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ABSTRACT

Imposing supersymmetry on a Higgs potential constrains the parameters that
define the potential. In supersymmetric extensions to the standard model con-
taining only Higgs SU(2)L doublets there exist Higgs boson mass sum rules and
bounds on the Higgs masses at tree level. The prescription for renormalizing
these sum rules is derived. An explicit calculation is performed in the minimal
supersymmetric extension to the standard model (MSSM). In this model at tree
level the mass sum rule is M} + M7? = M2 + M3. The results indicate that large
corrections to the sum rules may arise from heavy matter fields, e.g. a heavy top
quark. Squarks significantly heavier than their fermionic partners contribute large
contributions when mixing occurs in the squark sector. These large corrections
result from squark-Higgs couplings that become large in this limit. Contributions
to individual Higgs boson masses that are quadratic in the squark masses cancel
in the sum rule. Thus the naturalness constraint on Higgs boson masses is hidden
in the combination of Higgs boson masses that comprise the sum rule.
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I. INTRODUCTION

One of the most important. problems facing particle physicists today is our
lack of knowledge about the mechanism of spont.nnconsv electroweak symmetry
breaking in the standard model. The neutral and charged current interactions
of the standard model have been convincingly verified in many experiments.
In the future it will be important to test the non-abelian nature of the theory
and understand the mechanism that is responsible for the symmetry breaking
SU(2)1, x U(1)y — U(1)em. There is certainly new physics to be understood
in th;’. symmetry breaking sector because we know that the symmetry breaking
takes place. Unfortunately the effects of electroweak symmetry breaking sector
are notoriously diflicult to detect. The e.lemen&ary Higgs bosons or the bound
stales of a strongly interacting symmetry breaking sector might be too massive
to observe directly, and there virtual effects are screened in electroweak radiative

corrections.

Most of the models that have been proposed to explain the symmetry break-
ing have employed gauge theories, and with good reason as they have been so
successful in their application to the standard model. Dynamical symmetry
breaking is perhaps the most conservative solution to the symmetry breaking
puzzie beyond the elementary scalar Higgs. This form of symmetry breaking
has already been seen in the QCD sector of the standard model. A bit more
daring is supersymmetry, in which the symmetry of spacetime transformations is
extended to include transformations between fermions and bosons. No evidence

for supersymmetry exists in nature, but physicists have for a long time been in

the business of inventing new symmetries.

Faced with a lack of experimental information about the electroweak sym-
metry breaking sector of the standard model, theorists have invented there own
constraints as a guide for further research and progress. Of th(_;;e the hicrarchy
problem has probably reccived the most attention. Physicists hope to one day
unify all of physics at some large energy scale. The hierarchy problem is just the
question of why the electroweak scale and the proposed unification scale around

the Planck mass are so divergent.

Closely related to the hierarchy problem is the problem of naturalness. As-
suming that a hierarchy is generated at tree level, how is the hierarchy preserved
once radiative corrections arc introduced? Since the new physics is still unknown,
the best we can do is take the view that the theories of today are effective the-
ories below the scale of this new scale, and apply a cutofl A to divergent loop
diagrams which embodies the unknown physics. However, the masses of fun-
damental scalar particles are subject to quadratic divergences. So if the cutoff
parameter A is of the order of the Planck mass, then it is hard to understand

why the Higgs bosons remain light.

In technicolor elementary scalar bosons are done away with entirely, and a

_conﬁning gauge theory like QCD is employed. The fundamental states of techni-

color are fermions and gauge bosons, and fermion-antifermion condensates lead

to breaking of the electroweak symmetry. In supersymmetry scalar bosons are

kept in the theory, but the new symmetries that exist ensure that the quadratic

divergences cancel leaving only the milder and tolerable logarithmic divergences.

The price to be paid for introducing supersymmetry is the introduction of many



new states as each bosonic field must have a fermionic field that are connected
by the supersymmetry transformations. It is the combined contribution of the

bosons and their fermionic partners that give the vanishing quadratic divergence.

Supersymmetry must be broken. Exact supersymmetry would require that
the supersymmetric partners have exactly the same mass. Since no such states
have been observed, we must devise some means of breaking supersymmetry
and boosting the masses of the supersymmetric particles to values ahove the
- range of present observation. The requirement of naturalness now presents itself
as a limit on the amount of supersymmetry breaking that can be present. If
the supersymmetric partners are sufficiently different in mass, then we have the
naturalness problem all over again. The quadratic divergences may still cancel,
but corrections to Higgs masses that are quadratic in the mass of the massive
supersyminetric partner will remain. Thus Ithe supersymmetric partners must
be heavy enough to have escaped detection while not so heavy to reintroduce

the problem of naturalness.

A good place to look for the radiative effects of the supersymmetric particles
13 in the Higgs masses themselves. Indeed the naturaliess constraint is usually
discussed in the context of the Higgs masses. Iliggs bosons couple to all mas-
sive particles and is therefore sensitive to radiative effects from all sectors of the
theory. In addition Higgs masses are particularly vulnerable to radiative correc-
tions due to a heavy top quark (or a fourth generation) as the Higgs-quark-quark

coupling is proportional to the quark nass.

At the moment supersyminetry is the only known way to reconcile the

vast difference between the electroweak and GUT scales while still retaining

scalars as fundamental fields. We shall refer to the two-Higgs model as the
minimal supersymmetry extension to the standard model (MSSM). In this thesis
we calculate radiative corrections from quark and squark loops to Higgs boson
mass relations that arise in the MSSM. Radiative corrections to Higgs masses
in the MSSM were first calculated in Reference [1] using the eflective potential
formalism. However a heavy top quark was not fashionable at that time. The
radiative corrections arising from loops containing neutralinos and charginos to
the Higgs boson mass sum rules have been considered in Reference [2). No large
corrections to the mass relations were found unless a dimensionless coupling
constant becomes large. We find that large corrections can occur for quark and
squark loops if the squark-squark-Higgs couplings are large. We also find that a
large quark mass can yield large radiative corrections to the mass sum rules. In
addition we develop a formalism for calculating radiative corrections to Higgs
mass relations in a supersymmetric extension with an arbitrary number of Higgs

doublets.

In the standard model, a single Higgs SU(2) doublet suffices to break the
electroweak symmetry. In supersymmetric extensions of the standard mcdel,
at least two doublets are required to cancel anomalics (the Higgs bosons have
fermionic superpartners) and to give the up and down quarks a mass{3]. The
empirical fact that p = 1 suggests a custodial symmetry in the Higgs sector. At

tree-level there is the well-known result{4):

LT+ 1) - Y2)vles

The index @ runs over the Higgs representations. T is the weak isospin, Y is the
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hypercharge and ¢ = l(%) for complex (real) representations. Assuming p = |
does not result from tuning the vacuum expectation values v;, we obtain the
requirement

(27; + 1) -3Y? = 1. (1.2)

This custodial symmetry can be realized by taking a Iliggs sector that contains
weak SU(2) doublets (T = %, Y = 1) and singlets (T = 0,Y = 0). Other repre-
sentztions are possible, but these have large dimensionalities and appear rather
“ad hoe. The standard model contains just one complex Higgs doublet. Three of
these four degrees of freedom are eaten by the W and Z gauge bosons, leaving a
single physical Higgs boson. lﬁ this paper we are primarily concerned with exten-
sions of the standard model that have two Higgs doublets only. The two-Higgs
doublet model has eight degrees of freedom in the Higgs sector which become
three neutral Higgs ‘bosons(H, h, A), two charged Higgs bosons(/{*, H~), and
the usual three Goldsbbne bosons(G, Gt,G~) that are caten by the W and the
Z. H and h are CP-even eigenstates while A is CP-odd. We follow the usual
practice of calling these scalars and pseudoscalars respectively to indicate the
form of their couplings to fermions. The general two-Iliggs doublet extension of
the standard model therefore has a much richer phenomenology than does the
simple standard model. The general two doublet model (without supersymme-
try) has quite a bit of arbitrariness in the masses and couplings of the physical

Iiggs bosons.
We will consider the supersymmetric version of the two-liggs doublet ex-

tension to the standard model[3]. The restrictions imposed by supersymmetry

constrain the couplings in the Higgs sector and lead to mass relations for the

physical Higgs bosons. In addition, at tree level the lightest neutral Higgs h
must be lighter than the Z, the heaviest neutral Higgs H must be heavier than
the Z and the charged Higgs H* must be heavier than the W. In fact the
first two inequalities remain true for supersymmetric extensions of the standard
model containing an arbitrary number of Higgs doublets (containing no Higgs
singlets or other representations)[5] though the charged Higgs does not have to

be lighter than the I in these cases.

In this model, there exist the tree level mass sum rules
ME + M2 = M3 + M2 (1.3)

and

M} = M3 + M3, (1.4)

We explicitly calculate the O(a) corrections to the relation (1.3) arising from the
quark and lepton sectors. The corrections to (1.3) and (1.4) will all be O(a) for
the one-loop calculation since in supersymmetric models the cubic and quartic
couplings in the Higgs potential are related to the gauge couplings g and ¢’.
There is no arbitrary coupling in supersymmetric extensions of the standard
model such as the quartic coupling A in the standard model. The philosophy is
therefore slightly different in the renormalization of the mass relation in (1.3) of
the MSSM. The sum rule in (1.3) involves physically measurable masses, without
any reference to couplings. So we can take these masses as tﬁe parameters that
define the Higgs sector, and find radiative corrections to (1.3) in terms of these
parameters. We find that large corrections to the mass relation in (1.3) can arise

from matter loops but only if the significant mixing occurs between the squark



fields, or if there is a heavy quark.

Large corrections (O(ag-é-) where m, is a quark mass) to the Higgs boson
masses arise as they do in the standard model. The squark § corrections to Higgs
masses that are O(am:-) are quadratic in the supersymmetry breaking scale. If
they become large, they destroy the stability of the electroweak scale to radiative
corrections, necessitating large subtractions that require unnatural fine-tuning
order by order in perturbation theory. We find that these contributions can-
cel exactly in the renormalization of the sum rule. Therefore the naturalness
constraint is “hidden” in the sum rule. Mixing between left and right handed
squarks occurs in general. If the off-diagonal entries in the left-right squark
quark mass matrix are large, then large squark-Higgs couplings can arise and

result in large corrections to the mass relation.

In Section Il we review the aspects of the MSSM that are needed for this
work. In Section 11l we explain in detail the formalism for renormalizing the
Higgs sector of the MSSM. We discuss the results of an actual calculation we
have performed in the MSSM in Section IV. Since the physical masses of the
Iliggs bosons(H, h, A) and the Z are measurable, the O(«x) corrections to the
mass relation in (1.3) is a physically measurable quantity. In Appendix A we
display some Feynman vertices that are needed to calculate the Higgs self-energy
diagrams in the MSSM. In Appendix B we display the full result for the cor-
rection to (1.3) arising from the up—tyj)e quark and up-type squark loops. This
result is easily generalized to all contributions from other loops involving quarks,
leptons and their supersyinmetric partners. In Appendix C we show that the

tadpole contributions cancel in the MSSM. Finally in Appendix D we discuss

how the formalism developed in Section 11l can be generalized to models with

more than two Higgs doublets.

Other work on radiative corrections to Higgs boson mass sum rules in the
MSSM has also appeared{2,7,8]. The calculation in Reference [6] is a com-
plete one-loop calculation of the radiative corrections from the fermion-sfermion
sector. The propagating squark fields are the mass eigenstates, and the renor-
malized masses are the physical masses defined as the pole of the renormalized
propagator. The only approximation is that flavor mixing is neglécled. This is

easily reincorporated into the result.



II. THE MINIMAL SUPERSYMMETRIC EXTENSION
OF THE STANDARD MODEL

We shall follow the notation of Gunion and Haber[9] with the one exception
that they refer to the neutral Higgs bosons H, h, A, and G as HY, H?, HY, and
GO respectively. Throughout this paper any mass without a subscript will be
a physical mass(e.g. My, M), etc.). Any subscript on a mass parameter (e.g.
(Mi)b, (My)r, etc.) indicates that this parameter is in general different from
the physical mass. The definitions of these mass parameters will be given when
they arise. Our review will be brief, and the interested reader is urged to consult

References {3,5,9] for more details about the MSSM.

Supersymmetry requires that there be at least two Higgs doublets. The
MSSM is minimal because it contains only these two Higgs doublets and the
minimal particle content; necessary to explain known phenomenology. Since it
is the simplest viable supersymmetric model, it is the natural place to begin an
investigation of radiative corrections in the Higgs sector. Call the two complex
doublet scalar fields ¢, and ¢,. The lligés potential develops an asymmetric
minimum, giving rise to spontaneous symmetry breaking. Then ¢, gives mass
to the d-type quarks and squarks, and ¢, gives mass Lo Lhe u-type quarks and

squarks.

The MSSM can be obtained as the low-energy limit of a supergravity the-
ory. The renormalization group equations are used to run the values of the
paramelers in the supergravity theory that obey certain boundary conditions at

the unification scale. In this way constraints are placed on the parameters that

10
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define the MSSM. We shall ignore these constraints which can be imposed at
any time. Imposing these constraints restricts ourselves to just this model, and

weak-scale effective supersymmetry can arise in a moré general way(10].

Supersymmetry constrains the otherwise independent quartic couplings in
the MSSM to be combinations of the gauge couplings ¢ and ¢’. This implies
that the Higgs sector of the MSSM is weakly coupled as the coupling constants
g and ¢ are certainly perturbative. We are allowed terms up to cubic order in
the superficlds in the superpotential by renormalizability, and it must of course
be gauge invariant. The most general superpotential that conserves R parity

contains the following pieces:
W = e;(uHiH] + FH{ D R+ [ H{Q D + H{QD) (2.1)

where Q and L are the weak SU(2) doublet quark and lepton superfields, U
and D are the weak SU(2) singlet quark superfields, and R is the SU (2) sin-
glet lepton superfield. Only the first term in (2.1) contributes to the Higgs
polential. The other terms contribute to the full scalar potential. f, f, and
f2 are the Yukawa couplings that yield the fermion masses and the masses of
their supersymmetric partners. We can relax the constraint that the superpo-
tential conserve R parity. An interesting discussion of some alternative models

of low-energy supersymmetry can be found in Reference [11].

‘The scalar potential receives contributions from the so-called D terins and

F terms. These are

V=3[0 + (D4 FEFy (2.2)
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where
|
D° = EgA;a?jAj' (2.3a)
1
D= EQ'U-'A.’A-' +§, (2.3b)
ow
F.' = (')—AT (236)

Here A; denotes a generic scalar field appearing in the superpotential. € is the
Fayet-lliopoulos term[12] that may arise for U(1) gauge groups. The hyper-
charge assignments of the two Higgs doublets are y, = —1 and y2 = 1, ensuring
anomaly cancelation. Therefore, one Higgs doublet gives masses to the up-type
quarks, while the other gives masses to the down-type quarks, so the MSSM by

construction eliminates the unacceptable flavor-changing neutral currents.

In general we add all possible soft supersyminetry breaking terms{13] that
can contribute to the scalar potential. These terms break supersymmetry but in
such a way that no quadratic divergences appear. This allows the supersyinmetry
to be broken as is necessitated by phenomenology while preserving one of the
major motivations for supersymmetry. The soft supersymmetry breaking terins
must be of dimension three or less in the fields. The lliggs potential is then
given by (we assume that the Fayet-lliopoulos term associated with U(1)y is

small and neglect it)

1 ,o ? .
V= 102 Y 1610~ ol tal? + L (ol — 0o + 1Pl 4 4562)  Vaos
! (2.4a)

which can be rewritten

V= §g2 [41005° 1307 — 2(HY* HY)(HE HE) + (H HY)? + (Y HY)?)

12
+§g'2(II;°H; = M H})? 4 \plP(H{*HY 4 HY HY) + Viop (2.4b)

where
Vioge = mEH} H + mEH3 Hy — (myei; HiH) + hoc). (2.4¢)

the Higgs potential arises from three sources: (1) the terms proportional to g and
¢’ that come form the D terms, (2) the term proportional to |u|? that comes from
the F terms and (3) the soft supersymmetry breaking contributions in (2.4c).

We are using the notation{9]

1o, = HiHj (2.4d)
162 = Hi*H} (2.4¢)
0162 = eiiHind. (2.4f)

In this notation H} and HZ are the neutral component of Hy and H; respectively,
while H ,’ and H; are the charged components. The quantities my, m., and my
are arbitrary mass parameters, and those terms in (2.4b) that depend on |u|?
can be absorbed into the soft supersymmetry breaking terms of (2.4¢c). In low-
energy supergravity models m;; is proportional to g, but we will consider a more
general MSSM and let ;2 take any value that produces an acceptable vacuum
(scc below). Of course u still has consequences on phenomenology; it appears in
the squark mixing matrices for example. See Section 1V below.

A troubling aspect of the MSSM is the very existence of the parameter
. When the MSSM is viewed in the context of supergravity or grand-unified
models, it is hard to understand why i does not have a value of order the

Planck or the GUT scale. This hierarchy problem can be cured by imposing an
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additional syinmetry. It is necessary to remove p as a fundamental scale in the
theory. Two ways this can be accomplished are by going to a superstring model
for which the Higgs mixing term is generated when a singlet is present or by

expanding the R parity to be a continuous symmetry[14].

This Higgs potential has a minimum away from Ify = Ha = 0 so sponta-
neous s‘ymmetry breaking occurs. It is possible through a choice of phase to
choose the vacuum expectation values to be real and non-negative. We are as-
suming no CP violat|ion arising in the Higgs potential. We define v; and v; to

be the vacuum expectation values of H; and I/ respecctively so that

(Hn)=('g). (H2)=(:)2). (2.5)

To obtain the correct tree level mass My, = 1g%v?, we require v + v} = v2.

The lliggs masses arise from the quadratic parts of the Higgs potential.
Define the scalar and pseudoscalar parts of the charge-neutral Higgs boson fields
by

H =vu+ %(s. +iP) (2.6a)
Hiz=v + \i@(s, +iP,). (2.6b)

H and h are linear combinations of S; and Sz while A and G are linear com-
binations of P; and P,. The factor of v/2 is included so the kinetic encrgy
terms for the physical Higgs boson fields will have the canonical form. The soft

supersymmetry breaking terms include

miH{P HY + miHY Hy — (mP,ei; HiH + hoc), (2.7)

14

which contains the charge-neutral terms
%rn?(ﬁ‘f +P0)+ %m%(S} + P3) — m}y($i Sz ~ PuPa). (2.8)

The F-terms contribute i
IWfPCHE H + HirHS) (29)

which we absorb into the soft supersymmetry breaking contribution. In order
to break SU(2)r x U(1)y the Higgs potential must have a minimum away from
H, = Hy; =0, s0 that

mim} < m},. (210)
Notice in Equation (2.4) that in the direction ¢, = ¢2 the quartic terms in the

Higgs potential vanish. Therefore we require
m} + m3 > 2mi, (2.11)

to prevent the Higgs potential from being unbounded from below in this direc-

tion. Collecting the quadratic parts arising in the D-terms .
1 ie .
5@ + 9 )H{"H} - H} AP, (212)
1, 9 12ye0. 2 2 \/' 1 2 2 2 2312
‘8‘(9 +9")(vi — v3) + V211 1 — v252) + E(Sl -S+PA-R)), (213)
1
s +a0T —)(ST - ST+ P} - P+ 2fST 420387, (214)

the mass matrix in the scalar sector is given by

M= ( m? + 1(g? + ¢"*)(30F — v3)

~-mpz+ L(g? + 9'2)01 v2 (2.15)
—miz + (97 + ¢"Juivz ) )T

m3 + 4(9% +9"%)(3v3 — of

while the mass matrix in the pseudoscalar sector is given by

i ’ mi2 m} + 1(¢% + ¢%)(v3 - v})
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‘Taking traces we obtain the sum rule in (1.3). The crucial point to notice is
that the soft-supersymmetry breaking terms contribute equally to both sides of
the sum rule. In other words, the sum rule is a result of the supersymmetric
structure of the D-terms only since gauge invariance requires that contributions

from both the F-terms and soft-supersymmetry breaking terms cancel.

Two parameters in the mass matrices above are determined by the others

via the minimization condition. So we can solve for m; and m; in terms of m 2,

v, and vy:
222 _1y. 2.17
my =My, M7 cos 2P, (2.17)
Uy 2
md = mt, 2 + LM cos2p, (2.18)
U2 2

where we have defined tanf = :-ff Then the mass matrices can be written

2
mf,ff + M% cos? B

- M2
M2 = 22 "‘"*2“25"“’“"). (2.19)
—myz + M3 sin fcos B

) .1 2
mi 2t + MZsin® 8
and

2 v
Mp=( Mazw Mz ) (2.20)
miz  m%

The pseudoscalar mass matrix has a zero eigenvalue which corresponds to the
. . 2
neutral Goldstone boson. The eigenvalues of the mass matrices M2 and M3 are

related by

Myp = %[M;{ + M3+ \/(Mﬁ + M2)% — aM2 M3 cos? Qﬁ]. (2.21)
Therefore M), < Mz and My > Mz at tree level. These results generalize to
the case of 2N Miggs doublet models[5]. See also Appendix D.

In a non-supersymmetric two doublet model the Higgs masses My, Mp

and M4 and the mixing angles are independent quantities. Supersymmetry, by

16

constraining the quartic couplings, reduces the number of paramneters necded to
completely describe the Higgs sector at tree level to just two. Quantum correc-

tions introduce dependence on the other masses and couplings in the theory.

When the MSSM is obtained from low-energy supergravity models, tan § >
1 is preferred. In these models a heavy top quark is required to drive the renor-
malization group evolution and obtain the requisite electroweak symmetry break-

ing. Therefore v, larger than v, is favored.

The existence at tree level of a Higgs boson lighter than the Z boson has
been of much interest recently as a Z factory has become available. If M), < Mz,
then the decay Z — Z*h is kinematically passible. This processes is suppressed
by a mixing factor relative to the same process in the standard model. If the
pseudoscalar Higgs A is also light (which is not a required condition in the
MSSM), then the decay Z — Ah may also be possible. Experiments at LEP
have used these processes to rule out regions of parameter space of the MSSM[15-
16). A discussion of the current status of these experiments from a theoretical

perspective can be found in Reference [17,18].

Of course radialive corrections are important as well. Several recent calcu-
lations indicated that indeed at 6ne—loop the lightest Iliggs boson can be much
heavier than the Z boson[19-22). The necessary ingredient in these calculations
is a large fermion mass (specifically, the top quark mass). A heavy top quark

mass is an important correction even for the sum rules[6].
If a singlet superfield N exists in the theory new terms can be included in the
superpotential, an example of which is Ae;; H ngN . In Eg superstring inspired

models the two Iliggs doublets are accompanied by a singlet{23]. The new terms
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in the superpotential can give risc to quartic terms in the lliggs potential. In
addition there is no guarantee that X is small, so strong coupling is a possibility

in a supersymmetric model with an SU(2) singlet.

The masses of the Hliggs bosons can be obtained from (2.4) using the vacuum
expectation values in (2.5). The mass matrices must be diagonalized to obtain
Mf,, 1\1,":, and M3. In the MSSM there is the tree level mass relation given in
(1.3) where M), < Mz and My > Mz. Beyond tree level this relation is no
longer exact but receives O(a) corrections. To implement the renormalization
procedure, we fix My, Ma,and Mz to be the physical masses which can in
principle be measured by experiment. Then the physical mass of the other

neutral Higgs boson h is given by a relation
ME=Mi+M2-Mi+A (2.22)

where A is a correction that is O(a). There are two free parameters that charac-
terize the tree-level masses in the Higgs sector if Mz is fixed at its experimentally
measured value. We shall take My; and M4 to be the two parameters that de-
fine the theory. Then (2.22) provides a prediction for the light Higgs boson mass

M. We can choose any two unknown masses we like and predict the mass of

the third.

II. FORMALISM FOR RADIATIVE CORRECTIONS

We adopt a rcnormalization scheme is which external lines are evaluated
with momenta on-shell. The physical mass is defined as the positionl of the pole
in the propagator. ‘I'he ultimate results of this section are the relations (3.41)
and (3.49) below. These equations indicate that at the one-loop level the wave-
function renormalization factors do not enter, and the corrections to the mass
sum rules are given entircly by combinations of Higgs boson and vector boson

self-energies.

Before developing the formalism for calculating radiative corrections, we

wish to discuss the applicability of the one-loop effective potential to determining

physical Higgs masses. The eflective potential cannot be used to calculate the

poles of Higgs propagators exactly. It may be used to find an approximate result

for the physical masses of the Higgs bosons in the MSSM. The calculation of
the effective potential entails the summation of diagrams with external Higgs
boson momenta set equal to zero. In the on-shell scheme, the external lines
are put on-shell instead. The curvature of the scalar potential at its minimum
is the physical mass of the Iliggs only at tree level. The renormalized Higgs
mass found using the renormalized one-loop effective potential is finite but is
not necessarily equal to the physical Higgs mass (defined as the position of the
pole in the Higgs propagator). There is no elementary method to relate these
two quantities[24] without calculating the Higgs propagator to find the pole.
However if the mass is sufficiently small, the difference between the Higgs self-

energy with external momenta on-shell and with external momenta set to zero
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is small. Then the effective potential is a useful tool for calculating the physical
Higgs mass. In fact, the Coleman-Weinberg mass[25] is the physical mass since
setLing external momenta to zero is the same to one-loop as setting them on-shell
for this case. The calculation presented here goes beyond the eflective potential
in that the physical iasses of the Higgs bosons are the quantities that enter into
the formulae. In the MSSM we know that My > Mz at tree level, so setting
the external legs to zero momenta is not necessarily a good approximation.

In this section, we denote all bare fields and parameters by the subscript
b. Absence of this subscript indicates a renormalized ficld or a renoninalized
parameter. For example, Hy denotes the bare heavy-Higgs field, while H denotes
the renormalized field.

In the multi-Higgs doublet models, renormalization is complicated by mix-
ing of the physical Higgs bosons necessitating rediagonalization at each order.
This is analogous to the mixing of the Z and the photon in the renormalization
of the standard model[26). Here we follow the method of Acki et al.[27] for
on-shell renormalization of fields when mixing is present.

Recall the definition of the scalar and pseudoscalar components of the

charge-neutral Higgs boson fields:

1
}lll =v,+—f—é(S,+iP.) (3.1a4)
1 .

H and h are hinear combinations of S and S; while A and & are lincar combi-
nations of P; and P,. The factor of V2 is included 50 the kinctic energy ters

for the physical Higgs boson fields will have the canonical form.
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ch‘onnalization proceeds in the standard way. Begin with a tree level La-
grangian L(f1, f2,...; P, P2, ...) which contains certain fields f; and parameters
pi- To calculate at one-loop, renormalized fields and parameters are required.
This is accomplished by breaking up the tree level Lagrangian into a piece con-
taining renormalized ficlds and parameters and a counterterm piece. The fields
and parameters in the tree level Lagrangian are noﬁ not physical quantities,
contain infinities, and are called bare quantities. The counterterms Lagrangian
18 generated by shifting the parameters p;p — pjr + 8p; and introducing wave-
function renormalizations Zjy,. The wave-function renormalizations are of the
form Z;, = 1 + 6Z;, where the 82, are in general divergent and of higher
order in perturbation theory. Z;, = I + 62, is a matrix equation if there is
mixing. The renormalized Lagrangian has the same functional form as the tree

Lagrangian but is expressed in térms of renormalized quantities.
[:b(llbt I2h) ooy PLby P20y "')

= Lelhrrs fory i Priey Pory - Y Lalfies fary s Pres P2rs 1 0P, 3 2y, -00).
(3.2)
-Feynman rules are derived using the renormalized Lagrangian and the coun-
terterm Lagrangian, and the infinities present in one-loop graphs are absorbed
in the counterterm Lagrangian. The values of the renormalized parameters are
fixed by experiment.

When Lree-level mixing occurs, wave-function renormalization takes a ma-

trix form. Deline thic matrices

oV /2 1/2
Zl/2 _ ( du/il Zu/l. )
s = s1/2 1/2

j (3.3a)
AhH dhh
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and

ZU2 2
Z;,/zz( G “a ). (3.3h)
7

In the bare Lagrangian we denote all parameters and ficlds with the subscript
b. In particular the Iliggs potential in (2.4) is rewritten in terms of bare ficlds
and masses by attaching a subscript b to all quantities. Then the wave-function

renormalization of the Higgs fields can be expressed as

H _anf H
b
G _anf G
Do) e

The matrices in (3.3) are not in general symmetric. There are four independent

and

parameters for each matrix. We have that Z_;-/ =14 O(a) so that Z:,/,zl =
14 0(a), Z\* =14 0(a), Z;,’,? = O(a), and Z,l,f: = O(a). The kinetic energy

terms for the charge neutral pieces are

A
(3.5)

1 H\ 1 : G
| 5a"( H h )(z;/’)Tz;”a,,( X )+§a“( G A )(z;!’)"z,‘,”a,,( )

Now we proceed to investigate the mass terms. In the usual way we shift

the parameters that occur in the Higgs mass terms as follows
(m})s = m} + 6m? (3.6a)

(m3)s = m3 + 6m? (3.6b)

(m?))s = m}, + 6m?, (3.6¢)
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(M3)y = M3 + 6M3 (3.6d)
() = vy + 61y A (3.6e)
(v2)y = va + bva. (3.6))

The Higgs potential in {(2.4) depends on five parameters, so we can choose five
parameters in (3.6) to determine the potential. The parameters we use to define
the theory are the physical masses My, My, M4 and Mz as well as the coupling
g (or a). The quantitics in (3.6) are related to these five in a complicated way
determined by the Higgs potential in (2.4) as was demonstrated in Section II.
Other parameters such as ||? and its associated counterterm are determined in
terms of the five parameters and counterterms in (3.6). The dependence of s on

the other parameters is given in Equation (3.25) of Reference [9].

The shifts in vy, and v, reflect the fact that the location of the minimum
of the Higgs potential receives O(a) corrections. This is a generalization of the
same statement in the standard model, where the tree level vacuum expectation
value v receives O(a) corrections. In the tree level Lagrangian vy and v, are
determined by finding the minimum of the Higgs potential. Therefore v, and
v2 are specified by the parameters in the Higgs potential, m? + |u|2, m2 + |u|?,
my2, Mz, etc. The constraints were given in Section II by (2.17) and (2.18). At
one-loop these parameters are renormalized, and the same functional forms for
vy and v, in terms of the renormalized parameters are no longer correct.

One approach is to define tadpole counterterms ™H and 7, so that they
exactly cancel the onc-loop tadpole diagrams. This would impose two constraints

on the counterterms. We will show below and in Appendix C that it is in fact

4
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of no consequence how the tadpole divergences are handled as they are exactly

cancelled in the radiative corrections to the sum rules. See also Reference [20).

Our goal then is to formulate renormalization conditions for the physical
masses without any reference to the unmeasureable parameters that occur in
(3.6). The basic idea is the following. The Higgs masses depend on Mz and two
mixing angles, usually called a and g (8 was introduced in Section 11). To obtain
the one-loop corrected masses requires these angles to be renormalized. However
in the sum rule we are interested only in the traces of the mass matrices, and if
the rotation angles a and 3 that diagonalize the mass matrices are renormalized
18 of no consequence. We shall go through the detailed procedure of the renor-
malization procedure below. A more general argument valid for médm with an
arbitrary number of Higgs doublets (including the two doublet case) is given in
Appendix D.

The Higgs mass terms arise in the potential given by (2.4). The parameters
m,, mg, and m, 3 are undetermined due to the arbitrariness of the soft supersym-
metry breaking terms. The mass constraints arise because the quartic couplings
in (2.4) are determined in terms of the gauge couplings by supersymmetry and

gauge invariance. Then the mass terms that arise are of the forin

%(S, S’)»(z g) (Z:) (3.7)
b b

where
]u — v
Ap = ("'l b+ (Mz)g, (:;l'i'—vf—)b (3.8u)
vy llz
—(miz)s+ 5 (Mz)b( e ) (3.80)
l
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Co = (m3) +1(M?) 3uj - vf 3.8
[ 2Jb 2 zZh vlz+v§ b. (C)

This mass matrix is diagonalized by the real orthogonal matrix characterized by

the angle a:
Oa=(cf)sa -sma) (3.9a)
sina  co8 a .
where
2B, .
tan 2a = TGN (3.9)

S\ H
()o(). o

the mass matrix is diagonalized to give

(4B [ ME o
O—a( B C) Oa—( 0 M,'f) (3.11q0)
b b
whgre
(Mjp) = % [(A» +GC) + \/(As -C)? + 48,‘5] (3.11b)
(MR)e = [(Ab +C) - \/(Ab -Co)? + 48,,] (3.11¢)

The shifts in the parmnewm introduced in (3.6) generate shifts in the pa-
rameters Ay, By, and Cy, that appear in the unrenormalized mass matrix through
the definitions in (3.8). We define the renormalized values of these parameters
and the associated counterterms as Ay = A+6A4, By = B+-6B, and C, = C+6C

whiere A, B, and C are defined just as the bare quantities are delined in (3.8) but

‘in terins of the renormalized quantities. It is unnecessary to retain terms second

order in the counterterms because these are higher order in perturbation theory.



The inverse propagator is a matrix due to the mixing of the Higgs bosons, and

we denote it by:

ooy [ iTun(p?) iTun(p?)
il's(p®) = < Chn(p?)  iTwa(p?) ) . (312

Then we have

its(p?) = (2T ZY%p? — (2 T(M2)pZY” - $Ms (3.13q)
where
M2), 0
MY)p = (Mi)- 3.13b
(Ms)p ( 0 (M,?)r) (3-13b)
and
2 2
Ms = SMis  8Min, (3.13¢)
§Mpy M}

The subscript D in (3.13b) indicated that the renormalized mass matrix (with
subscripts r) is diagonal. In obtaining (3.13) we have dropped terms that are

second order in perturbation theory, used (3.11a), and defined

M} = 6Acos? a + 8Bsin 2a 4 6Csin’ a (3-14a)
§M?2 = 6Asin? a - §Bsin 2a + 6C cos? a (3.14b)
M%), = 6M2y,; = (6C — 6A)sin a cos a + 6B cos 2a. (3.14¢)

We have neglected the pieces of the counterterms coming from a (in @ — a+-6ar)
that in fact exactly cancel (3.14c). The off-diagonal terms are irrelevant in the
renormalization of the sum rules. The inverse propagator matrix in (3.12) is

symmetric as it should be. We have also defined the quantities

(Mi)- = 3 [(4+C) + VA= CP+ D]

(3-15a)
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(M), = %[(A +0)~ VA— Oy + 417

(3.15b)

At this point. the renormalized parameters (M), and (M?), are not the physical
masses M7 and M. The connection between these quantities must be specified

by renormalization conditions.

We have expressed the inverse propagator il's(p?) in terms of the wave-
function renormalization parameters defined in (3.3) and the counterterms de-
fined in (3.6). The expression is rather complicated, but fortunately we will
only need to know the linear combination §A + 6C to (_:alculate the radiative
corrections to the mass relation (1.3). Notice that SM? + 6M2 = §A 4 5C. i.e.
the trace of the mass matrix is invariant under the orthogonal transformation.

We have that §A + 6C = §m? + §m3 + M3 so that we arrive at the conclusion:

M} + 5M2 = 6m? 4 5m3 + 5M3. (3.16)

We now repeat the analysis for the poeeudoscalar sector in exactly the same
way as we did the analysis for the scalar sector in Equations (3.7) to (3.16).
Define P, = V2Im(H}) and P; = /2Im(H2). The mass terms are

(5 2)(2), e
b b

where
1 v — o2
I (2 4 (M2 1— v
Ay = (m3)s + 2(Mz)b ("12 T ”%)b (3.18qa)
By = —(m},)s (3.185)
1 vi—ovl
Cy = (mih+ §(M§,)., (m)b (3.18¢)
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This mass matrix is diagonalized by an orthogonal transformation just as before.

The real rotation matrix is characterized by the angle 3:

_ [ o8B -sinf 3.19
O"'(smﬁ couﬂ) (3.19a)
where
tan 26 = —2{9—-— (3.19%)
(A=C")

We ohtain the mass eigenstates defined by

Y (¢
(2)-= (%),

The mass matrix in (3.17) is diagonalized to give

O_p( ‘;j g: )bop = ( 3 N(I)Li )b (3.21a)

where |
(M&)s = %[(AL +Cy) + \/(A;, -C) + 4u;2] =0 (3.21b)
(M2)s = %[(AL +Cy) - \/(A; -G+ 4ug‘]. (3:21¢c)

The Goldstone boson is exactly massless in the Landau gauge so the mass matrix

has a zero eigenvalue.

The parameters defined by Equations (3.18) generate counterterns with the

SA’ = bm? + 16M2 Vi~ v + lM"'b vy = v (3.22a)
=bmi + 58My e oMb S 22
8B = —bmi, (3.220)
. 5 1 vl —v? | 1
v _ g2 Jeag2 (V2 TV LEYVETY ek 3.99¢
oC" = by + ‘26Mz (vf + v%) + 2M‘{ (Uf + 3 (8229

28

We define the inverse propagator for the pseudoscalars in the same way as

we did for the scalars:

. _ [ Taa(*) iTgal(p?) .
(') = ( iCac(p?) Taa(p?) ) 429

s0 that
. , | A'+6A B +6B 12
[e(p?) = [‘/2 'I'le2 2 Zl/2 To_ 032 / .
(3.24)
The last term can be expanded again to obtain:
Tel?) = (28 257 + (2" (MB)pZ* + 6Mp  (3:250)
where
0 0
M})p = 3.25b
and
§MZ  6M2
Mp = G Ga ) (3.25¢)
( M3, M3
We have defined
SMZ = 6A’ cos® B+ 6B sin 20 + 6C'sin® B (3.26q)
OM3A = 8A’sin? B— 68 sin 20 + 6C’ cos® B (3.26b)
SME L = 6M2; = (8C’ — 8A")sin B cos B+ 8B cos 28 (3.26¢)

and (M3), is defined just as (M3), is defined in (3.21) but in terms of the
renormalized parameters (i.e. withoul the subscripts b on the parameters ap-
pearing on the ItHS). As belore we neglect 6 corrections to the oll-diagonal

terins.  (M2)r = 0 since (MZ)y = 0. The invariance of thie trace gives
G G 8
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MM?7 +8M3 = EA’ 4+ 8C’. From (3.22) we have that A’ 4+ 6C’ = ém? +6m2, so
we obtain

EMZ 4+ 6M?2 = m? + 6m3. (327

Making use of (3.16) we finally obtain the result:
EMP 4+ 6M? = M2 4+ 6M32 4 6M13. (3.28)

We define the self-encrgics of the scalars and the vector bosons as shown
in Figure 1 with external legs amputated. The vacuum expectation values v
and v, are in general renormalized, and tadpole diagrams must be taken into
account. We will argue below that the tadpole contributions to the final result
A are zero with the renormalization conditions we choose. This will be shown
explicitly in Appendix C. The renormalized inverse propagator
= o0 _ [ iTun(p?) iTan(p?
tn=( i ) om
includes the expression in (3.13) and the self-energy contributions shown in Fig-

ure 1. The inverse propagator matrix in (3.29) is symmetric. We have

i (p?) = (Zus + Zan)p — (ME)eZun — (M2), Zon

—6M% + N (p?) (3-30a)
iChn(p?) = (Zun + Zen)p* = (MR Ziy, — (M7 Zun
—5MZ + i (p?) (3:306)

30

o =, 12 /2, A[2,1/2 172 4)2
iCin(p?) = it (p?) = (Z,,/,,Z,,/,, + Zm/. Zh{I P’ - (Al?')"ZII/HZH/h

1/2

—(MD 2022002 _ 5ME, + T (p?). (3.30¢)
In the on-shell scheme we adopt the renormalization conditions[27]:
Tun(ME) =0 (3.31a)
iTa(M2) =0 (3.310)
iCun(M7) = itya(M2) = 0 (3.31c)
ithu(M3) =1 (3.31d)
it (M) =1 (3.31¢)

where il(p?) is the derivative of il'(p?).

We choose as an additional renormalization condition thbat. (M"); be set
equal to the physical mass My of the H[28). Then from (3.30) and (3.31) we
conclude that

M}y = My (M3). (3.32)
'i‘he pseudoscalar sector can be treated in the same way. The renormalized
inverse propagator for the pseudoscalars is
- i 2y E 2
(T T ) o

which is

iTca(p?) = (Zao + Zac)p® — (M), Zac
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—5ME + llgG(p?) (3.340)
iCaa(P?) = (Zaa + Za)P* = (M3)r 234
—6M3 + THaa(p?) (3.34b)
iTaa(r?) = iFacp?) = (285283 + 2325w
~(M3)- 243205 - 8ME 4 + aa ). (3.34¢)
The renormalization conditions are
ilge(0) =0 (3.35a)
iCaa(M3)=0 (3.35b)
ilGa(0) = ifga(M2) =0 (3.35¢)
il;6(0) =1 (3.35d)
iMa(M3) =1 (3.35¢)

In this case we define (M4)r to be the physical ass Ay of the A and require
that the Goldstone boson G have zero mass at the one-loop level in the Landau
gauge, ie. (M), = Mg = 0. The masslessness of the Goldstone boson at

one-loop follows from the Ward identities. Then we obtain

M2 = laa(M3) (3.36)
M3 = liga(0). (3.37)
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The remaining condition is obtained from (2.21) and (3.31b). ‘This is
M = N (MP) + A. (3.38)

where we have used the fact that (M?), + (M2), = (M2), + (M3),. Similarly
it can be shown that

6M3; = —Azz(M3) (3.39)

where Azz(p?) is defined as the real part of the coefficient of g#* in the vacuun

polarization tensor

%5 (%) = Azz(p%)9" + Bzz(0*)P'p* (3.400)

Azz = Re Azz (8-400)

defined as in Figure 1. Then using and Equations (3.28), (3.32) and (3.36)-(3.39)

we find that
A = ~Nyu (M) — Man(M2) + Maa(M3) 4 Tlga(0) — Azz(M3).  (3.41)

So the calculation of A involves the determination of the Higgs and Z self-

energies in (3.41). The final result for A must be finite even though the in-

_dividual self-energies will not be. The expression in (3.41) depends only on

self-energies. ‘Phis is a somewhat unique result for a radiative correction o a
physically measurable quantity. Usually one is required to calculate vertex cor-
rections as well Lo do a precise comparison Lo experiment. Here supersymmetry
and gauge invanance have conspired to produce a sum rule whose renorimaliza-
tion does not depend on the renormalization of the gauge couplings ¢ and ¢ to

one-loop. At two-loops and beyond the situation becomes more canplicated, as
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we expect the gange coupling renormalizations to enter as well as wave-function
renormalizations.

The condition that the Goldstone boson mass be zero at one-loop ensures
that the tadpcie contributions will be zero. This is a consequence of a Ward
identity. A discussion of this result in the cAontext of the standard model is given
in References [20-31]. The Goldstone self-energy at zero momentum is related

to the tadpole diagrams of the H and h fields as

Nee(0) = —7.12—0 [cos(B — @)Ty + sin(B — a)Th]. (3.42)

The counterterm Lagrangian contains the terms
—[6M2G? + ry H + n,h] (3.43)

in which the coefficients satisfy

§M2 = ﬁ cos(B — &) + sin(B — a)m. (3.44)

So we conclude that (3.37) is equivalent to taking (T + 711) cos(f — o) + (T}, +
n,)sin(8—a) = 0. The advantage in calculating Ilgc(0) rather than the tadpole
diagrams Ty and T}, is that the cancelation of divergences is more obvious in
the former case. In terms of the Feynman rules, calculating the Goldstone
boson self-energy is on an equal footing with calculating the Higgs boson self-
energies in the Landau gauge. We have shown explicitly in Appendix C that
in the context of the MSSM the tadpole contributions to A in (3.41) vanish
identically. This result can be proved generally. In References [2,7] the tadpoles
are evaluated instead of the Goldstone boson self-energy. This gives the same

answer as (3.42) can be verified by direct calculation. As mentioned previously
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this is a generalization of a similar statement in the standard model. In the
standard model the Goldstone boson self-energy is related to the Higgs tadpole

(there is only one such tadpole in the standard model)

l -
Mec(0) = - =T (3.45)

There is an clementary way to gain insight into the relationship between
Goldstone boson counterterm and the tadpole counterterm. In any multi-Higgs
model it is always possible to find a linear combination of Higgs fields whose
vacuum expectation values is v, and all orthogonal components have zero vevs.
In other words, in Higgs field space this linear combination is in the direction
from the symmetry point to the asymmetric minimum. In the two doublet model
we know that this direction is H = S cos 8 + Sasin 8. Define the orthogonal

combination M) = —S5, sinf + S cos 5. We have

H H
( ; ) =o,,_.,( ", ) (3.46)

and the counterterms in (3.43) become

~[6M2G? + Hlcos(8— @y +sin(8-aym)+ Ml sin(ﬂ—a)‘ry+cos(ﬂ-a)n,]]

(3.47)
The Goldstone self-energy is related to the tadpole counterterms of the Higgs
field combination H that lies in the direction of the asymmetric minimum. In

the standard model this combination is just the physical Higgs field.

The tadpoles cancel in the Higgs mass sum rules and this requires the
supersymmetric structure of the Higgs self-couplings. It is the constraints placed
on these couplings by supersymmetry and gauge invariance that gives rise to the

sum rules as well as the tadpole cancellation.



Another mass relation that holds at tree level in the MSSM was given in
(1.4). 1t can be shown (in a method analogous to the preceding trealiment of

the mass relation in (1.3)) that the radiative corrections defined by
Miy =Mi+ ML +A (3.48)
are given by
A= —Nys s (MAe) ~Dgege(0)+ Maa(M3) + Nea(0) — Aww (M) (3.49).

Again the tadpole contributions are exactly zero (see Appendix C).

We note that the result in (3.41) continues to hold when a Higgs singlet
N is present in certain important cases. The criterion is that N not mix with
the other Higgs bosons (H, h, A, G). Reference [9] discusscs these cases. If the
singlet mixes with the Higgs doublet then the mass relation (1.3) is destroyed
even at tree level, and the tree-level constraints M;, < My and My > Mz also
disappear. The mass relation (1.4) may be destroyed even if the singlet does not

mix with: the other fields.
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1V. RADIATIVE CORRECTIONS

In this section we will discuss the contribution to A from guark and squark
loops in the MSSM. 1t is necessary to know the Feynman rules for Higgs bosons
in the MSSM to calculate the self-energy diagrams for the Miggs fields. Many of
these have been derived previously in the litcrature[3‘,9,32-34]. We have derived

some others in Reference [6] that appear in Appendix A.

The calculations involved are somewhat lengthy. Each individual diagram is
divergent, and these divergences cancel only when loops involving the fermions
and loops involving their superpartners are included. The divergent integrals
are evaluated using dimensional regularization with the prescription for vs given
by Chanowitz et al.[35]. Since the y4’s always occur in pairs in the amplitudes

considered, this prescription guarantees the correct Ward identities. 'The calcu-

- lation is straightforward, so we display only the final result in Appendix B. The

diagramé evaluated are shown in Figure 3.

We have ignored the mixing between generations for simplicily, i.e. we

" approxiinate the CKM matrix and the super-CKM matrix as unit matrices. It

is not difficult to adapt the answer to the general case. ‘There is a contribution
from each generation, and the contribution to A from the top quark is the same
as Lhat for the up quark \;Iilll the appropriate mass substitutions. Of course the
formulae are only relevant for quarks heavy compared to the hadronie scale. The
caleulation of the diagrams involving squark loops is complicated by the mixing

in the squark sector.

We add soft supersymnetry breaking terins to the scaloe potential. The
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ierizs in the sealar potential involving squarks are[9)
V =Vr+ Vp 4+ Vaoses  (A1a)
where
V= (it 113° + 0" 0° ) + £,0°0) + (u° 15 + £1.Q DYl + £,0° D)
+H 1 HIQ P+ [l HiQ P+ (1L HY* D* = 2 Hy U°)(Ji H{ D— £, H3D), (4.1b)
Vp = %g’ [4|H;’°Q‘|’ +AHE O — AQ“ G [ Hi + 113 HE) + (Q“Q‘)’]
+%g’2 [H;"n; — H{*H! + y,Q"Q* + w,U°0 + ydirb]z, (4.1¢)
Viore = MEQ™ Q' + M20°U + M3D*D
+mee (L AdHIQ D — LA HIDT + h.c). (1.1d)

Yu, Ya and yg are the hypercharge quantum numbers of the corresponding fields.

The conventional squark notation for the fields appearing in (2.1) and (4.1) is
Q' = ( uL ) U*=dp, D*=dg. (4.2)

The mass terms for the up squarks, for example, are
~s = Au B. uy,
(& uR)(Bu C“)(ﬁn) (4.3a)

~ 1
Ay = M3+ M3 cos 2ﬂ(§ — ey 8in%0,) + m? (4.3)

where

By = my(Aymg + pcot B) (4.3¢c)

Cu = M2 + M2 cos 26(e,, sin? 0u) + m2. (4.3d)

38

A.mg, A.'Iq, and My are additional soft supersymmetry breaking parameters
that enter into the part of the acalar potential that involves squarks. We assume
A, mg is real, which minst be approximatcly the case to avoid unwanted CP vio-
lation. Notice that the lefl-right mixing term B, is proportional to the fermion

mass m,,. The mass cigenstates § and §2 can be defined as a mixture of these

( . ) = Oy, ( @ ) (4.4)
qR q2

where Op, are defined as in (3.8a). The mixing angles 0, appear in the Feynman

ficlds as

rules involving the squarks.

We note here that the soft supersymmetry breaking terms in (4.1d) do
not include the so-called “mixed” trilinear contributions mentioned by Ilall and
Randall[10]. These terms are not present in the low-energy supergravity model
but could be present in a more general model of weak-scale supersymmetry.
These contributions are similar to ihose in (4.1d) in that they contribute to the
off-diagonal elements of the squark mixing matrix and prov'ide another source of
coupling between the Higgs bosons and the squarks. In particular we have the
terms

M[AHEQ D ~ LA HPQU + hc). (4.5)
This gives the additional contributions to the squark mass matrix off-diagonal
entry B, of m, A, M cot f. Additional squark-squark-Higgs couplings arise. We
expect these soft supersymmetry breaking terms to contribute to A in a similar

way to the terms already in (4.1d).

The coupling of the squarks to the Higgs bosons come from three places

in the scalar pbtent.ial. First the D-terms contain contributions to the squark
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masses and to the squark-Higygs coupling that are of O(gMz). The F-tenns con-
tain the Yukawa pieces that contribute a mass to the squarks equal to the quark
mass (myg), and terms of O(gmg) to the squark-lliggs couplings. The F-terms
also conlain the parameter u which contributes to the off diagonal entries in the
mass matrix (See Equation (4.3c)) as well as to the couplings. Finally the soft
supersymmetry breaking terms contain the parameters A mg that contribute to
the off diagonal terms in the mass matrix and in the couplings. The soft super-
symmetry breaking parameters h.lé and 15!(2, above in (4.3) do not contribute to

the couplings.

The soft supersymmetry breaking parameters le' Ajl('j and A,mg are ad-
justed so that the squarks are sufficiently massive to have escaped detection
while not so massive to destroy the stability of the electroweak scale to radiative
corrections (i.e. the naturalness motivation for supersyminetry). The parane-
ters Mé and M,_"} show up in radiative corrections to Higgs masses in diagrams
like that shown in Figure 4. In the renormalization of the mass sum rule, the
combination of these diagrains that arises is shown in Figure 5. These diagrams
sum exactly Lo zero. So while there are large corrections arising from M% and
M} Lo the mass of each Higgs boson, these contributions cancel in the sum rule.
The sum rule is therefore insensitive to these paramcters whea they become

large.

Ou the other hand, the supersymmetry breaking parincter A,mg as well as
the parameter g contributes o the couplings of the squark o the Higgs bosons.
If this parameter becomes large, substantial corrections can arise to the sum rule.

It also generates mixing between the squark eigenstates. ‘There are constramty
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on Aymg from other considerations. When Agmg becomes large, it usually
produces large corrections to the rho parameter (although these contributions
can be made to cancel against one another)[8]. In addition Agmg is bounded
by the requirement that the correct vacuum is obtained. Specifically if Agmg
i9 too large, the true vacuum breaks SU(3) color which is of course ruled out

phenomenologically.

The expression for A in Appendix B is composed of three parts, A =
Ay+A24D0. Ap ~ O(“ﬁ%) where i represents a mass parameter such as the
up quark mass or a parameter involving the squark sector such as A,mg, y, Mg,
or my,. We leave A in terms of the mixing angles a, f, and 9, for convenience.
The expressions for these angles in terms of physical masses are lengthy and not
very illuminating. Expressions for a and  are given in Appendix A of Reference
[36).

The terms in A4 give the largest contribution to A for large quark and
squark masses. The terms involving the off-diagonal entries in the squark mass
matrix (A mg and p) give large contributions provided the squark mixing angle
0, is not small. Az contains terms that are O(am?), but these terms go to zero
as the squark mass becomes large. This is a manifestistion of the cancelation of
the diagrams in Figure 5. The terms in Az of O(am?) come from the Z vacuum
polarization only. A¢ is O(aM3) and is for our present purposes a negligible
correction Lo the mass relation.

We will illustra.m: the result i Appendix B by considering the contribution
from the top quark and the Lop squark. Four parameters characterize the squark

mass matrix in (4.3). We can take these to be m? , mf | 0 and p. ‘Then Aymg
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is determinced:
2 2\ o
(mil m'.z) sin 20,

2my

—pcot 1. (1.6)

A¢m6 =

First consider the case in which there is no squark mixing, i.e. 0, = 0. This
is expected to be approximately the case for all squari( species except possibly
the top squark. When 8, = 0°, the terma involving A,mg and pu give only a
small contribution to A. In this event the A;mg and st terms in the squark mass
matrix are canceling one another. Sce (4.3). If the top quark and top squark are
very massive (m, m; >> Mw, My, M4, M)), we can neglect the other masses.

Then we obtain

2,4 m? m?

e s (e )
So we have large corrections to the mass relation just as there are large correc-
tions (O(m{)) in the Higgs sector of the standard model[37). One factor of m}
arises in the integration over the quark loop, while the Yukawa couplings at the
vertices gives the other factor of m}. We have plotted the correction A in Figure
6. We have chosen the parameters my = lOOG;:V. a=-18%4=30°and y = 0.
For these parameters the tree level Higgs boson masses are My = 140 GeV,
My, = 40GeV and M4 = 110GeV and M7, + M2 = 2 x 10% GeV2, 50 that each
side of Equation (1.3) is equal to 2x 10'GeV'? at tree level. So for A = 200GeV?,
the correction is only one percent. We have plotted A for the case where 0, = 0°

in Figure 6a. The dependence on the squark masses is roughly logarithmic.
The expression in (4.7) diverges when sin? § approaches zero. This reflects
the fact that the Yukawa coupling giving the top quark a mass must diverge
in this limit. The Yukawa coupling giving the bottom quark its mass diverges

when cos? B approaches zero. The non-decoupling of heavy quarks is just the

12

standard evasion of the decoupling theorem([38] that arises when a coupling con-
stant, becomes large. When the supersymmetric limit is taken and the external
monenta are set equal to zero rather than put on shell, the expression for A in
Appendix B is zero. When the external legs are put on mass shell to obtain the
physical masses, there are finite threshold effects that are in general non-zero

even in the SUSY linit..

If there is significant, mixing of the scalar quarks, large corrections can arise
when there are large mass splittings between the squarks. In Figure 6b we have
taken 8, = 20°. Notice that the corrections are again small when m;, ~ m;,.
If the squarks have significantly different masses, then there is a large negative
A. These large corrections arise from large squark-Higgs couplings that arise

because A;mg is very largé.

The results displayed in Figure 6 are typical. Other choices of the param-
eters mq, a, 0 and p give similar results. If 6, = 0, then corrections tend to
be small (i.e. the same order as the contribution of a t quark with mass m, in
the standard model). If 0, is significant, then large negative contributions arise
when Ima - mt?’l becomes signiﬁcént.. Negative values for A imply that the sum
of the scalar Higgs boson masses squared M 4 M2 is suppressed relative to the

pseudoscalar boson mass squared M3.

We note that large contributions to the mass sum rule are possible from a
fourth generation as well, even when squark mixing is absent. As in the standard
model the leading contribution for a heavy fermion (m; >> Mw) goes like
%[37]. So a priori if a heavy fermion exists, we can expect large corrections to

the masses in the Higgs sector just as in the standard model. The results given
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here, however, are valid for any fermion mass, and it is only if my >> Mw that
Aq can become very large. In Figure 7 we have held the squark masses fixed
and plotted A as a function of the top quark mass. ‘The values for a, § and
 are the same as in Figure 6. Notice that the correction A is positive as long
as m; < my,,m;,. This is consistent with the radiative corrections to the light

Higgs mass in Reference [21].

The contribution for a new top t’ is given as in (4.7) while the new bottom

b’ will contribute (for 0y = 0)

- g*mi, N,
1672 M}, cos? p

a

2 2
me -
b'l bl‘}-
n a (4.8)
my,

These contributions have the same sign. This differs from the renormalization

of the p parameter in that the p parameter i3 protected by a custodial sym-
metry which is not broken by equal-mass fermion doublets. The effects of a
mass-degenerate heavy doublet has been discussed before in the context of the

standard model[39).
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VY. CONCLUSION

We have formulated the procedure for computing corrections to the Higgs
mass relations in supersymmetric extensions to the standard model containing
doublets. An explicit calculation in the case with just two doublets (the MSSM)
was given. ]t was necessary to calculate self-energies of Higgs bosons and vacuum
polarization tensors as shown in (3.41) and (3.49). Coupling constant and wavé—
function renormalizations are not necessary at one-loop. Tadpole contributions
cancel exactly. The results in (3.41) and (3.49) are not destroyed in the presence
of other Higgs representations (singlets, triplets, etc.) provided that no mixing
between these fields and the Higgs doublets takes place. If mixing occurs, the
tree-level mass relations (1.3) and (1.4) themselves will be destroyed as is easily
understood in terms of the derivation of the mass sum rules in Section I If
a singlet or other state mixes with the Higgs fields, the relationship between
the traces of the Higgs mass matrices will be destroyed. These results were
generalized to the supersymmetric extensions to the standard model with more

than two lligg:;x doublets (Appendix D).

We have performed an explicit comzputal.ion of the radiative corrections to
(1.3) from matter loops. We have found large corrections to the mass relation
provided that the two ci)mplcx squark fields mix. This results from large squark-
Higgs couplings. ‘The potentially large contributions of O(am?) or O(ar:) to
Lhiggs particle masses from a heavy squark and slep.ton sector in supersyetric
theories is hidden i the suns rule, Le. cancels between the Lerms appearing ia

the sum rule. Provided that squark mixing is neghgitle, i is possi:fe Lo nagine
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extremely large squark masses without inducing large radiative corrections to APPENDIX A
the sum nile, Feynman Rules

L)

In this appendix we display some Feynman rules that are needed in the
calculation of Higgs hboson self-cnergies in the MSSM. Other Feynman rules for
the MSSM appear in References [3,9,32-34). In Figure 8 we show the couplings
of the Goldstone to the squarks. We have left the squarks in ihe weak interaction
eigenstates for simplicity. In Figure 9 we show the trilinear ?ouplings between
the Goldstone bosons and the physical Higgs bosons. CP conservation demands

that only an even number of pseudoscalars can emanate from a vertex.
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APPENDIX B

The Correction to the Mass Relation
The O(a) corrections A can be divided into pieces
A=Ai+02+ 40

(B.1)

where 4, is the part of A where the nth power of the up quark mass or param-
eters in the up squark mass matrix (such as A,mg, yt or the up squark masses

themselves) occur. The results of the calculation are as lollows:

Ay

18

—-—-—92—'2'1—1&:——— sin? a(F(mg,, mg,, My) + F(ma,, ma,, My)
= ]61[2A,[v2v sin2ﬂ Yoy, M,y Mg Mgy, MG, My
—3F(muv 'nuv A”l’))
+ cos? a(F(mg,, ma,, Mp) + F(ma,, ma,, M)
—3F(my, my, My))

+ cos? BF(my, my, MR) + sin® BF(my,, my,, 0)]

g>’m3 N [A mgsin a + pcos a]sin 20,

g’m

16m2 M2, sin’ B

x [sin a(F(mg,,ma,, My) — F(ma,, ma,, Mn))]

3

aN[Aume cos a — pusin a]sin 20,

T 64m2ME, sin? B

1672 M2, sin’ g

x [cos a(F(mq,, ma,, Mp) — F(mg,, mg,, Mh))]

2.2
g°m,Ne [[QF(m;,. , Mgy, Ma)[Aume cos B — psin f]?

+2F(mg,,mg,, 0)[Aumgsin B+ pcos ﬂ]2]
—sin? 20, [(l"(m.—,I Mgy, M)+ F(ma,, ma,, My))[Aume sin a + pcos a)?
(F(ma,, ma,, My)+ F(ma,, ma,, My))[Aume cos a— pusin a]2]

— cos? 20, [‘.2["(m.-.l ,Ma,, My)[Aume sin a + pcos a)?
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+2F(mg,, mq,, Mh)[Aume cos a — pisin a]2]] ,

50
(3.2q)
g*m2N, 2 . 2 . 2 . 2
Az = m [C()S 0u(T3 - €y Sin 0w) -+ sin Gu(eu 8sin ow )]
x [sin acos(a + A)F(mg,, my,, My) — cos asin(a + B) F(mg,, mg,, M;.)]
+{sin? 0,,(T5 — ey sin?0,) + cos? 0, (e, 8in? 6, )]
X [sin acos(a + B) F(mg,, mg,, My) — cos asin(a + B) F(mq,, mg,, M,,)]] ;
39°miN. .2 2
—= . MuG(my, my, M
1672 M2, sin’ B [sin® @M, Gl m, Mo
+ 082 G MG (ma, 1, M) = c08% BM3G(1ma, ma, Ma)]
g’m2N, 2 _g2m3Nc
3272 cos?0,, 2 96m2cos?l,
g*m,, N cos(a + )

1672 cos? 0, sin 0 sin 20,,[Aymgsin a+ pcos al
" [[cm2 0" (Ta ~Cu Sin2 0“’) + 8in2 au(eu sin"‘ OW)] F(mfu yMy,, MH)

- [sin2 04 (T — ey sin?0y,) + co8? O, ey sin? ow)] F(ma,, ma,, Mp)

—cos 20,(Ts — 2e,sin? 0,)F(mg,, mg,, Mu)]

g’m,, N.sin(a + )
1672 cos? 0, sin 0

sin 20,,[A,,mg cos a — psin a]

X [[cos2 0u(T5 — ey sin20,) + sin? 0. (e, sin? 0w)] F(mg,,mg,, M),)



- [ain2 0u(T3 — ey 8in? 0y} + cos? 0, (ey sin? 0w)] F(mg,, ma,, M)

~c08 20,(Ty — 2e, sin? 0,)F(mq,, mq,, M;.)}

g*m? N, ) ' e
— ——L_8n2 C;2 2 [cos’ Bu(=Ts + ey 8in® 0,)? + sin? O, (e 8in? 0, ] F(mg,,mag,,0)

2
- [coe2 0.(—Ts + ey 8in®0,) + sin? 6, (e, sin? 0.,,)] F(mg,,mg,, Mz)
——12- sin? 0, cos® 8, H(my,, mg,, Mz)}

2,2
g‘m; N,

~ 8n2cos?,, [["i"z 0u(~T5 + ey 8in? 8,)) + cos? O, (eu sin® 0..,)2] F(mq,, ma,,0)
2
- [sin? 0.(-T3 + ey sin? 0.) + coe? Oulew sin? ow)] F(ma,, ma,, Mz)

—% 6in? 0, cos? 0, H(ma, , ma, , Mz)] , (B.2b)
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A = 9?MZN,

A : : . ) 2
= T6n%cos? b, [‘5032 0,(1T3 — eysin? 0,) + sin? 0,, (e, sin® 0w)]

X [cosz(a + B)F(mq,, ma,, My) +sin?(a + B)F(mg,, mg,, M;.)]
+[sm2 0,(T5 — ey sin? 8,) + cos? 6, (e,, sin® 49.,)]2
x [ cos?(ar+ B)F(ma, ma,, M) + 8in?(a + B)F (may, ma,, Mn)|
+ % sin? 20,(Ts — 2e, gin? 0.,,)2
X [cosQ('a + B)F(1ng,, ma,, My) + sinz(a + BYF(mg, , mq,, M;.)]]

ngch

2
" 16n7 cos? 0 [[C‘”"’u(—Tma sin? 6, )-+sin? 0, (eu 5in? 8,)| 2G(ma, , ma, , Mz)

3
+ [sin2 Ou(~To + eusin? 0,) + c08? B, (e 8in? aw)] 9G(ma,, ma,, Mz)

+ Siﬂ2 bu C(B;. auG(m\'u yMay, MZ)

+4 [(—T;, + eu8in?0,)? + (e sin’ o..,)*]a(m‘., M, Mz)] , (B.2¢)
where N = 3 colors and
l .
2 _ 2 _ .1 2
F(m;,ma,my) = /dz l"[lnn. +(1 :l-')m22 » z(1 J:)m:,] ' (1.3)
5 HBo
‘ .
2 _ 2 _ a1 _ 2
Gy, my, mg) = /(l.l‘ z(1 - z)ln[xm' +{ :c)m22 =l :c)m‘,]' (B.4)
4
. J Mo
1
2 _ 2_ .01 2
H(my,mg, ) = /(l;t a:ln[zml +(1 1)1:22 =(1 x)m.,]. (B.5)
(]

0



T+ is the weak isospin (which is +% for left-handed up-type quarks).

The term —%;?ngfb__, in A, ariscs in the self-encergy graphs with a quark
in the loop. The contribution of each graph depends on the external momen-
tum p? of the graph which is set cq’ual to the physical Higgs mass when the

renormalization conditions are applied:

g’m2 N, _ g*miN,

T 96m2cos?0, | 9672MZ, sin’ﬂ[

sin? aM} + cos? aM} — cos? ﬁM}] . (B.6)

This is an equality to this order in perturbation theory because there is the tree

level relation
sin? aM}; + cos® aM? = coa® M3 +sin? AM3. (B.7)

If the extern.al momentum of the graphs is set to zero rather that put on shell,
then the term (B.6) vanishes.

The expression for A in (B.2) should be independent lof the renormalization
point p,. We have checked that this is indeed the case in both the analytic
expression and in our computer program for calculating A, which provides a
partial check of our answer (equivalent to the cancelation of divergences). We
have also verified that (3.42) is satisfied which is a check on the value of the
Goldstone self-energy that enters in (3.41).

The contribution for down quarks and down squarks is easily obtained from

this result. The substitutions are shown below:
ou — od) (B.SG)

m,, — my, (BBb)
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Mo, , = Mg, (DB.8¢)
€y — €d, . (BS(‘)
1 1
T3=r-——= .

3 9 2) ([} 86)
sin f — cos f3, (B.8f)
cos B — sin B, (B.89)
€08 o — 8in a, (B.8h)
sin a — cos a (B.8i)

The last four equations imply sin(a+8) — sin(a+ ) and cos(a+8) — — cos(a+

B). To obtain the proper result requires the further substitutions
sin(a + f) — —sin(a + B), (B.85)
!

cos(a + ) — — cos(a + ). (B.8k)

For example, the first two terms in A for the down quark and squarks should

be

2...2 -
__IMale 1 o20,(Ty — egsin? 0 ) +sin? 04(eqsin?6,,)]
8n2 cos20,,cos O v B

X [cos acos(a + ﬁ)l’(ml;‘ ymg, M) + sin asin(a + ﬁ)F(ma;l my, M;.)]
+[sin? 04(T3 — egqsin? 0y) + cos? 04(easin? 0, )]
X [cos a cos(cx + BYF(my,,mj , My) + sin asin(a + BYF(m;,,m; , My)].
(B.9)

The contributions for the lepton and slepton loops are given in terms of

the contributions for the up and down quark loops. The electron and selectron
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contribution is obtained from the expression for the down quarks with the ap-
propriate mass and SU(2) x U(1) quanltum number replacements. Similarly the
contributions from the neutrino and the sneutrino are given by an exprcmioh
similar to that for the up quark with the appropriate mass and SU(2) x U(1)

quantum number substitutions.
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APPENDIX C
Tadpole Contributions

In this appendix we demonstrate explicitly that the tadpole contribution
to Ain (3.41) and to A in (3.49) vanish in the MSSM. The result can be seen
explicitly by examining the Feynman rules that are present in the MSSM. In
the two doublet model there are two non-zero tadpoles shown in Figure 2. We
display the vertices that are needed for the calculation of the tadpole diagrams
in Figure 10. The contribution to the sum in (3.41) from the tadpole diagrams
in Figure 11 are now easily seen to vanish using the couplings in Figure 10. We
also display the vertices needed for the tadpole diagrams contributing to (3.49)
in Figure 12. The combination of tadpole diagrams in Figure 13 vanishes.

These results generalize to the 2N Higgs doublet models discussed in Ap-
pendix D. The II's in (D.16) and (D.18) therefore include all contributions to
Higgs self-energies besides tadpole diagrams. Similarly, tadpoles are not Lo be
included in the contributions from the vacuum polarization tensor either. ln the

2N Higgs doublet model there are many more non-zero tadpole diagrams.
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APPENDIX D

- Generalization to 2N Higgs Doublets

Models with more than two Higgs doublets have mass relations analogous to
(1.3) and (1.4). In an extension of the standard model with 2N Higgs doublets,
there are 8N Higgs degrees of freedom. After spontaneous symmetry breaking
three of these are Goldstone bosons, leaving 4N — 2 charged Higgs bosons H_.*
and 4N — 1 neutral Higgs bosons. We shall denote the neutral scalar Higgs by
H; and the neutral pseudoscalar Higgs by A;. In the supcrsymmetric version of
the 2N doublet model, the couplings and masses in the Higgs sector are again

constrained. The mass relations that arise are[5)

2N 2N-1 .

YoMi =) Mi 4+ M3, (D.1)
=1 =1
2N ~1 2N-—-1

Z Mle= Y Mi +M} (D.2)
i=1 ¢ i=1

which generalize (1.3) and (1.4).
The Higgs potential for the model in the extension with 2N doublets is{5]
V_zNz'(;zNat. fay s Loz S 1 tytighs
=2 midid —gm.-,-(ew, 4,80+ 507 211400
2

1 3 2N )
_*_592 Z | z(_l)l+l¢‘taa¢i )

(D.3)

This equation is the 2N doublet analog of (2.4) where arbitrary soft supersym-
metry breaking terms have been included. There are possible terms that are
;t,-,-d&!:ﬁj that can be absorbed in the soft-supersymmetry breaking terms as in

the two doublet case.
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There are directions in Higgs field space where the quartic couplings vanish.
For example, in the four doublet model the quartic couplings vanish when ¢, =
¢2 and ¢3 = ¢4 as well as when ¢y = ¢4 and ¢3 = ¢3.

There ig now a vacuum expectation value v; for each of the 2N doublets
¢i. We can eliminate the m; in favor of the vevs v;. The neutral scalar and
neutral pseudoscalar mass matrices are 2N x 2N matrices. The neutral scalar

mass matrix M2 is given by

A |
Mizi = Zm?,% + 5(92 + ,q"")v,-2 (no sum on i), (D.4a)
J#i !

. .1

MG # ) = —mi; + (=1P /2 (0* + g™ (D.4b)
while the neutral pseudoscalar mass matrix M2 is given by

Vs
Mi,? = |2j ;;J.-i (D5a)

J#i *
M3 (i # j) = m}; (D.5b)

M has a zero eigenvalue corresponding to a neutral Goldstone boson. Since
both M? and M*? are real and symmetric, they can be diagonalized by or-
thoéonal transformations that preserve their traces, i.e. Y}, M. =3 ; MZ and
i M. =3, M. Using (D.4) and (D.5), one can obtain (D.1) and (D.2).
The renormalization of the mass relations in (D.1) and (D.2) is a generaliza-
tion of the arguments in Section II1. The wave-function renormalization matrices
Z;lz and Z,‘)/z becomne 2N x 2N matrices. The mass matrices (D.4) and (D.5)

are symmetric and are diagonalized by

(M3)p = 05'M?0s, (M})p = O5'M”0p (D-6)
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where Os and Op are orthogonal matrices. (MZ)p and (M})p are diagonal
inatrices whose nonzero entries are the masses M7, and M3 respectively. We

shift parameters as in (3.6):

(m?j)b = m?j + 5"'.?3' (i £3), (D.7a)
(vi)p = vi + v, (D.7b)
(M2)s = M3 +6M3. (D.7c)

The unrenormalized propagators are given by formulas analogous to (3.12):
iPs(?) = (25" 259 - (2") " (MB)p2/* - M3, (D#)
iTe(p®) = (2T 2% - (2" (MR)o2)* — 6ME (DY)

_where M2 = 035'6M?0s and M} = Op'6M?0p. 5M? and 6M? are analo-
gous to the matrices constructed in the two Higgs doublet case. Since the trace

of the matrices is invariant under orthogonal transforinations we have
Tr6M32 = Tr M2, (D.10)
Tr M3 = Tr 6M". (D.11)

From the expressions for the mass relations in (ID.4) and (D.5) we have

TréM?=Tr5M"? 4+ 6M2 (D.12)
so that

Tr§M2 = Tr M2 + 6M3. (D.13)
The rcnormalizatioln conditions analogous to those in (3.20) are[27]

i, (M5,) = 0 (nosum), (D-14a)

1]
iCpa, (M) = il (MF)) = 0 (no sum), (D.14b)
il 4. (M7,) = 1 (nosum). (D.14¢)
If we define the radiative corrections to (D.1) as
2N IN-1
YoM =5 ML +Mi+a (D.15)
=l i=l
we obtain the result
2N 2N
A== M (M) + Y Taja,(M})) ~ Azz(M3) (D.16)
i=l J=1

where the sum over the pseudoscalar Higgs A; self-energies includes the neutral
Goldstone boson self-energy ﬂba(O). It can be shown that the tadpoles cancel

just as in the MSSM. Similarly it can be shown that the correction A to (D.2)

defined as
2N-1 2N-1
> M},? =Y M +My+A (D.17)
1=1 i=1
is given by
2N 2N
A==y Mysps (M72) + Y aa,(ME) - Aww (M) (D.18)
i=1 i=t :

where the sum over the pseudoscalar Higgs A; self-energies includes the neutral
Goldstone boson self-energy Ilg(0), and the sum over the charged Higgs bosons

ll.-i self-energies includes the charg:ed Goldstone boson self-energy N+ (0).
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Figure 4: Quadratic SUSY Breaking Corrections — Contributions to Higgs
boson masses that are quadratic in a scalar mass arise from diagrams of this

topology.

Figure 5: Cancellation of Quadratic Corrections — The corrections to the
mass sum rule that are quadratic in the squark mass cancel in the above di-
agrams. The restriction on naturalness from corrections to the lliggs boson

masses i3 therefore hidden in the sum rule.

Figure 6: A(my,) - We have plotted the correction A using the full expres-
sion given in Appendix B. The parameters used are given in the text. The squark

mixing angle is 0, = 0° and 20° in Figures 6a and 6b respectively. The curves



in the figures represent m; = (a)100 GeV, (b)100 GeV, (c)700 GeV, (1)1000
GeV, (€)1300 GeV. Large corrections occur when 0, # 0, and the squarks £,
and I, have different masses. This occurs when the coupling parameter A,mg

becoes large.

Figure 7: A(m,) - We have plotted A as a function of the top quark mass
for five values of the squark masses: m;, = m;, = (a)100 GeV, (b)400 GeV,
(c)700 GeV, (d)1000 GeV, (e)1300 GeV. The rafiiative corrections behave like
am} /M2 for large m;. The contribution can be of either sign depending on the

relative sizes of the top quark mass and the top squark masses.

Figure 8: Feynman Rules — Feynman rules involving Goldstone bosons and
squarks. We have written these in the iif, — fin basis for simnplicity. These can be
converted into Feynman rules in the mass eigenstates basis i) — ii; by a rotation

in the squark fields.

Figure 9: Trilinear Higgs Couplings — Trilinear Higgs couplings involving

Goldstone bosons.

Figure 10: Trilinear Tadpole Couplings I - Trilinear couplings relevant to

tadpole contributions to (3.41).

Figwre 11: Tadpole Sum I - These diagrams contribute to the sum in
(3.41). The couplings in Figure 10 show that this contribution is zero when the

diagrams are summed with the appropriate signs.
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Figure 12: Trilincar Tadpole Couplings 11 - Trilinear couplings relevant to

tadpole contributions to (3.49).

Figure 13: Tadpole Sum Il — These diagrams contribute to the sum in
(3.49). The couplings in Figure 12 show that this contribution is zero when the

diagrams are sunmined with the appropriate signs.
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