaine~ using the correct classical prefactor, and the column 
10(3) is obtained using the prefactor including quantum corrections. cr is the 
standard deviation in the measurement. 
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FIGURE 4.2 Resonant activation of current-biased Josephson junction. The 
data (solid dots) show the logarithm of the ratio of the escape rate with 
microwave power r(p) to that without microwave power r(O), plotted as a 
function of microwave frequency 0/21C. The theoretical curve (solid line) is 
calculated from Devoret et aI. (35) 
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R = IOn. Several resonant activation measurements were performed, at 

different values of critical current and temperature. From these 

measurements, the capacitance of the jWlction was detennined to be 

C = 4.28 ± 0.34 pF for a nominal junction area of 50 Jlm2. This value is 

in good agreement with that expected for Nb oxide, where the measured ratio 

of oxide thickness t to oxide dielectric constant e is tie = 0.1 nm (45). 

Resistance R 

The resistance R of a shunted junction can be detennined in two ways: 

from the current-voltage characteristic, or from the width of the resonance 

peak in the resonant activation experiment. The former measurement was 

done in a 4.2 K cryostat, using carefully calibrated current and voltage 

amplifiers and tracing the I-V characteristic on an X-Y recorder. The I-V is 

shown in Fig. 4.3. The value of R measured from the slope of the I-V for 

large I gives the result R = 9.3 ± 0.1 n. The resonant activation 

measurement gives a value that is much less precise than this value, as there 

are large uncertainties in the theory for junctions with low quality factor Q. 
/ 

Fitting the shape of the resonance for frequencies above the resonance 

frequency COres gave the result R = 14 ± 9 n, in reasonable agreement with the 

1-V measurement. It is important that the activation experiment be 

performed, as it has been shown that for unshunted junctions with resistances 

larger than about 100 n (this is the resistance below the superconducting gap 

voltage 2t:Je!), the leads are the principal dissipative mechanism at the 

plasma frequency. The junction mount used in this experiment was shown to 

have an effective shunting resistance of about 200 n (41), well above the net 

shunt resistance of 9.3 n, so this should not be a problem. 
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FIGURE 4.3 Current-voltage characteristic measured at 4.2 K. The critical 
current is reduced from its T = 0 value of Io = 24.9 /lA, but the resistive shunt 
has the temperature-independent value of R = 9.3 n. The shunt resistance 
was measured from the I-V characteristic. 
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A summary of the values detennined from these measurements is 

given in Table 4.2. 

Heating Effects 

Measurements of the escape rate at the lowest dilution refrigerator 

temperatures indicated that heating in the shunt resistor was a serious 

problem. Heat is dissipated in the resistor once the junction switches into the 

free-running state, where a finite voltage appears across the junction. After 

resetting the junction to the zero-voltage state, the resistor will begin cooling, 

but the cooling rate was found to be excessively long. An experiment was 

devised to measure the cooling rate of the resistor. The junction would be 

switched into the voltage state for 20 /ls, in order to heat up the resistor, 

following which the junction would be reset to the zero-voltage state and an 

escape rate measurement would be perfonned a time 'tcoollater, where 'tcool 

varied from 20 J..Ls to 1 ms following the initial pulse. I present the data in 

Fig. 4.4 as the excess escape temperature, defined as Texcess = Tesc(with heat 

pulse) - Tesc(no heat pulse), plotted against the cooling time 'tcool. The escape 

t~mpeniture with no heat pulse was measured with 1 second elapsing between 

escape events. It was found that for a refrigerator temperature of 20 mK, 

Texcess as measured 40 JlS after the heat pulse would be about 90 mK, and even 

1 ms after the heat pulse the excess temperature would still be about 20 mK. 

This was detennined to be a hot-electron effect: the electrons in the shunt are 

in poor thennal equilibrium with the phonons, and non-equilibrium heating 

of the electron gas leads to a long thennal time constant for the small volume 

of the shunt resistor. The coupling between the electrons and phonons 

follows the equation (43, 44) 
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10 
A 

24.873 
±O.004 

Q 

1.77 
±O.07 

Tesc 
(meas.) 

46±2 
45±2 

Tesc 
(pred.) 

45±2 
43±2 

Table 4.2 Junction parameters and the measured and predicted values of 
T esc at a refrigerator temperature of T = 18 mK, as well as the extrapolated 
values of T esc at T = 0, from the experiment and theory. I is the bias current 
at which COp, Q and T esc were evaluated. 
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(4.2) 

where the power P per volume V of electron gas heats the electrons to a 

temperature Te for a phonon temperature T ph. 1: is a constant involving the 

electron-phonon coupling constant, and for Cu has been evaluated to be 1: = 

2xl09 W/m3-K5. 

The time dependence of the electron gas temperature Te(t) can be 

estimated using Eq. (4.2). Using the low-temperature formula for the 

electron heat capacity Qe = "ffe2 (46), and assuming the only power loss is 

through electron-phonon interactions, we fmd that the electron temperature 

should follow the equation 

(4.3) 

With the assumption thatTe » Tph, I drop Tph in Eq. (4.3) and solve to fmd 

(4.4) 

The value Texcess = Te(t) - Tph is plotted in Fig. 4.4 as a solid line, using the 

value of 1: above and the value of'Y for Cu (as the value for the CuAu alloy is 

not known). The phonon temperature,was Tph = 25 mK. The comparison 

with the cooling curve for the shunt resistor without a cooling fm is fairly 

good; considering the lack of knowledge of the parameters, the agreement is 

perhaps fortuitous. 

51 
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FIGURE 4.4 Excess escape temperature Texcess vs cooling time 'tcool. A heat 
pulse was applied by putting the junction in the voltage state for 20 J.1S. After 
resetting the junction to the zero voltage state at tcool = 0, T esc was measured 
with a delay 'tcool. The excess escape temperature is defmed as T excess = 
T esc ( with heat pulse) - T esc(no heat pulse). The refrigerator temperature was 
about 25 mK. The open circles are for a shunt resistor with no cooling fm, 
the solid circles with a cooling fm; the solid line is the prediction of Eq. (4.4). 
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In order to solve this heating problem, a large 1 mm2 cooling fin was 

attached to the shunt resistor, thus increasing the volume of the electron gas 

without significantly changing the resistor value. Bare Si wafers were also 

used, instead of the wafers with the insulating 1000 nm-thick Si02layer. The 

heat pulse measurement described above showed that 40 J.lS following the 

initial pulse, the electron gas heated to an excess temperature of 60 mK, and 

cooled in 1 ms to an excess temperature of 9 mK, significantly better than 

without the cooling fm (see Fig. 4.4). Note that the cooling fm makes the 

cooling a non-equilibrium process, and Eq. (4.4) would not be expected to 

apply. 

Measurements of the switching distribution at the lowest refrigerator 

temperatures were done with a 300 ms intetval between escape events, even 

using the cooling fm, in order to ensure that heating was not a problem. 
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4.2 Results 

The results of the measurement of the escape temperature T esc as a 

function of T are shown in Fig. 4.5. Note that the value of bias current, at 

which the junction switches most often, changes with temperature; the 

barrier height ~u is not the same at all points in the plot. It is clearly seen 

that for T» Tcr the data follow the classical prediction quite closely, while 

as the temperature is reduced to below Tcr the escape temperature flattens and 

approaches a zero-temperature limit. The theoretical curve for T > Tcr is 

calculated from Eq. (11) of Grabert and Weiss (6), while for T < T cr the 

numerical expressions of .Grabert, Olschowski and Weiss are used (39, 40). 

The theoretical and experimental curves are in good agreement over the 

entire range of experimental temperatures. In Figs. 4.6 and 4.7 I show the 

detailed behavior of the escape temperature above and below T cr. The data in 

Fig. 4.6 are seen to follow a 1'2 dependence quite well, over a wide range of 

temperatures, but the measured slope is seen to be about 30% smaller than the 

prediction. The data are always seen to be within a factor of two of the 

theoretical data. Note that if I vary the junction parameters used to obtain the 

predicted curve, the theoretical prediction shifts uniformly with little change 

in slope; in other words, the slope of the 1'2 dependence is roughly 

independent of the junction parameters, while the magnitude is quite sensitive 

to those parameters. 

In order to test the behavior of the junction above the crossover 

temperature Tcr, the enhancement of the escape temperature over the actual 

temperature is shown in Fig. 4.7. The data are seen to be in excellent 

agreement with the predictions of the classical theory including quantum 

corrections, and diverges strongly from the purely classical theory with no 

... 

• 
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" corrections. At T = Tcr the quantum corrections have increased Tcr to a value 

40% larger than the thennal value. 

The intent of this experiment was to observe quantum tunneling in a 

Josephson junction, and by using a low-Q junction observe the effect of 

dissipation on the quantum tunneling rate. It is clearly seen that both of these 

effects have been observed: for temperature down to the crossover 

temperature Ter, the quantum corrections are clearly necessary to explain the 

data, and for measurements of the escape ·rate at the lowest temperatures the 

observed rates are far higher than can be explained with the classical theory. 

It can furthennore be seen from Fig. 4.6 that the measured escape rate, 

extrapolated to T = 0, is a factor of 300 smaller than the rate expected for an 

identical junction with infmite shunt resistance (Q = 00), in good agreement 

with the theory. This shows the strong effect of the fmite value of the 

dissipative element on the quantum tunneling rate . 
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FIGURE 4.5 Escape temperature T esc as a function of refrigerator 
temperature T. At high temperatures the data follow the classical prediction 
Tesc = 0.985 T, while at low temperatures the data flatten out due to quantum 
tunneling. Vertical error bars indicate uncertainty in the junction 
parameters, and the horizontal error bars indicate systematic uncertainty in 
the temperature calibration. The solid curve is the prediction of theory, with 
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parameters. The inset shows the junction configuration. The crossover 
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FIGURE 4.6 Low-temperature dependence of r on 1'2 for bias current I = 24.710 JlA. The dots show the 
experimental results, and the solid curve is the theoretical prediction, with vertical error bars from 
uncertainty in the junction parameters. Horizontal error bars indicate uncertainty in the temperature 
calibration. The dashed line is a least-squares fit to the data below 30' mK. The escape rate for the 
infinite-Q system is indicated, as is the crossover temperature T cr. 
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CHAPTER 5 

Small Tunnel Junctions: 

Introduction 

In this chapter I introduce the basic ideas behind the small tunnel 

junction experiments, and describe the experimental design for the small 

junction experiments. 

59 
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5.1 Small Tunnel Junctions - Introduction to Theory 

From the discussion of the theory of macroscopic quantum tunneling 

in Chapter 2, the classical equation of motion for the phase variable in a 

resistively-shunted Josephson junction results in a Hamiltonian for the system 

given by 

.Q: ~ 
H = 2C + 21t (cos 0 - s) + Hres , (5.1) 

where Q is the charge on the junction capacitance C, 10 is the junction critical 

current, 0 is the phase difference of the superconducting wave functions on 

opposite sides of the junction, s = IIIo is the bias tilt, and Hres is the 

Hamiltonian describing the shunt resistance. The term which describes the 

transfer of single electrons (quasielectrons) across the junction has been left 

out of this expression, and 1 shall write this term as HT. For the 

considerations of MQT, this term is negligible. 

The variables Q and 0 can be treated as quantum variables, as discussed 

earlier. In a classical Josephson junction, the capacitance C is large enough 

that the charging energy Eo = e2/2C is much smaller than the Josephson 

coupling energy EJ = Io<l>0/21t, i.e. EQ« EJ. The charging energy is also 

much less than the thennal energy, EQ« kBT. The quantum behavior of the 

junction can then only be seen when one attempts to localize the phase 

variable over a very small range, ~o« 21t. In this limit, one can observe 

quantum tunneling of the junction from the zero-voltage state to the voltage 

state. In order to make the quantum behavior of the junction more obvious, 

one has to increase the charging energy EQ with respect to EJ and kB T. In 

'. 
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other words, one has to decrease the junction capacitance. The behavior of 

junctions with Eo > EJ and EQ > kB T was investigated by several theorists 

(19), but the experimental situation remains unclear. 

A much simpler situation results when one simply sets the critical 

current of the junction to zero, which is achieved experimentally by applying 

a magnetic field strong enough to drive the junction into the normal state. 

This case was investigated by several authors (20). In this case the 

Hamiltonian simplifies to 

H = ~ + HT + Hres . (5.2) 

The term HT giving the single electron transfer is usually written as 

(5.3) 

where Mkq is the transfer matrix element, Ckcr is the electron destruction 

operator for one junction electrode, and H.C. stands for Hermitian conjugate. 

The sum is over both electron spins 0' and all wavevectors k and q in both 

electrodes. 

If I ignore the single-electron transfer term and the resistor 

Hamiltonian, the Hamiltonian of Eq. (5.2) is just that of a particle with 

momentum proportional to Q, moving in free space. The energy-momentum 

relation is E = Q2/2C, the charging energy of a capacitor. If I now introduce 

the term HT, assuming it is a small perturbation, I can calculate the transition 

rate of the system from an initial state with charge Q to a fmal state with 

charge Qie, as these are the states coupled by HT. A somewhat ad hoc 
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approach is needed at this point; the flnite capacitance of the junction causes 

an electron to lose energy as it traverses the junction barrier. This energy 

loss is not included in the expression ofEq. (5.3); see however the discussion 

in Chapter 7. As an electron moves across the junction barrier, the charging 

energy changes by ~E = Einitial- Efinal = Q2/2C - (Q±e)2/2C = e(±2Q

e)/2C. This energy is given up by the tunneling electron. Note that 1 am 

using an electron charge of -e, i.e. e is a positive number. If 1 start with 

Q > 0, and assume the right side of the junction is at the higher voltage, an 

electron transferring from the left side of the junction, i.e. the side with 

higher electron energy, will cause Q to become Q-e, and the electron will 

give up energy ~E = e(2Q-e )/2C. If ° < Q < e/2, then ~E < 0, and the 

electron has to gain energy in traversing the barrier. At T = 0, this is not 

possible, and the transfer rate is zero. If Q > e/2, the electron loses energy 

during transfer, and the transfer rate is non-zero. 

In order to estimate the total transfer rate, 1 use the standard 

semiconductor tunneling model (47). The zero-temperature current-voltage 

characteristic is then as sketched in Fig. 5.1. The current 1 is related to the 

transfer rate r by 1 = er, and the voltage to the charge by V = Q/C. 

The main features of the I-V of Fig. 5.1 are that there is a range of 

voltages (-e/2C < V < e/2C) where no tunneling occurs, so that 1 = 0, and on 

either side of that region the current increases linearly with voltage: 

1=0 (-e/2C < V < e/2C) 

(5.4) 
1 

= RT (V±e/2C) (IVI > e/2C) , 

.. 
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where I have used RT as the junction tunneling resistance. The region of zero 

current is known as the "Coulomb blockade" region. 

It is at this point unclear how the small capacitance tunnel junction is 

related to the discussion of MQT; the lack of a phase variable makes the two 

problems seem unrelated. However, this is now in the extreme limit of a 

"quantum" Josephson junction: in a classical junction, the phase 0 is 

extremely well-defmed, ~o« 21t, and the charge Q uncertain, ~Q» e. 

Here the limit is where the charge Q is more precisely known, ~Q« e, and I 

can defme the phase variable 0 as 

0= 11~ J Q dt . (5.5) 

This defmition is identical to the equation relating charge and phase in a 

Josephson junction, with the replacement of 2e bye. For the normal 

junction, the Hamiltonian does not involve the phase, and the phase value is 

therefore completely uncertain. The connection between this extreme limit 

and that of MQT will become more clear later (see Chapter 7). 

All the discussion thus far is for temperature T = O. At any rmite 

temperature the Fermi distribution of each electrode will become smeared, 

with the electrons having a range of energies ~E == kaT about the Fermi 

level J.!p. Clearly the Coulomb charging energy Eo = e2/2C must satisfy kaT 

«Eo for the Coulomb blockade of Fig. 5.1 to be clearly visible. With 

present lithographic techniques one is able to fabricate junctions with areas of 

order O.OiJlIl12 and corresponding capacitances of order 1 iF. The inequality 

Eo» kaT is then satisfied for T« 1 K, implying that these small junction 

experiments must be performed using a dilution refrigerator. 
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I 

-e/2C 

e/2C v 

FIGURE 5.1 Current-voltage characteristic predicted from the simple small 
junction theory, for a voltage bias at T = O. The voltage region between -
e/2C and +e(2C is known as the Coulomb blockade region. 



5.2 Design Considerations 

The simple theory outlined in the previous section assumes that the 

impedance of the envirorunent of the small tunnel junction is infmite. The 

charging energy only includes the capacitance C of the junction itself, and 

during the tunneling process the charge Q on the junction is fixed, other than 

the change in Q due to the tunneling electron itself. In reality, however, the 

leads that are attached to either junction electrode will necessarily introduce 

large stray capacitances, and will unavoidably present a high-frequency 

impedance of 1 Q2 to 103 O. As discussed in Chapter 1, the effect of the large 

stray capacitance and small impedance present~d by the external leads is 

thought to strongly affect the small junctions. This is probably the 

explanation for the behavior seen in multiple and single junction 

experiments; see Chapter 7. 

In order to minimize the effect of the stray capacitance and the low 

impedance leads, I designed the layout of the junctions to include thin-film 

resistors on the chip. In the ideal case, an infmite resistance at all relevant 

frequencies inserted between the small junction and the rest of the circuit will 

isolate the junction, as it then takes an infmite amount of time to resupply the 

junction with charge from the external leads: for a lumped lead resistance R, 

it takes a time RC to recharge the junction capacitance C. In the absence of 

readily available infinite resistance leads, theoretical calculations indicate 

that a shunt resistor must be larger than the quantum of resistance RQ = 
h/2e2 = 6.45 kO for the electrons to be well-localized on either side of the 

junction (20). The leads must therefore have at least 6.45 kO of resistance. 

The first design attempt for the resistive leads used the same CuAu 

alloy as was used for the shunt resistor in the MQT experiment, with a 
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resistivity p of 12 Jl!l-cm. In order to get a DC resistance of about 10 RQ, a 

meander pattern was designed, where considerations of the capacitive 

coupling between each leg of the meander implied that the resistance would 

only begin to short out above about 1011 Hz, sufficiently higher than the RC 

junction recharging time of about 1010 Hz. It was only later that I recognized 

the importance of the self-capacitance of each lead, i.e. the capacitance to 

ground at infmity, and how it would act to short out the resistor at a much 

lower frequency than the much smaller inter-lead capacitance. A discussion 

of the question of self-capacitance, and how to calculate the capacitance for 

the types of structures described here, is given in Appendix A. Following 

this realization, I developed a new lead layout which consisted of straight 

lines for each lead (see Chapter 6), and with the advice of John Martinis, 

switched to a NiCr alloy, with a resistivity of about 120 Jln-cm. 

The impedance the straight line leads present to the junction can be 

modeled fairly easily. A piece of metal has a self-capacitance CL, a self

inductance LL and a resistance RL, all of which can be calculated from 

geometric considerations. In general, the resistance RL is 

(5.6) 

where A is the lead length and A the cross-sectional area. The self

capacitance CL for an Si02 substrate is approximately given by (see Appendix 

A) 

CL = (9.8 fF/mm) A (5.7) 

and the self-inductance by (48) 

.. 
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LL = (1 nH/mm) A . (5.8) 

These distributed elements fonn a resistive transmission line, and the 

resulting frequency dependent impedance can be calculated (see Appendix 

B). The basic result is that the low-frequency impedance is Z = RL, for 

frequencies ro < l/RLCL. The high-frequency impedance is 

Z = V RrlroCL (1-0 for frequencies ro > l/RLCL. The capacitance CL is 

fixed for a given lead length A, and the high-frequency impedance scales as 

VRL. One would therefore want to maximize the lead resistance, which is 

done by using a high resistivity material and by using as small a cross

sectional area as possible. 

The difficulty one encounters when reducing the cross-section of the 

leads is that the hot-electron effects become very important. As discussed 

earlier (see Chapter 4), the electrons in the resistor will lose thennal contact 

with the phonons, and the dissipation of power P in the resistive leads will 

heat the electrons to a temperature Te above the phonon temperature T ph, 

given by 

(5.9) 

where A is the cross-sectional area and A the length of the resistor. Given a 

power dissipation P == PRL for a current I, I find that 

(5.10) 

67 



68 Chapter 5 Small Tunnel functions: Introduction 

This result is plotted in Fig. 5.2 as a function of bias current I, for both the 

CuAu and NiCr materials in different geometries. Clearly the resistivity 

should be minimized and the cross-sectional area A maximized to reduce the 

electron heating, in direct conflict with the need for high impedances at high 

frequencies. The design I used, with a 30 om thickness and a 2 J.lIlllinewidth, 

for both the CuAu and NiCr materials, will show heating for currents in 

excess of about 1 nA. If I consider just the first 4.5 rom of each lead (the 

straight segment leading out from the junction), the leads will look like 

resistors for frequencies co up to about 2.5GHz for the CuAu alloy and about 

170 MHz for the NiCr. The CuAu will have shorted out to the 

superconducting quantum of resistance of 6.45 kn at a frequency of about 

4.4 GHz, and the NiCr at a frequency of about 30 GHz. 

\ 
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FIGURE 5.2 Calculated dependence cjf resistor temperature T on DC bias 
current I, for different resistive lead configurations and materials. The 
calculations assume a phonon temperature T ph = 20 mK. 
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CHAPTER 6 

Small Tunnel Junctions: 

Fabrication and Sample Mount 

In this chapter I describe the method of small junction and resistor 

fabrication, as well as the junction mount and wiring on the dilution 

refrigerator. 



6.1 Sample Fabrication 

Fabrication of the samples used in this experiment involved a 

combination of optical and scanning electron microscope (SEM) lithography. 

Optical lithography was done in the Microfabrication Laboratory in Cory 

Hall, and the SEM exposures were perfonned using a ETEC Autoscan SEM, 

located in 144 B Cory Hall. 

All the samples were made on Si wafers 5.08 cm in diameter, either 

<100> or <111> orientation, 0.35-0.5 mm thick, with resistivities of order 

1-10 Q-cm. Each wafer had a 1000 run thick Si02 insulating layer grown on 

one face; this face was used as the substrate for the series of metal 

evaporations which defmed the tunnel junction and the leads attached to it. 

I present a standard recipe for the optical lithography which was used 

to pattern the leads and contact pads, and a recipe for the SEM lithography 

which was used to pattern the tunnel junctions. 

Optical Lithography 

All the patterning on the wafers was done using liftoff of evaporated 

metal layers which overlay a patterned photoresist layer. I used one fixed 

recipe for the photoresist patterning, which is the recipe described in Chapter 

3. 

~EM Lithography 

The SEM lithography would only have been possible with the use of 

the ETEC Autoscan, for which hardware and software for lithographic 

applications had previously been developed. I am most grateful to David 

Chin and Prof. T. van Duzer of the EECS Department for allowing me to use 
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this SEM, and to David Chin and Dan Courtney of Perkin-Elmer for helping 

out when the SEM had technical problems. I would also like to thank Tom 

Holm of KTI Chemicals for donating the resists I used for lithography. 

The recipe I give here has not been carefully optimized. The 

minimum standard linewidth I was able to achieve was about 100-150 nm; the 

smallest linewidth I observed was 60 nm. It is conceivable that a careful 

optimization of the recipe parameters could reduce this by a factor of 2 or 

more. All processing at this point was done on single 11 mm x 11 mm chips, 

as that was the largest sample that could be fit into the SEM chamber. The 

recipe was adapted from published methods (49,50) 

1. Spin on the bottom layer of resist, which consisted of 9 wt. % 

poly(methylmethacrylate-methacrylic acid) dissolved in 2-ethoxy-ethanol 

(more easily referred to as 9% P(MMA-MAA) in Cellosolve). A spin speed 

of 3000 rpm for 30 seconds gave a baked film thickness of 400 nm. 

2. Bake the chips in a 150°C oven for 1 hour. 

3. Spin on the top layer of resist, which was 2 wt. % 

poly(methylmethacrylate) (PMMA) in chlorobenzene. A spin speed of 3000 

rpm gave a baked film thickness of 100 nm. 

4. Bake a second time at 150°C for 1 hour. 

5. Expose the chips on the SEM (see below). 

6. Develop the chips in a Cellosolve-methanol mixture for 6 seconds, 

and then rinse the chip in methanol. Blow dry with compressed gas. The best 

mixture ratio appeared to be 1 part Cello solve (also called 2-ethoxy-ethanol) 

to 2 parts methanol. 

The linewidth was fairly sensitive to the exposure parameters: The 

chip was placed about 8 mm below the fmal aperture (the z-axis vernier was 

set at 6.6 mm). I used a magnification of x400, an accelerating voltage of 20 
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kV, and a condenser current of at least 3.0 A. The condenser current was set 

so that the beam current hitting the Faraday cup on the chip mount was 1.0 

pA. I believe the collection efficiency of this cup was 10-20%, so the actual 

beam current was probably 5-10 pA. The SEM was carefully focussed on the 

surface of the resist just before exposure; this was done by putting a drop of 

methanol, which had submicron-sized Ag particles suspended in it, on the 

chip surface, and focussing carefully on the Ag particles left behind after the 

methanol evaporated. 

The LSI-II (from Digital Equipment Corp.) that controlled the SEM 

divided the x- and y-axes into 4096 grid points, each axis numbered from 0 to 

4095 with (0,0) in the lower left comer. Lines were drawn with the SEM by . 

directing the beam to hit a series of chosen grid points for a fixed length of 

time (a version of Missile Command!). The best exposures I was able to get 

were achieved by drawing two rectangles, one wit!I its upper left comer at 

(x,y) = (0,2000) and lower right at (2000,1999), and the other with upper 

left at (2014,2000), lower right at (4096,1999). Each rectangle consisted of 

two adjacent rows of points, where on each row every other point was 

exposed, and the optimal exposure time was usually 2.5-3.0 ms. In terms of 

the parameters used by the LSI-II software, I was using the values given in 

Table 6.1. In addition to these lines, I would draw large square rectangles at 

the extreme right and left to make contact between the Al that made up the 

junction and the leads. 

The developed pattern consisted of the two rectangles, as drawn, 

appearing in the top resist layer, separated from one another by a bridge 

about 200 run in width, and a larger rectangle in the more sensitive lower 

resist layer, about 600-700 run wide, which undercut the bridge (see Fig. 

6.1). 
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Rectangle 
1 
2 

(xs,ys) 
(0,2000) 

( 4096,2000) 

(xe,ye) d 
(2000,2000) 30 
(2014,2000) 30 

t 
2 
2 

n 
2 
2 

f 
1 
1 

dir. 
right 
left 

TABLE 6.1 Parameters for the SEM exposures which defmed the small 
junctions. The coordinates (xs,ys) defme the start point, (xe,ye) the end 
point, d the exposure dose (number of time intervals to expose a point), t the 
time unit (2 means 1()-4 sec.), n the number of points to jump along a line (2 
means expose every other point), and f the number of lines to skip in an 
exposure frame (1 means draw on every line). Dir is the direction to tum at 
the end of a line. 

". 
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Evaporations 

Metal evaporations consisted of evaporations of Au, CuAu alloy, 

NiCr alloy, and AI. 

Au evaporations were done by placing a length of 0.99 purity Au wire 

in a W boat, and evaporating 30-40 run" of Au at a rate of 

about 0.1 nm/sec, as measured by a quartz crystal monitor. A Cr underlayer 

2-3 run thick was evaporated first to ensure adhesion of the Au layer. 

CuAu alloy (25wt. % Cu), the material used for the MQT shunt 

resistors, was evaporated to a thickness of 30 run, as described in Chapter 4. 

As for the Au films, a Cr underlayer 2-3 run thick was evaporated before the 

CuAu alloy. These films had a resistance of about 4 il per square, or a 

resistivity of about 12 f.lil-cm. 

The NiCr films were made by wrapping a length of NiCr wire around 

a 3-stranded-wire W basket. The wire evaporated where it touched the 

basket, and the basket had to glow white-hot to get a reasonable evaporation 

rate. Film thicknesses were about 20-25 run, and the film resistance was 

about 60 il per square, corresponding to a resistivity of 120 J.l!l-cm. 

Al evaporations were done by placing lengths of 0.9999 purity Al 

wire in two 3-stranded-wire W baskets. A W boat was also filled with 

0.99999 purity Cu shot. A Cu layer about 5 run thick was evaporated first to 

ensure good electrical contact between the Al and the Au contact pads at the 

end of the resistive leads. Without this layer the AI-Au contacts tended to . 

increase in resistance over a period of a few hours. The evaporation was 

done at an angle that ensured that the evaporated Cu would not be anywhere 

near the junction area itself. The first Al layer was evaporated with a film 

thicknesses of about 40 run, with a substrate angle of about 300 to the boat, 

and with a somewhat high evaporation rate of about 10 nm/sec. This rate 
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~----- 60 Jlffi----~ 

Pattern in bottom resist layer 

_ Pattern in top resist layer 

2nd \. 
evaporation" 

Resist 
bridge 

\ 

/rst 
/ evaporation 

t 
8 Jlm 

FIGURE 6.1 (a) Pattern developed out in the top (PMMA) and bottom 
(P(MMA-MAA)) electron beam resists for the shadowed junction 
evaporations. The bottom layer is more sensitive and therefore develops out 
further than the top layer. (b) Schematic of the angled evaporation technique 
used to form the junction. 
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was used to prevent the Al from oxidizing before it reached the substrate. 

This layer of Al was oxidized in about 0.5 Torr of 30% 02iAr for 10 

minutes. The substrate was then tilted in the opposite direction to make an 

angle of about 30° to the second W basket, and another 40 nm thick Al film 

was evaporated on the substrate. The Al was lifted off in boiling acetone. 

The junction was formed from the overlap of the Al rectangles from the two 

evaporations; the precise angles determined the area of the junction (see Fig. 

6.1). The typical junction areas were about 0.02 Jlm2, and the contacts to the 

Au pads at the other end of the Alleads were about 10 Jlffi2 in area. 

Sample Design 

The central idea in the design of the resistive leads was to reduce stray 

capacitance and to maximize the impedance of the leads to as high a 

frequency as possible (ideally up to at least 1010 Hz). In the flrst chip design, 

it was recognized that the DC lead resistance had to be at least of order 100 

k!l (so that RL == 10RQ), but the relatively low resistivity of the CuAu alloy 

forced a design which included a large number of meanders on each lead to 

. reach this value. Each meander would capacitively couple across itself, so 

the spacing and length of each meander was chosen so that this coupling 

would begin to roll the impedance off only above 1010 Hz. The self

capacitance of the leads was ignored. Thus the first design involved two 2 Jlffi 

wide lines coming straight out of each end of the Al leads to the junction, 

extending 4.5 rnm to near the edge of the chip, and then moving in a 2 Jlffi 

linewidth meander around the perimeter of the chip to the four 0.5 mm x 0.5 

rnm contact pads (see Fig. 6.2). 

It was later discovered that the self-capacitance of the 2 Jlffi leads was 

sufflcient to effectively short out all but the first few millimeters of the leads 
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above about lOS Hz (see Appendix A). The meanders were therefore not 

providing any significant resistance above that frequency, and thus could be 

eliminated. Furthermore, I developed techniques for making higher 

resistivity alloys which obviated the need for the meanders. Thus in the 

second chip design the meanders were replaced by straight lines to the contact 

pads (see Fig 6.3), which greatly reduced the horror of having to make 

unbroken 2 J.Ul1 wide lines 120 cm in length. 

The large contact pads on the edges of the chip were made of 40 nm 

thick Au films. Adjacent pads were connected to each other by a 100 J.U1l

wide Au strip, which protected the junctions from static charge buildup. 

Small 4 J.Ull x 6 J.Ull Au contact pads were also placed at the end of each lead 

closest to the junction. These pads provided a consistent contact surface for 

the AI. 

The Al junctions themselves were relatively simple. The SEM pattern 

and evaporation technique are described above. Contacts to each of the four 

4 J.Ull x 6 J.lffi Au pads provided a nearly four-point measurement (only 

nearly because two 30 J.Ull-long Al leads led from the contact pads to the 

junction itself; see Fig. 6.3). 
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FIGURE 6.2 Layout of meander pattern for CuAu alloy resistors. The 
meander line width, spacing and length are indicated in the figure. Each of 
the resistive leads included such meanders, after a 4.5 nun-long straight 
segment leading out from the junction. The total length of each lead was 120 
mm. 
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4.5 nun II Au 

II Resistor t 
60 J.Un 

t D Al 

FIGURE 6.3 Full layout for the small junction measurements, used for the 
NiCr leads. The CuAu leads had meanders after the first 4.5 nun leading out 
from the junction. The connections between the leads at the chip edge are Au 
shorting strips that were scribed through after the junction was mounted. 



6.2 Single Tunnel Junction Mount 

The mount used for the small junction experiments was designed with 

two aims: one was reduce the capacitive coupling between the resistive leads 

and any metal parts of the mount, and the other was to enable us to drive the 

Al junctions into the normal state. 

The mount I used for most of the measurements (two other mounts 

were made and discarded for different reasons) consisted of a Cu rod which 

screwed onto the mixing chamber of the dilution refrigerator. This rod had 

a face with screw holes to mount the Ge and carbon resistive thermometers, 

and another face to which a second Cu piece was bolted. This second Cu piece 

had a piece of G-l 0 fiberglass glued to it with Stycast 2850, and a glass slide 

was in tum glued to the fiberglass with the same epoxy. The junction rested 

on the glass slide and was at least 8 mm from any metal surfaces. The four 

current and voltage leads were attached to the junction chip with In blobs. 

Each lead passed in a tightly wound spiral through a block of 300 mesh 

stainless steel powder mixed with Stycast 2850 epoxy. This structure formed 

a microwave filter with at least 10 dB of attenuation above 1 GHz (see the 

discussion of the Cu powder filters in Chapter 3). The leads, junction and 

steel powder block were encased in a loosely fitting Cu box made of thin Cu 

sheet, meant to act as a radiation shield and Faraday cage. The two current 

and two voltage leads then went up the refrigerator as two twisted pairs of 75 

Jlm diameter manganin wire inside·a rigid CuNi tube. 

The Al junctions were driven into the normal state by using two Nd

Fe-B permanent magnets, 1/8" thick, one of which was 1/2" in diameter, the 

other 1/4" in diameter; these were purchased from the Edmund Scientific Co. 

These magnets faced the chip surface from above and below, each 8 mm . 
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from the chip surface, and a cold-rolled steel yoke was placed around them to 

increase the field strength at the junction (cold-rolled steel has a large 

magnetic permeability). A sketch is shown in Fig. 6.4. Measurements with a 

Hall probe gave a field strength of 1100 Oe at the chip surface; bulk AI has a 

critical field of about 100 Oe, but the small dimensions of the junction 

electrodes increase the critical field to about 400-500 Oe (see e.g. van Duzer 

and Turner (51)). 

-, 
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Steel yoke 

... --Magnet 

............ Chip with junction 

FIGURE 6.4. Cold-rolled steel yoke with permanent Nd-Fe-B magnets used 
to drive the AI junction into the normal state. This drawing is two times 
actual size. 
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6.3 Dilution Refrigerator 

The dilution refrigerator I used for the small tunnel junction 

measurements was the same as the one used for the MQT experiments (see the 

description of the refrigerator and the thermometry in Chapter 3). 

However, the wiring on the refrigerator was changed to accommodate a 

single four-point measurement on the small junctions, as opposed to using the 

coaxial two-point measurement on the MQT junction. 

The wiring on the refrigerator for the small tunnel junction 

measurements consisted of two twisted pairs, one pair for the current bias 

and the other pair for voltage measurements, and a single coaxial lead for 

injection of radiofrequency signals. In blobs were used to attach the four 

current and voltage leadS to the sample. Each lead then passed through a steel 

powder-epoxy block (see section 6.2), which was attached to the sample 

mount. The four wires were then twisted into pairs, each pair running . 

through a 1/16" diameter CuNi tube. These tubes were thermally grounded 

at the mixing chamber, the plate and the still, before passing through 

feedthroughs in the vacuum can flange into the 4 K 4He bath. The four wires 

then passed through radiofrequency RC filters potted in stainless steel 

powder and epoxy, with a 3 dB rolloffpoint at 16 kHz. These filters were 

immersed in the 4He bath. Upon leaving the 4He dewar, each lead passed 

through a room-temperature EMI radiofrequency filter, with 120 dB 

attenuation above 100 MHz. A schematic is shown in Fig. 6.5. 

The radiofrequency coaxial line used for injecting microwave signals 

included three attenuators, a 6 dB attenuator just inside the 4He dewar flange, 

a 6 dB attenuator just above the vacuum flange (in liquid 4He), and a 20 dB 

attenuator bolted to the still. These attenuators, made by Narda, were 50 n 
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flat frequency response filters. This line was terminated by a weak capacitive 

coupling to the 1+ current lead on the sample mount. 

The dilution refrigerator was enclosed in a Cu-mesh screen room. 

The sample therefore was surrounded by five successive shields: the screened 

room, the 4He dewar (which was made of AI), the vacuum can (stainless 

steel), the still heat shield (Cu) and the Cu sheet box surrounding the sample 

mount. There was also a Jl-metal shield around the 4He dewar, with the 

option of adding a second Jl-metal shield. 
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FIGURE 6.5 Wiring schematic for dilution refrigerator. The four-point wiring scheme includes filters at 
three temperature stages for each lead. 
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6.4 Sample Measurement 

All of the measurements reported here consisted of low-frequency 

current-voltage measurements and differential resistance measurements, and 

were made while the sample was mounted on the dilution refrigerator. 

The sample measurements were carried out using the wiring 

schematic shown in Fig. 6.5. Typically a voltage source (either a mercury 

battery or a function generator) was connected in series with the junction 

leads, a 50 Mil current limiting resistor, and a 2 Mil resistor across which a 

PAR 113 amplifier was connected for measuring current. The current was 

also passed through a low-pass RC filter, with a rolloff frequency set between 

3 and 100Hz, before going through the set of filters built into the cables on 

the refrigerator (see the previous section). A second PAR 113 amplifier was 

connected across the voltage leads for voltage measurement. Both amplifiers 

had about 15 nV/...JHz intrinsic noise, and were set with a high ... frequency 

rolloff of 3 Hz to eliminate 60 Hz and vibrational noise. Current-voltage 

traces were recorded on a X-Y plotter. Both amplifiers were battery

powered, and the amplifierS, current-limiting resistors and filters were all 

placed inside a screened room with the dilution refrigerator. No line power 

was brought into the screen room when I performed measurements, and the 

line power for the X -Y recorder and the function generators was passed 

through a Filtron radiofrequency line filter. 

The derivative measurements, which were usually I vs. dV /dI traces, 

were performed by using a very low frequency sweep for the current 

(typically 1 to 3 mHz), and a low-frequency jitter current for the lock-in 

measurement (typically 15 to 20 Hz). Both signals were generated by 

function generators, as a hand-driven, battery-powered sweep proved to be 

87 



88 Chapter 6 Small Tunnel Junctions: Fabrication and Sample Mount 

too uneven. The jitter current was typically about 1 % of the full amplitude 

of the sweep current; for a 1 nA sweep, the jitter was about 10 pA peak-to

peak. The jitter was filtered out by the current-amplifying PAR 113, and the 

voltage amplifier was set with a high-frequency rolloff of 30 Hz. The 

voltage amplifier output was subsequently amplified and mixed down by a 

lock-in amplifier. Traces were again recorded on an X-Y plotter, and 

comparison with a current-voltage trace would be used to calibrate the 

differential resistance scale. 

The two largest sources of spurious noise were due to 60 Hz pickup 

and vibrational noise, presumably from wires moving relative to ground. 

The 60 Hz pickup was reduced to about 20 nV peak-to-peak across each pair 

of leads by very carefully isolating the screened room from all grounds 

(especially those through the gas handling system), except for the one ground 

through the measurement system. The BNC coaxial cables used for sample 

measurement were passed through the screen room with isolated-ground 

feedthroughs, and were only grounded at the one point where the current and 

voltage leads left the 4He dewar groundplane, which was common with the 

screen room ground. A Jl-metal shield was placed around the lower part of 

the refrigerator at the height of the sample. A second Jl-metal shield could 

either be placed concentric to the first shield, or placed around a platform 

which held the amplifiers and the current limiting resistors. This platform 

formed a small magnetic and electric screen room, internal to the Cu mesh 

screen room. 

Vibrational noise was a little more difficult to treat, as it varied from 

run to run. Generally the leads in the refrigerator were made stiff, and their 

motion restricted as much as possible. Some noise was picked up from 

screen-room motion, so I was careful not to disturb the frame of the screen 
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room when performing measurements. In general there were about 10 or 15 

peaks of vibrational noise in the range 1 Hz to 1 kHz, with the largest peaks 

about 10-20 nV peak-to-peak. 
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CHAPTER 7 

Small Tunnel Junctions: 

Results and Discussion 

In this chapter I present the results of the measurements on the small 

tunnel junctions. I then describe a theory involving the quantum Langevin 

equation that gives a somewhat phenomenological explanation for the data. 

Following that I present the more rigorous phase correlation theory, which 

appeared after this work was first reported~ and discuss its application to the 

experimental results. 



.. 

7.1 Experimental Results 

A number of small junctions were fabricated and measured on the 

dilution refrigerator; a summary is presented in Table 7.1. Measurements at 

20 mK of the current-voltage characteristics of two typical junctions, one 

with the CuAu leads (junction 5 in Table 7.1) and the other with the NiCr 

leads (junction 7 in Table 7.1), are shown in Fig. 7.1. The dotted lines show 

the expected zero-temperature current-voltage characteristic. It is clear that 

the Coulomb blockade is only barely visible in junction 5, while it is quite 

sharply defmed in junction 7. Fig. 7.2 shows the measured differential 

resistance traces. It is clear that one must apply about 100 nA of bias current 

to see the complete Coulomb blockade in junction 5, while for junction 7 one 

only needs to apply about 1 nA. The increased lead resistance for junction 7 

has clearly had a strong effect on the I-V characteristic, and proves the 

important effect the external impedance has on the behavior of these small 

junctions. 

In Fig. 7.3 I show the measured zero-bias resistance (ZBR) of a 

number of different junctions, as a function of the refrigerator temperature. 

The junctions with NiCr leads, shown by the solid symbols, all show a 

significantly higher resistance than the junctions with CuAu leads, shown by 

the open symbols. It is also clearly seen that the ZBR flattens out as the 

temperature is reduced, at a somewhat lower temperature for the junctions 

with the NiCr leads than for the junctions with CuAu leads . 

A number of attempts were made to explain the behavior of the ZBR as 

the temperature is lowered. The possibility that the flattening is due to 

spurious high-frequency noise (radio- or microwave-frequency noise) was 
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FIGURE 7.1 Current-voltage characteristics (solid lines) measured for two 
small junctions, at T = 20 mK. (a) Junction 5 with CuAu leads, with junction 
resistance RJ = 23 k.Q and capacitance CJ = 4 ± 1 fF. (b) Junction 7 with 
NiCr leads with junction resistance RJ = 29.4 kn and CJ = 5 ± 1 iF. The 
dotted lines show the predicted voltage-biased Coulomb blockade for each 
junction. 
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FIGURE 7.2 Measured differential resistance traces for (a) junction 5 and 
(b) junction 7. The traces are taken at a refrigerator temperature of T = 20 
mK; note the different current scales for (a) and (b). 
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FIGURE 7.3 Zero-bias resistance as a function of temperature, as measured 
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the junction resistance and capacitance, as measured from the current-voltage 
characteristic. The lines are guides for the eye. 
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R] ," C] ZBR RL Remarks 
Junction ~kn} ~fF} (kn} ~kn2 

1 6.0 3±O.5 6.9 132 CuAu lead, meander 
2 32.2 121 44 140 CuAu lead, meander 
3 lL3 3±1 14.8 162 CuAu lead, meander 
4 27 3 39.5 92 CuAu lead, meander 
5 23 4±1 34.3 150 CuAu lead, meander 
6 8.8 6.5±1 18.4 390 NiCr lead 
7 29.4 5±1 82 350 NiCr lead 
8 133 3±1 464 350 NiCr lead 
9 82 3.5±1 239 340 NiCr lead 

Notes: 
1. Only small Ibias tried, so C estimate probably large 

TABLE 7.1 Summary of the experimental results on the small tunnel 
junction measurements. R] is the tunneling resistance (measured at high bias), 
C] the junction capacitance inferred from the high-bias voltage offset, ZBR 
the zero-bias resistance at T = 20 mK, RL the resistance of one lead to the 
junction, and the remarks refer to the type of resistive lead used. 
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tested by adding and removing the noise filters on the current and voltage 

leads, at all three temperature stages (300 K, 4.2 K and 20 mK). This had no 

effect on the low-temperature limit of the ZBR. 

Another possibility is that the external circuit was still somehow 

loading the junctions. This was tested with one junction of each lead type by 

shorting out all but the first 4.5 mm of each lead with a layer of In (even 

more of the leads would have been shorted out, except that the leads cannot be 

shorted together, and they are only 4 JlIl1 apart over the remaining 4.5 mm 

section). This also had no effect on the ZBR; this implies that the external 

circuit has been effectively isolated by the resistors, and that only the first 

few millimeters, at most, of the resistors' length affects the junctions. 

As was mentioned earlier (see Chapter 5), there is the possibility of 

heating in the resistive leads, which could cause the flattening in the data. 

However, the design of the leads was intended to avoid such problems. The 

magnitude of the current jitter used for the lock-in measurement and the size 

of the spurious low-frequency noise do not provide enough power to cause 

heating at the level needed to explain the data; for a 1 nA sweep, the power 

dissipated by the jitter current at zero bias is about 10-17 W for junction 7. 

A fourth possibility is that heating in the junction itself is a significant 

problem. A crude test of this possibility was performed by removing the 

magnetic field applied to a small-resistance junction (junction 3 in Table 7.1), 

and measuring the reduction in the magnitude of the superconducting gap as 

the bias current was increased. The result·of this measurement is shown in 

Fig. 7.4. Extrapolation of this measurement to the power dissipated in the 

junction during a normal-state measurements indicates that heating should 

not be a problem. 
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Other possible explanations for the ZBR flattening at low temperatures 

are that spurious low-frequency noise is causing the flattening, or that the 

junctions have small enough resistance that quantum fluctuations in the 

junctions themselves are reducing the ZBR. This latter possibility is 

discussed in more detail below. I now however tum to a theoretical model 

that appears to reproduce the main features seen in the data. Subsequent to 

the formulation of this theory, other authors developed more sophisticated 

approaches which I examine in a later section . 
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FIGURE 7.4 Junction temperature as a function of dissipated power, as 
deduced from measurements of the reduction of the superconducting gap as a 
function of bias current. The refrigerator temperature was T = 20 mK; 
these data were taken for junction 3. 



7.2 Quantum Langevin Theory 

Let us first try to understand what goes on in the circuit shown in Fig. 

7.5. This circuit consists of a small tunnel junction with capacitance C] and 

tunnel resistance R], in series with an ideal resistor RL and a large stray 

capacitance Cstray. I assume that Cstray » C], and T = O. Let us place a 

charge Q on C]; what happens as the charge Q is varied? From the discussion 

of the isolated small junction, for a charge IQI < e/2 an electron must gain 

energy in order to tunnel across the junction barrier, and tunneling therefore 

only occurs for IQI > e/2. If the time an electron takes to tunnel across the 

junction barrier is 't (admittedly a rather vaguely defined quantity), and if the 

circuit time constant 'tRC = RLC] satisfies the equation 

'tRC »'t , (7.1) 

then on the scale of the tunneling time 't, the small junction in Fig. 7.5 acts as 

if it is isolated from the external circuit. As long as 'tRC» 't, the junction 

should therefore allow electrons to tunnel only for IQI > e/2, and for IQI < 

e/2 no tunneling should occur. 

How difficult is it to achieve the inequality of Eq. (7.1)? If I take the 

standard time 't ::::: 10-15 s (52) and a capaCitance C] = 10-15 F, then even for a 

resistance RL = 10 n I find 'tRC = 10-14 s, and the inequality is satisfied! Note 

however that if we apply the Heisenberg uncertainty relation ~~t > Ii, we 

fmd that for ~t = 10-14 s the charge on the capacitance CJ is uncertain by 

about 20 electrons. We therefore have to consider the effect of quantum 

mechanics on this system. 

99 
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estray 

FIGURE 7.5 Simple circuit schematic for a small tunnel junction connected 
through a large lead resistor RL to low-impedance coaxial lines (not shown) 
and a large stray capacitance Cstray. The junction tunnel resistance is Rj and 
the capacitance Cj. 

FIGURE 7.6 Circuit model for a small tunnel junction, including the lead 
resistance RL and lead inductance LL, and a large stray capacitance Cstray. The 
model includes the Johnson-Nyquist voltage noise source Vo from the lead 
resistor. The tunnel junction has tunnel resistance RJ and capacitance Cj. 

." 



Quantwn Langevin Theory 101 

The element missing in the discussion above is the voltage noise source 

V 0 associated with the lead resistor RL, which will have both thermal and 

quantum contributions to the behavior of the circuit. The more complete 

circuit is shown in Fig. 7.6; I have included the lead inductance LL for 

completeness. The voltage source V 0 drives current in the circuit loop, and 

causes the charge Q to fluctuate over times much longer than the tunneling 

time't. The classical equation of motion for the fluctuations q(t) of the 

charge Q is given by 

(7.2) 

This equation may be Fourier transformed and solved for the mean square 

fluctuation <q2(ro», in terms of the spectral distribution of the voltage noise, 

Sv(OO) = <V 0 2(00» : 

(7.3) 

Here I have defmed the frequencies roRC = l/RLCJ and roLC = lI...jLLCJ, and 

I have dropped the stray capacitance with the assumption Cstray » CJ. In 

order to explain the behavior of the zero-bias resistance at low temperatures, 

I use the spectral distribution of voltage noise given by the full J ohnson

Nyquist formula (53, 54); this is given by 

tiroRL 
Sv(OO) = 1t coth (tioo/2kBn (7.4) 
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This expression includes the standard low-frequency (liro « kB T) result 

Sv(ro) = 2kBTRL/1t, and at high frequencies includes the quantum 

fluctuations, Sv(ro) = IiroRU1t. Even at T = ° there are significant voltage 

fluctuations caused by the resistor. Using the Wiener-Khinchine theorem, I 

can write the instantaneous charge fluctuation <q2(t» in terms of the 

frequency-domain fluctuations, 

00 

<q2(t» = J <q2( ro» dro . (7.5) 

The integral in Eq. (7.5) may be performed analytically in two limits; at very 

high temperatures the result is the standard expression from equipartition of 

energy, <q2>/2C] = kBT/2. With the parameter a = roLC/roRC, I find in the 

limit of small T and for a < 2, 

<q2> _ 1i000c ~1t tan_l(~a_2-...;;;;.2_J) 
2CJ - 21t v4-a2l2 - a~4-(2)· 

(7.6) 

For very small a I get the simple result <q2>/2C = liillLd4, as expected for a 

simple harmonic oscillator with no dissipation. For a > 2 and small T I fmd 

(7.7) 

In the limit of very large RL I find that <q2>/2C = (liOORd1t) In a, which falls 

as l/RL and has only a logarithmic dependence on LL. In Fig. 7.7 I display 

the dependence of <q2>/e2 on RL for LL = 4.5 nH and CJ = 4.5 tF at T = 0, the 

• 
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inductance and capacitance being those that apply to the first 4.5 mm of the 

resistive leads in the experiment. In Fig. 7.8 I display the temperature 

dependence of <q2>/e2 for LL= 4.5 nH, C] = 4.5 iF and RL = 9.0 kn and 130 

kn, the latter being the resistance for the first 4.5 mm of the CuAu and NiCr 

leads, respectively. 

The value of <q2> is the spread of the distribution P(q), which 

describes the probability of having a charge fluctuation of size q on the small 

junction capacitance. In the discussion of section 5.1, I assumed the 

probability distribution to be P(q) = o(q). The spread in the possible values 

of q comes from both thermal and quantum fluctuations. In the limit of zero 

temperature, the probability distribution would be the square of the 

wavefunction, or probability amplitude, of the variable q. 

In order to accommodate the spread in the values of q in the calculation 

of the current-voltage characteristic~ I assume that the effective tunneling 

rate <r(Q» of electrons will be the tunneling rate r(Q) in the absence of 

fluctuations, convolved with the probability P(q) of a given size fluctuation· 

q. As the fluctuations are concentrated at frequencies much below lit, this 

seems a reasonable approximation. The resulting expression is 

00 

<r(Q» = J r(Q+q) P(q) dq . (7.8) 
-00 

An analytic expression for r(Q) is given by (55), 

e/2± Q -1 
r±(Q) = - eRIC] (exp( LlE±JkT) - 1) . (7.9) 
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FIGURE 7.7 Plot of the dependence of <q2>/e2 on RL for junction 
capacitance CJ = 4.5 iF, lead inductance LL = 4.5 nH and at T = 0, calculated 
using the quantum Langevin theory. 
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FIGURE 7.8 Plot of the temperature dependence of <q2>/e2, as calculated 
from the quantum Langevin theory, for both the CuAu and NiCr leads; see 
text for circuit parameters. 
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Here r+ is the rate for Q to go to Q+e, and similarly r- is the rate for Q to 

become Q-e. The calculations for tunneling rates are done independently for 

the two processes, although the same result is achieved using the defmition r 

= r+ - r-. The probability distribution P( q) is assumed to be Gaussian, 

chosen to have unit normalization and the correct mean square width: 

1 (92 
) P(q) = ...J21t<q2> exp - 2<q2> . (7.10) 

The convolution of Eq. (7.8) can be carried out analytically at T = O. The 

result is given by 

(7.11) 

In Fig. 7.9 I plot <r(Q» and r(Q) for <q2> = 0.65 e2 and 0.098 e2, the 

values for the CuAu and NiCr leads, at T = 0, to show the smearing of the 

Coulomb gap due to the uncertainty in the value of Q. Note that at large 

values of Q, the two rates are identical; the smearing only occurs for values 

of Q within ...j <q2> of ± e/2. 

From the discussion above, the main experimental features of the data 

can now be explained by this simple model. The smearing of the Coulomb 

gap at low bias voltages is caused by fluctuations in the leads, and the 

smearing becomes less apparent as the fluctuations are reduced in magnitude 

by increasing the value of the lead resistance, or by reducing the 

temperature. We furthermore see that the zero temperature limit of the 
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current-voltage characteristic can be explained by the inclusion of the zero

point quantum fluctuations in the leads. In order to make a more defmite 

comparison, I have to choose parameters for the simple circuit model I have 

used in this calculation. The quantum Langevin approach will unfortunately 

not work for the more complete resistive transmission line model of the 

leads. In order to make a somewhat reasonable approximation to the actual 

circuit, I choose to include only the first 4.5 mm of each lead, and use the 

calculated resistive transmission line elements in a lumped fashion as the 

elements 6f the model circuit used here. In other words, I choose the total 

inductance to be 4.5 nH, and the resistance to be 9 ill for the CuAu leads and 

130 kn for the NiCr leads. The junction capacitance was chosen from the 

high-bias limit of the Coulomb offset for the two junctions; according to the 

theory sketched out above, this should be correct even in the presence of 

fluctuations. 

One part of the experimental situation which I have thus far ignored is 

that the measurements reported here were done with a current bias, not a 

voltage bias. All the tunneling rates calculated here are for a fixed voltage 

bias. In order to calculate the current-biased average voltage, I carried out 

an approximate simulation of the junction behavior. The method is outlined 

in Appendix O. The idea is to approximate the stochastic tunneling of 

electrons by a periodic tunneling sequence, and use the circuit of Fig. 7.5 to 

calculate the time dependent voltage Vet). The average voltage is then 

calculated for each value of current bias Ibias, and the current Ibias swept 

over the, range of interest to give a full current-voltage characteristic. Note 

that at different values of current bias, the time-dependent voltage has a 

. characteristically different shape, as shown in Appendix 0, Fig. 0.3. At low 

values of bias current, the sawtooth pattern can in principle be locked into an 
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FIGURE 7.9 Comparison of the T = 0 tunneling rate r as predicted by the 
quantum Langevin theory, as a function of junction charge Q/e. The dotted 
curve is for the CuAu leads and the solid curve for the NiCr leads, with the 
circuit parameters given in the text. The dashed curve is the tunneling rate in 
the absence of fluctuations. The tunneling rate r is nonnalized to the high
bias tunneling rate RJCJ of the junction. 
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RF current signal and give locked current steps analogous to the Josephson ac 

effect (19). The time-averaged voltage <v> is much easier to measure than 

the time-dependent voltage. 

In Fig. 7.10 I plot the comparison of the theory at T = 0 and 

experimental data. The data for the CuAu leads are in reasonable agreement 

at low bias and less good agreement at high bias, while the data for the NiCr 

leads show reasonable agreement over the entire range of displayed bias 

currents. In Fig .. 7.11 I show the ZBR as a function of temperature, for both 

the theory and for the experiment. The general features of the data are 

clearly present in the theory, with the ZBR rising as the temperature is 

lowered, until below some temperature the data and theory flatten off. The 

experimental results are not reproduced exactly by the theory, but the 

general trends are clearly there. 

This theory is clearly a heuristic approach to the full problem of how 

the environment affects small tunnel junctions. It seems to reproduce the 

broad experimental features, and fitting the circuit parameters used in the 

theory (for instance the length of lead to include) could lead to a much better 

agreement. Rather than pursue this further, I now tum to a description of the 

more rigorous theories involving the phase correlation function, which are 

able to handle a more general impedance than that of the approximate RLC 

circuit, and also treat the motion of the phase variable in a rigorous fashion. 
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FIGURE 7.10 Comparison of the quantum Langevin theory with the 
experimental current-voltage characteristics; (a) is junction 5 with CuAu 
leads and (b) is junction 7 with NiCr leads. The solid dots are the quantum 
Langevin equation (QLE) predictions at T = 0, and the dashed line the 
predicted voltage-biased Coulomb blockade. 
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FIGURE 7.11 Zero-bias resistance predicted by the quantum Langevin 
theory compared with that measured experimentally. Symbols are as in Fig. 
7.3 
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7.3 Phase Correlation Theory 

Several authors have published different versions of an alternative 

theory to the quantum Langevin theory presented here (28, 56, 57). I will 

describe the version of the theory described by Devoret et al. (28). 

The fundamental idea behind the small junction theory presented in 

section 5.1 is that the Hamiltonian for the system can be written as 

.Q: 
H = 2C + HT + Hres , (7.12) 

where C is the junction capacitance, HT the tunnel Hamiltonian that describes 

single electron transfer, and Hres the model Hamiltonian for the external 

circuit. The term gi~ing the single electron transfer is usually written as 

HT = I, MkqCkes*Cqes + H.C., 
akq 

(7.13) 

where Mkq is the transfer matrix element and Ckes the destruction operator for 

electrons of spin (j on one electrode; the summations over k and q are o~er all 

wavevectors in both electrodes. In that section, the loss of energy of an 

electron tunneling across the junction was treated in a rather ad hoc fashion. 

Devoret et al. (28) recognized that this energy loss could be included by 

rewriting the expression for HT as 

HT= I, MkqCkes*Cqeseio + H.C. , 
akq 

where 0 is the phase variable conjugate to the charge operator Q: 

(7.14) 

. 
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5=ti~ f Q dt . (7.15) 

The phase exponent in Eq. (7.14) forces the inclusion of the charging energy 

in the tunneling process because of the commutator relation 

ei5 Q e-i5 = Q - e . (7.16) 

With this revised expression for the tunneling Hamiltonian, a calculation can 

be perfonned· to obtain the tunneling rate as a function of junction voltage. 

The calculation involves the phase correlation function J(t), given by 

J(t) = <[5(t) - 5(0)]5(0» , 

which can be calculated for a general circuit impedance Z( eo). At a 

temperature T, the phase correlation function is given by 

00 

(7.17) 

f deo ReZt(eo) ~tieo .. 
J(t)= co Ro {coth( 2 )[cos(eot)-I] - LSm(eot)}, (7.18) 

o 

where I use the inverse temperature ~ = Ilks T, the total impedance function 

Zt(eo) is given by Z(l(eo) = ieoC + Z-l(eo), and the nonnal-metal resistance 

quantum is RQ = h/2e2 = 12.91 kQ. Knowledge of the phase correlation 

function allows calculation of the probability peE) of an energy fluctuation 

of size E through the expression 
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00 

P(E) = 2~ti J dt exp(J(t) + iEt/li) . (7.19) 
-00 

Just as in the discussion of the quantum Langevin equation, the probability 

P(E) is assumed to be a &-function for a fluctuation-free environment. 

Given the actual probability distribution for a real environment, the 

tunneling rate r at a voltage V = QlC can be calculated from the expression 

00 

r(V) = _1_ J dE E l-exp(-aeV) P(eV-E) 
e2RJ l-exp( -~E) 

(7.20) 

-00 

for a junction with tunnel resistance RJ. This derivation assumes that 

quantum fluctuations in the junction itself can be neglected, i.e. that RJ is 

much larger than the resistance quantum RQ. This question is discussed 

below. 

The calculation of Eq. (7.20) gives the voltage-biased tunneling rate 

reV); just as for the case of the quantum Langevin equation discussed in 

section 7.3, we have to account for the actual biasing circuit used in the 

experiment. We have chosen to use the same approximate method described 

in Appendix D, using a fixed time ilt = e/lbias between tunneling events. 

However, we replace the simple RLC circuit of section 7.3 with the 

impedance Zt(c.o) of the actual biasing circuit (see Appendix D). 

We have applied this theory to the measurements on the small junctions 

reported earlier. The calculations involve the complete model for the 

resistive transmission line, using the parameters discussed earlier (see 

Chapter 5). The comparison of the measured I-V characteristics at T = 20 
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mK with the theoretical predictions at T = 20 mK are shown in Fig. 7.12 (a) 

and (b). In order to get better agreement for this figure, as well as for the 

differential resistance comparison, the temperature for the theory was 

increased to 38 mK for the CuAu leads and to 28 mK for the NiCr leads; this 

comparison is shown in Fig. 7.12 (c) and (d), and the differential resistance 

compared in Fig. 7.13. We see that for the junction with the CuAu leads the 

experiment and theory match well at low bias currents, seen in the I-V 

characteristic, but that at higher bias currents the predicted differential 

resistance is much sharper than that observed. The junction with the NiCr 

leads however matches much better, with only slight deviations seen in the I

V characteristic and in the differential resistance. The temperature 

dependence of the zero-bias resistance (ZBR) is compared in Fig. 7.14. We 

see that at high temperatures the ZBR from experiment and theory match 

quite well, but as the temperature is lowered the data flatten out while the 

theory continues to rise. As discussed earlier, several attempts were made to 

explain the experimental zero-bias behavior in tenns of spurious noise and 

heating, none of which were shown to have any effect on the measurements. 

As it stands, therefore, there is no good explanation for the discrepancy 

between the ZBR predicted by the theory and that observed in 'the 

experiment. 

There is a possible explanation, however, involving the quantum 

fluctuations in the junction itself. A paper by Brown and Simanek (58) 

discussed the effect of the junction tunnel resistance RJ on the ZBR at low 

temperatures. An experiment by Mooij's group (26) appears to confinn 

their calculation. The basic result of the theoretical calculation, which uses a 

fonnalism similar to to that of Devoret et al. (28), is that the zero-bias 

conductance Y (0) is given by 
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1 1t 
Y(O) = ltR J ro(x) dx, 

J 0 
(7.21) 

in terms of the phase correlation function ro(x), which is given by the self

consistent solution of the expression 

00 

In ro(x) =-a 
1t l-cos(nx) L 

1-cos(nx) . 

n4-ag(2/1t) fo ro(x) l-cos(x) dx 

(7.22) 

n=1 

with the constants a = e2/21t2CJkBT and g = RQ/2RN. In the limit g = 0, this 

may be solved analytically to give 

(7.23) 

This analytic solution is used as a starting point to calculate numerically a 

value ofro(X) for non-zero values of g, by iterating Eq .. (7.22). Equation 

(7.21) is then used to calculate the zero-bias resistance. Figure 7.15 shows the 

zero-bias resistance RO as a function of junction tunneling resistance R], for 

a fixed reduced temperature EQlkB T = 10. Also plotted is the interpolated 

value of R<Y'RJ for the junctions connected to the NiCr leads. The theory 

shows the same trend as the experiment, although agreement is by no means 

exact. It seems possible that a theory combining the effects of a fmite 

impedance environment with a fmite junction tunneling resistance might 

. agree more closely with the experiment. 
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FIGURE 7.12 (a) and (b). Comparison of the theory of Devoret etal. (28) 
with experimental current-voltage characteristics; (a) is junction 5 and (b) is 
junction 7. The theory, shown by the dashed lines, and the data, shown by 
solid lines, are at T = 20 mK. The calculations were perfonned with the 
resistive transmission line model, using calculated circuit parameters with no 
fitting. The voltage-biased Coulomb blockade is also shown. 
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FIGURE 7.12 (c) and (d). Comparison of the theory of Devoret et ale (28) 
with experimental current-voltage characteristics; (c) is junction 5 and (d) is 
junction 7. The data, shown by solid lines, are at T = 20 mK, and the theory 
is at the 38 mK for (c) and 28 mK for (d). The calculations were performed 
with the resistive transmission line model, using calculated circuit 
parameters with the temperature adjusted for better fit. The voltage-biased 
Coulomb blockade is also shown. 
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FIGURE 7.13 Comparison of the theory of Devoret et al. (28) with 
experimental differential resistance measurements; (a) is for junction 5 and 
(b) is for junction 7. The data (solid lines) are at T = 20 mK, while the theory 
(dashed lines) are at T = 38 mK for (a) and T = 28 mK for (b) .. 
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FIGURE 7.15 Zero-bias resistance Ro/RJ as a function of junction tunnel 
resistance RJ calculated using the theory of Brown and Simanek. The 
calculation was perfonned using the reduced temperatures EQlkB T = 7.5 and 
EQ,IkBT = 7.5. 
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CHAPTER 8 

Conclusions 

In this fmal chapter I summarize briefly the results for the MQT and 

small junction experiments, and try to show how the two experiments 

together illustrate a basic result of the effect of quantum mechanics on 

electrical circuits. 
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In the preceding chapters I have discussed the application of quantum 

mechanics to a rather unusual system: the description of a macroscopic 

variable, the phase variable of a superconducting junction and the charge on a . 

small capacitance tunnel junction. 

In the case of the phase variable, I discussed measurements of the 

escape of the phase variable from a local metastable potential minimum, 

either by thermal activation over the top of the potential barrier or by 

quantum tunneling through the barrier. The Josephson junction used in the 

measurement was shunted by an external metallic resistor with a resistance of 

9.3 Q, giving a quality factor for oscillations in the bottom of the well of 

Q = 1.7. This low value of Q was shown to reduce the zero-temperature 

quantum tunneling rate by a factor of 300 from the tunneling rate for a 

system with Q = 00, in very good agreement with the theoretical predictions. 

Furthermore, the temperature dependence of the escape rate, in the presence 

of this moderate dissipation, was shown to follow the predictions quite well 

from T = 0 to T » Ter, where the process of thermal activation is well 

described by completely classical equations. An important part of the 

measurements described here is that all the parameters of the junction (the 

critical current, the shunt resistance, and the junction capacitance), were 

measured in the classical limit by classical processes. No assumptions 

involving the quantum limit were necessary in analyzing the data. The 

results presented here therefore provide strong support both for the 

application of quantum mechanics to this rather unusual system, and for the 

model of Caldeira and Leggett for a dissipative element, a model which 

applies in both the classical and quantum limits. 

The theoretical and experimental investigations of the quantum 

behavior of the Josephson junction led historically to the investigation of the 
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"extreme quantum limit" reached in a Josephson junction when the junction 

capacitance C is reduced to the femtofarad (10-15 F) range. The phase of the 

junction, defmed in either the normal or superconducting state, becomes less 

sharply known. The conjugate variable to the phase, the charge on the 

junction, becomes much more sharply defmed. The description of the 

junction changes in a fashion analogous to that of an electron whose 

environment changes from a tight-binding potential to that of free space; 

momentum becomes a "better" dynamic variable than position. A simple 

theory, applicable to a normal junction, predicts the appearance of a infinite

resistance portion of the current-voltage characteristic for voltages between 

-e/2C and e/2C. The measurements made here, where different single small 

junctions were connected to leads including resistors designed to work at 

high frequencies, illustrated the need for the theory to include the external 

impedance presented by the junction environment. A simple theory using the 

quantum Langevin formalism was developed, which was in rough agreement 

with the measurements. The main points of the theory were to include the 

resistors in the description of the junction behavior, and to include both the 

thermal and quantum fluctuating currents driven through the small tunnel 

junction by the resistor voltage noise. 

Other theories were published after the measurements described here 

were reported. These more complete theories are however still limited to 

junctions with infinite tunnel resistance. Comparison of the predictions of 

these theories with the measurements show good agreement over the higher

current portions of the I-V characteristic, but poor agreement at low bias 

currents. The zero-bias resistance (ZBR) follows the predictions reasonably 

well at high temperatures, but at the lowest temperatures the data shown a 

flattening of the ZBR not seen in the theory. A possible resolution of this 
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difficulty is provided by the theory of Brown and Simanek, which describes 

the effects of fmite junction tunnel resistance on the junction ZBR. There 

remains a need for a theory which includes both the effects of fmite 

environment impedance and fmite junction tunnel resistance. It is also 

possible that the discrepancies are due to unanticipated experimental 

difficulties. 

The experiments on the shunted Josephson junction and the small

capacitance tunnel junctions together provide insight into the behavior of 

quantum-mechanical systems, which involve the effects of the external 

environment in an essential way. The experiments illustrate the possibility of 

applying quantum mechanics to any system for which a classical description 

exists. New phenomena, due to the quantized nature of the variables 

describing the system, may then be observable. 
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Appendix A - Capacitance Calculations 

The calculations of the capacitances involved in the small tunnel 

junction experiments, both the lumped capacitance associated with the 

junction overlap area itself, and the distributed capacitances of the leads to 

ground and to each other, are complicated by the question of which 

capacitances are important. I will pose a gedanken experiment to illustrate 

the difficulties involved. 

Let us take the simple case of two concentric spheres of radii r and R, 

with r < R. The capacitance for a single sphere of radius r is C = 41teor (in 

MKS units); this is the capacitance to the ground at infinity. If I add another 

sphere to the problem, I now have to deal with a capacitance matrix which 

relates the charge Qi to the voltage Vi on the ith sphere: 

(A.1) 

Note that CrR is always equal to CRr, by symmetry. All the elements in the 

capacitance matrix are easily calculated; the result is given by 

(
Co- CrR J .1§ (rR -rR J 
CRr CRR - R-r -rR R2 

(A.2) 

Note that in the limits R --? 00 and r --? 0 I recover the single sphere results 

for the diagonal elements Crr and CRR• 

The easiest way to think of the full capacitance matrix is to consider 

each sphere as being coupled by two lumped capacitances: The first to 

ground at infinity, and the second to the other sphere. The equivalent circuit 
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diagram is shown in Fig. A.I. The elements in the equivalent circuit are not 

simply the elements in the capacitance matrix. The relations are given by 

Cl = Cl1+C21 

C2 = --C 12 = --C21 

C3 = C22+CI2 

(A.3) 

In this case I fmd from the cap(\citance matrix that CI = O. This makes sense, 

as sphere R surrounds sphere r, and therefore screens it from the ground at 

infmity: Sphere r does not couple to ground. By a similar calculation I can 

extract C2 and C3. The results are that 

rR 
C2=41tEo -R -r 

(AA) 

It is amusing to see that in the limit r~R, if I defme d = R-r to be the sphere 

spacing and A = 41trR = 41tR2 be the area, I find C2 = eaA/d, the result for a 

parallel plate capacitor. In this case the result is exact, as there are no edge 

effects: I have connected all the edges of the parallel plate capacitor together. 

Armed with the intuition from this simple example, I am ready to 

study the problem of the small tunnel junction and its leads. In particular, I 

want to look at the capacitance matrix which involves the leads on opposite 

sides of the tunnel junction; the geometric estimate of the capacitance of the 

actual tunnel junction is assumed to be accurate. The geometry of the two 

leads is such that analytic calculations are intractable. I therefore wrote a 
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C 1 

CD I IHI' 

I
C2 

C 3 

CD IHI' 

FIGURE A.1 Circuit diagram used for capacitance calculation. The metallic 
elements 1 and 2 have capacitances to ground C1 and C3, respectively, and the 
capacitance between 1 and 2 is C2. 
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numerical program which iteratively calculated the charge distribution on 

any two sheets of a conducting medium. The scheme was to break the sheets 

up into small squares, assume a uniform voltage and charge distribution on 

each square, and let the charge flow between adjacent squares until the 

voltages of all the squares in one sheet were roughly equal. The charge on 

anyone square affects its own voltage through its self-capacitance, and the 

voltages of all the other squares through the mutual capacitive coupling. The 

capacitive coupling between two uniformly charged coplanar squares can be 

calculated analytically, as can the self-capacitance of a single square. 

In other words, the real system of two metal sheets was simulated by a 

two sets of square charged squares, each square connected to each of its 

neighbors by a resistor, and the charge is allowed to flow between squares 

until near-equilibrium was achieved (see Fig. A.2). As I am interested in the 

full capacitance matrix, and as the two metallic sheets were geometrically 

symmetric, one of the sheets would be grounded by connecting each charged 

square of that sheet to ground (at infmity) through a resistor. This would 

force the voltage of that sheet to equilibrate to zero. Two elements of the 

capacitance matrix can then be extracted. One diagonal element is the ratio 

of the total charge to the average voltage on the ungrounded sheet, and the 

off-diagonal element is the ratio of the total charge on the grounded sheet to 

the average voltage on the other sheet. The three circuit elements in the 

equivalent circuit of Fig. A.l can then be calculated using Eq. (A.3). In all 

the calculations the iterations were carried out until the capacitances changed 

by less than 1 % from one iteration to the next; this typically took about 10 

iterations. 
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• • • 

· • • · • • 

• • • 

••• 

• •• 

FIGURE A.2 Planar arrangement of square charged sheets connected to 
each other by resistors; these form a model for the capacitance calculations. 
Each square (ij) is described by a voltage V(ij) and charge Q(ij); the 
voltage V on each square is detennined by the charge Q on that square and, 
through capacitive coupling, by the charge on all the other squares. 
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In Table A.l, I report the results of a number of problems given to the 

program. Note that if all the dimensions in the problem are scaled by the 

same factor, the capacitance scales by that factor (this was actually checked 

for two different scale factors). Most the results in the table were calculated 

for a scale factor of 0.1 ~. In all cases the two sheets were coplanar, 1 unit 

wide, and the narrow ends faced each other by the specified number of units 

(see Fig. A.3). 

The most obvious points are that: 1) Both capacitances scale well with 

the length. 2) The diagonal capacitance CII (capacitance to ground) is 

roughly independent of sheet spacing. 3) The off-diagonal (inter-sheet) 

capacitance C12 is about 10 times smaller than Cll, and is only about 70% 

larger when the sheet spacing is 0.1 ~ as opposed to 1 JlI1l. 4) The 

capacitance matrix follows the scaling law quite well. 

These calculations are for a scale factor of 0.1 'JlI1l. If I multiply the 

360 x 1 calculation by a factor of 60, I will have the capacitances for two 

leads 6 ~ wide and 2160 ~ long, with ends separated by 60 JlI1l. This 

corresponds to the combined capacitance of the two resistive leads on each 

side of the junction, so it should be divided by 2 to get the result for one lead. 

I then expect the capacitance to ground, per mm lead length, to be 3.9 tF/mm. 

The inter-lead capacitance is calculated to be 0.35 fF/mm lead. The first 

figure corresponds well to the estimated result of 1-5 tF/mm for a coaxial 

lead model, and the latter figure indicates that I can ignore the inter-lead 

capacitance, at least at this level. 

If I place the leads on a substrate with dielectric constant Cr, then this 

value should be increased by a factor (Er+l)/2; for an Si02 substrate, Er = 4 

and I get CL = 9.8 tF/mm. This was the value used for comparisons with the 

theory of Devoret et al. (28) (see Chapter 7). 
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Dimensions Spacing Scale Cll C12 
lengthxwidth (units) (~m) (fF) (fF) 

{units~ 
20x 1 10 1.0 0.257 -0.0227 
20x 1 10 0.1 0.0257 -0.00228 
40x 1 10 0.1 0.0444 -0.00451 
80x 1 10 O.J 0.0782 -0.00817 
180x 1 10 0.1 0.154 -0.0149 
360x 1 10 0.1 0.279 -0.0255 
80x 1 100000 0.1 0.0774 -0.99 x 10-5 

40x 1 5 0.1 0.0448 -0.00511 
40x 1 3 0.1 0.0451 -0.00571 
40x 1 2 0.1 0.0453 -0.00610 
40x 1 1 0.1 0.0458 -0.00691 

TABLE A.l This table shows the result of iterative calculations of the 
capacitance of two metal sheets, with layout and dimensions as shown in Fig. 
A.3. The first column gives the length and width of the sheets, the second 
column the spacing between the ends of the sheets; the scale is the actual 
dimension of one length unit, and the fmal two columns give the self
capacitance and inter~line spacing of the given geometry. 
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t 
Length ~ 

Width 

Spacing 

FIGURE A.3 Tenns used for various dimensions specifying the geometry 
for the capacitance calculations of the resistive leads. Each lead is assumed 
infmitesimaliy thick and in the same plane as the opposing lead. 



Appendix B - Resistive Transmission Line 

In this appendix I sketch out the calculation of the impedance of an 

infmite length and a fmite length resistive transmission line, whose 

differential element is shown in Fig. B.l. The resistance, inductance and 

capacitance per unit length are given by R, L, and C. The voltage V(x,t) and 

current I(x,t) will have a sinusoidal time dependence, i.e. V(x,t) = V(x)eiCllt, 

and the spatial equations are 

d
2
V(x) (R . L)· C V( ) dx2 = + zOO zOO x (B.l) 

and 

d~) = -iroC Vex) . (B.2) 

With the assumption Vex) = Vo exp(-ikx-ax) and I(x) = Ioexp(-ikx-ax), I get 

the two equations 

2ka = ooRC (B.3) 

and 

k2 - a2 = ro2LC . (BA) 

These equations may be solved for the characteristic impedance Zo = V <Y'Io 

= (ik+a)j(iroC) and for the phase velocity v = oo/k. I define the compound 

quantity y = ..J coRC/2, and in the limit of frequencies 00 where the 

135 



136 Appendices 

R L 

AfW' (111) 0 

I c 
T 0 0 

FIGURE B.I A single element of the resistive transmission line for the 
resistive leads. The line has resistance per unit length R, capacitance C, and 
inductance L, and an infmitesimallength dx of the line is shown here. 

'~., 
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inductance L does not contribute significantly to the impedance (i.e. ooL« 

R), I fmd that k = a = 'Y = ..J ooRC/2, the characteristic impedance is Zo = 
(R/2'Y)(1-i), and the phase velocity is v = ..J 200/ RC . 

I now apply these results to the problem of a terminated resistive 

transmission line of length A. The time dependence of the voltage and 

current is the same, but the spatial dependence is now given by 

V(x) = VI exp(-ikx-ax) + V2exp(ikx+ax) 

and 

I(x) = 11 exp(-ikx-ax) + hexp(ikx+ax) ,. 

(B.5) 

(B.6) 

where k and a satisfy Eqs. (B.3) and (B.4), and the subscript 1 corresponds 

to a left-going wave and the subscript 2 to a right-going wave. 

The boundary conditions for a short at x = A are V(O) = Vo, and 

V(A) = O. I use a short at x = A because the large stray capacitance and the 

low-impedance coaxial line starting at that point are nearly indistinguishable 

from a short, and using a short makes the math easier. Solving for Vi and Ii is 

straightforward, and I can extract the impedance Z of the line at x = 0 in 

terms of the characteristic impedance Zo, 

Z - Zo (1 - eXP(-2A(ik+a») 
- 1 + exp(-2A(ik+a» 

= Zo coth(A(z'k+a») (B.7) 
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In the low frequency limit, this reduces to Z = Zocoth(A-y(l+i)). For a very 

short line A « 'Y, I fmd Z = R A = R, and for a very long line I have Z = 

...fR/2roC(1-i). It is important to note that in the long line limit, which is the 

one I am interested in here, the impedance falls as the inverse root of the 

frequency, and that it has an imaginary part as large as the real part. The 

cutoff between the long and short line limits is at ro(RA)(CA) = roRC = 1. I 

will want an exact expression for the impedance Z as a function of frequency; 

this expression is quite messy, but useful, so it is reproduced here. I defme 

the following quantities: 

(B.8) 

G = 2yA 

= v2roRC (B.9) 

(B.10) 

I then have the real and imaginary parts of Z given by 

( Z) 1 (f 2 . ) Re R = D G (1-e-2G/f) + fG sm(fG)e-G/f (B.11) 

and 

( Z) 1 ( 1 2f . ) 1m R = D - fG (1-e-2G/f) + G sm(fG)e-G/f (B.12) 
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where the denominator D is given by 

D = 1 + e-2G/f + 2e-G/fcos(fG) . (B.13) 

In Fig. B.2 I have plotted the real and imaginary parts of the impedance as a 

function of frequency; note the sharp cutoff at ooRe = 1, where the real part 

of Z falls precipitously and the imaginary part displays a resonance. Note 

also the close resemblance of this plot to those of the real and imaginary parts 

of the dielectric response function £(00): both £ and Z satisfy the Kramers

Kronig causality relations. 
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FIGURE B.2 Real and imaginary parts of the impedance function Z(oo) as a 
function of frequency 00; the real part is the solid line and the imaginary part 
the dashed line. This plot applies to both the CuAu and the NiCr leads. 
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Some of the measurements described here required somewhat 

specialized electronics boxes to deal with the large resistances encountered 

with the resistive leads and junctions connected to them. In particular, I built 

two FET-input amplifier boxes, one as a current source and the other as a 

low-noise pre-amplifier. I describe each box here, for reference purposes. 

Current Source 

The model current source circuit is shown in Fig. C.1. As I was 

concerned about the output impedance of the current source, as well as its 

noise characteristics, I carried out some calculations to estimate each of these. 

The standard first-order model is shown in Fig. C.2 (see P. Horowitz and W. 

Hill, The Art of Electronics, Cambridge University Press, New York (1980), 

p. 129). 

The current I through the load resistor RL is given by 

(C.l) 

where Rin is the input resistance of the circuit seen by V in (see below), RB is 

the bias resistor, and G is the open-loop gain of the op-amp. In the limit G 

. » 1 and Rin » RL, the current is given by 

I _ Yin 1 
- RB 1 +Rr./GRB 

(C.2) 
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I 

FIGURE C.l Circuit used for PET amplifier current source. The load is RL, 
the bias resistor Ra, and the current source is controlled by the voltage source 
Yin. 
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so a good current source requires GRB» RL. The input impedance Rin of 

the circuit is given by 

where R is the op-amp open-loop input impedance (for an FET op-amp 

R = 1012 n). In the limit G» 1, R » RB I find the result 

1 
Rin = GR 1 +RrJRB 

(C.3) 

(C.4) 

so the condition on the current source Rin» RL is met by requiring that GR 

»RL; this is easily met. Typical PET op-amps have gains G =: 104, and the 

circuit only works as a current source in the limit GRB» RL, so the load 

resistor RL cannot be much larger than 100 times the bias resistance RB. For 

a load RL of 1 Gn, and with gain G = 104, the bias resistor should be at least 

10 Mn; again, this is easily accomplished. 

The output impedance Rout seen by the load is given by 

Rout = (1+0) RB , (C.4) 

which as expected requires GRB » RL for a current source. 

The principal sources of noise in this circuit are the current noise in 

and the voltage noise en from the PET op-amp, and the Johnson noise iR in the 

bias resistor RB, which is at room temperature. The load RL is assumed to be 

at 20 mK, and its current noise is therefore ignored. The current noise In 

through the load resistor RL is then given by 
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V: m 
1" ...... 

...... I + ...... 
...... ~ 

V 
GV 

- - RL - -
" 

--

FIGURE C.2 Current source circuit showing model for FET operational 
amplifier. The op-amp has input resistance R and gain G. 
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(C.5) 

where iR = "4kBT/RB, and T = 300 K. This noise goes down monotonically 

with RB, with a knee at RB = er/in; for RB larger than this value, the noise is 

primarily due to the PET current noise source. 

The actual circuit built is shown in Fig. C.3. The bias resistor RB could 

be 1, 10 or 50 MO. The gain G was about 1 Q4 and the input impedance was R 

= 1012 0; this circuit could comfortably handle loads RL up to about 5 to 10 

GO. With a 10 GO load, however, only about 1 nA maximum bias current is 

allowed, due to the voltage supply limits. The noise from this circuit was 

measured to be limited at higher frequencies (> 10Hz) by the PET current 

noise of 15 fAI"Hz, and at low frequencies was dominated by the 1/f voltage 

noise of the PET, which at 1 Hz was 75 nV/--JHz. With a 50 MO bias resistor, 

the total current noise through the load at 1 Hz was 24 fN"Hz. 

It is useful to note that by switching the load and bias resistors, this 

circuit becomes a voltage source, with extremely low output impedance. 

Differential Preamplifier 

The high-impedance differential preamplifier I used, which is a 

standard differential amplifier configuration, is shown in Fig. CA. Each LF 

356 PETop-amp has a gain of 19.5, and the OP-27 difference follower has 

unity gain. All the resistors except the 1.1 kO resistor were carefully 

matched to within 0.1 %. The complete amplifier has a gain of 19.5, and all 

the noise is from the voltage noise of the PET op-amps; above 100Hz this is 

18 nV/"Hz, and below 10 Hz the noise is 1/f; at 1 Hz the noise was measured 

to be 150 nV/" Hz. The amplifier had 30 ppm common-mode rejection at 100 
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Hz, and had a 3 dB rolloff in gain at 550 kHz. The input impedance of the 

amplifier is detennined by the FET op-amps, and is given on the data sheets 

as 1012 Q. 
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+12V 

Offset adj. 
25k.Q 

Yin 
~ InF lout ...... 

-12V 

50 1 Mil 

FIGURE C.3 Circuit schematic for current source. The input voltage V in is 
applied from an external source, and the bias resistor is selectable. A 1 nF 
output capacitor is used to reduce high-frequency noise. 
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FIGURE CA Circuit schematic for differential amplifier.· The two input op-amps have high input 
resistance, and the resistors are all carefully matched to get. good common-mode rejection. 



Appendix D - Small Junction I-V Characteristic 

In this appendix I will discuss some of the implications of the 

approximate current bias for the small junctions. I begin by sketching out the 

argument for the low bias current limit of the normal metal tunnel junction I

V, i.e. the region of the current-voltage characteristic where I depends 

parabolically on V; this applies to the truly current-biased situation. 

In the voltage-biased case at zero temperature, the I-V characteristic 

may be calculated from the semiconductor model of electron tunneling (47). 

In this model the current is given by 

where N 1 and N2 are the density of states in electrodes 1 and 2, IMI2 is the 

tunneling matrix element, and fl and f2 are the Fermi distribution functions. 

Assuming that Ni and IMI2 are independent of energy, the integral may 

be done simply, with the linear result 

21t 
1= fi NIN21TI2 eV 

=VIRJ (D.2) 

where RJ is the junction tunnel resistance; this result is independent of 

temperature. If I now allow the voltage of electrode 2 to change with respect 

to electrode 1, due to the Coulomb charging of the fmite inter-electrode 

capacitance C, I must replace E+e V with E+e V -e2/2C, and I get the results 
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I = 0 (0 < e V < e2/2C) (D.3) 

1= NIN21TI2 (eV-e2/2C) (eV> e2!2C) (D.4) 

= (V -e/2C)IRJ 

which is the voltage-biased I-V characteristic; in this case I am restricting the 

discussion to T = O. The tunneling rate r is given by r(V) = I(V)/e. 

In a current-bias situation, the voltage V increases linearly with time; 

once it exceeds e/2C, there is a probability that an electron will tunnel. The 

junction follows a sawtooth-shaped charging and discharging sequence, 

where the discharging events are described by a stochastic equation; the 

current-voltage characteristic can be calculated using the voltage-biased 

tunneling rate calculated above. No tunneling can occur during the charging 

sequence until V exceeds e/2C; if I set time t = 0 at the moment V exceeds 

e/2C, then VEt) = e/2C + It/C. Given the probability pet) that an electron has 

not tunneled at time t>O, the probability dP that an electron will not tunnel in 

the next interval dt satisfies 

dP = -r(V) P(t) dt 

= - «V-e/2C)/eR) pet) dt. (D.S) 

Integrating Eq. (D.S) gives 

pet) = N exp( -lt2/2eRC) (D.6) 
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where N is the nonnalization to get unit probability at infinite time, and is 

given by N2 = 1tI/2eRC. The mean value of voltage at which tunneling occurs 

is then 

00 

v = e(2C + J(lt/C)P(t)dt, 

and the mean voltage after several oscillations, which gives the I-V 

characteristic, is then 

00 

V = J(lt/C)P(t)dt 

= N(IlC)(eRCII) 

= V1teRI/2C (eV« e2/2C) 

(D.7) 

(D.S) 

which gives a parabolic small-current I-V. At large currents the I-V will be 

linear, give~ by 

I = (V -e/2C)/RJ (eV»e2/2C) (D.9) 

which is indistinguishable from the voltage-biased limit. The low-current 

limit of the two biasing schemes are however very different. 

A plot comparing the zero-temperature voltage-biased and the 

numerically calculated current-biased current-voltage characteristic is 

t. 

"'.' 'I 
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FIGURE 0.1 Current-voltage characteristic numerically calculated from 
charging-discharging sequence of a junction at T = O. Also shown is the 
voltage-biased characteristic and the low-current bias part of the I-V, 
calculated from Eq. (D.8). 
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shown in Fig. 0.1. Also shown is the low bias current limit, calculated from 

Eq. (0.8). 

The calculation sketched out above is fora true current-bias, in other 

words a junction connected to an ideal current source with no intervening 

circuit. In the actual experiments discussed in this thesis, the circuit is better 

approximated by that shown in Fig. 0.2. The stray capacitance Cstray, 

assumed much larger than the junction capacitance CJ, acts as a voltage 

source, and for bias currents Ibias such that e!lbias » RLCJ the junction is 

effectively voltage-biased. However, for higher bias currents such that 

e!lbias « RLC], the lead resistor produces a current-bias situation. The 

charging-discharging sequences for either bias limit is sketched in Fig. 0.3. 

The current-voltage characteristic in this situation may be calculated 

numerically, using the discharging probability as a function of voltage and 

using the circuit of Fig. 0.2 to calculate the voltage as a function of time. 

However, I developed an approximate way to calculate the current-voltage 

characteristic of such a device, which is simple and involves far less 

computation time to produce a current-voltage characteristic. 

The basic approximation of this technique is to assume that the time 

between electron tunneling events Llt = e!lbias is fixed for all events. In the 

actual system the average time between events is given by Llt, but the actual 

times vary about this average. Given this single assumption, the voltage V(t) 

from time t to time t+Llt can be calculated by solving the circuit equations for 

the circuit of Fig. 0.2, and then calculating the current Ibias given by 

1 t+Llt . 

Ibias = Llt f r(V(t» dt . 
t 

(0.10) 
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I bias Cstray 

FIGURE D.2 Approximate circuit used to calculate current-voltage 
characteristic of a small junction with tunnel resistance R] and capacitance 
C]; the lead resistance RL and stray capacitance Cstray » C] affect the bias 
description, as discussed in the text. 
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v 

t 

FIGURE D.3 The upper trace shows the charging-discharging sequence in 
the limit e/lbias » RLCJ and the lower trace is the opposite limit e/lbias« 
RLCJ. 
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The average voltage measured for this value of bias current is given by 

1 t+~t 
<V> = ~t JV(t) dt . 

t 
(0.11) 

The I-V characteristic may be calculated analytically for the true current bias 

case (i.e. for RL = 00); a comparison of this approximate calculation with a 

numerical simulation is shown in Fig. 0.4; the approximate method works 

quite well, with the largest errors of about 10% near the knee of the Coulomb 

blockade. A comparison of the differential conductance, calculated using the 

approximate method and comparing to the numerical results, is shown in Fig. 

0.5; again, the agreement is fairly good over the full range of bias currents. 

If I now allow the lead resistance RL to become finite, the results 

become quite interesting; in Fig. 0.6 I show the current-voltage 

characteristics resulting from a circuit with junction parameters RJ = 10 k!l, 

CJ = 1 iF, Cstray = 100 iF and a range of lead resistances RL from 1 ill to 10 

M!l; note that the fluctuations in this circuit, causing smearing of the 

Coulomb blockade, have been ignored for simplicity. For the lowest lead 

resistance the current-biased device is clearly indistinguishable from the 

voltage-biased Coulomb blockade; as the lead resistance RL is increased the I

V characteristic approaches the classic current-bias limit, but at very low 

currents (corresponding to very large ~t = e/lbias) the I-V is that of the 

voltage-biased device. The resulting feature at low bias current is 

remarkably similar to that predicted for the superconducting small junction, 

the so-called "Bloch nose" (19). 

The approximate calculation using the circuit of Fig. 0.2 is acceptable 

when using fluctuation-induced tunneling rate <r(V» given by the quantum 

',.' 
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FIGURE D.4 Comparison of the current-voltage characteristic obtained 
from stochastic charging-discharging simulation with that obtained from the 
approximate regular-tunneling method. Also shown in the zero-temperature 
voltage biased Coulomb blockade. 
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1.4 - - Stochastic process 
- - - - Approximate method 
-- Stochastic zero-bias l' 
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FIGURE D.S Comparison of the differential conductance calculated from 
the stochastic charging-discharging sequence with that calculated using the 
approximate regular-tunneling method. Also shown is the zero-temperature 
Coulomb blockade result and the zero-bias limit of the stochastic tunneling 
conductance. 
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- - - Lead R = 1 kn 
--- Lead R = 10 kn 
- - Lead R = 100 ill 

Lead R = 10 Mn 
-- Coulomb blockade 

.-.-, 
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0.0 0.2 0.4 0.6 

CJ Vie 
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FIGURE D.6 Result of calculating the zero-temperature I-V characteristic 
of a small junction connected to the circuit of Fig. D.2. The stray capacitance 
is chosen to have the value Cstray = 100 fF, the junction parameters are CJ = 1 
fF and RJ = 10 ill, and the lead resistance is varied from 1 k!l to 10 Mn. 
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Langevin theory. When using the phase correlation theory, however, it is 

more reasonable to use the full impedance Z(ro) to calculate the time

dependant voltage V(t). For those calculations 1 replaced the circuit of Fig. 

D.2 by that of Fig. D.7, where the current source IJ(t) gives the regular 

tunneling of electrons across the junction: IJ(t) is given by the sum of 8-

functions with amplitude -e and spacing Dot = e/Ibias in time. The voltage 

V(ro) = Zt(OO) IJ(OO) is calculated from the parallel impedance of the junction 

capacitance and the RLC transmission line, Zfl(ro) = iroC + Z-I(oo). Fourier 

transforming to get V(t) then allows one to calculate the I-V characteristic as 

in Eqs. (D.lO) and (D.ll). This was the method used to compare the results 

of the phase correlation theory of Devoret et ale with the experimental 

results. 
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I bias Zero) 

FIGURE 0.7 Circuit used to calculate the I-V characteristic using the more 
general impedance Z(oo) in parallel with the junction capacitance CJ. The 
current source IJ(t) simulates the regular tunneling of electrons across the 
junction. 



162 

REFERENCES 

1. A. J. Leggett, Prog. Theor. Phys. (Suppl.) 69, 80 (1980). 
... 

2. Y. M. Ivanchenko, L. A. Zil'berman, Zh. Eksp. Teor. Fiz. 55, 2395 • 
(1968). 

3. A. O. Caldeira, A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983). 

4. A. I. Larkin, Y. N. Ovchinnikov, Pis'ma Zh. Eksp. Teor. Fiz. 37, 322 
(1983). 

5. H. Grabert, U. Weiss, P. Hanggi, Phys. Rev. Lett 52, 2193 (1984). 

6. H. Grabert, U. Weiss, Phys. Rev. Lett. 53, 1787 (1984). 

7. W. Zwerger, Phys. Rev. A 31, 1745 (1985). 

8. P. S. Riseborough, P. Hanggi, E. Friedkin, Phys. Rev. A 32, 489 
(1985). 

9. L. D. Jackel, W. W. Webb, J. E. Lukens, S. S. Pei, Phys. Rev. B 9, 115 
(1974). 

10. T. A. Fulton, L. N. Dunkleberger, Phys. Rev. B 9, 4760 (1974). 

11. W. den Boer, R. de Bruyn Ouboter, Physica 98B, 185 (1980). 

12. R. F. Voss, R. A. Webb, Phys. Rev. Lett 47, 265 (1981). 

13. L. D. Jackel, et aI., Phys. Rev. Lett 47,69 (1981). 

14. S. Washburn, R. A. Webb, R. F. Voss, S. M. Faris, Phys. Rev Lett. 54, 
2712 (1985). \6, 

15. J. M. Martinis, M. H. Devoret, J. Clarke, Phys. Rev. Lett. 55, 1543 
(1985). 

f) 

16. M. H. Devoret, J. M. Martinis, J. Clarke, Phys. Rev. Lett. 55, 1908 
(1985). 



References 163 

17. D. B. Schwartz, B. Sen, C. N. Archie, J. E. Lukens, Phys. Rev. Lett. 55, 
1547 (1985). 

v. 

18. A. D. Zaiken, S. V. Panyukov, JETP Lett. 43, 670 (1986). 

19. K. K. Likharev, A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985). 

20. D. V. Averin, K. K. Likharev, J. Low Temp. Phys. 62, 345 (1986). 

21. T. A. Fulton, G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987). 

22. M. Iansiti, A. T. Johnson, C. J. Lobb, M. Tinkham, Phys. Rev. Lett. 60, 
2414 (1988). 

23. L. S. Kuzmin, P. Delsing, T. Claeson, K. K. Likharev, Phys. Rev. Lett. 
62, 2539 (1989). 

24. P. Delsing, K. K. Likharev, L. S. Kuzmin, T. Claeson, Phys. Rev. Lett. 
63, 1180 (1989). 

25. P. Delsing, K. K. Likharev, L. S. Kuzmin, T. Claeson, Phys. Rev. Lett. 
'" 

63, 1861 (1989). 

26. L. J. Geerligs, V. F. Anderegg, C. A. v. d. Jeugd, J. Romijn, J. E. Mooij, 
Europhys. Lett. 10, 79 (1989). 

27. L. J. Geerligs, et al., Phys. Rev. Lett. 64, 2691 (1990). 

28. M. H. Devoret, et al., Phys. Rev. Lett. 64, 182 (1990). 

29. W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968). 

30. D. E. McCumber, J. Appl. Phys. 39, 2503 (1968). 

31. H. B. Callen, T. A. Welton, Phys. Rev. 83, 34 (1951). 

(l 32. H. A. Kramers, Physica 7, 284 (1940). 

33. M. Btittiker, E. P. Harris, R. Landauer, Phys. Rev. B 28, 1268 (1983). 

34. M. H. Devoret, J. M. Martinis, D. Esteve, J. Clarke, Phys. Rev. Lett. 53, 
1260 (1984). 



164 References 

35. M. H. Devoret, D. Esteve, J. M. Martinis, A. N. Cleland, J. Clarke, 
Phys. Rev. B 36, 58 (1987). 

36. T. Fonseca, P. Grigolini, Phys. Rev. A 33, 122 (1986). 
'" ~ 

37. A. I. Larkin, Y. N. Ovchinnikov, J. Low Temp. Phys. 63, 317 (1986). 

38. A. O. Caldeira, A. J. Leggett, Ann. Phys. (N.Y.) 153, 445(E) (1984). 

39. H. Grabert, P. Olschowski, U. Weiss, Phys. Rev. B 32,3348 (1985). 

40. H. Grabert, P. Olschowski, U. Weiss, Phys. Rev. B 36, 1931 (1987). 

41. J. M. Martinis, M. H. Devoret, J. Clarke, Phys. Rev. B 35, 4682 (1987). 

42. A. N. Cleland, J. M. Martinis, J. Clarke, Phys. Rev. B 37, 5950 (1988). 

43. F. C. Wellstood, Ph. D. Thesis, (University of California, Berkeley, 
1988) 

44. O. V. Lounasmaa, Experimental Principles and Methods Below 1 K 
(Academic Press, London, 1974). 

45. S. T. Ruggiero, D. A. Rudman, (Academic Press, San Diego CA, 1990), 

46. C. Kittel, Introduction to Solid State Physics (John Wiley, New York, 
1986). 

47. M. Tinkham, Introduction to Superconductivity (R.E. Krieger, Malabar 
FL, 1985). 

48. J. M. Jaycox, M. B. Ketchen, IEEE Trans. Mag. MAG-17, 40 (1981). 

49. G. J. Dolan, Appl. Phys. Lett. 31, 337 (1977). ..~ 

50. R. E. Howard, E. L. Hu, L. D. Jackel, L. A. Fetter, R. H. Bosworth, 
Appl. Phys. Lett. 35, 879 (1979). I~, 

51. T. van Duzer, C. W. Turner, Principles of Superconductive Electronics 
and Devices (Elsevier North Holland, New York, NY, 1981). 

52. M. Biittiker, R. Landauer, IBM J. Res. and Devel. 30,451 (1986). 



References 165 

53. J. B. Johnson, Phys. Rev. 32, 97 (1928). 

54. H. Nyquist, Phys. Rev. 32, 110 (1928). 

" 55. U. Geigenmiiller, G. Schon, Physica (Amsterdam) 152B, 186 (1988). 

56. Y. V. Nazarov, Zh. Eksp. Teor. Fiz. 95, 975 (1989). 

57. S. Girvin, L. 1. Glazman, M. Jonson, D. R. Penn, M. D. Stiles, Phys. 
Rev. Lett. 64, 3183 (1990). 

58. R. Brown, E. Simanek, Phys. Rev. B 34,2957 (1986). 

• ·l 

o 



-
LAWRENCEBERKELEY~ABORATORY 

UNIVERSITY OF CALIFORNIA 
INFORMATION RESOURCES DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

~ <" 


