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ABSTRACT 
o 

Imposing supersymmetry on a Higgs potential constrains the parameters that 

define the potential. In supers}mmetric extensions to the standard model con­

taining only Higgs SU(2)L doublets there exist Higgs boson mass sum rules and 

bounds on the Higgs masses at tree level. The prescription for renormalizing 

these sum rules is derived. An explicit calculation is performed in the minimal 

supersymmetric extension to the standard model (MSSM). In this model at tree 

level the mass sum rule is 1I1'li + 1I{l = 1I1~ + Mi. The results indicate that large 

corrections to the sum rules may arise from beavy matter fields, e.g. a heavy top 

quark. Squarks significantly heavier than their fermionic partners contribute large 

contributions when mixing occurs in the squark sect.or. These large corrections 

result from squark-Higgs couplings that become large in tills limit. Contributions 

to individual Higgs boson masses that are quadratic in the squark masses cancel 

in the sum rule. Thus the naturalness constraint on Higgs boson masses is illdden 

in the combination of Higgs boson masses that comprise the sum rule. 
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I. INTRODUCTION 

One of t.hc most. import.ant. problems facing part.irle physicist.s t.or!ay is our 

lack of knowledge about. the mechanism of spont.aneolls dcci.roweak symmetry 

breaking in the standard model. The neutral anr! charg('(1 current interactions 

of t.he standard model have been convincingly verified in many experiments. 

In t.he future it will be import.ant to test the non-abelian nature of the theory 

and IImkrst,and the mechanism that is responsible for the symmetry breaking 

SU(2),. x U(lh' -+ U(l}em. There is cert.ainly new physic.~ to be understood 

in th!' symmetry breaking sector because we know that the symmetry breaking 

takes place. Unfortunately the effects of electroweak symmetry breaking sector 

are notoriollsly difficult to detect. The elementary Higgs bosons or the bound 

st<l.f.l':S or a strongly intcracting symJ'll'My breaking sector might be too ma.'lSive 

t.o olY."crve directly, and there virtual effects are scr~ned in e1ectroweak radiative 

corrections. 

Most of the models that. have been proposed to explain the symmetry break­

ing have employed gauge theories, and with good rea.c;on as they have been so 

succ('!';.<;flll in their application to the standard model. Dynamical symmetry 

breaking is perhaps the most conservative solution to the symmetry breaking 

pllzzlebeyond the elementary scalar Higgs. This form of symmetry breaking 

ha.~ already been seen in the QCD sector of the standard model. A bit more 

daring is slIpersymmetry, in which the symmetry of spacetime transformations is 

extended t.o include transformat.ions between fermions and bosons. No evidence 

for slIpersymmetry exist.~ in nature, but physicist.s have for a long time been in 

:. ~' 
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f.he husill!'ss of invent,jlll!; nrw symmetries. 

Farrd wit.h a In,:k of rxperiment.al information about. t.he ekdrowcnk sym­

mdry brenking serlor of t,he st.andard model, theorist.s have invent.ed t.here own 
',. 

const.raint,s <IS a guide for furt.her research and progress. Of theSe the hierarchy 

problem ha.~ prohahly received the most attention. Physicists hope t.o one day 

unify all of physics at. some large energy scale. The hierarchy problem is just t.he 

question of why the e1ect.roweak scale and the proposed unification scale around 

t.he Planck mas.~ are so divergent. 

Closely relat.ed t.o the hierarchy problem is the problem of naturalnes.q. As­

suming that a hierarchy is generated at tree level, how is the hierarchy preserved 

once radiative correct.ions arc introduced? Since the new physir.s is still unknown, 

the best we can do is take the view that the theories of today are effective the­

ories below t.he scale of t.his new scale, and' apply a cutoff A to divergent loop 

diagrams which embodies the unknown physics. However, the masses of fun­

damental scalar particles are subject to quadratic divergences. So if the cutoff 

parameter A is of the order of the Planck mass, then it is hard to understand 

why the Higgs bosons remain light. 

In technicolor elementary scalar bosons are done away with entirely, and a 

confining gauge theory like QCD is employed. The fundamental states of techni-

color are fermions and gauge bosons, and fermion-anti fermion condensates lead 

to breaking of the elect.roweak symmetry. In supersymmetry scalar bosons are 

kept in the theory, but t.he new symmetries that exist ensure that the quadratic 

divergences cancel leaving only the milder and tolerable logarit.hmic divergences. 

The price to be paid for introducing supersymmetry is the introduction of many 
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new states as each bosonic field must have a fermionic field that are connected 

by the ,supersymmetry transformations. It is the combincd contribution of the 

bosons and their fermionic partners that give the vanishing quadratic divergence. 

Supel'Hymmetry must be broken. Exact supersymmetry would require that 

the supersymmetric partners have exactly the same mass. Since no such states 

have been obBerved, we must devise some means of breaking supersymmetry 

and boosting the masses of the supersymmetric particles to values above the 

range of present observation. The requirement of naturalness now presents itself 

as a limit on the amount of supersymmetry breaking that can be present. If 

the supersymmetric partners are sufficiently different in mass, then we have the 

naturalness problem allover again. The quadratic divergences may still cancel, 

but corrections to IIiggs masses that are quadratic in the mass of the massive 

supel1lymmetric partner will remain. Thus the supersymmetric partners must 

be heavy enough to have escaped detection while not so hcavy to reintroduce 

the problem of naturalness. 

A goot! place to look for the radiative effects ofthe supel1lymmctric particles 

is in the Higgs masses themselves. Indeed the naturalne;5 constraint. is usually 

discussed in the context of the Higgs masses. Higgs bosom! couple to all malt­

sive l'articles and is therefore sensitive to radiative effects from all sectors of the 

theory. In addition Higgs masses are particularly vulnerable to radiative correc­

tions due to a heavy top quark (or a fourth generation) M the lIiggs-quark-quark 

coupling is proportional to the quark maIlS. 

At the moment 8upersymmetry is the only known way to reconcile the 

vast difference between the electroweak and GUT scales while still retaining 

'. ':l 
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scalars as fundamental fields. We shall refer to the two-Higgs model as the 

minimalsupersymmetry extension to the standard model (MSSM). In this tllt'sis 

we calculate radiative corrections from quark and &quark loops to Higgs boson 

mass relations that arise in the MSSM. Radiative corrections to IIiggs masst!S 

in the MSSM were first calculated in Reference [1] using the effective potential 

formalism. However a heavy top quark was not fashionable at that time. The 

radiative corrections arising from loops containing neutralin08 and chargin08 to 

the IIiggs boson mass sum rules have been considered in Reference (2). No large 

corrections to the mass relations were found unless a dimensionless coupling 

constant becomes large. We find that large corrections can occur for quark and 

squark loops if the squark-squark-lliggs couplings are large. We also find that. a 

large quark mass can yield large radiative corrections to the mass sum rules. In 

addition we develop a formalism for calculating radiative corre.:tions to Iliggs 

mass relations in asupersymmetric extension with an arbitrary number of Higgs 

doublets. 

In the standard model, a single Higgs SU(2) doublet suffices to break the 

electroweak symmetry. In supersymmetric extensions of the standard me-del, 

at least two doublets are required to cancel anomalies (the Higgs bosons have 

fermionic supcrpartner!:l) nnd to give the up and down quarks a mallS[3). The 

empirical fact that. p = 1 sugge;ts a custodial symmetry in the IliW sector. At 

trt..'t.~level therc is the wcll-kllOWIl rcsult[4): 

Li(47j(T; + 1) - Y/)vlc, 
p = ". 2y,2!J~ L, • a 

(1.1) 

The index a runs over the Higgs representations. T is the weak isoopin, Y is the 

'il 



'. 
:; 

hypcrcharge and c = 1 ( !) for complex (real) repre;cntat.ions. Assuming p = 1 

d()(!S not result from tUlling the vacuum expectation valllcs Vi, we oht.ain the 

requiremcnt 

(21i + 1)2 - 3Y? = 1. (1.2) 

This I:llsl.odial symmetry can be realized by taking a IIiggs sector that contains 

Wf;ak SU(2) doublets (T = i, Y = ±I) and singlets (T = 0, Y = 0). Other repre-

scnlztions nrc possible, but these have large dimension ali lies and appear rather 

ad noc. The standard model contains just one complex IJiggs doublet. Three of 

thC5C four degrees of freedom are eaten by the Wand Z gauge hosans, leaving a 

single physical Higgs b06On. In this paper we are primarily concerned with exten­

sions of the standard model that have two Higgs doublets only. The two-Higgs 

doublet model has eight degrees of freedom in the Higgs sector which become 

three neutral Higgs boeons(H, h, A), two charged Higgs b06Ons(I/+, H-), and 

the usual three Goldstone boeons( G, G+ ,G-) that are eaten by the W and the 

Z. 1/ and h are CP-even eigenstates while A is CP-odd. We follow the usual 

practice of calling these scalars and pseud06Calars respectively to indicate the 

form of their couplings to fermions. The general t.wo-Higgs doublet extension of 

t.he standard model therefore has a much richer phenomenology than does the 

simple standard model. The general two doublet modd (without supersymme­

try) has quite a bit of arbitrariness in the masses and couplings of the physical 

) I iggs booons. 

We will consider the supersymmctric version of the two-lJiggs doublet ex-

tension to the standard model(3). The restrictions imposed by supersymmetry 

constrain the couplings in the Higgs sector and lead to mass relations for the 

" 
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physical IIiggs booons. In addition, at tree level the lightest neutral Higgs h 

must be lighter than the Z, the heaviest neutral Higgs JI must be heavier than 

the Z and the chargl'd IIiggs JI+ must be heavier than the W. In fact the 

fir~t two inequalities rcmain true for supersymmetric extensions of the standard 

rriodel containing an arbitrary number of Higgs doublets (containing no Higgs 

singlets or other repreiClltations)[5] though the charged IJiggs does not have to 

be lighter than the W in these cases. 

and 

In this model, there exist the tree level mass sum rules 

M 2 M2 - M2 M2 11+ h- A+ Z 

M2 -M2 M2 HoJ: - A + w, 

(1.3) 

(1.4) 

We explicitly calculate the 0(0) corrections to the relation (1.3) arising from t.he 

quark and lepton sectors. The corrections to (1.3) and (1.4) will all be 0(0) for 

the one-loop calculat.ion since in supersymmetric models the cubic and quartic 

couplings in the Higgs potential are related to the gauge couplings 9 and g'. 

There is no arbitrary coupling in supersymmetric extensions of the standard 

model such as the quartic coupling ..\ in the standard model. The philosophy is 

therefore slightly different in the renormalization of the mass relation in () .3) or 

the MSSM. The sum rule in () .3) involves physically measurable masses, without 

any reference to couplings. So we can take these masses as the parameters that 

define the Higgs sector, and find radiative corrections to (1.3) in terms of these 

parameters. We find that large corrections to the mass relation in (1.3) can arise 

from matter loops bllt only if the significant mixing occurs between t.he squa~k 
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fields, or if there is a heavy quark. 

Large correctic.ns (O(Q~) where mq is a quark mass) to the Higgs booon 
w 

masses arise as they do in the standard model. The squark ii corrections to Higgs 

masses that are O(Qm~) are quadratic in the supersymmclry breaking scale. If 

they become large, they destroy the stability of the electroweak scale to radiative 

corrections, necessitating large subtractions that require unnatural fine-tuning 

order by order in perturbation theory. We find that these contributions can­

cel exactly in the renormalization of the sum rule. Therefore the naturalness 

constraint is "hidden" in the sum rule. Mixing betw~n len and right handed 

&quarks occurs in general. If the off-diagonal entries in the left...right &quark 

quark mass matrix are large, then large &quark-lliggs couplings can arise and 

result in large corrections to the m888 relation. 

In Section II we review the aspects of the MSSM that are needed for this 

work. In Section III we explain in detail the formalism for renormalizing the 

Higgs sector of the MSSM. We discuss the results of an actual calculation we 

have performed in the MSSM in Section IV. Since the physical masses of the 

IJiggs bosons(H, h, A) and the Z are measurable, the O(u) corrections to the 

mass relation in (1.3) is a physically measurable quantity. In Appendix A we 

display some Feynman vertices that are needed to calculate the Higgs self-energy 

diagrams in the MSSM. In Appendix D we display the full result for the cor­

rection to (1.3) arising from the up-type quark and up-type squark loops. This 

result is easily generalized to all contributions from other loops involving quarkll, 

leptollll and their lIupersymmetric partners. In ApJ.'cllliix C we show that the 

tadpole contributions cancel in the MSSM. Finally in Appendix D we discullS 

':I 
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how the formalism deVeloped in Section III can be generalized to models with 

more than two IJiggs douLlets. 

Other work on radiative corrections to Higgs bo6on mass sum rules in the 

MSSM has also appeared[2,7,8]. The calculation in Reference [6] is a com­

plete one-loop calculation of the radiative corrections from the fermion-sfermion 

sector. The propagating squark fields are the mass eigenstates, and the renor­

malized masses are the physical masses defined as the pole of the renormalized 

propagator. The only approximation is that flavor mixing is neglected. This is 

easily reincorporated into the result. 

it 11 
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II. TilE MINIMAL SUPERSYMMETnlC EXTENSION 

OF TilE STANDARD MODEL 

We shall follow the notation of Gunion and Haber[U] with the one exception 

that they refer to the neutral Higgs bOfiOns 11, h, A, and Gas IIr, II~, IIg, and 

CO rcspectively. Throughout this paper any ma.'IS without a subscript will be 

a physical ma.'IS(e.g. MH, Mh, etc.). Any subscript on a mass parameter (e.g. 

(Mil )b, (Mil )r, etc.) indicates that this parameter is in general different from 

the physical mass. The definitions of these mass parameters will be given when 

they arise. Our review will be brief, and the interested reader is urged to consult 

References [3,5,9J for more details about the MSSM. 

Supersymmetry requires that there be at least two Higgs doublets. The 

MSSM is minimal because it contains only these two Higgs douhlets and the 

minimal particle content necessary to explain known phenomenology. Since it 

is the simplest viable supers¥mmetric model, it is the natural place to begin an 

investigation of radiative corrections in the Higgs sector. Call the two complex 

doublet scalar fields ~1 and fJ2. The Higgs potential develops an a.'iymmetric 

minimum, giving rise to spontaneous symmetry breaking. Then fJl gives ma.'IS 

to the d-type quarks and squarks, and ~2 gives mass to !.he u-type quarks and 

squarks. 

The MSSM can be obtained as the low-energy limit. of a supergravity the­

ory. The renormalization group equations are used to run the valucs of the 

parameters in the supergravity theory that obey certain boundary conditions at 

the unification scale. In this way constraints are placed on the parameters that 

., ." 
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dl~fine the MSSM. We shall ignore these constraints which can be imposed at 

any time. Imposing 1.I\I~<;t~ constraints restricts ourselves to just this model, and 

weak-scale effedive supcrsymmetry can arise in a mor~ general way[lO]. 

Supersymmctry const.rains the otherwise independent quartic couplings in 

the MSSM to be combinations of the gauge couplings 9 and g'. This implies 

that the Higgs sector of the MSSM is weakly coupled as the coupling constants 

9 and 9' are certainly perturbative. We are allowed terms up to cubic order in 

the superfields in the Buperpotential by renormalizability, and it mllst of course 

be gauge invariant. The m06t general Buperpotential that conserves R parity 

contains the following pieces: 

w = tij(JJH:H~ + IHU) R+ /JH:Qi D+ hH~{i{j) (2.1) 

where Q and L are the weak SU(2) doublet quark and lepton 8uperfields, (j 

and b are the weak SU(2) singlet quark 8uperfields, and R is the SU(2) sin­

glet lepton superfield. Only the first term in (2.1) co('!tributes to the Higgs 

potential. The other terms contribute to the full scalar potential. I, /J and 

h are the Yukawa couplings that yield the fermion masses and the masses of 

their supersymmetric partners. We can relax the constraint that the 8uperpo­

tential conserve R parity. An interesting discussion of some alternative models 

of low-energy Bupersymmetry can be found in Reference [11). 

The scalar potential receivC9 contributions from the so-called D terms and 

F terms. These arc 

v = ~[DaDa + (0')2] + FtFi (2.2) 
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where 

va = ~gA:aijAj, 

D' = ~9'IIiA: Ai + {. 

aw 
Fi = OAi' 

(2.3a) 

(2.3b) 

(2.3c) 

Here Ai dcnol.e8 a generic scalar field appearing in the superpotential. { is the 

t'ayet-liiopoulos term[12} that may arise for U(l) gauge groups. The hyper­

charge assignments of the two lIiggs doublets are Yl = -1 aud 112= I. ensuring 

anumaly cancelation. Therefore. one lliggs doublet gives masses to the uJrtype 

quarks. while the other gives masses to the down-type quarks. so the MSSM by 

construction e1iminal.e8 the unacceptable flavor-changing neutral currents. 

In general we add aU possible soft. supersymmetry breaking terms[13) that 

can contribute to the scalar potential. These terms break supersymmetry but in 

such a way that no quadratic divergences appear. This allows the supersymmetry 

to be broken as is necessitated by phenomenology while preserving olle of the 

major motivations for supersymmetry. The soft. supersymmetry breaking terms 

must be of dimension three or leBB in the fields. The Higgs potential is then 

given by (we assume that the Fayet-lliopoulos term as.'loeiated with U(l)y is 

small and neglect it) 

3 12 
V = ~l L l4»taQ 4»l -4»lI1Q 4»212+ 8 (4)>t4>>l -4»!4»2)2 + 11112(cP!4»1 +4»!4»2) + V.ol t 

u=l 
(2.4a) 

which can be rewritten 

V = ~g2 [4I JJ:· JJ~12 - 2(1I:·IID(II~·II~) + (J1:. J1:fl + (Jl~. JJ;)2] 

'.0 
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+~g'2(II~O H~ - JI;. JI:rl + IIJI2(JW II: + II~·II;) + V'''le (2.4b) 

where 

V.ol t = m~ 11:·11: + m~lI~· II~ - (m~2tijlJt 11~ + h.c.). (2.4c) 

the Higgs potential arises from three sources: (1) the terms proportional to 9 and 

1 that come form the D terms. (2) the term proportional to 1/'12 that comes from 

the F terms and (3) the soft supersymmetry breaking contrib~tions in (2.4c). 

We are using the notation[9) 

4»t 4»1 = 11:°11: 

..I.L .. - HiOlli 
"2,,2 - 2 :I 

..I.L - ""llilli "1,,2 - "'J 1 :I' 

(2.4d) 

(2.4e) 

(2.4f) 

In this notation Hl and Hi are the neutral component of HI and H:I respectively. 

while H~ and II~ are the charged components. The quantities mi. m2. and ml2 

are arbitrary mass paramett~rs. and those terms in (2.4b) that depenJ 011 11112 

can be absorbed into the soft. 8upersymmetry breaking terms of (2Ac). :11 \O'N-

energy supergravity models rnl2 is proportional to IJ. but we will conside!' a more 

general MSSM and let f1112 take any value that produces an acceptable vacuulll 

(sec below). Of course IJ still has consequences on phenomenology; it appear~J in 

the squark mixing matrices for example. See Section IV below. 

A troubling aspect of the MSSM is the very existence of the parameter 

IJ. When the MSSM is vif!wed in the context of Ilupergravity or graml-unilied 

models. it is hard to ullderstand why I' does not have a value of order tile 

Planck or the GUT scale. This hierarchy problem can be cured by imposing an 

.. if 
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additional symmetry. It is ncccs..~ary to remove I' as a fundamental scale in the 

theory. Two ways this can be accomplished are by going 1.0 a superstring model 

for which the Higgs mixing term is generated when a singld is present or by 

expanding the n parity to be a continuous symmetry[J-I]. 

This Higgs potential has a minimum away from II. = 112 = 0 so sponta­

neous symmetry breaking occurs. It is possible through a choice of phase to 

choose the vacuum expectation values to be real and non-negative. We are as-

suming no CP violation arising in the Higgs potential. We define v. and v, to 

be the vacuum expectation values of H. and I12 respectively so that 

(H.) = ( ~ ), (H2) = ( ~ ) . (2.5) 

To obtain the correct tree level mass Ma, = ~ g2 v2, we rectuire vl + v~ = v2. 

The Higgs masses arise from the quadratic parts of the Higgs potential. 

. Define the scalar and pseudoscalar parts of the charge-neutral Higgs boson fields 

by 

H: = v. + ~(S. +iP.) (2.60) 

H~ = v, + ~(S2 + i P2). (2.66) 

11 and 'I are iinear combinations of SI and S2 while A and G are linear com­

binations of p. and P2• The factor of ..ti is included so the kinetic energy 

terms for the physical IJiggs boson fields will have the canonical form. The son 

supersymmetry breaking terms include 

2HioHi+ 2HiOl/i ('2 Ilillj+1 ) m. • • m2 2 2 - ml2(ij • 2 I.C., (2.7) 

~ 
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which cont.ains the dlarge-neutral terms 

~fII~('()f + 1'.2) + ~m~(~~ + pi) - m~2(S.S2 - PIP2). (2.8) 

The F-terms contribute 
, 

11'12(11;° J/: + J/~. H~) (2.9) 

which we absorb into the son supersymmetry breaking contribution. In order 

to break SU(2)L x U(\)y the Higgs potential must have a minimum away from 

111 = I12 = 0, 80 that 

2 2 .. m1m2 < m. 2, (2.10) 

Notice in Equation (2.4) that in the direction ~1 = ~2 the quartic terms in the 

Higgs potential vanish. Therefore we require 

2 2 2 2 m. +m2 > mn (2.11) 

to prevent the Higgs potential from being unbounded from below in this direc­

tion. Collecting the quadratic parts arising in the D-terms 

~(g2 + gI2)[1I:. H: _ H~· H~)2, (2.12) 

~(g2 + gI2)[(v~ - v~) + v'2(VISI - V2 S2) + ~(S: - S~ + p~ - plW, (2.13) 

~(g2 + gI2)[(v~ - v~)(S~ - S~ + P: - pl) + 2v~S~ + 2v~S~], (2.14) 

the mass matrix in the scalar sector is given by 

M2 _ ( m~ + Hg2 + g/2)(3vl- vn -m12 + 1(g2 + g'2)VIV2 ) (215) 
s - -m.2 + ~ (g2 + gI2)v. V2 m~ + ~ (g2 + gI2)(3v~ - vn ' . 

while the mass matrix in the pseudoscalar sector is given by 

2 (ml + ~(92 + g/2)(vl- v~) ml2 ) 
Mp = 2 2 12 2 2 . 

. ml2 m2+~(g +g )(V2- VI) 
(2.16) 
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Taking traces we obtain the sum rule in (1.3). The crucial point to notice is 

that the soft-supersymmetry breaking terms contribute equally to both sides of 

the sum rule. In other words, the sum rule is a result of the supersymmetric 

structure of the D-terms only since gauge invariance requires that contributions 

from both the F-terms and soft-supersymmetry breaking terms cancel. 

Two parameters in the mass matrices above are determined by the others 

via the minimization condition. So we can solve for ml and 7112 in terms of m12, 

til, and tl2: 

2 2 tl2 1 2 
m 1 = m 12 - - -2Mz cos2{3, 

til 

2 2 til 1 2 ~ 
m2 = m 12- + -2Mzcos2fJ, 

tl2 

(2.17) 

(2.18) 

where we have defined tan {3 = !!1. Then the mass matrices can be written 
'" 

MJ= ( m~2~ + M~ cos2 {3 -m12 + ~Misill (3cos{3 ) 

-m12+~M1sin{3cos{3 m~2~+M~siIl2{3 , 
(2.19) 

and 

M'j. = m I2", ";1: . (2.20) 
( 

2!!1 ) 

ml2 m12~ 

The pscudoscalar mass matrix has a zero eigenvalue which corresponds to the 

neutral Goldstone boson. The eigenvalues of the rna-;s matrices M; and MJ. are 

related by 

MII,n = ~ [M~ + M~ ± J(M~ + M~)2 - 4M~M~ cos2 2.8]. (2.21) 

Therefore Mn < Mz and Mil > Mz at tree level. Tlll~ results generalize to 

the case of 2N Higgs doublet models[5]. See also Appelldix D. 

In a 1I0n-supersymmetric two doublet model the Higgs ma:;:;es A'IJI, Mn 

and MA and the mixing angles are independent quantities. SupersYlllmetry, by 
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constraining the quartic couplings, reduces the number of parameters needed to 

completely describe the Higgs St:ctor at tree level to just two. Quantum correc­

tions introduce dependence on the other masses and couplings in the theory. 

When the MSSM is obtained from low-energy supergravity models, tan {3 > 

1 is preferred. In these models a heavy top quark is required to drive the renor­

malization group evolution and obtain the requisite electroweak symmetry break-

ing. Therefore V2 larger than VI is favored. 

The existence at tree level of a lliggs boson lighter than the Z boson has 

been ofmucb interest recently as a Z factory has become available. If Mn < Mz, 

then the decay Z -+ Z· h is kinematically possible. This processes is suppressed 

by a mixing factor relative to the same process in the standard model. If the 

pseudoscalar Higgs A is also light (which is not a required condition in the 

MSSM), then the decay Z -+ Ah may also be possible. Experiments at LEP 

have used these processes to rule out regions of parameter space of the MSSM[I5-

16]. A discussion of the current status of these experiments from a theoretical 

perspective can be found in Reference [17,18]. 

Of course radiative corrections are important as well. Several recent calcu-

lations indicated that indeed at one-loop the lightest Higgs boson can be much 

heavier than the Z boson[19-22]. The necessary ingredient in these calculations 

is a large fermion mass (specifically. the top quark mass). A heavy top quark 

mass is an important correction even for the sum rules[6]. 

If a singlet superficld N exists in the theory new terms can be included in the 

superpotential, an example of which is ).,tij JlUI4N. In E6 superstring inspired 

models the two Higgs doulJlets are accompanied by a singlet[23]. The new t.erms 

.. . 
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in the slIperpotcntial can give rif;e to qllartic terms in the Higgs potential. In 

addit.ion there is 110 guarantee that ,\ is small. so strong collpling is a possihilit.y 

in a supersymmetric model with an SU(2) singlet. 

The nHL<;f;CS of the Higgs bosons can he obtained from (2.4) using the vacuulll 

expectation values in (2.5). The mas." matrices must be diagonalized to obtain 

MIl' M~. Hnd M~. In the MSSM there is ~he tree level mass relation given in 

(1.3) where M" < Mz and MH > Mz. Beyond tree level this relation is no 

longer exact but receives 0(0) corrections. To implement the renormalization 

procedure, we fix MH, MA,and Mz to be the physical masses which can in 

principle be measured by experiment. Then the physical mass of the other 

neutral Higgs boson h is given by a relation 

M~ = Ml + M~ - MIl + A (2.22) 

where A is a correction that is 0(0). There are two free parameters that charac­

terize the tree-level masses in the Higgs sector if Mz is fixed at its experimentally 

measmed value. We shall take Mil and MA to be the two parameters that de­

fine the theory. Then (2.22) provides a prediction for the light Higgs boson mass 

M". We can choose any two unknown masses we like and predict the mass of 

the third. 
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III. FORMA LISM FOR RADIATIVE CORRECTIONS 

We adopt a rcnormalization scheme is which external lines are evalllated 

with momenta ol\-f;hell. The physical ma..<;.<; is defined as the position of the pole 

in thc propagator. TIlt' ultimate f('Sults of this section are the relations (:lAl) 

and (3.'19) below. Th('f;c cfl'Jations indicate that at the one-loop level the wave­

function renormalization factors do not enter, and the corrections to the mass 

sum rules are given e,It.irely by combinations of Higgs boson and vector boson 

self-energies. 

Defore developing the formalism for calculating radiative corrections, we 

wish to discuss the applicability of the one-loop effective potential to determining 

physical Higgs masses. The effective potential cannot be used to calculate the 

poles of Higgs propagators exactly. It may be used to find an approximate result 

for the physical masses of the Higgs bosons in the MSSM. The calculation of 

the effective potential entails the summation of diagrams with external Higgs 

boson momenta set equal to zero. In the on-shell scheme, the external lines 

are put on-shell instead. The curvature of the scalar potential at its minimum 

is the physical mass of the Higgs only at tree level. The renormalized Higgs 

mass found using the renormalized one-loop effective potential is finite but is 

not necessarily equal to the physical Higgs mass (defined as the position of the 

pole in the Higgs propagator). There is no elementary method to relate these 

two quantities[24] without calculating the Higgs propagator to find the pole. 

However if the mas .. is sufficiently small, the difference between the Higgs self­

energy with external momenta on-shell and with external momenta set to zero 
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is small. Then the effective potential is a useful tool for calculating the phYl:iical 

Higgs mass. In fact, the Coleman-Weinberg mass[25] ;:; the phYllicalllla.s.':l sillce 

!letting external momenta to zero is the same to one-loop ali :;etting them on-shell 

for this case. The calculation presented here goes Leyond the effective potential 

in that the phyHical ma81ie8 of the lIiggsbosons are the quautiti~ that enter into 

the formulae. In the MSSM we know that MH > Mz at tree level, 60 setting 

the external legs to zero momenta is not necetl:iatily a good approximation. 

In this section, we denote all bare fields and parameters by the sub:;cript 

b. Absence oC this subacript. mdicate8 a renormali~ fidd or a renofillalized 

parameter. For example, Hb denotes the bare heavy-lIiggll field,while 11 denotes 

the renormalized field. 

In the muiti-lliggs doublet. modew, renormalization is complicated by mix­

ing of the physical J1iggs bo8ons nece&>itating rediagouali:tation at each order. 

This is analogo~ to the mixing oC the Z and t.he photon in the renormali:tation 

of the standard model[26]. lIere we follow the method of Aoki et al.[27) for 

on-shell renormalization of fields when mixing is pre;ellt. 

ltecall the definition oC the scalar and pseud~ci~lar COlllpollclIi.s of the 

charge-ueutral HiW bOtlOn fields: 

1 1 
HI = til + ,f}.(SI + i I'd (3.10) 

Hi = 112 + ~(S2 + i P~). (3.lh) 

lJ aud II are linear combinations of SI and S2 while il i~lItl G' are lillcar colIILi­

natiolll:i of PI aud P2 • The factor of J2 is includetl I:iO the killclic ellergy terllls 

lor t.he physical Uiggs boson fields will have t.he canonical form. 
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U.enormalization proceedll in the standard way. Uegin with a twe level La-­

grangian C,(JI,h, ... ;p"P2, ... ) which contains certain fields f. and parameters 

Pj. To calculate at one-loop, renormalized fields and parameters are required. 

This is accomplished by breaking up the tree level Lagrangian into a piece con­

taining renormalized fidds and parwneters and a counter term piece. The fields 

and parameters in the tree level Lagrangian are now not phYllical quantities, 

contain infinities, and are calleJ bare quantities. The counter terms Lagrangian 

is generated by shiftillg the parameters Pjb _ pjr + ~Pj end introducing WiWe­

Cunction renormalizations Z Ii' The wave-Cunction renormalizations are oC the 

form ZJa = 1 + 6ZIi whcre the 6ZJa are in general divergcnt cmd of higher 

order in perturbation theory. ZJa = I + ~Zli is a matrix e<luation iC there is 

mixing. The renormalized Lagrangian has tile same Cunctional form as the tree 

Lagrangian but is expr~d in terms of renormalized quantiti~. 

.cb(JI", h"''''iPlb,P2'',,,.) 

= Cr(Jlr, hr, "·;Plr,p-.lr, ... )+Cct(Jlr, hr, ... iPlr,P2r, ... ; ~PI' ... ; ZI" ... ). 

(3.2) 

. FeYllmall rule:i are derived usillg the renormalized Lagrangian and the coun­

terterm Lagrangian, iUld the illfilliti~ prc:;ent ill one-loop grar)hs are abl;Ol"Lcd 

in the coullterterm Lagrangian. The ValUCll oC the renormali:ted parameters are 

fixed by experimcnt. 

WIlCn lJ"L't. ... levcl IIUXlIIg occurs, wavt. ... function rellormali:tation takes a lIIa-

trix form. Delinc thc IlIatriw::I 

,/1/2 (ZI/2 LJ~ = 1111 ZI/2 
hH 

ZI/2 ) III. 
ZI/2 ',h 

(3.3a) 
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lU1I1 

( 

1/2 1/2) 
Z

I / 2 _ ZC;(; Z(;A 
'I' - 1/2 1/2 . 

Z,\r. ZAA 
(3.:lI, ) 

III I.he hart' La~ran~i;," we riellot.e all paramet.cr.!allfl liPIds wit.h t.he sllhsr.ript. 

b. In part.icular the Higgs potential in (2.4) is rewrit.t.ell in terms of bare fields 

and ma.'l..'lCS by atlaching a subscript b to all qllant.itif'S. Thm the wave-fllnd.ion 

renormali7.ati()O of the Higgs fields can be exprC't'lCd a.q 

( ~ ) ~ = Z!/2 ( ~ ) (3.4n) 

and 

( ~ ). = Z!!2 ( ~ ) . (3.4b) 

The matrices in (3.3) are not. in general symmetric. There I\re four independent. 

parameters for each matrix. We have that Z!/2 = 1 + 0(0) 90 that Z;/l, = 
112 () 1/2 () d 1/2 . • 1+0(0), Zhh = 1+00 , ZHh = 0 0 ,an Zhlf = 0(0). The kmetlc energy 

terms for the charge neutral pieces are 

~8" (II h) (Z!/2)TzIj2a,. ( ~ )+~8" ( G A ) (Z;p)TZI/2a (G) P ,. A -' 

(3.5) 

Now we proceed to investigate the m889 terms. In the uSllal way we shin 

the parameters that occur in the Higgs m899 terms as follows 

(mn~ = m~ +6m~ (3.6a) 

(m~)" = m~ + 6m~ (3.6b) 

(m~2)~ = m~2 + 6m~2 (3.6e) 
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(M~)" = M~ + liM~ (3.tid) 

("I )" = VI + litll (3.6r.) 

("2)" = V2 + 6V2' (3.fi/) 

The HiAAS pot.f'nt.ial in (2.4) clepcnds on five parameters, 90 we can chOORe five 

paramders in (3.ti) t.o ddnmine the potential. The parameters we use t.o define 

the theory af(~ the physical ma.~ MH, Mh, MA and Mz as well as the coupling 

9 (or 0). The quant.iti!'fl in (3.6) are related to t.hese five in a complicat.ed way 

determined by the Higgs potential in (2.4) 88 was demonstrated in Section II. 

Other parameters such a.q 1,'12 and its associated counterterm are determined in 

terms of the five paramet.ers and counterterms in (3.6). The dependence of ,. on 

the other parameters is given in Equation (3.25) of Reference [9]. 

The shins in VI and V2 renect the fact. that. the locat.ion of the minimum 

of the Higgs potential reccives 0(0) correct.ions. This is a generalization of the 

same stat.ement in the standard model, where the t.ree level vacuum expectation 

vallie V reccives 0(0) corrections. In the tree level Lagrangian til and V2 are 

determineri by finding I.he minimum of the Higgs potential. Therefore VI and 

V2 are specified by the parameters in the Higgs potential, m~ + 1,'12, m~ + I,JI2, 

ml2, Mz. etc. The const.raints were given in Section II by (2.17) and (2.18). At 

one-loop these paramcter.! are renormalized, and t.he same functional forms for 

til and V2 in terms of thc renormalized parameters are no longer correct. 

One approach is to define tadpole countert.erms TH and '7la 80 thl\t they 

exactly cancel t.he one-loop tadpole diagrams. This would impose two const.raintR 

on the cOllnt.erterms. We will show below and in Appendix C that it is in fact 
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of no coJlljt!quence how the tadpole divergenres are halldled as they are exactly 

cancelled in the radiative corrections to the 8um ruld. &'t! abo H.cIcrence [2U]. 

Our goal then is to formulate renormalization collditions for the phYliicai 

m~ without any reference to the unmeasureable parameters that occur in 

(3.6). The basic idea is the foUowing. The Higgs m~ depend 011 Mz and two 

mixing angles, UBually called 0 and {3 ({3 was introduced in Section II). To obtain 

the one-loop corrected masses requires these angles to be renormalized. lIowever 

in the 8um rule we are interested only in the traces of the mass matrices, and if 

the rotation angles 0 and {3 that diagonalize the mass matrires are renormali:ted 

is of no consequence. We shall go t.hrough t.he det.ailed procedure of the renor­

malization procedure below. A more general argument valid for modes with an 

arbitrary number of Higgs doublet.8 (including t.he two doublet case) ~ given in 

Appendix D. 

The lIiggs mass terms arise in the potential given by (2.4). The parameters 

011, 012, and 0112 are undetermined due to the arbitrarine:;:; of the soft liupeCliym­

metry breaking terms. The mass coll8traint.8 ari:ie becaw;e the quartic couplings 

ill (2.4) are determined in terms of the gauge couplings by supersymmelry and 

gauge invariaHce. Then the mass ternUi that ari:lc are of the Jorm 

~ ( S1 ) ( AD) (81 
) 

S2 b DC" 8'2" 
(3.7) 

where 

1 '1 :lul - 11:/ '1 2) 
Ab = (mnb + 2(Mz )" ( v~ + v~ " (:U~u) 

1 ' (11111',/) 
Db = -(m~2)b + 2(Mi)b v~ + v~ " (3.Mb) 
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1 (3tl~ -v~) 
Cb = (JU~)b + 2(Mj)b v~ + v~ b' (3.Be) 

This mass matrix is diagonalized by the real orthogonal matrix characterized by 

the angle 0: 

where 

0" = ( c~ 0 -8in 0 ) 
8111 Q COB 0 

2Db 

tan 20 = (A _ e)" 

With a redefinition of fields given by 

(~). =0.( n. 
the mass matrix is diagonalized to give 

where 

0_ (A B) 0 = (M}, 0) 
" DC" 0 M2 

" h " 

(Mi,)" = i [(Ab + Cb) + J(A" - Cb)2 + 4Dt] 

(M/~)b = ~ [(Ab + eb) - V(Ab - C,,)2 + 4Ht]. 

(3.9a) 

(3.9b) 

(3.10) 

(3.lla) 

(3. lib) 

(:1. 11 e) 

The shiftll in the parallleters introduced in (3.6) generate shifts in the pa-

ramelers Ab, H", and e" t.hat appear in t.he unrenormalized mass matrix through 

t.he definitions in (3.8). We ddine the renorlllalized values of t.h~ parameters 

and the associated cOlllllt:rterms as A" = A+hA, D" ~ D+6fJ, and G" = G+hC 

where A, D, and C arc defined just as the bare quantities arc dclincd in (3.8) but 

ill terms of the rellorlllali:ted quautities. It ili unllcce:;:;ary to retain terms second 

order in the COliliterterfll:l Lecause these are higher order in perturLation theory. 
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The inveI"SC propil~:\lor is a mat.rix dlJ(~ to t.hc mixinJ!; of t.he lIiJ!;~ bO'ion~, and 

we derool.!, iI, hy: 

iI'S(p2) = (i.r",,(p2) il'''h(p2») 
tl'h,,(p2) irhh(p2) . 

(3.12) 

Then wc have 

ir5(,,2) = (Z!/2)TZ!/2p2 _ (Z!/2)T(M~)DZ!/2 - ItMs (3.13a) 

where 

( 
(M1/)r 0 ) 

(M~)D == 0 (M~)r (3.13b) 

and 

6Ms == (6M!, 6MI~") 
6M,," 6M" 

(3.13c) 

The 8ubscript D in (3.l3b) indicated that the renormalized ma'lS matrix (with 

8ubscripts r) is diagonal. In obtaining (3.13) we have dropped terms that are 

second order in perturbation theory, used (3.11a), and defined 

6M;, = 6Acoo2 0 + 6Bsin 20 + 6Csin2 0 (3.1-1a) 

6M~ = 6Asin2 0 - 6B8in 20 + 6Ccos2 0 (3.14b) 

6Ml,,, = 6M~II = (6C - 6A) sin 0 coo 0 + 6lJ coo 20. (3.14c) 

We have ncglected the pieces of the countert.erms coming from 60 (in 0 -+ 0+60) 

that ill fad exactly cancel (3.14c). The off-diagonal terms are irrelevant in the 

renormalization of the sum rules. The inverse propagator matrix in (3.12) is 

symmf'tric aq it, should be. We have also defined the quantities 

(Ml,}r = ~ [(A +C) + J(A - C)2 + 4J)2] (3.15a) 
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(IH'~)r = ~ [(A + C) - J(A - C)2 + 4B2] (3. !rib) 

At. t.his point. thc H'lIoflllalizccl paramct.e~ (Ml,)r and (M~)r are not thc physic,,1 

mas.<;ffl "Il, and M,~, 'I'll(' conncr.t.ion bctween these quantities must be sper.ified 

by renormaiizat.ion condit.ions. 

We have exprt'!'i.<;('d t.he inverse propagator ir S(p2) in terms of the wave-

fundion rellormalization parameters defined in (3.3) and the count,erterms de-

fined in (3.6). The cxpr~ion is rather complicated, but fortunately we will 

only need to know the linear combination 6A + 6C to calculate the radiative 

corrections to t.he mac;s relation (1.3). Notice that 6Ml, + 6M~ = 6A + fir:: i.e. 

the trace of the ma..c;s matrix is invariant under' the orthogonal transformation. 

We have that 6A + 6C = 6m~ + 6m~ + 6Ml80 that we arrive at the conclusion: 

6Ml, +6M~ = 6m~ +6m~ +6Ml (3.16) 

We now repeat the analysis for the pseud08Calar sector in exactly the same 

way as we did the analysis for the scalar sector in Equations (3.7) to (3.16). 

DCfine PI = J21m(l/l) and P2 = J21m(H~). The mass terms are 

1 ( ) (AI BI) (PI ) 
~ ~ ~ " g C " ~ " 

(3.17) 

where 

1 2 VI - V2 ( 2 2) 
A~ = (m~)" + ~(Mz)" v~ + v~ " (3.18a) 

B~ = -(m~2)" (3.186) 

1 (v~ -V~) q = (mn" + ~(M~)b v~ + v~ ". (3.18c) 
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This mass matrix is diagonalized by an orthogollal transformation just as before. 

The real rotation matrix ~ characterized by the augle fJ: 

o = ( cos P - sin P ) 
fJ sin P CCXi P 

where 

tan 2fJ = .. . 2BC. 

We ol)tain the maaa eigenstates defined by 

( ~ ). = Op ( ~ ) • 

The mass matrix ill (3.17) is diagonalized to give 

where 

( A' B') (0 0 ) 
O-fJ B' C' b OjJ = 0 M~ II 

(M~)b = ~ [(Ab + q) + J(Ab - q)2 + ,W~] = 0 

(Ml)b = ~ [(Ab + q) - J(~b - e,y + 4LJb:l]. 

(3.19a) 

(3. 19b) 

(3.20) 

(3.21a) 

(3.21b) 

(3.21c) 

The Gold8tone botion ~ exactly massll!:lS in the Landau gauge liO the mass matrix 

has a zero eigenvalue. 

The parametc~ defined by EquatioiUJ (3.1~) gellerate wUlllerlerlllS with the 

(
"1 2) ("L 2) ., .2 1. 2 V. - V2 1 2' ". - ":! bA = hflll + -;hMz 2--2 + ;;Mzb -~--;i 

'2 VI + vl .:. VI -/- 112 
(3.:t!/I) 

blJ' = -bllli2 (3.22b) 

( 2 2) ("~ 2) .. ,' "1 1 2 v2 - V, l"l' I'.., - III he = 6ml + -26M2 -2--2 + -2Mzb ~-1 . 
VI + V2 VI + V2 

( " 'r) .) oJ. __ C 

2ti 

We define the inverse propagator for the p&!udoocalars ill the lialUe way as 

we did for the scalarll: 

80 that 

ifp(p2) = (~rGG(pl) irGA(pl») 
Ir AG(Pl) ir AA(Pl) 

(3.23) 

irp(pl) = (Z;p)T Z;'f2pl + (Zl/l)TO_ ( A' + 6A' 
p fJ B' + 68' 

B'+u OfJZp. CB' ) III 

C' + 6C' (3.24) 

The last term can be expanded again to obtain: 

irp(pl) = (Z;'f2rr z;'f2pl + (Z;P)T(M}.)DZ;!2 + 6Mp (3.25a) 

where 

(M}.)D == (~ (M~)r) (3.25b) 

and 

( 
6M!; 6M!;A) 

6Mp == 6Mlo 6Ml (3.25c) 

We have defined 

6Ml := 6A' c~l P + 68' liin 2P + 6e'sinl P (3.26a) 

6M~ = 6A'sill2 P - 6£/ sin 2{J + be' C<:tl
2 P (3.26b) 

bMl.A = bAl~G = (be' - bA') sill fJ cOtj {3 + 6n' cOtj "2/~ (3.2tic) 

ami (M~)r' is dclilled just as (Ml)b is dclilled ill (3.21) but ill terms of the 

rellorlllalized parameters (i.e. without the subscripts b 011 the paralllclcrs al)-

pearillg 011 the lUIS). As belorc we neglect 6fJ correctiolUJ to the olr-diagonal 

terlrUJ. (M~)r = 0 6ince (MJ)b = O. The invariance of the tract: give; 
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~Mf. + 6M~ = h;1' + 6C'. From (3.22) we have Ihal. 611' + 6C' = 6m? +6m~, w 

we oMain 

6MA + 6M~ = hm~ + 611l~. (3.27) 

Making liSP. of (3.16) we finally obtain the result: 

6Mlr + 6M~ = 6M~ + 6M~ + 6M~. (3.28) 

We define the self-energies of the 8Calars and the vector bosons as shown 

in Figure 1 with external legs amputated. The vacullm expectat.ion vahlf~ "I 

and V2 are in general renormalized, and tadpole diagrams must be taken into 

account. We will argue below that the tadpole contribllt.ions to the final result 

~ are zero with the renormalization conditions we choooe. This will be shown 

explicitly in Appendix C. The renormalized inverse propagator 

if'S(p2) = (i.~HH(p2) i~Hh(p2») 
IfhH(p2) ifhh(p2) 

(3.29) 

includes the expreRSion in (3.13) and the self-energy contriblltions shown in Fig­

ure 1. The inverse propagator matrix in (3.29) is symmetric. We have 

if'uu(,,2) = (ZIIH + Zhll )p2 - (Ml, )rZHlr - (M~)rZhH 

-6Ml, + "HH(p2) (3.30a) 

ifhh(p2) = (Zhh + ZlIh)p2 - (M~)rZ~h - (Ml,)rZllh 

-6M~ + "hh(p2) (3.30b) 

.. 
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.~. (2) .~. (2) (1/2 t/2 t/2 1/2) 2 ( 2) 1/2 t/2 
11 "" I' = 11 "" I' = Z""ZIII. + Z"" Z"" p - M" rZ""Z"" 

., I/L 1/2 2 ( 2) -( l\I,;}rZ"h Z,.II - 6M"h + "Uh P . (3.30e) 

In I.he oil-sheil sclH'mf' we aclopt t.he renormalization condit.ions[27J: 

ifIlH(Ml,) = 0 (3.31(1) 

~ 2 
ifhh(Mh) = 0 (3.311,) 

if'lIh(Mlr) = if'Hh(M~) = 0 (3.3Ie) 

.-, 2 
IfHH(MH) = 1 (3.31d) 

if'~h(M~) = 1 (3.3Ie) 

where if'(p2) is t.he derivative of if'(p2). 

We choooe a,q an additional renormalization condition that (MII)r be set 

equal to the physical ma..qs MH of the H[28]. Then from (3.30) and (3.31) we 

~onclude that 

6Ml, = "HH(Ml,). (3.32) 

The pseudoscalar sector can be treated in the same way. The renormalized 

inverse propagator for the P/leud08calars is 

if'p(p2) = (~~GG(P:) i~GA(P2») 
If AG(P) if AA(p2) 

(3.33) 

which is 

.- 2 2 2 
tfGG(p ) = (ZaG + ZAG)p - (MA)rZAG 
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-fJMl; + IIGG(P:l) (3.34a) 

if AA(p2) = (ZAA + ZGA)p2 - (M~)rz1A 

-fJMl + DAA(P2) (3.34b) 

'r- (p2) - 'r- (p2) - (ZI/2 Z I/2 + 'fl/2'fl/2) 2 • GA - a AG - GG GA ~ AA ~ AG P 

( 2) ZI/2 1/2 Ii 2 (p2) - MA r AAZAG -uMGA + DGA . (3.34c) 

The renormalization conditions are 

ifGG(O) = 0 (3.35a) 

ifAA(Ml) = 0 (3.35b) 

ifGA(O) = ifGA(Ml) = 0 (3.35c) 

if'GG(O) = 1 (3.35d) 

.- 2 
.r'AA(MA) = 1 (:i.3ac) 

In thill c~ we define (MA)r to be the physical mass M.-\ of the A ami require 

that the Gol(btone booon G have zero maS:! at the oll(.'-Iuop level in thc Landau 

gaugc, i.e. (MG)r AlG = O. The llIassl~nCSli of tltc Goltlstolle b():;()n at 

ollL~loop followll frolll the Ward identities. ThclI we ubtaill 

2· 2 
MIA = II AA (MA ) (3.3ti) 

:l fJMG = IIGG(O). (3.37) 
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The remaining condition ~ obtained from (2.21) and (3.3Ib). Thill ill 

fJM~ = Dhh(M~) + A. (3.3M) 

where we have WlCd the fact that (M],)r + (M~)r = (Ml)r + (Mj)r' Similarly 

it can be shown that 

fJMi = -Azz(M~) (3.39) 

where AZZ(p2) is defiued ali the real part of the coefficient of gl''' in the vacuum 

polarization tensor 

1I~~(p2) = AZZ(p2)gl''' + 8ZZ(p2)~p" (3.40a) 

Azz = Re Azz (3040b) 

defined ali in f'igure L Then u:;ing and Equations (3.28), (3.32) and (3.36)-(3.39) 

we lind that 

A = -DIII/(M],) - Dhh(M~) + DAA(Ml) + DGG(O) - Azz(M~). (3.41) 

So the calculation of A involves the determination of the Higgs and Z t;elf­

energies in (3.41). The linal rc:>ult for A must be finite even though the in­

. dividual t;elf-ellergiell will not be. The expre;sion in (3.41) depends only on 

self-encrgicll. Thill is a somcwhat unique rc:>ult for a radiative correction to a 

physically lIIeasurable quantity. U:;ually one is required to calculate vertex cor-

redious as well to do a precise compari:;ou to experiment. lIere SUPCniYllllllctry 

and gauge illvariallce hOlvc collspircd to produce a sum rule whOtit! rcnormali:.Ga-

Lion doc:; 1I0t dcpend on Lhe rCllonnali:.Gatioll of tht.~ gauge couplillgs !l alld g' to 

on~loop. At two-loops alld beyolld the situation bccolUt!I:I more complicated, as 
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wr f~Xrect. 1.11<' ~au~(' rouplin/p; rrnorlllali7.at.ionH to enl.er a.q wdl a.q wav~fllnd.ion 

ren< ,rmalizal.innA. 

Thr condition t.hat I.he Goldsl.one boson ma.'IA he zero al. one-loop emlllr("!l 

tha!. t.hr tadrc-if~ ronl.rihllt.ions will be lero. ThiA iH a consrfjllenre of a Ward 

idenl.ity. A diHclI~"ion of thiH remit in the context of thr Ht.andard model is p;iv('Jl 

in R"fcrenccs [29-31]' The Goldstone sdf-ener/p:y at 7.ero moment.um is relat.ed 

to the t.adrole di'l/p;rams of the Hand h fiet"ds a." 

OGa(O) = - ! [C08(P- a)TH + sin(p - a)Th]' 
v2v 

The countcrterm Lagrangian contains the terms 

-[6M~G2 + THH + Thh1 

in which the coefficients satisfy 

6M~ = ! cos(P- a)TH + sin(p- a)Th. 
v2v 

(3.42) 

(3.43) 

(3.4") 

So we conclude that (3.37) is equivalent to taking (TH + T,,)C08(P- a) + (Th + 

Th)sin(p-a) = O. The advantage in calculating naa(O) rather than the tadpole 

diagrams TH and Th is that the cancelation of divergences is more obvious in 

the former ca.qe. In terms of the Feynman rules, calculating the Goldstone 

boson self-energy is on an equal footing with calculat.ing the Higgs b090n self­

energies in the Landau gauge. We have shown explicitly in Appendix C that 

in the context of the MSSM the tadpole contributions to 6 in (3.41) vanish 

identically. This result can be proved generally. In References [2,7] the tadpoles 

are evaluated instead of the Goldstone b090n self-energy. This gives the same 

answer as (3.42) can be verified by direct calculation. As mentioned previously 

3" 

I.his is a J!;Pflerali7.al.ion of a similar stat.ement in the st.andard model. In I.he 

st.antlanl mod,,1 t.hl' Coldst.one bOROn self-enf'rgy is related 1.0 the lIiAAs tadpole 

(t.hl're iH only one sllch t.adpole in t.he st.andard model) 

1 
) ~TH. nGG(O = - ./2v (3.45) 

Therc is an delJlent.my way to gain insight inl,o the relationship betwCt:'n 

Goldstone boson cOllnt.ert.erm and the tadpole counterterm. In any multi-Higgs 

morlel it is always possihle to find a linear combination of Higgs fields whose 

vacllum expectation values i9 v, and all orthogonal components have zero vevs. 

In othcr worets, in HiMS field space this linear combination is in the direction 

from the 9ymmetry point to the a.~ymmetric minimum. In the two doublet model 

we know that this direction is 1( = 51 C08 P + 52 sin fJ. Define the orthogonal 

combination 1-lJ. = -5, sin fJ + 52 cos fJ. We have 

( ~ ) = O~-a ( ~ ) (3.46) 

and the COllnterterm9 in (3.43) become 

- [6M~G2 + 1i[cOO(P-O)TII +sin(fJ-a)Th)+ 1(.1[- 8in(fJ-a)TH+c08(fJ-a)Thl] 

t3.47) 

The Goldst.one self-energy is related to the tadpole counterterms of the Higgs 

field combinat,ion 'H. that lies in the direction of the asymmetric minimum. In 

the standard model thi~ combination is just the physical Higgs field. 

The tadpoll"R cancel in the Higgs ma..'IS 8um rules and this requires the 

8upersymmctric struct.ure of the Jliggs self-couplings. It is the constraints placed 

on the;e cOllplings by :mpcrsymmctry and gauge invariance that gives rise to the 

8um rules a.'I well 1\..'1 the tadpole cancellation. 
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Another mass relation that holds at tret! level in the MSSM Wall given in 

(IA). It can be shown (in a method analogous to the vreceding treatlllent of 

the UlaIiI:i relation in (1.3» that the radiative correctionti defined by 

2 2 2 -
MilS = M .. + Mw + ~ (3A8) 

are given by 

- 2 2 2 A = -OIlSIlS(MHs)-OaSas(O)+O .... (M .. )+OaG(O)-Aww(Mw) (3.49). 

Again the tadvole contributions are exactly zero (see Avpendix C). 

We note that the result in (3.41) continues to hold when a lIiW singlet 

N is present in certain important CaaeB. The criterion is that N not mix with 

the other Higgs bosons (H, h, A, G). Reference [9) di:;cu:;scs these Case:i. If the 

singlet mixes with the Higgs doublet then the mass relation (1.3) is dcstroyed 

even at tree level, and the tree-level constrainlli Mh < Mz alld Mil > Mz abo 

disappear. The maBli relation (104) may be destroyed even if the singlet does not 

mix \";;!.!: the other fields. 
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IV. RADIATIVE COIUlECTIONS 

In this section we will di:;cw;s the contribution to ~ from quark and I:Jquark 

loops in the MSSM. It is necessary to know the Feynman rules for IliW b~l\s 

in the MSSM to calculate the self-energy diagrams for the IIigg~ field,.;. Many of 

these have been derived previously in the literature[3,9,32-34). We have derived 

tiOme others in Reference [6] tholt appear in Appendix A. 

The calculations involved are somewhat lengthy. Each individual diagram is 

divergent, and these divergences cancel only when loops involving the fermions 

and loops involving their superpartnel'b are included. The divergent integrahi 

are evaluated using dimensional regularization with the prescription for 15 g;ven 

by Chanowitz et al.(35). Since the 16'S always occur in pairs in the amplitudes 

considered, this prescription guarantees the corred Ward identities. The calcu­

lation is straightforward, so we display only the final result in Appendix 8. The 

diagrams evaluated are shown in Figure 3. 

We have ignored the mixing between generations for simplicity, i.e. we 

approximate the CKM matrix and the 6uper-CKM matrix as unit matrices. It 

is not dillicult to adapt the answer to the general case. There is a contribution 

from each generation, alld the contribution to ~ from the top quark is the same 

as that for the up quark with the appropriate masli substitutioll~. Of course the 

IUflllulac art! unly rclcva.llt lor quarkll heavy compared to the haJrullic scale. The 

calculation of the diagrallls iuvolving squark loopli i~ complicated by the lIIixillg 

ill the squark :;edor. 

We add tioft supersYIIIUlctry breaking terms to the scali.lf potential. The 
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L('I;':>l in t,llI' ~"',",Iar pot.f"nt.ial involving s(luark!'! llrf"[!}] 

v = Vp + Vn + V.o/t. (".111) 

wher .. 

Vp = (,.11;° + fijioOO)(,..II; + hO'O) + (,..°11;° + f,Qio 0°)(,,11; + f.Q' rJ) 

2 '-'22 '-'2 s- .- .- .-+f.lfijll:Q'1 +f21(iill~Q'1 +("1I.000-hllrU")(hll:0-hll~D), (4.Jb) 

Vo = ~g2[4111:00'12 + 4111;00'12 - 2(0.00')[11:.11: + 1I~0 II~] + (0'00')2] 

+~gl2 [1I~01l~ _ II:· II: + flqOSoOS + YuOoO + !)dO° Of, 
v.o/t = M30io

O i + M~O·O + MJO· 0 

+nlfl(ii(f.Adll:q; 0 - hAull~QiO + h.c.). 

(4.1 c) 

(,..1d) 

fI,., fld and flq are the hypercharge quantum numbers of the corresponding fields. 

The conventional sC)uark notation for the fields appearing in (2.1) and (4.1) is 

'-, (UL) - --Q = dL ' U· = UR, O· = dR. (4.2) 

The ma.'IS terms for the up &quarks, for example, are 

) (
.Au 8u) ( UL ) - (Hi. uR 8

u 
Cu tin (4.3a) 

where 

-, 2 (I . 2) 2 .Au = MQ + Mz coo 2{J 2 - fu sm Ow + mu (4.3b) 

Bu = m.,(Aunlfl + ,..cot (J) (4.3c) 

Cu == M?; + M~ c002{J( fu lIin 2 0",) + m?,. (".3d) 
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A"mfi. ffQ. and /I":,,, arf" lldrlit.ional son sllpersymmetry breaking parameters 

that. f'nlf"r info t.he p<trl. (If t.hf' :oIc<tlar potent.ial t.hat involves sqllark!'!. We a.'l.<lllme 

A"m6 is rf'<tl, which III liSt. I.e llPproximatcly the Cll.'Ie to avoid unwant.ed CP vio-

lat.ion. Not.ice that. thf' Icft.-ri~ht, mixing term 8u is proport.ional to t.he fermion 

mi\.'l.<I m". The mi\.<;.'l f'i~f'Ilst.at.ffl iiJ and q2 can be defined as a mixt.ure of there 

field!'! i\.'l 

( :~ ) = 090 ( :: ) 
(4.4) 

where Oil. are defined <1.'1 in (3.8a). The mixing angles 9q appear in the Feynman 

rules involving the sC)uark!'!. 

We not.e here that the son supersymmetry breaking terms in (4.ld) do 

not include the so-called "mixed" trilinear contributions mentioned by lIall and 

Randall[lO]. These terms are not pr~nt in the low-energy supergravity model 

but could be present in a more general model of weak-scale supersymmetry. 

These contributions are similar to those in (4.ld) in that they contribute to the 

ofT-diagonal elements of the squark mixing matrix and provide another source of 

coupling between the Higgs booons and the squarks. In particular we have the 

terms 

, . -. - ,. -.-
M(hAdll~·Q·O- hAuH.·Q U + h.c.). (4.5) 

This gives the additional contributions to the squark mass matrix off-diagonal 

entry 8,. of m,.A~M cot. {J. Additional sC)uark-squark-Higgs coupling:'! arire. We 

expect these son supcrnymmetry breaking terms to contribute to ~ in a lIimilar 

way to the terms already in (4.1d). 

The coupling of t,he sC)lIarks to the Higgs baRons come from three places 

in the scalar potent.ial. First the D-ter'ms contain contributions to the sC)uark 
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ma&:idl and to the liCjuark-lliggs coupling that are of O(yMz). The f'-terms con­

tain the Yukawa piecetl that contribute a m8ll8 to the squarlui equal to the quark 

m~ (01,,). and terms of O(gm,,) to the &quark-lliw couplings. The F-terms 

abo contain the parameter I' which contributes to the off diagonal entries in the 

matiS matrix (See Equation (4.3c» as well as to the couplings. Finally the 80ft 

supelliymmetry breaking terms contain the parameters Aqm6 that contribute to 

the off diagonal terms in the mass matrix and in the couplings. The wft lIuper­

symmetry breaking parameters M3 and M3 above in (4.:i) do not contribute to 

the couplings. 

The 80ft supersymmetry breaking parameters M3. klO and Aufllci are ad­

justed 80 that the liCjuarb are suHiciently massive to have escaped detection 

while not 80 massive to destroy the stability of the electroweak tiCale to radiative 

corrections (i.e. the naturalne81 motivation for supeniymmetry). The parame­

ters kJ3 and MJ show up in radiative corrections to Higgs 1IIasse:i in diagrams 

like that IIhown in Figure 4. In the renormalization of the matiS !jUJU rule, the 

combination of these diagramli that arises is shown in Figure 5. The;e diagrams 

SUIll exactly to zero. So while there are large correctiolls ar~illg from A~/3 Wid 

A10 to the mass of each Uiggs bOtiOIl. these contributiolls CilllCel in the SUIII rule. 

The sum rule ~ therefore in~nsitive to the:;e paralllcle.":-; when LIley becollle 

large. 

011 the other haud, the lIupen>Yllunetry brcakillg jlitfillllclcr A'IlIIti as well as 

the parwneler I' cOlltributd to the couplings of the S'luark to the Higgs bQc;Ons. 

If th~ parameter bt."COmes large. 8ubstautial correctiolls call aritie to thc sum rulc. 

It also genera~ mixing between the squark eigenstatcs. There arc coustraillLs 
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on Aqfllci from other considerations. When A"fllci becomes large. it Uliually 

produces large corrections to the rho parameter (although theiC contributions 

call be made to cancel against one another)[8]. In addition A"ms is bounded 

by the requirement that the correct vacuum is obtained. Specifically if Allms 

is too large. the true vacuum breaks SU(3) color which is of course ruled out 

phenomenologically. 

The expression for A in Appendix 8 is composed of three parts. A == 

A.+A2+AO. An"" 0(0 if ) where m representa a mass parameter such as the 
w 

up quark mass or a parameter involving the &quark sector such as Aums. 1'. rOU I 

or fIlU)' We leave A in terms of the mixing angles 01. P. and 011 for convenience. 

The expre;sions for these angles in terms of physical mBSBe8 are lengthy and not 

very illuminating. Expressions for 01 and P are given in Appendix A of Reference 

[36]. 

The terms in A4 give the largest contribution to A for large quark and 

&quark masses. The ternlli involving the off-diagonal entriea in the squark mass 

matrix (Aufrls and 1') give large contributions provided the &quark mixing .1Ilgle 

0" is not small. Al contains terms that are O(OIfr1l). but theiC terms go to zero 

as the :;quark Illa.s::l LecolIICli larg~. 1'h~ is a lIIanifestutioll of the ciu:cdatioll of 

the diagrwlili ill Figure 5. The terms ill A2 of O(orul) come frolll the Z VilCUUIII 

polari:talioll only. ~o is O(oMi) Wid is for our present purpOSt~ a lIegligible 

cOfl"cclion to the lIlilSti rdation. 

We will illustmte the rc::;ult ill Apvclulix U by cousiderillg the coutril.llltioli 

frolll the top quark alld the top squark. Four parallleler~ dlaradcri:tc the squark 

mass matrix in (4.3). We CWI take these to be m~ •• UI~., 0, and 1'. Then A,m6 
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iR dclermill{'ri: 

(m? - Ill? ) Rin 201 
Al m 6 = '. 'l _" rol. ~. 

21111 
(".fi) 

First ronsid{'r the ca.'lC in whirh there iR no Rfillark mixill~, i.e. 01 = O. ThiR 

iR exp~l.{-rl to b~ approximat.r1y the ca.'lC for all RfJllark spC'riffl ~xc('pt pOAAihly 

the top Rfillark. When 01 = 0°, the termR involvin~ AtmG and " give only a 

small contriblltion t.o~. In thiR event the Atms and " termR in t.he Rfillark ma.'N 

matrix are cnm'cling one another. See (4.3). Uthe top quark and top squark are 

very ma.'Nive (me, m;» Mw, Mil, MA, Mh), we can n('glect the other ma.'Nffl. 

Then we obtain 

11 = 9 m t C In I. e. , 4N (m~ m~ ) 
161r'Ma, sin' {J m: (4.7) 

So we have large corrections to the mMS relation just as there are large correc-

tions (O(m:» in the Higgs eector of the standard modcl[:l7J. One factor of m~ 

I\ri5e8 in the integrat.ion over t~e quark loop, while the Yukawa couplings at the 

vertices gives the other factor of m}. We have plotted the correction 11 in Figure 

6. Wf! have ch09Cn the parameters m. = 10OGeY, D = -48°, P = 300 and I' = O. 

For these parameters the tree level Higgs boson masses are Mil = 140 GeY, 

Mh = 40GeY and MA = 1l0GeY and Ml,+M~ = 2 x 104 GeY', 80 that each 

side of Equation (1.3) is equal to 2 x 1 04Ge y2 at tree level. So for 11 = 200Ge Y', 

the correction is only one percent. We have plotted 11 for the C8.'IC where O. = 0° 

in Figure 6a. The dependence on the squark ma.'l9C8 is roughly logarithmic. 

The expr~ion in (4.7) diverges when sin2 p approaches zero. This renects 

the fact that the Yukawa coupling giving the top quark a mass must diverge 

in this limit. The Yukawa coupling giving the bottom quark its mMS diverges 

when cos' P approaches zero. The non-decoupling of heavy quarks is just the 

~ 

42 

RI.anrlarrl f'va.c;ion of 1.lw ""COli piing theorem[:J8] thl\t ari~ when a coupling ron­

sl.ant. h('comes hlr~(,. WIti'll !.he Rllpel'Rymmci.ric limit iR taken and the ext.f'rnal 

momen!.a arc Ret e'llial 1.0 z{'ro ral.h('r than put on shdl, the expression for ~ in 

Appendix n iR Z('to. WltI'lI I.h(' eXI.crnallegR are put on ma.'II! shell t.o ohtain t.he 

physical ma.<;.<;('R, t.ll('r(' arc finil.e threshold effects that are in general non-zero 

even in the SUSY limit.. 

If there iR significant. mixing of the scalar quarks, large corrections can arise 

when t.here arc large ma. ... ~ splittings between the sqllarks. In Figure 6b we have 

taken 01 = 20°. Not.ice that the corrections are again small when mi. ~ mi •. 

If the sflllarks have significant.ly different masses, then there is a large negative 

~. These large corredions ari!le from large squark-Higgs couplings that ariRe 

beca1lf~ A.ms is very large. 

The results diRplaycd in Figure 6 are typical. Other choices of the param­

etel'R m., D, {J and I' give similar results. If 9. ~ O,then corrections tend to 

be small (i.e. the same order as the contribution of a t quark with mass mt in 

the standard model). If 0, is significant, then large negative contributions arise 

when Im~. - m~.1 becomes significant. Negative values for d imply that the sum 

of the scalar Higgs boson ma.'l9C8 squared Ml, + M~ is suppressed relative to the 

pseudoscalar boson ma. ... '1 squared Ml. 

We note that large contributions to the mass BUm rule are possible from a 

fourt.h generation 8.'1 well, even when squark mixing is absent. As in the standard 

mo1el the leading contribution for a heavy fermion (m, » Mw) goes like 
4 

~' [37). So a priori if a heavy fermion exists, we can expect large correctionR to 
w 

the masses in the HiMs sedor jURt 8.'1 in the standard model. The results given 
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here, however, are valid for allY fermioll ma.sli, a.nd it UI olily if m, » Mw that 

Ai can become very large. In Figure 7 we have held the squark mas:;cs fixed 

and ploited A as a function of the top quark ma.sli. The valu~ tor 0, (3 and 

JJ are the lliUne as in Figure 6. Notice that the correction A UI pooitive as long 

as m, < mil' ffi'a. This is consistent with the radiative corrections to the light 

Higgs mass in Reference [21). 

The contribution for a new top t' is given as in (4.7) while the Ilew bottom 

b' will contribute (for 0/1 = 0) 

A= 9 mb' e In ~_~'.;;. 2 i N (m~ m2. ) 
1611'2 M~ COd2 (3 JII~, 

(4.8) 

These contributionB have the same liign. TlWi differll frolll the rellorlllali:tation 

of the p paranleter in that the p parameter is protected by a custodial sym­

metry which is not broken by equal-mWlS fermioll doublets. The etrects of a 

mass-degenerate heavy doublet has been discUS::ied belol"C ill the context of the 

stiUldard mode1[3!J). 
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v. CONCLUSION 

We have formulated the procedure for computing correctiolls to the Higgs 

mass relations in Bupersymmetric extensions to the Btandard model conta.ining 

doublets. An explicit calculation in the case with just two doublets (the MSSM) 

was given. It was neces!lary to calculate aelf-energies of Higgs booons and vacuum 

polarization tensors as shown in (3.41) and (3.49). Coupling consta.nt and wave-

function renormali:tatioflll are not necetlBary at one-loop. Tadpole contributions 

canc~1 exactly. The results in (3.41) and (3.49) are not destroyed in the pre:;ence 

of olher HiW repre:;enlations (singlets, triplets, etc.) provided that no mixing 

between these fields and the Higgs doublets takes place. If mixing occurs, the 

tree-level maliS relations (1.3) and (1.4) themselves will be destroyed as is easily 

undetlltood in terms of the derivation of the matiS sum rules in Section II. If 

a singlet or other state mixes with the Higgs fields, the relationship between 

the trac~ of the Jliggs mass matriceB will be destroyed. The:;e r~ult8 were 

gcnerali:ted to the superllymmetric extelillions to the standard model with more 

th .. UI two Higgs doublets (Appendix D). 

We have perforllled .Ul explicit computation of the radiative correctiolill to 

(1.3) from matter loops. We have found large correctiollll to the III~ relalinn 
f 

provided that the two colllplex squark fields mix. This rc:sulu; frolll large S(IUark-

Higgs coupliugs. The polelltially large contributiolls of O(OIll;~) or O(l\JIIO to 

lIiggs purtide JII~-;"'.!> frolll a heavy sqllurk alld tileplon tiCctor in sllpersYlllladric 

thL'Oric::; is hidden ill the SUIII rule, i.e. callcel::! betwccn lhe l~!nals ClI'Pt'Milig if I 

lhe till/II rule. Provided that squark mixing is negligih~.e, :t is 1l1l:~;'1t! ~o i:llag;uc 



.. 
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exl.r~m('ly lar~r. ~q1Jark ma.~ without ind1Jc.in~ larp;e mdial.ive mrrl'cl.ion!'l 1.0 

t.he !'I'III' ru Ir.. 
" 

·,i 

.. 

APPENDIX A 

Fr.ynman Rules 

16 

In I.hi!'l appf'ntlix w(' display !lOme Feynman rules that. are needed in t.he 

cakulat.ion of lIiM~ hoson !'lClf-energics in the MSSM. Other Feynman rules for 

the MSSM appear in Ikfr.renc.es [3.9.32-31]. In Figure 8 we show the couplings 

of the Gollistone t.o t1w squarks. We have left the aquarks in the weak interacl.ion 

eigcnstatCl'l for simplicit.y. In Figure 9 we show the trilinear couplings between 

the Goldstone bOROns and the physical Higgs OOsons. CP conservation demands 

that only an even numher of pseudoscalars can emanate from a vertex. 
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APPENDIX D 

The Correction to the Mass Relation 

The 0(0) corrections A can be divided into pieces 

A = A4+A:z+Ao (B.l) 

where ~n is the part or A where the nth power of the up quark mass or param­

eters in the up squark mass matrix (such as Aufflti, I' or the up squark masses 

themselves) occur. The results of the calculation are as lollows: 

A4= ~2r~~~c 2. [SiIl20(F(nlU"mu"MII)+F(mu3,mih,MII) 
1611" Mw sm f3 

-3F(m. .. mu , Mil)) 

+ C06
2o(F(mu" mull Mh) -l- F(mu31 mu31 Mh) 

-3F(mu, nlu, Mh)) 

+ "",,' P F( "'''' .... , M A) + ~n' /IF( ..... , ..... ,0)] 

g2m~Nc[Aum6sin 0+ I'C06 o]sin 20u 
+ 1611"2 Ma, sin2 P 

x [sin o(F(mu" mu" MH) - F(nlUal mu31 Mil))] 

g2m~Nc[Aum6 C06 Q -I,sin o]sin 20u 
+ 161!"2M2 !:lin:! (~ W fJ 

X [C06 o(F(m,I" mu" Mh) - F(mu3 1 mu31 Mhn] 

g2m;'~c 2 [[2F(JlIU,I nlU~1 MA)[Aum6 C06 P -I'sin P.l2 

6411":!Mw Sill P 

+2F(muIIJllu~IO)[Au'1l6sin P+I'C06 P.l2
] 
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-sin2 20 .. [(J., (711 U I I "'U', MII)+F(nIU11 mU31 MII»)[Au0l6sin 0+I'C06 0]2 

(F(rnu'l mUll M,,)+ F(Jllu11 mUll M,,»[AuJll6 cos O-I,sill 0]2] 

- C06
2 'lOu [2F(01u" mull Mil )[Aum6 sin Q + I4COS 0]2 
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+2F(mu •• nl, ••• Mh)[A"m6 C08 0 -ilsin 0]2]]. (1J.2(1) 

" 

g2m~Nc [2 . 2 . 2 . 2 
6 2 = 2 20 . ~ [COS Ou(T3 - eu SIO Ow) + SIO Ou(eu sm Ow)] 

811' COl> IV Sin I 

x [sin 0 coo(o + fi)F(rnu .. 'nu .. MH) - COB osin(o + P)F(mu .. mu .. Mh )] 

+[sin 2 0" (73 - eu sin 2 Ow) + C08
2 OU (eu sin 2 Ow)) 

x [sin OC08(O + P)F(mu,. mu,. MH) - 008 osin(o + P)F(mu,. nl,i., Mh)]] 

3g2
m

2 N [ 
+ 161f2Mi'sir:2 P sin

2
oMl,C(mu.mu. MH) 

+ C08
2 oM~C(mu. 'nu. Mh) - 008

2 PMlC(mu. mu. MA)] 

2 2N 2 2N 9 mu c I 2 9 TIl" c ",-::--=--=-- n I' -
3211'2 C082 OW 0 9ti1T2 C082 Ow 

g2mu Nc cos(o + p). 0 [A' ] + 2 20 . f.) Sill 2 u u rn6 sm 0+1'008 0 161f cos w 510 

X [ [ C08
2 Ou(T3 - eu sin2 Ow) + sin2 Ou(eu sin2 Ow)] F(rnti .. mu .. MH) 

- [sin2 Ou(T3 - e" sin2 Ow) + cos2 Ou(eu sin2 Ow)] F(rnti,. mu,. Mil) 

- 000 20.('1; - 2,. ,;n' Ow) F( mu" mu" M H) 1 

g2m .. Nc sin(0 + fi). [A ..] 
-. • . Sill 20" "m6 C08 0 -I'sm 0 

1 h1T2 Co:;2 OW Sill fJ 

X [ [c002 Ou(7;, - etA sin2 Ow) + sin2 Ou(e" sin2 Ow)] F(mu .. mti .. M,,) 
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- [sin' Ou(Ta - eusin'Ow)+ cos' Ou(eu sin' Ow)] F(Jlli'll "',hI Mto) 

- cos 20u(Ta - 2eu sin' Ow)F(mu, I mull MI.)] 

g'ml, Nc [[ cos' Ou( -Ta + eu sin' Ow)' + sin' Ou(eu sin' Ow)'] F(mU1 ' mUll 0) 

- [cos' Ou( -Ta + eusin' Ow) + sin' Ou(eu sin' Ow)]' F(mU'1 mu" Mz) 

-~ sin' 0,. cos2 Oull(mu'l mu31 Mz)j 

g'ml Nc [[ . , .",., 2] ( ) -~.'-.- SIO Ou(-Ta+eusm Ow) +cos Ou(euslO Ow) F naullrllU310 

- [sin' Ou(-T3 + eusin' Ow) + cos' Ou(eu sin' Ow)f F(mU31 mu31 Mz) 

-~ sin' Ou cos' OuH(r1lU31 mul I Mz>j I (D.2b) 

g2M~Nc [[ 2 (" . '). 20 ( ·'0 )]' 6 0 = 1611"2 cos' Ow cos Ou h - eu SIO OW + sm u eusm w 

x [C062(0 + p)F(m,-... mu .. MH) +sin'(o + P)F(rnu .. mu .. Mto)] 

+[ sin' Ou(Ta - eu sin' Ow) + cos' Ou(eu sin' Ow)f 

x [ cos' (0 + tJ)F(mull mu31 Mil) + sin'(o + (J)F(rnu 3 1 mu31 Mto )] 

+~sin'20u(T3 - 2eu sin'Ow)' 

x [ cos'{o + tJ)f'(m.ill mu31 MH) + sin'(o + (J)F(mU'1 "au31 Mto)] ] 
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l:::::::~w [[ cos' Ou(-T3+eu sin' Ow)+sin' Ou(eusin' Ow)f2G(rnu .. "'U .. Mz) 

+[ sin' Ou(-T3 + eusin' Ow) + cos' Ou(eusin' Ow)]'2G(mu31 '1lU3 1 Mz) 

. ,. 2 
+SIO Oucos OuG(mu .. nau3IMz) 

+4 [( -Ta + eu sin' Ow)' + (eusin' Ow)2 ]G(fflul fflu , Mz)j, (D.2c) 

where Nc = 3 colors and 

1 

F(ml I JIl2, ma) = ! lIx In[xm? + (1 - X):li - x(1 - x)m~] I (lJ.3) 

1 

G(JIII I m,!, fila) = J III x(l _ x)ln[xm~ + (1 - x)m~ - x(l- x)m5] 
o Ij~ I 

(DA) 

1 

l/(J/l1
1 

fli2, HI:I) = ! lix xlII [xm? + (1 - X):; - x(l - x)m~]. (lJ.u) 
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1:1 is the weak i~pin (which is +~ for left-handed up-I.ype l)uarkR). 

The term - 96~';:~::<iJ_ in £\2 arises in the sdf-f'Ilcrgy graphs with a quark 

in the loop. The contribution of each graph depends on the external momcn-

tum p2 of the graph which is set equal to the physical lIigg!l mas.'i when the 

renormalizalion conditions are applied: 

flm~Nc g2m2 N [ ---,,---"'__ _ II C • 2 M2 2 2 2 ] 
9671'2 cOS2 0

w 
- 9671'2M;tsin2p sm 0 JI+cOS oMh-cos PM~ . (B.6) 

This is an equality to this order in perturbation theory because there is the tree 

level relation 

sin2 oMI, + cos' oM~ = cos2 pMl + sin2 PM~. (B.7) 

If the external momentum of the graphs is set to zero rather that put on shell, 

then the term (8.6) vanishes. 

The expression for £\ in (8.2) should be independent of the renormalization 

point /10' We have checked that this is indeed the case in both the analytic 

expression and in our computer program for calculating £\, which provides a 

partial check of our answer (equivalent to the cancelat.ion of divergenc~). We 

have also verified that (3.42) is satisfied which is a check on the value of the 

Goldstone self-energy that enters in (3.41). 

The contribution for down quarks and down squark!l is easily obtained from 

this result. The substitutions are shown below: 

Ou -+ Od, (D.8a) 

'"'. -+ md, (B.8b) 
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,nul., -+ mdl ." (D.Be) 

Cu -+ Cd, (lJ.8d) 

1 1 
T3 = 2 --+ -2' (IJ.Bc) 

sin P -+ cos p, (B.8f) 

cos P -+ sin p, (B.8g) 

cos 0 -+ sin 0, (B.8h) 

sin 0 -+ cos 0 (B.8i) 

The last four equations imply sin(o+p) -+ sin(o+p) and cos(o+P) -+ - coo(o+ 

p). To obtain the proper result requires the further substitutions 

sin(o + P) -+ -sin(o + P), (B.8j) 
I 

cos(o + P) -+ - cos(o + p). (B.8£:) 

For example, the first two terms in L\, for the down q!Iark and squarks should 

be 
2 2N . 

_ 2 9 ':" c 'l[cos20d(T3-cdsin'Ow) + sin' Od(cdsin2 Ow)] 
71' cos Ow cos (. 

x [cos ocos(o + p)F(mdl , mdl , MH) + sin osin(o + p)F(mdl , mdl , Mh)] 

+[sin2 O,,(T3 - cd sin2 Ow) + cos' Od(cdsin2 Ow)] 

x [cos oroo(n + {l)F(md" mri" MH) + sin osin(o + p)F(md" mri" Mh)] . 

(R9) 

The contributions for the lepton and slepton loops are given in terms of 

the contributions for the up and down quark loops. The electron and seledron 
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contribution is obtained from the expression for the down quarks with the ap­

propriate maBIJ and SU(2) x U(l) quantum number replacements. Similarly the 

contributions from the neutrino and the sneutrino are given by an expression 

similar to that for the up quark with the appropriate mass and SU (2) x U (I) 

quantum number substitutions. 

APPEt:'JDIX C 

Tadpole Contributions 
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In this appendix we demonstrate explicitly that the tadpole contribution 

~ A in (3.41) and to A in (3.49) vanish in the MSSM. The result can be Been 

explicitly by examining the Feynman rules that are present in the MSSM. In 

the two doublet model there are two non-zero tadpoles shown in Figure 2. We 

display the vertices that are needed for the calculation of the tadpole diagrams 

in Figure 10. The contribution to the sum in (3.41) from the tadpole diagrams 

in Figure 11 are now easily seen to vanish using the couplings in Figure 10. We 

also display the vertices needed for the tadpole diagrams contributing to (3.49) 

in Figure 12. The combination of tadpole diagrams in Figure 13 vanishes. 

These results generalize to lhe 2N Higgs doublet models discussed in Ap­

pendix o. The n's in (0.16) and (0.18) therefore include all contributions to 

Jliggs aclf-energies be:>idcs tadpole diagrams. Similarly, tadpoles are not to be 

included in the contributions from the vaclJum polarization tensor either. In the 

2N Higgs doublet model there are many more non-zero tadpole diagrams. 
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APPENDIX D 

Generalization to 2N Higgs Ooublds 

Models with more than two Higgs doublets have mi\ .... ~ relations analogous to 

(1.3) and (104). In an extension of the standard model wit.h 2N lIiggs doublets. 

there are 8N Higgs degrees of freedom. After spontaneous symmetry breaking 

three of these are Goldstone bosons. leaving 4N - 2 charged Higgs bosons H; 

and 4N - 1 neutral Higgs bosons. We shall denote the neutral scalar Higgs by 

II. and the neutraJ pseud08Calar Higgs by A •. In the supersymmetric version of 

the 2N doublet model. the couplings and masses in the IJiggs sector are again 

constrained. The mass relations that arise are[5] 

2N 2N-I 
EM:,; = E Mt +M~. (D.I) 
.=1 .=1 

2N-I 2N-I 
E M:,~ = E Mt +Ma, 
.=1 • i=1 

(D.2) 

whidl generalize (1.3) and (104). 

The Higgs potential for the model in the extension with 2N doublets is[5] 

2N 2N 2N 

V = E m~4>l4>i - E m~j(4)l4>j + 4>14>.) + ~g'2 E I( -1)i+'4>14>d2 

.=1 j<' i=1 

1 3 2N 

+8g2 ~ I t:(-l)i+14>lq °4>ir· (D.3) 

This equation is the 2N doublet analog of (2.4) where arbitrary soft supersym-

metry breaking terms have been included. There are possible terms that are 

l'ij4>14>j that can be absorbed in the ooft-supersymmelry breaking terms a~ in 

the two doublet case. 

') 
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There are directions in Higgs field space where the quartic couplings vanish. 

For example. in the four doublet model the quartic couplings vanish when 4>1 = 

4>2 and 4>3 = 4>1 a.'l well as when 4>1 = 4>4 and 4>3 = 4>2. 

There i~ now a vacuum expectation value Vi for each of the 2N douhlet.s 

4>.. We can eliminate the m, in favor of the vevs Vi. The neutral scalar and 

neutral pscudoscalar mass matrices are 2N x 2N matrices. The neutral scalar 

ma'lS matrix M2 is given by 

E v· 1 
M~ = m~ . ..1. + _(g2 + gl2)v~ (no Bum on i) 

II OJ V· 2' • 
#i • 

(D.4a) 

Mi}(i i j) = -m?j + (_ly-i~(g2 + gl2)ViVj (D.4b) 

while the neutral pscudoscalar mass matrix MI2 is given by 

~=~~.~ 
. ~ ~ I 

j~i ~ 
(D.5a) 

12('..J. .) 2 Mij ''''' J = mjj (D.5b) 

MI2 has a zero eigenvalue corresponding to a neutral Goldstone boson. Since 

both M2 and MI2 are real and symmetric. they can be diagonalized by or-

thogonal transformations that preserve their traces. i.e. Li MI,; = L. Mi~ and 

Li M~; = Li M[f. Using (0.4) and (0.5). one can obtain (0.1) and (D.2). 

The renormalization of the mass relations in (0.1) and (0.2) is a generaliza-

tion of the arguments in Section III. The wav~function renormalization matrices 

Z~/2 and z;J2 become 2N x 2N matrices. The mass matrices (004) and (0.5) 

are symmetric and arc diagollalized by 

(M.~)D = 0;1 M20s. (M~)D = 0;1 M 120p (D.6) 
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where Os and Op are orthogonal matrices. (M~)D and (MMD are diagonal 

matrices whose nonzero entries are the lIla8llCS MIl, alld M~. respectively. We 

shift parameters as in (3.6): 

(m~j)" = m~j + 6m~j (i:f i), (D.7a) 

(Vi)" = Vi + 6Vi, (D.7b) 

(M~)" = M~ + 6M~. (D.7c) 

The unrenormalized propagators are given by formulas analogous to (3.12): 

irS(p2) = (Z~/2)TZ~/2p2 - (Z~/2)T(M~)DZ~/2 - Ml~, (D.S) 

irp(p2) = (Z:p)TZ;Pp2 - (Z;P)T(M~)DZ!f2 - 6M~ (D.9) 

. where 6M~ = Os16M20s and 6M~ = OpI 6M I20p. 6M 2 and 6M12 are analo­

gous to the matrices collBtructed in the two Higgs doublct case. Since the trace 

of the matrices is invariant under orthogonal transformations we have 

Tr6Mj = Tr6M 2, (D. 10) 

Tr 6M~ = Tr 6A/ 12. (D.ll) 

From the expressions for the mass relations in (OA) and (D.5) we have 

Tr 6M 2 = Tr 6M12 + [J!vli (D.12) 

so that 

Tr6MJ = Tr6M~ +6Mi. (D.13) 

The rcnormalization conditions analogous to those ill (:l.20) arc[27) 

irllilli(M;,J = 0 (no sum), (D. 14e&) 
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if'lIiIlJ(Mld = irllillj(M~j) = 0 (no sum}, (D.l".b) 

ii'~/,/dMld = 1 (no sum). (D. 141.') 

If we dcfine the radiative corrections to (0.1) as 

2N 2N-l 

L:Ml/i = L: Mlo +Mi+A (D.15) 
i=l i;;;1 

we obtain the result 

2N 2N 

A = - L:nllill.(MJd + L:nAjAj(M!) - Azz(M~) (D.16) 
i;;;1 j;1 

where the sum over the pseud08Calar lliggs Aj aelf-energies includes the neutral 

Goldstone boson self-energy nGG(O). It can be shown that the tadpoles cancel 

just as in the MSSM. Similarly it can be shown that the correction ll. to (D.2) 

defined as 
2N-l 2N-l 
~ 2 ~ 2 2 -
L.J M,,* = L.J MAi + Mw + A 
i;:;1 ' i=1 

(D.17) 

is given by 

2N 2N 

- L: 2 L: 2 2 A=- nll*u*(MII*) + llAjAj(MA)-Aww(Mw) II.. J 
i=1 j=1 

(D.tS) 

where the sum over the pseud08Calar Higgs Aj self-energies includes the neutral 

Goldstone boson self-cncrgy nGG(O), and the sum over the charged IIiggs bosons 

1/; sdf-eJlcrgics includcs the charg~d Goldstone b080n self-energy nG:tG:t(O). 
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Figure Captions 

Figure 1: Self-energy diagrams - The self-energy diagrams are defined as 

shown with the external legs amputated. X, Y = H, h, A, G. In the O!I-shell 

scheme the external legs are put on shell. 

Figure 2: Tadpole:! - The two kinds of tadpoles t.hat exist in the MSSM. 

Figure 3: One-loop Corrections - The diagrams calculated in the MSSM. 

There are the following number of nonvanishing diagrams of each type: (a) II, 

(b) 12, (c) 8, (d) 1, (e) 3, (f) 2. 

Figure 4: Quadratic SUSY Breaking Correct.ions - Cont.ribut.ions to lIiggs 

booon masses that are quadratic in a scalar mass arise from diagrams of this 

topology. 

Figm'e 5: Cancellation of Quadratic Corrections - The corrections to the 

mass sum rule that arc quadratic in the squark mass cancel in the aLove di­

agrams. The restriction on naturalness from corrections to the Higgs Loooll 

masses is therefore hidden ill the sum rule. 

Figm'c 6: ~(m,-,) -- We have plotted the correction ~ using the full expres­

sion given in Appellflix B. The paramett~rs used are given ill the text. The squark 

mixing angie is 0, = 0" and 20° in Figures 6a and 6b respectively. The curves 
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ill t.he figures represent mi, = (a) IOU GeV, (b)100 GcV. (c)700 GeV. (d)1000 

GeV. (c)I:lOO GeV. Large corrections occur when Ot :f O. and the squarks i, 

and i"J have different mas.'K'S. This occurs when the coupling parameter Atm6 

becollu'S large. 

"'igure 7: A(mt) - We have plotted A as a function of the top quark mass 

for five values of the squark ma.'lSCS: mi, = nIi, = (a)100 GeV, (b)400 GeV, 

(c)700 GeV, (d) 1000 GeV, (e)1300 GeV. The radiative corrections behave like 

omUM~ for large nit. The contribution can be of either sign depending on the 

relative sizes of the top quark mass and the top squark masses. 

Figure 8: Feynman Rules - Feynman rules involving Goldstone bosons and 

B<IUarks. We have written these in the UL - un basis for simplicity. These can be 

converted into Feynman rules in the mass eigenstates basis UI - U2 by a rotation 

in the squark fields. 

Figure 9: Trilinear Higgs Couplings - Trilinear lIiggs couplings involving 

Goldstone bosons. 

Figure 10: Trilinear Tadpole Couplings I - Trilinear couplings relevant to 

tadpole contributions to (3.41). 

Figm'e 11: Tadpole Sum I - These diagrams cont.ribute to the sum in 

(3.41). The couplings in Figure 10 show that this conl.ribution is zero when the 

diagrams are summed with the appropriate signs. 

• 
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Figure 12: l'rililll'ar Tadpole Couplillgs II - Trililll~ar couplings relevant to 

tadpole contributions 1.0 (:l.49). 

FigUl"e 13: Tadpole Slim II - These diagrams contribute to the sum in 

(:H9). The couplillp;s in Figure 12 show that this contribution is zero when the 

diagrams arc sUJlllllCd with the appropriate signs. 
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