
"' -

LBL-30613

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

APPLIED SCIENCE
DIVISION

Presented at the U.S. DECUS Spring 1991 Symposium,
Atlanta, GA, May 6--10, 1991, and to
be published in the Proceedings

A Complex Multitasked Data Acquisition and
Control System for Measuring Window
Thermal Efficiency, or How TSX+ Saved
Our Project When It Outgrew RT-11

M. Yazdanian, J.R. Michelson, and G.O. Kelley

May 1991

APPLIED SCIENCE
DIVISION

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

1-+.(1
0 """r
'i'iO

O>
,j:o.S::Z
~

~ 1!)(1
11) cT 0
11) 11) .,
,.-ro..c::
Ol ---
tD
~
0.
lQ .
(Jl
lSI

r
1-"-
0'(1
'i 0
ID'O
'i'<
'< . 1\)

r
tD
r
I
w
lSI
0"1
w

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-30613
Mo-282

Presented at the U.S. DECUS Spring 1991 Symposium, May 6-10, 1991, Atlanta, GA, and published in the
Proceedings.

A Complex Multitasked Data Acquisition and Control System
For Measuring Window Thermal Efficiency

Or
How TSX+ Saved Our Project When it Outgrew RT-11

Mehrangiz Yazdanian, J. Randy Michelson, and Guy 0. Kelley
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

May 1991

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building
Technologies, Building Systems and Materials Division of the U.S. Department of Energy under Contract No. DE
AC03-76SF00098.

A Complex Multitasked Data Acquisition and Control System
For Measuring Window Thermal Efficiency

Or
How TSX+ Saved our Project When it Outgrew RT-11

ABSTRACf

Mehrangiz Yazdanian, J. Randy Michelson, and Guy 0. Kelley
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

The Mobile Window Thermal Test facility (MoWiTT) predicts the energy efficiency of
windows by continuously measuring the net heat transfer into and out of two room-sized
calorimeters. The system consists of a data acquisition/control unit which communicates through a
General Purpose Interface bus (GPIB IEEE-488) with an LSI-11/23 computer. We wrote the
software in FORTRAN 77 and run it under TSX + using detached jobs, the message facility, and
shared run time systems to execute nine 64KB jobs which simultaneously take data and store it on

·disk. We arbitrate the access to a single scanner on the GPIB by running a SERVER task which
acts as a virtual machine to serialize the requests. We can control and monitor the system remotely
and run a number of interactive jobs without interfering with the data collection tasks. We cover
a description of the hardware; the software requirements, including the libraries to control the data
collection and drive the hardware; the system architecture, including a block diagram; design
considerations to meet real-world requirements; and the problems we discovered along the way and
the solutions we found either to correct or to bypass them.

INTRODUCTION

To measure the energy efficiency of different windows under realistic conditions, we built a
Mobile Window Thermal Test facility (MoWiTT)l) at the Lawrence Berkeley Laboratory (LBL). It
consists of dual, guarded, room-sized calorimeters in a mobile structure. The MoWiTT is capable
of simultaneously exposing two window samples, each seeing a roomlike interior environment, to
ambient outdoor weather conditions, and measuring the net heat transfer through each window
with good accuracy.

Each calorimeter chamber contains an electric heater, a liquid-to-air heat exchanger, and a
nearly continuous interior skin of large area heat flow sensors.

After the initial testing and calibration, we moved the MoWiTT to the University of Nevada
campus in Reno, where the extreme seasonal weather conditions provide an ideal test site.

l) Klems, Joseph H.; Selkowitz, Stephen; and Horowitz, Sy. 1982. "A mobile facility for measuring net energy
performance of windows and skylights." An Foras Forbartha, Energy Conservation in the Built Environment
(Proceedings ofCIB W67 Third International Symposium), Vol. III, p.3.1, Dublin, Ireland.

-1-

The MoWiTTsystem has a data acquisition/control unit2) which communicates through a
General Putpose Interlace Bus (GPIB IEEE-488)3) with an LSI-11/23 which collects and
processes the data.

The computer collects data at short intervals, 24 hours a day, from temperature sensors,
anemometers, radiometers, and many other instruments (as many as 270 signals). It then averages
the data over ten minute intervals and stores it on disk for further analysis. We then automatically
transfer the data back to computers at LBL on a daily basis via modem4). We also control and
monitor the system remotely from LBL, 218 miles away.

When we originally designed the Mo WiTT system, we chose the LSI -11/R T -11 system
because, at the time, it was less expensive than a VAX and easier to use than RSX, while still
providing genuine real-time capabilities. As the code grew bigger, we faced a major problem: the
code did not fit within the 16-bit address space limitation of RT -11.

We solved this problem by installing TSX ~) , a high perlormance operating system for
DEC's PDP-11 and LSI-11 computers. It provides a multiuser/multitasking programming
environment similar to the RT-11 XM (extended memory) monitor. The biggest advantages of
using TSX+ are that most of the code written for RT-11 is directly usable under TSX+, and that
the TSX+working environment is almost identical to RT-11. Both made the conversion a lot
easier. ·

At the present time, we run nine 64KB programs simultaneously as detached jobs which
exchange information through a shared common block, and synchronize using the TSX + message
communication facility. In addition to these detached jobs, we usually run a few interactive tasks.
The system is still capable of handling additional jobs. To utilize the multitasking features of the
TSX+ system, we use a number of subroutines from TSXLIB6)

In the process of writing the software, we discovered and overcame a number of problems
with the TSX+ operating system, the GPIB software library, and the ADLIB7> software, which
runs the four channel16-bit binary input pulse counters8)

We had to carefully select, fine tune, and extensively test the TSX+ system parameters to
ensure correct handshaking between the separate detached jobs.

HARDWARE DESCRIPTION

The computer consists of the following pieces:

1 An LSI-11/23 with 4MB of memory.
2. Two RX02-equivalent floppy drives from Qualogy.
3 Two RL02 drives.
4 A GPIB 11 V -1 interlace card from National Instruments.

2> Hewlett-Packard 3497 A Data Acquisition/Control Unit.
3) GPIBllV-1 interface card from National Instruments.
4) Will be discussed in a future paper.
5> TSX+ is a registered trademark of S&H Computer Systems Inc., Nashville, TN. .
6) A library of FORTRAN-callable routines that implement programmed requests for TSX+; N.A. Bourgeois Jr.,
SystemEngineering Division, Sandia National Laboratories, Albuqurque, NM.
7> Analog and Digital I/0 Fortran Subroutine Library from ADAC Corporation; Woburn, MA.
8) Model1604/0PI from ADAC Corporation.

-2-

5 Three 1604/0PI four channel16-bit binary input pulse counter cards from ADAC
Corporation which measure the flow rates of water in cooling loops and the wattage of
heaters and fans which control chamber temperatures.

6 - Two 1412 four-channel D/A interface cards from ADAC Corporation to drive a chart
recorder.

7 - One DLV11-J 4-line serial interface card.
8 - One DZV11 4-line multiplexed serial interface card.
9 - One Supra 2400 baud modem, and some terminals and printers.

The HP 3497 A scanner (a multiplexing digital voltmeter with GPIB interface) is the main
data acquisition and control unit. The LSI-11 controls and reads the scanner through the
GPIB 11 V -1 card. The scanner reads 180 thermistors (which measure temperatures at various
points), 26 chamber-wall heat flow sensors, several weather sensors (such as wind speed and
direction) and various solar energies.

SOFfW ARE DESCRIPTION

We wrote the MoWiTT software in FORTRAN 77 (except for a few small macro routines)
and currently run it under TSX+ V6.2 (using RT-11 V5.1c utilities). MoWiTT also uses a number
of software libraries, including:

1 - TSXLIB V5.1library routines for TSX+ (DECUS #11-490), as modified by Warren
Massey of LLNL for full compatibility with F77.

2 - GPIB utility routines, revision D.10, from National Instruments to drive the
GPIB 11 V -1 interface board.

3 - ADLIB (Jul-15-80 version) software package to drive the ADAC pulse counter and
D/A boards.

4 - TTLIB (Aug-12-81 version; DECUS #11-495) library routines which provide the
ANSI escape sequences for controlling the VT-100 terminals.

SYSTEM ARCHITECTURE

In order to provide direct, continuous measurements of the net energy flow into or out of the
test chambers, MoWiTT makes related but independent readings of:

1 - various air and surface temperatures throughout the test chambers (MSTSCN job);
2 - heat flow through the surfaces surrounding the test chambers (HFMjob);
3 - solar intensities and wind data (WETHER job);
4 - power to the heaters and fans which stabilize the interior air temperature in the test

chambers (W A TMTR job) ; and
5 - liquid-to-air heat-exchanger flow rate and inlet/outlet temperatures (FLOMTRjob)

[water-flow calorimetry].

Most of the jobs take readings every five seconds, averaging them over ten minute intervals to
compress the data to a manageable size. All the jobs except W A TMTR need to access the HP
Scanner on the GPIB to collect the required data. W ATMTR and FLOMTR also need to read the
ADAC pulse counters.

We originally tried to run under RT-11 FB. We wrote a main scheduling program with each
of the above tasks as individual subroutines. The main program controlled scheduling using RT-11
timer completion routines. The code grew bigger as we added more measurements, and soon
exceeded the maximum address space available under RT -11 FB. The arbitration of access to the

-3-

HP Scanner on the GPIB also got very complex, because some of the algorithms required
indivisible sequences of multiple GPffi operations.

We found that TSX+ could help us solve our biggest problems with the least amount of
reprogramming effort. We relieved the address space limitations of the single large program by
splitting the program into a number of interrelated detached jobs. We simplified the HP Scanner
arbitration code significantly using the TSX+ message facility's inherent queuing mechanism.

All the data acquisition tasks now run as separate detached jobs. To enable these jobs to share
the single HP Scanner on the GPIB, we wrote the SERVER process that arbitrates GPffi access
for these conflicting tasks by emulating a GPffi virtual machine. The critical concept of the J
SERVER process is that it executes virtual instructions that represent one or more indivisible
sequences of GPffi commands to carry out collection of data. This allows other jobs to continue to
run without having to lock the CPU for the duration of each virtual instruction, some of which can
require several seconds to complete.

We use the TSX + message facility to send requests for execution of GPm virtual
instructions to the SERVER job through a single message channel which serializes the requests.
The SERVER job executes each request indivisibly, and then passes the measurements back to the
requesting jobs through separate message channels.

There are three other detached jobs running: the DSKWRT job, which writes the data to the
disk; the DSKCHK job, which monitors the free space in the current data file and opens a new one
when the current one fills; and the ERRMSG job, which checks for any error messages flagged by
the data collection jobs and writes them to the disk.

The detached jobs have no direct impact on one another, no timing conflicts, and are slow
enough that the CPU can process them all and still have significant (40%) idle time on ourLSI-
11/23.

The data acquisition jobs process the data they receive from the SERVER job, and pass the
results on to DSKWRT, which stores it on disk. They pass the data through a shared common
block which is simultaneously mapped by most of the various detached jobs.

We start, stop, and monitor the detached jobs through a command interpreter kernel which is
an IND control file (CNTROL.COM). The interpreter can also activate one of a number of
interactive jobs which perform such tasks as changing the MoWiTT initial constants (like the
sampling periods of the data acquisition), displaying selected sections of the data, writing
comments in a log file, and controlling the storage of instantaneous measurements (raw data for
debugging) on disk. Some of these jobs access the shared common block to display or process the
data and others read the data files to get the information they need. (We use the TSX+ shared-file
system services to avoid any file conflicts.)

There are other operator-interface jobs that the user can activate through the command
interpreter kernel to monitor, control, and view the data while data acquisition is in progress.
Multiple copies of the command interpreter can run various data display and analysis jobs
simultaneously. In fact, we often display the data simultaneously in both Reno and Berkeley using
two copies of the same task.

DESIGN OF MoWiTT SOFTWARE

We run our data acquisition programs as detached jobs because they do not have any terminal
1/0, and need not be connected to a terminal. This way we also protect the jobs from being stopped

"'

\ ..

•

accidentally (by typing <CTRL-C> or <CTRL-S>). We can start, stop, and control them from
LBL over a dial~up telephone line. Each detached job has its own log file for any system error
messages. (One detached job logs all acquisition errors to disk.) Since these jobs run separately,
they can each occupy 64KB of virtual space, and together can contain much more code than any
single job. We also found it much easier to write multiple jobs than to struggle with one big job
with overlays.

We use the TSX + message facility to serialize the requests for GPffi access to the SERVER
job and to return the requested data. This scheme may not be acceptable in situations where the
requesting jobs have different priorities. (One way around this problem is to open a separate
channel to the SERVER job, which it must check before checking the normal priority channel.)

We store the data in shared common blocks. This not only allows the data acquisition jobs to
exchange information, but also allows us to access the data remotely to control and monitor the
execution of the data acquisition software.

We use an IND control file as a command interpreter to execute the interactive and detached
jobs. This allows us to monitor and analyze the data, and modify many parameters without
interfering with the running MoWiTT data acquisition programs.

Some specifics of the software design:

The WATMTR and SERVER (when requested by FLOMTR) jobs read the ADAC pulse
counters, which measure the flow rate in the cooling system and the wattage of heaters and fans in
the test chambers. The ADAC pulse counters are 16-bit unsigned integers. In order to detect the
counter overflow (which is actually the wrap around from 32767 to -32768 and from -1 to 0), we
read the counts into 1*4 words with the high order 16-bits set to zero. If we read the counts into
1*2 words, F77's signed integers make it more difficult to correctly calculate the actual number of
counts since the last reading. We never reset the counters because the few counts that could be lost
between each read and reset operation would introduce cumulative errors.

We use the TSX+ shared run-time systems facility for common data buffers that multiple
tasks can access simultaneously. When we generate the TSX+ system, we declare two run time
system files in the form of .SA V (COMBLK.SA V and COMBUF.SA V files) which will never
swap out of memory even if there are no jobs actively using them. We then create two common
blocks, each exactly 4 KWords long, and include them in all the jobs that access these shared
areas. We use the LINK/BOUNDARY (/Y) option to force the boundaries of the psects
corresponding to the two common blocks to integral multiples of 4 KWords.

Each program uses the IADDR function in the RT-11 system library to get the two common
blocks' starting virtual memory addresses, uses the IASRNT function from TSXLIB to associate
the shared run time systems with the two common blocks, and then calls the MAPRNT function in
TSXLIB to map the shared common blocks using twq Page Address Registers (PARs). (Each
program calculates which PARs to use from the high-order three bits of the virtual addresses of the
first word of each common block.) The drawback to this technique is that we create a hole,in
virtual space that can be almost 4 KWords long. It may be possible to restructure the .psect
ordering to fill most of the hole with some of the F77 OTS code, but we haven't found it
necessary.

When we create Mo WiTT data flies, we use the function IDCLSF from TSXLffi to declare
them as shared files, and give write access only to the jobs that write to the data files, and read
access to other jobs that monitor the data.

-5-

We lock the data acquisition jobs into low memory using the TSXLIB function LKLOMY.
They remain locked and never swap out of memory until they terminate. This prevents low
memory fragmentation.

While accessing the shared common blocks, each data acquisition task uses the TSXLIB
routines TKCIL and RLCIL to take exclusive control of the CPU for very short periods. This
prevents software race conditions between tasks which are reading and writing the same data

Modifying the TSX + system parameters:

We found it necessary to make the following changes to the TSX+ system parameters:

CACHE set to 100 to provide faster operation of the floppy disks.
MAXCSH set to 30 so we can cache all the logical and physical devices referenced by the

data acquisition programs.
NMFCSH set to 60 so we can cache all the files referenced by the data acquisition

programs.
MIOBSZ set to 2 to simulate 22-bit addressing for the 18-bit floppy controller.
MAXMC set to 12 to allow the opening of message channels for all of our data acquisition

jobs.
MSCHRS set to 400 to match the length of the messages containing the data.
MAXMSG set to 12 so the message queue can hold enough messages.
MAXMRB set to 12 so the message-request queue can hold more requests for messages.
NCSILO set to 150 so a job using CL-line I/0 would not lose input characters while

Notes:

printing lines longer than the print output buffer.*
NCXOFF set to 12 so remote jobs logged in from LBL would not lose

characters when the user or the terminal typed <CTRL-S>. **

*We had disabled spooling because it caused TSX+ stack overflows in an early version of
TSX+.

**Related to using DZV11 interfaces for proper KERMIT handshaking. See next section.

PROBLEMS AND SOLUTIONS

We encountered a number of problems related to TSX+, RT-11, FORTRAN-77, the GPIB
software, and ADAC's ADLIB library. We fixed some of them and found work-arounds for
others.

TSX+ Problems (Sometimes it's really NOT your fault!):

We stumbled over a number ofTSX+ system problems which caused system crashes:

(1) When we ran our software under TSX+ version 5.1, we intermittently got an SOF-Stack
overflow error. (This happened whenever we tried to print with detached jobs running on a
spooled system.) S&H fixed this problem in version 5.1C ofTSX+ by increasing the size of the

'w

kernel stack. .:

(2) After we started our detached jobs, some of them DISAPPEARED! When we tried to
duplicate the problem for S&H, it was IND that occasionally failed instead, while reading the
command file to start up one of the detached jobs. (We were mystified by the error message: ?IND
F-No file accessed on channel.) S&H traced this to a bug in the TSX+ .CSTAT EMT
implementation which returned extraneous bits in the high byte of the fifth word of the channel

-6--

status block (device unit number). (Internally, TSX+ had MOV'd a byte onto the stack without
first clearing the high-order byte.) S&H fixed the problem in a field-test version of 6.2, but they
still could not duplicate the original failure.

We sent an image copy of our data acquisition system disk to them, but they squeezed the
disk before testing (so they could put some debugging files on it), and the vanishing-detached-job
problem still did not show up. We sent them another image copy which they ran unsqueezed, and

. it DID fail. The problem was VERY obscure: a combination of the speed of our LSI-11/23
processor and the fragmentation level of the RL02 disk slowed down the start-up of the detached
jobs enough for an internal race condition in TSX+ to cause the failure. (With an LSI-11(73 and a
squeezed disk, S&H couldn't duplicate the problem.) S&H corrected both problems in version
6.2. .

(3) We originally had a spooled TSX+ system. One of the interactive jobs we were running
used a DLV11-J board through a CL line to drive the "SUNTRACKER" hardware to track the sun.
We were receiving characters from this device through the CL line, and also occasionally writing to
the serial line printer. We used REWIND 6 to flush the printer buffer. We then sometimes lost
characters we were expecting to receive from the SUNTRACKER. (This caused unrecoverable
errors because of the SUNTRACKER hardware's poor error-handling-it required manual
intervention to restart the device.)

We couldn't understand TSX+ losing input characters on a 1200-baud DLV11-J line! S&H
found the bug in DEC's LS handler (both LS.TSX and LS.SYS). The handler raised its priority to
7 in its interrupt-service routine, but didn't execute a .FORK. Then it entered a loop that picked up
each character from the user-buffer, and discarded any NULs before outputting the next real
character and returning from the interrupt.

Here's the combination of ingredients doctors recommend least: since the LS handler uses
the $GETBYT system service under TSX+ (and RT-11 XM), handling each NUL on a slow (LSI-
11/23) CPU can take a few hundred microseconds. Also, a Fortran WRITE to the printer followed
by a REWIND 6 always outputs multiples of 512 characters (one logical block), even if only a
small part of it is data; the rest is padded with NULs.

DLVll-J lines have only single-character input-buffering, and TSX+ could not service input
character-interrupts on the SUNTRACKER's line while the LS handler's output interrupt-service
routine was running at priority 7 picking up and discarding the several hundred NULs padding
each logical block. By the time the CPU could service interrupts again, several character-times at
1200 baud had passed into history!

S&H solved this problem by patching LS.TSX (even though the problem originated in
DEC's LS.SYS). A work-around for this problem would be to use RT-11 !WRITE (instead of
Fortran WRITE plus REWIND 6) to send the exact number of characters to the handler without
any extraneous NULs.

(4) We used KERMIT to transfer data from Reno to LBL. When we tried a 2400 baud
modem, we noticed that the speed of the transfer was VERY slow (even slower than 1200 baud).
Because of all the jobs running in Reno (some of which lock the CPU), the Reno KERMIT lost
positive acknowledgements from LBL regularly. Then one of the two KERMITs would time out
and retransmit its last packet. The effective throughput at 2400 baud including all the dead time
waiting for time outs was less than the throughput at 1200 baud. We fixed this problem by
replacing KERMIT's DLV11-J line with a DZV111ine, which has a 64-character hardware SILO
buffer.

-7-

This caused another problem! We were losing characters when we typed <CtrVS> at LBL.
(We use KERMIT as a terminal emulator to display output from programs running in Reno.) At
2400 baud, the LBL LSI-11 took too long to send back XOFFs when the CL input ring buffer got
almost full, and/or the Reno LSI -11 took too long to stop sending characters after it received
XOFFs. The combined delays exceeded the time required (four character times) to overflow the
LBL CL input ring buffer. It isn't clear whether TSX+'s DZV11 output is too slow (at LBL), or
TSX+'s burst-rate DZV11 input is less than 2400 baud (allowing the LBL input SILO to fill up
before the Reno output stops), or if the detached jobs locking the CPU delay XOFF handling in
Reno. We fixed this problem by increasing the value of the NCXOFF parameter in TSGEN from
four to twelve, so the LBL LSI-11 would send XOFFs much sooner.

GPIB Problems (Beware IB.MAC's obscure comments!):

There was a problem with the National Instruments GPIB handler which crashed the entire
system with a KTP-Kernel mode trap within a few seconds after we tried to access the GPIB. The
IB driver time-out support code violated a basic rule of RT-11, which requires that the stack
pointer not change between the .INTEN and .FORK EMTs. After the .INTEN, the IB handler
interrupt service routine called an internal subroutine containing the .FORK required before issuing
a .CTIMIO to cancel any pending device timeouts. The subroutine return address changed the stack
pointer, so the .FORK returned into NEVER-NEVER LAND!

The way we fixed the problem was actually a work-around. We commented out all the time
out code. The acceptable consequence is that the IB driver will just hang the job if we ever have a
problem with any GPIB device, like loss of AC power or a broken cable. Since we didn't need the
timeout facility, we didn't take the time to fix it properly; we didn't feel it was our responsibility,
and tried to get National Instruments to fix their own code, but they never have!

We also patched the IB handler's location 176 to zero with SIPP so we can always load the
IB handler without causing a system crash, even if the hardware isn't installed. This is helpful
during preliminary debugging on a development system without all the required hardware.

F77 Problems (An example of GREAT support!):

There was a bug in the FORTRAN-callable SECNDS function, which returns the time in
seconds (REAL*4) between two consecutive calls. If we made two calls too close together, it
returned the difference in time plus 24 hours. Multiware Inc. provided a patch which fixed this bug
within days of our request.

ADAC ADLIB modifications (Our own trick to save 4 KW!):

We also modified the subroutines DEVICE and DAOUTP in ADAC's ADLIB library. As
distributed, these subroutines use the RT-11 EMTs from SYSMAC, .POKE & .PEEK, which
require the job to actually map the I/0 page in order to access the hardware. This would have lost 4
KWords of address space by requiring jobs to map the I/0 page.

Instead we modified the ADLIB routines DAOUTP and DEVICE to use the TSX+ EMTs
(.PEEKIO and .POKEIO) which access the I/0 page even if it is not mapped. We also wrote four
routines called IOPOK, IOPOKB, IOPEK, and IOPEKB, using the TSX+ EMTs .PEEKIO,
POKEIO, .PEKBIO, and .POKBIO, but haven't needed them yet. (They are the equivalent of the
SYSLIB routines !PEEK and !POKE but don't require mapping the I/0 page.)

-8-

'"

I·. ·...,

· ...

SUMMARY

We couldn't have done it without TSX+, or without help from the many people (see
acknowledgements below) who struggled with us throughout our most obscure difficulties.

TSX+ eventually proved to be a very reliable real-time platform for our complex data
acquisition, analysis, control and remote monitoring project.

ACKNOWLEDGEl\1ENTS

We would like to acknowledge the following people for their assistance and cooperation:

Jan Bramlet, formerly of S&H Computer Systems, Inc.
Jim Crapuchettes of Omnex Corporation.
Bob Walraven ofMultiware Inc.

and the present and former members of the MoWiTT technical staff, Dennis DiBartolomeo, Mary
Hinman, Joe Klems, Steve Lambert, and Michael Streczyn.

This work was supported by the Assistant Secretary for Conservation and Renewable
Energy, Office of Building Technologies, Building Systems and Materials Division of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.

-9-

DETACHED JOBS FOR DATA ACQUISITION
RUN CONTINUOUSLY

~--
1
L __ _.

I
I
I
I
I
I
l......c:---
I t __ _.

I
I
I
I
I
I
I
1-c:---
1---~
I
I
I
I
I
I
~---
1
~---~

I
I
I
I
I
I

4---
1
L--- ...

MSTSCN
HP master scan
data collection

i ~
FLOMTR

net coolant energy
data collection

~ ~
WETHER
weather

data collection

! ~
WATMTR
wattmeter

data collection

L .•.•.•.•.•.•.•.•.•.•.• ~

HFM
heat flow sensor
data collection

L .•.•.•.•.•.•.•.•.•.•.• ~

DARQ

COMP

DARQ

COMP

DARQ

COMP

DARQ

COMP

DARQ

COMP

I -------------------1 I
I I

r-------~t-~------• I I
I I
I I
1 SHARED COMMON BLOCK r --------
I f""'(--------
1

----~
I --------;.--------·

I I

I ~------------------------------------
DARQ = Request action after a given delay

COMP =Requested action completed;

(contains requested data)

-- -- --10-

SERVER
performs

GPIB/Scanner/
pulse counter

1/0

DSKWRT
writes averaged data

to disk

DSKCHK
switches to new disk

when full

ERRMSG
checks error flags
and writes to disk

data passed through message channel
data passed through shared common block
optional fast data recording
normal data recording

v

~

JOB CONTROL
KERNEUOPERATOR

COMMAND
INTERPRETER

(Single-Letter Cmds.)

[IND CONTROL FILE]

INTERACTIVE CONTROL JOB
(CNTROL.COM)

G

s

c

D

M

F

H

·A

E

T

L

a

CHANGE
PROGRAM

DISPLY
PROGRAM

RDINIT
PROGRAM

RDERR
PROGRAM

ON LINE LOG
COMMAND FILE

QUIT

-11-

message channel open, flush

initialize shared common block
from various startup files

start nine detached jobs

\----- kill detached jobs, if running

change MoWiTT initial constants

}...:;:;--- update in it file

write journal of changes

display key data

display MoWiTT initial constants

change data assignment list

start storing fast data

read fast data from disk file

read changes made to initial
constants from the disk

read error messages stored by
}----- MoWiTT jobs on disk

read stored data on disk

extract existing text

edit with ked

overwrite prior text

exit control file

Identical test
chambers
(calorimeters)

Mobile Window Thermal Test Facility
(MoWiTT)

-12-

Active guard-air insulation
in exterior walls

Changeable windows
and mounting systems

Control Room
(Instrumentation and
temperature control
equipment)

Computer Room
(Data acquisition computers)

wi

MoWiTT Test Chamber

Heat Flow
Sensors
(on all walls,
floor, and
ceiling)

Temperature Sensors
.....c::~I--7 (Chambers, Guard, & Outside)

Heat
Exchanger

Fan Power

Coolant ---fRft:tffii§§"0$j~
Heater Power

Lines

Coolant
Temperature
Sensors

Test Chamber Window

-13-

Auxiliary
Power

MoWiTT Data Acquisition System

Computer Room
------1-------------------------------

MoWiTT Control Room

Wattmeter Boards
(Heaters, Fans, Plug Strips)

GPIB IEEE-488

Coolant Flowmeters

11aaaa
aaaaa
aaaaa
•aaaa

HP 3497A Data Acquisition Unit

PC Controlled Instruments
and

Secondary Data Acquisition

-14.;...

,~·

.,

HP 3497A Data
Acquisition Unit

TERMINAL
(Console)

PRINTER

CHART
RECORDER

PC COMPUTER

WATTMETERS

FLOWMETERS

MoWiTT LSI-11 Computer Backplane

Netcom Chassis #1

DEC LSI-11/23 Qualogy 4432
GPU Floppy Drive Controller

DEC RLV12
Hard Disk Drive Controller

National Instruments
GPIB11V-1

Plessey DLV11-J
Serial 1/0 (4 port)

Plessey DL V11-E
Serial 1/0 (1 port)

Camintonn CMV-4000
4 Megabyte Memory

DEC DZV11
Serial I/O (4 portw/Silo)

Netcom W540/22
22 bit bus expansion

Netcom Chassis #2

Netcom W540/22 Digital Pathways TCU-50
22 bit bus expansion Calendar Clock

ADAC 1412 •
D to A (4 chan)

ADAC 1412
D to A (4 chan)

ADAC 1604 ADAC 1604
t--P_u_lse_C_a_rd__:_(4_c_h_a-'n);__+-_Pulse Card (4 chan)

ADAC 1604
Pulse Card (4 chan)

Netcom MPV-11CB
Auto-boot/terminator

• Unused (C-D interconnect)

-15-

2- RX02 Floppy
Disk Drives

2- RL02 Hard
Disk Drives

MODEM
(2400 bos)

WATT\1ETERS

- _ .. - --· ~----~.

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

~·:-..(\
...... _

