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Abstract 

A pseudopotential calculation of the total energy of small sodium 

clusters is presented. It is based on a local-pseudopotential scheme 

and local-density correlation and exchange. It includes a spherical 

distribution of electronic charge and minimizes the energy with 

respect to the position of the ions. It is found that the most stable 

clusters are (1) those that correspond to closed electronic shells for 

clusters with fewer than approximately 100 atoms; and (b) those that 

correspond to geometrical polyhedral clusters for numbers larger than 

that. A cross-over between electronic-level dominance and 

geometrical-structure stability, found experimentally at larger 

numbers, is thus theoretically established. 

PACS numbers: 36.40.+d,71.10.+x 
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I. Introduction 

Ever since the discovery by Knight et aL 1 of quantal shell 

structure in small droplets of sodium metal. with characteristic "magic 

numbers". cluster physics has become an active field of theoretical and 

experimental investigation. Many properties of a large variety of 

clusters have been examined2 -- mass abundance spectra. 

fragmentation spectra and binding energy. supershell structure3 • 

ionization potential. photoelectron spectra and electron affmity. static 

electric polarizability4. plasma resonance spectra. and thermal 

propertles5 • to name a few. Because a cluster lies somewhere between 

a solid and a molecule. the problem has been approached from two 

extreme directions -- soUd-state theorists employ modified quantum 

models of bulk soUd2 •6 •7 • whereas molecular chemists and atomic 

physicists attempt molecular dynamical calculations in which one 

builds up clusters atom by atom. A compelling stimulus throughout has 

been the desire to understand how an extended crystalline soUd 

develops from growing cluster aggregates. Two major experimental 

results in this regard have been (1) the observation of cluster stability 

exactly at the so-called electronic magic numbers1 .8 - 11_- which 

correspond to electrOniC shell-closings -- for cluster sizes less than 

200 , and (il) the more recent discovery by Martin et at 12 of cluster

stability at magic numbers corresponding to closed-packed atomic 

shell arrangements in icosahedral or cuboctahedral packings for 

clusters of size between - 1,500 and 22,000. The stability 

characteristics of the small clusters are well supported by the 
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calculations of Cohen et al.13 and of Ekardtl4, based on the self

consistent jellium background model (SJBM). Although jellium-like 

mean-field calculations exist for cluster-sizes of the order of several 

hundred 15, in order to study properly this transition in stability from 

electrOniC to atomic magic numbers. one needs to incorporate the 

atomic structure, Le. the ions must be expliCitly included for any 

cluster-size. One would, in principle, like to approach the problem by 

self-consistently determining atomic configurations and the associated 

electronic charge density that yield the minimum total energy for each 

cluster Size in question. Several systematic methods have been 

developed in this regard by solid-state theorists6 and molecular 

chemistsl6. Unfortunately, because of the enormous computational 

tax. these calculations as of now are limited to sizes well below a 

hundred ions. Work has also been done on statistical descriptions of 

the electrOniC level structure17 and the asymptotic size-dependence of 

the energy in large clusters18. However, no successful theory of the 

observed transition from electronic to atomic dominance in the 

structure have appeared in print. as far as the authors are aware. 

The present contribution attempts to study these clusters by 

means of a pseudopotential approach, for which one can easily tackle 

clusters of Size up to a few thousand with reasonable computational 

effort. By comparing the numerical results for total energy per atom 

obtained at several electrOniC and atomic magic numbers, a pattern 

emerges which clearly shows that for small clusters the electronic 

structure dOminates, whereas at larger Sizes the closing of iOnic 

crystal-like shells becomes paramount. A cross-over 1s thus found. It 

should be pOinted out that in all cases the clusters are small, in the 
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traditional sense of the concept. since all atoms are, in all cases, 

within a few Angstrom from the surface, Le. far away from what can be 

considered the bulk limit . 

Section II describes the model in detail, section III contains the 

results for the electronic charge density and total energy for cluster 

sizes corresponding to several electronic and atomic "magic numbers" 

and section IV includes 'a discussion and summary. 

II. The model 

The model consists of approximating the self-consistent Kohn

Sham (KS) potential observed by each electron with an infinite well. 

the shape of whose boundary is defined. in principle, by the surface of 

the outermost ions in the cluster. Because of the observation that the 

spherical jelllum model works well for small clusters (N < 200), 

coupled to the convenience of separability of co-ordinates in a 

spherical geometry, the electron confining regions for any cluster-size 

are taken to be infinite spherical wells. Two different schemes of 

choosing the cluster Sizes for the purpose of calculation are 

considered, in conformity with the spherical boundary : 

(A) The clusters representative of the geometrically closed shells of 

atoms (hereafter deSCribed as the ones with atomic magiC numbers) 

are made up of finite, perfect periodic lattices cut off by the surface of 

the spherical well and then allowed to relax; and 
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(B) The clusters representative of electronic magic numbers consist 

of the ions placed within the electron confining spherical well so as to 

minimize (numerically) the total energy of the cluster. 

For the atomic magic number structures four different types of 

fInite lattices have been considered in this calculation : 

(AI) Finite body-centered-cubic (bee) lattices (the bulk structure of 

sodium. at low temperatures) with an atom at the center of the 

electron confining sphere: 

(A2) Finite face-centered-cubic (fcc) lattices with the sphere 

centered at an atom in the lattice (henceforth referred to as Type-I 

fcc clusters); 

(A3) Finite fcc lattices with the sphere centered at the center of a 

conventional unit cube (referred to hereafter as Type-II fcc clusters) 

and. 

(A4) Finite fcc lattices with the sphere centered at the center of a 

tetrahedron of nearest-neighbor atoms (Type-III fcc clusters). 

Each type of cluster, initially arranged according to schemes 

(AI-4) and (B) deSCribed above, correspond to different distributions 

of atoms in the sphere and. accordingly, yield separate sets of magiC 

numbers. There are a few numbers that are common to two or more 

cluster types, e.g. 68, which is common to schemes (A3), (A4) and 

(B), and 92. common to schemes (A4) and (B). 

All schemes (AI-4) and (B) are starting pOints for relaxing the 

structures in search of an energy minimum. The relaxation is such that 

certain constraints. listed below. are obeyed. 
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(1) No two ions lie within a distance 2rc of one another, rc being the 

effective 'hard-core' radius for the metallic ion under consideration, 

Le. sodium. One could estimate rc from the effective two-body 

interaction between two sodium atoms in a lattice obtained by second

order perturbation theory of the pseudopotential19. In this way, (2rc/a) 

has been estimated20 to 'be -0.82, where a=4.225 A is the bulk lattice

constant for sodium in the bee structure. 

(2) No ions should lie outside the effective jellium surface, a sphere of 

radius R+. 

(3) The jellium (uniform positive-charge background) sphere, of radius 

R+ lies inside the infinite spherical well that confines the electrons: 

the latter has radius R. The difference in radii 8 = R - R+ physically 

represents the 'decay length' of electronic wave-functions outside the 

actual surface of a solid or cluster, which is bound by aftnite potential 

well. The value of (8/ a) Is taken to be a constant, equal to 0.29, 

independent of cluster size. This Is a very good approximation21, as 

seen from the SJBM results of Ref. 14 . 

Lattice relaxations that obey the above constraints are allowed 

on the way to finding, the lowest energy states of the various clusters. 

Several comments are relevant : 

(1) The electronic charge-density calculated here is not far from that 

calculated by SJBM. A direct comparison of the graphs in Figure 1 
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with counterparts of those in Figure 3 of Ref. 14 makes this fact 

apparent. 

(2) The modification of the electronic wave-function at the ionic sites 

is taken into account in the first-order perturbation of the 

pseudopotential. Any higher-order perturbation, which is 

computationally forbidding, should have (for alkali-atom clusters) an 

insignificant effect on the trend of results for the total energy. 

The total energy Etot per atom, in the model considered here, 

is a sum of several contributions given by: 

Etot = Eel-el + Eel-ton + Eton~ion + Ektn + ~xc (11.1) 

The various terms on the right hand side of the above equation 

are self-explanatory and are calculated for a cluster of size N using the 

following formulas: 

For the electron-electron Coulomb interaction 

e2 jP(r) p(r') 
Eel-el = N 2" I r _ r'l dr dr' 

for the electron-ion Coulomb interaction 

Eel-ton' = - e2 L J I :~~t I dr + Epi1) 

i 

where EpilJ is defined below; the ion-ion Coulomb interaction 
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Elon-ion = ;~ .L 1 
(II.4) 

i¢J 

for the electron kinetic energy 

J't2 "f -2 mN.£. 1I'*au{r) V2 1I'au{r) dr (II.S) 

a,a 

and for the electron exchange and correlation energy in the local

density approximation 

Exc = / dr per) Exc{p{r)) (II.S) 

In equations (II.2-S) 1I'au{r) stands for the wave-function of the 

electron in the quantum state a with spin cr. Also introduced above are 

the electronic number density per) normalized to one, 

per) 
1 = N .L I 11' au{r) I 2 

a,u 

1 = /dr per) 

the fIrst-order pseudopotential contribution Epil) is 

Epi1) =.L I dr per) V(I r - Ril) 
l 

with the local pseudopotential function VCr) given by22 
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V(r) 
e2 

= rO U, r< rO 

(1I.8b) 
e2 - r> ro r , 

where U and ro are phenomenological parameters; 

and the exchange-correlation local density functional is 

exc(p(r)) = - 0.9162/rs(r) - 0.0666 G[rs(r)/11.41 (II.9) 

where the quantity rs(r) and the function G are given by14 : 

1 
rs(r) = as [3/4tep(r)j1/3 • 

and where aB = 0.529 A is the Bohr radius. and 

[ 1 x 1] 
G(x) = (1 + x!3) In {1 + x} - x2 + 2 - 3 

The values of the pseudopotentlal parameters u and ro are 

taken from the results known22 in the thermodynamic limit: 

u = - 0.3632 Ry, and ro = 1.097 A 

respectively. The only difference between the small clusters and the 

bulk arises from the drastic changes in the electronic charge 

densities. 

10 

,. 



III Calculations and results 

For clusters corresponding to electronic magic numbers there 

is complete spherical symmetry in the charge density of the electrons 

Le. p(r) is only a function of r= I r I . This Simplifies the computation 

enormously. because the integrals in (11.2) and (11.3) now get reduced 

respectively to one and' two-dimensional integrals. A further 

considerable reduction in computational effort occurs in the 

calculation of Eel-ion when one relaxes the ion positions (in any 

scheme) against the stationary spherically symmetric electronic 

background to get to the lowest energy configuration. Unfortunately 

the charge density arising from electrons at the outermost -- partially 

filled -- shell (i.e. the Fermi level) does not possess a complete 

spherical symmetry for clusters with numbers other than the 

electrOniC magic numbers. IncludIng the atomic magic numbers. 

However. simple electrostatic considerations show that. for large N. 

the correction to the total energy per atom. if one symmetrically 

averages over all electron states at the Fermi level in configurations 

with partially fUled outer electrOniC shell. can be easily estimated. It 

is of the order of LlEel-el - 0.1 (n/N2)Eel-el. as seen in the Appendix; 

here n is the smallest of the numbers of filled and unfilled states in 

the shell at the Fermi level. In most Situations n «N. and spherical 

averaging over all states at the Fermi level involves errors which are 

always tolerable and usually very small. The calculations were therefore 

performed with spherically averaged charge distributions. 
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Tables 1 and 2.1-2.4 respectively display results for the various 

components of energy and the total energy per atom for a set of magic 

numbers corresponding to filled electronic and atomic shells for the . 

different cluster types considered here. 

Figure 2 graphically displays the results for the total energy 

per atom as a function 'of N for both electronic and atomic magiC 

numbers. The convex hulls of lowest energies found for the A 

(electronic) and B (atomic) numbers are also drawn. A global "hull". 

encompassing all calculations, has a well defined transition from the A 

hull to the B hull at N-100. These hulls. Similarly to the ones drawn 

in the theory of heterogeneous alloys. corresponds to states of total 

stability under the assumption of conservation in the number of 

clusters. Le •• under the supposition that clusters can only change in 

reactions of the type 

e(N 1) + c(N2) ~ c(N3) + e(N4) • 

where 

N1 +N2 =N3 +N4 

and not other type of fusion or fission reactions, such as 

e(N1) + C(N2) ~ e(N3) , 

or 

N1 + N2 = N3 , 

e(N 1) ~ C(N2) + e(N3) • 

Nl = N2 + N3 • 

The clusters on the global hull are, in any case. very stable clusters 

over an extended local range. 

12 



l\ 

There is a clear cross-over of cluster stability from electrOnic 

magic numbers at smaller cluster-sizes to the atomic magic numbers 

at larger cluster-sizes. The cross-over appears to occur at N-I00. A 

number of key features from the numerical results presented in Tables 

1 and 2.1-4 are to be noted : 

(1) For very small clusters (N < 50) the kinetic energy Ekin plays a 

very important role in favoring stability at the electronic rather than 

atomic magiC numbers in their vicinity. Closed electronic shells always 

yield lower kinetic energy per atom than open ones. 

(2) A complete outer atomic shell structure always lowers the 

electrostatic part of the energy. For this reason. even for cluster-sizes 

N< 100 -- dominated by the electrOniC magIc numbers -- clusters With 

atomic magIc numbers close to one With an electronic magic number 

have large binding energIes. The most unstable clusters are the ones 

with near half-filled d, for 9 shells of electrons. ThIs clearly shows 

that even though atomic positions are extremely important for any 

cluster-size, the stability for smaller cluster-sizes is completely 

dOminated by the closing of the electronic shells. 

(3) For sizes N> 1 00 the most stable clusters are clearly not those 

corresponding to the electronic magic numbers. Although it is hard to 

detect any underlying pattern of atomic shell closings in this region. 

the most stable clusters are always found to belong to one of the three 

fcc structures built according to schemes (A2-4). Since an fcc lattice 

has a maximum possible coordination number of 12 (close-packed 
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structure) compared with only 8 for a bee lattice. the greater stability 

of fcc clusters seems to lead credence to a spherically closed-packed 

arrangement as observed experimentally for clusters of somewhat 

larger sizes. 

(4) For N<100. the binding energy per atom for the electronic magiC 

numbers increases. in general. with increasing cluster-size. For the 

N> 1 00 region the situation is more complicated as supershell 

structures might come into playS. us. 

(5) In the region where electronic magic numbers dominate (N<100) 

the lattice always relaxes inward. so that the effective inter-atomic 

distances are smaller than the corresponding value for the bulk. This 

fact is in agreement with the experimentally observed lattice 

shrinkage23 for small clusters. As the cluster-size increases. the 

inward lattice relaxation becomes gradually smaller. Thus the 

equilibrium lattice constant increases from a value of about 96% of the 

bulk value for the smallest clusters to about 99% for cluster size -200. 

(6) In contrast to the results of the spherical jelUum calculations. 

where the total energy rapidly converges to the bulk value. the present 

calculations clearly show that even for sizes up to - 200 the total 

electrostatic interaction energy is very different from the bulk value . 

. The reason is that all the atoms. even in the largest cluster considered 

here. are only a few Angstroms from the surface. This surface 

dominance is also reflected in the sizable non-uniformity in the 

electronic charge-density shown in Figure 1. 
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N. Conclusion 

A total energy calculation based on the local pseudopotential 

scheme, with correlation and exchange energies taken in the local

density functional approach, yields a clear transition in the stability 

regime of small sodium clusters. For small number, N<100, clusters 

corresponding to closed electronic shells (electronic magic numbers) 

are considerably more stable than all others in their vicinity. For 

larger numbers, N> 1 00, the most stable clusters are those for which 

the geometric configuration of the ions correspond to well defined 

polyhedral configurations (atomic magic numbers). A major effect 

contributing to this transition is the dominance of the electronic 

kinetic energy terms at low N. and the electrostatic contribution at 

large N. The stability of the highly coordinated fcc clusters appears to 

be a precursor to the experimentally observed stability at icosahedral 

or cub octahedral packings for cluster-sizes between -1500 and 

-22,000. The reason for observing the transition at a cluster-size 

smaller than those observed experimentally is probably the 

simplification induced by the use of a simple infmite square-well 

potential for the electrons. This is reflected in the fact that for 

cluster-Sizes above a hundred, the electronic charge density calculated 

in the present model, although it agrees well in overall features with 

the SJBM results14, differs in some of the finer details. A more 

realistic potential, e.g. a finite square-well or the Woods-Saxon 

potential3 used in nuclear physics, should yield a transition at larger 

Ns. Although that would involve a larger computational effort. 

calculations With a few hundred atoms in the scheme deSCribed here 
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is certainly feasible. 

It should be mentioned that the cross-over effect is a 

consequence of a smooth relative change in the influence of the 

various contributions. and therefore L;,e transition cannot be 

considered to be sharp. It is possible that "beats" between the two 

effects could be observed. with an electroniC magic number becoming 

observable in between (and probably sufficiently removed from) 

consecutive atomic magic numbers. It must be fmally remarked that 

this calculation has not attempted to determine the overall shape of 

the cluster of absolute minimum energy: it has simply demonstrated 

that geometrical structural considerations. overtake electronic-shell 

arguments when the number of atoms in the cluster becomes larger 

than a typical "critical" value. 
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Appendix 

This appendix gives an estimate of the error involved in the 

total energy calculation when one uses a spherically symmetrized 

charge density of electrons, by averaging over the states at the last 

(partially occupied) level. The two contributions to the total energy 

per atom that are going to be most affected are Eel-el and the 

electrostatic part of Eel-ion. The pseudopotential contribution Epi1) 

and the exchange-correlation energy Exc are themselves at least an 

order of magnitude smaller than either of the two electrostatic terms; 

corrections to these tenns are negligibly small. 

Let op(r) be the deviation at position r of the actual total 

number density of the electrons per ion from the used spherically 

symmetric one. Clearly. 

lop(r) dr = 0 (AI) 

Now, it is evident that the contribution to the total number 

density arising from all closed shells of electrons, Le. due to those 

states below the Fermi level, is already spherically symmetric . 

Therefore op(r) arises only from those electrons on the outermost 

shell. Therefore op(r) can· be written as the difference of the number 

density of the electrons at the Fermi level from the spherically 

symmetric electronic number density obtained by averaging over all 

states at the Fermi level. The same quantity could be equivalently 

written in tenns of unoccupied states at the Fenni level. It is 

convenient to use the deSCription in tenns of either occupied or 

empty states. whichever number is smaller at the Fermi level. Let this 

number be n. 
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It should be noted that separability in the radial co-ordinate r 

and angular variables ,Q = (8,lfJ) allows a decomposition of Sp(r) into two 

factors: 

Sp(r) = j(r) g(,Q) • (A 2) 

where j(r) = ljy(kYl r) I 2 . is the same for all electrons at the Fermi level 

characterized by the principal and total angular momentum quantum 

numbers n and I respectively; here jy is the spherical Bessel's function 

of order v and kyl is the (l+ l)th zero of jy. 

Equations (A. 1) and (A.2) therefore imply. 

(A 3) 

The correction to the electron-electron contribution Eel-el is 

given by. 

e2 f (po (r)+Sp(r)) (po(r')+Sp(r?) 
L1Eel-el = N"2 I r _ r'l dr dr' 

e N e2 J po(r) po(r') d d ' 
2 I r - r'l r r · 

= I\r-? I po(r') Sp(r) dr d-' N e2 jsp(r) Sp(r') d dr' 
lVe- I r - r'l I + 2 I r _ r'l r · 

where po(r) is the spherically symmetrized number density of 

electrons per ion obtained by averaging over all states at the Fermi 

. level. 

Since 
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j Po(r') dr' 
VCr) = I r - r'l 

is a function of I r I =r only, the first term on the right hand side of the 

last equation becomes, 

Ne2 jSp(r) VCr) dr = Ne2 j j(r)V(r)r2 dr. j g(n) d!2 = 0 , 

where equation (A.3) has been used. Therefore, 

e2 J Sp(r) Sp(r1 , 
LlEeL-el = N"2 I r _ r'l dr dr > o. (A.4) 

Also, 
~j Sp(r) 

LlEeL-ion = e2 "'-' I r _ Ri I dr 
t 

where corrections to Epi1) have been neglected. 

(A. 5) 

It is important to note that LlEeL-eL is always positive 

irrespective of Sp(r) . On the other hand, LlEeL-ton has both positive 

and negative contributions. Even though (A.5) is first-order in Sp(r), 

whereas (A4) second-order, it should be emphasized that (A.5) 

vanishes for a partially filled outer shell in jellium, whereas (A.4) does 

not. The term (A.4) is, in fact. responsible for the ellipsoidal 

distortion24 of jellium clusters for fillings other than electronic magic 

numbers. 

The estimation of errors can therefore be made based on (A.4), which 

yields, for some simple choices of Sp(r) for a few values of 1 (>0) and 

small v, and conSidering only non-magnetic states. 

LlEeL-eL - 0.1 (n/N'2)EeL-eL (A.6) 
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N 

8 

18 

20 

34 

40 

58 

68 

90 

92 

106 

132 

138 

168 

186 

196 

198 

,232 

TABLE 1. ENERGY PER ATOM FOR ELECTRONIC MAGIC NUMBERS 

[ All energy components are in Rydbergs/ Atom] 

, 

Eel-e1 E E E E E tot el-ion ion-ion kin xc 

1.2391 - 2.3050 0.8100 0.1699 - 0.2910 - 0.3770 

2.1018 - 4.1532 1.7793 0.1650 - 0.2950 - 0.4021 

2.2927 - 4.5329 1.9677 0.1636 - 0.2953 - 0.4042 

3.2017 - 6.3382 2.8527 0.1603 - 0.2973 - 0.4208 

3.6536 - 7.2733 3.3355 0.1603 - 0.2981 - 0.4220 

4.5780 - 9.1332 4.2724 0.1569 - 0.2988 - 0.4247 

5.1930 -10.3257 4.8566 0.1581 - 0.2997 - 0.4177 

6.1319 -12.2224 5.8122 0.1552 - 0.3001 - 0.4232 

6.2477 -12.4628 5.9348 0.1546 - 0.3001 - 0.4258 

6.9693 -13.8930 6.6458 0.1556 - 0.3009 - 0.4232 

7.9155 -15.7607 7.5732 0.1537 - 0.3010 - 0.4193 

8.2188 -16.3133 7.8164 0.1532 - 0.3011 - 0.4260 

9.2127 -18.4019 8.9168 0.1539 - 0.3018 - 0.4203 

9.9586 -19.8399 9.6047 0.1524 - 0.3018 - 0.4260 

10.4032 -20.7524 10.0719 0.1523 - 0.3019 - 0.4269 

10.4950 -20.9515 10.1824 0.1524 - 0.3020 - 0.4237 

11.4760 -22.9042 11.1480 0.1523 - 0.3024 - 0.4303 
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N 

9 

15 

27 

51 

59 

65 

89 

113 

137 

169 

181 

TABLE 2.1. ENERGY PER ATOM FOR ATOMIC MAGIC NUMBERS 
( corresponding to finite bee lattice clusters) 

[ All energy components are in Rydbergs/ Atom] 

E E E E E E
tot el-el el-ion ion-ion kin xc 

1.3347 - 2.4834 0.8942 0.1756 - 0.2906 - 0.3695 

1.8653 - 3.7496 1.6100 0.1725 - 0.2932 - 0.3950 

2.7594 - 5.5036 2.4774 0.1662 - 0.2956 - 0.3962 

4.2270 - 8.5267 4.0327 0.1600 - 0.2981 - 0.4051 

4.6407 - 9.1784 4.2556 0.1572 - 0.2988 - 0.4237 

5.0171 -10.0526 4.7625 0.1582 - 0.2992 - 0.4140 

6.0903 -12.3516 5.9925 0.1555 - 0.3000 - 0.4133 

7.2265 -14.6726 7.1688 0.1561 - 0.3007 - 0.4219 

8.1683 -16.6656 8.2216 0.1533 - 0.3011 - 0.4235 

9.2546 -18.4671 8.9386 0.1539 - 0.3018 - 0.4218 

9.7532 -19.3720 9.3444 0.1529 - 0.3017 - 0.4232 
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N 

13 

19 

43 

55 

79 

87 

135 

141 

177 

201 

TABLE 2.2. ENERGY PER ATOM FOR ATOMIC MAGIC NUMBERS 
( corresponding to finite Type-I fcc lattice clusters) 

[All energy components are in Rydbergs/Atom] 

E E E E E E
tot el-el el-ion ion-ion kin xc 

1.6896 - 3.2914 1.3263 0.1766 - 0.2920 - 0.3909 

2.1970 - 4.3470 1.8778 0.1644 - 0.2947 - 0.4025 

3.8117 - 7.5802 3.4905 0.1611 - 0.2979 - 0.4148 

4.4281 - 8.8099 4.1072 0.1584 - 0.2985 - 0.4147 

5.6673 -11.2833 5.3438 0.1577 - 0.2996 - 0.4141 

6.0062 -11.9582 5.6743 0.1560 - 0.2999 - 0.4216 

8.0670 -16.0499 7.7075 0.1535 - 0.3010 - 0.4229 

8.3192 -16.6369 8.0351 0.1536 - 0.3011 - 0.4301 

9.5880 -19.0662 9.1990 0.1533 - 0.3017 - 0.4276 

10.5821 -21.1489 10.2932 0.1525 - 0.3020 - 0.4231 
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N 

16 

28 

44 

68 

80 

104 

140 

152 

180 

TABLE 2.3. ENERGY PER ATOM FOR ATOMIC MAGIC NUMBERS 
( corresponding to finite Type-Ufcc lattice clusters) 

[ All energy components are in Rydbergs/ Atom] 

E E E E E E tot el-el el-lon lon-Ion kin zc 

1.9409 - 3.8357 1.6303 0.1700 - 0.2938 - 0.3883 

2.8240 - 5.6009 2.5076 0.1656 - 0.2958 - 0.3995 

3.8641 - 7.6843 3.5448 0.1612 - 0.2978 - 0.4120 

5.1930 -10.3257 4.8566 0.1581 - 0.2997 - 0.4177 

5.7100 -11.2459 5.2609 0.1576 - 0.2996 - 0.4170 

6.8678 -13.6798 6.5375 0.1561 - 0.3007 - 0.4191 

8.2857 -16.5144 7.9477 0.1535 - 0.3011 - 0.4286 

8.6857 -17.3414 8.3773 0.1543 - 0.3013 - 0.4254 

9.7120 -19.3947 9.4122 0.1530 - 0.3017 - 0.4192 
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14 

38 

68 
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116 

164 
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236 

,-

TABLE 2.4. ENERGY PER ATOM FOR ATOMIC MAGIC NUMBERS 
( corresponding to finite Type-mfcc lattice clusters) 

[All energy components are in Rydbergs/Atom] 

E E E E E E
tot el-el el-ion ion-ion kin %C 

1.7748 - 3.4752 1.4315 0.1747 - 0.2926 - 0.3868 

3.5040 - 7.0220 3.2353 0.1607 - 0.2974 - 0.4194 

5.1930 -10.3257 4.8566 0.1581 - 0.2997 - 0.4177 

6.2477 -12.4628 5.9348 0.1546 - 0.3001 - 0.4258 

7.3363 -14.6532 7.0340 0.1559 - 0.3007 - 0.4277 

9.0816 -18.0950 8.7420 0.1541 - 0.3017 - 0.4190 

10.0476 -20.0052 9.6792 0.1524 - 0.3018 - 0.4278 

11.6235 -23.2000 11.2918 0.1522 - 0.3023 - 0.4348 
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Figure captions 

Figure 1. 

The electronic number density in the model under consideration for 

various electronic magic numbers as a function of the radial distance 

from the center of the spherical cluster. The number density is in 

units of the corresponding jellium density Po. shown by the dashed 

line. The radial distance is in units of the total radiUS R of the electron 

confining sphere (Infinite potential well). (a) N = 8; (b) N = 34; (c) N = 

58; (d) N = 92; and (e) N = 168. 

Figure 2. 

Plot of the total energy per atom as a function of cluster-size N for 

various electronic and atomic magic numbers (Tables 1 and 2). The 

crosses represent the pOints corresponding to the electronic magic 

numbers and the squares correspond to the atomic magic numbers. 

The "hulls" of minimum energy are drawn separately for the electronic 

and the atomic magic numbers. with a line joining them to form the 

overall minimum-energy hull. A clear transition is observed between 

N = 58 (electronic magic number) and N = 141 (atomic magiC 

number). 
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