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Abstract

A bricf history of affine Lic algebra, the Virasoro algebra and its culinination
in the Virasoro master equation is given. By studying ansitze of the master
equation, we obtain exact solutions and gain insight in the structure of large
slices of afline-Virasoro space.

We find an isomorphism between the constructions in the ansatz SO{(1)ging,
which is a set ol unitary, generically irrational alfine-Virasoro constructions on
SO(n), and the unlabelled graphs of ocder i On the one haud, the conformal
constructions, are classificd by the graphs, while, conversely, a group-theoretic
and conformal fick)-theoretic identification is obtained for every graph of graph
theory.

We also define a class of “magic” Lie group bases in which the Virasoro
master equation admits a simple metric ansatz {gmetric}, Whose structure is
visible in the high-level expansion. When a magic basis is real on compact
9, the corresponding g,,.eric is a large system of unitary, generically irrational
conformal fickd theories. Examples in this class include the graph-theory ansatz
SO(n)diag in the Cartesian basis of SO(n), and the ansatz SU(n)uetric in the
Panli-like basis of SU(n). Finally, we dcfine the “sine-area graphs” of SU(n),
which label the conformal field theories of SU(n)metric, and we note that, in
similar fashion, cach magic basis of g defines a generalized graph theory on ¢

which Jabels the conformal field theories of g,neqric-
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Chapter 1

Introduction

The main purpose of this thesis is to find new representations of the Virasoro algebra
(L™, L] = (m = n)Lim+n) 4 %m(m’ =~ Démino, mne 2 (1.1)

where the parameter c is called the central charge of the algebra. The Virasoro algebira [1)
was first encountered in the study of the open bosonic string, where it was found that the

modes of the stress tensor

()= UM = L ) e) (12)

m
satisfy the Virasoro algebra (1.1) with ¢ = D, where D is the number of sPacietime dimen-

sions. Here :: is a normal ordering and the string momentum

Ju(z) =Y Jlm)ymm-t (1.3)

is a local field, whose modes satisfy the algebra
I = gnbnino, #=0,...,D—1 (1.4)

where g, = (1,=1,..., =1)diag is the flat metric.

The algebra (1.4) is in fact a representation of an abelian affine Lie algebra g = U(1)P.

More generally, affine Lie algebra, or current algebra on S, was discovered independently

in mathematics [2] and physics [3). In these infinite dimensional algebras the currents of

affine (simnple) g satisfy
(I, I8N = i, I 4 mkngsbrgng, a=1,...,dimg (1.5)

where f,4° and 5, are respectively tlie structure constants and Killing metric of g. The
level of the affine algebra g, is defined as z = 2k/? where v is the highest root of g.

The first representations [3} of affine Lie aléebras were constructed with world-sheet
fermions [3, 4] to implement the proposal of current-algebraic spin and internal symmetry

on the string {3). For example, to construct affine SU(n) at level z = 1 take
Ju(2) = Mt = S (T a(z) § (1.6)
m

where T, are the representation matrices of the n of SU(n), and

vi(2) = e () = g (1.7a)
I=1,...,n, rezZ+1/2 (1.76)

are a set of complex world-sheet fermions whose modes satisfy the anticornmutation relations

{¢$r),¢f")} = (‘Zl(r).J,J(l)} =0 ~ (1.80)
(W5 = 684u0 - (1.8)

As another example, affine SO(r) at level z = 1 is constructed similarly using the vector
representation of SO(n) and real world-sheet fermions.

With the currents of affine g, one obtains the non-abelian generalization of the stress
tensor in (1.2), which is the affine-Sugawara construction on g. For simple g the affine-

Sugawara construction is

1

T(z) = W+ Q,

7 $a(2)D(2) ¢ (1.9)



where il, = Q,/v¥? is the dual Coxeter number of g, and :J,Jp ¢ = tJpJs : is a symmetric

normal ordersing. The stress tensor (1.9) satisfies the Virasoro algebra with central charge

zdim
= m:-’ . (1.10)
Examples of affine-Sugawara constructions [3, 5} and coset constructions [3, 5] were also
given in the first string era, as well as the vertex operator construction of fermions and
SU(n), from compactified spatial dimensions [6, 7). The generalization of these construc-
tions [8, 9, 10] and their applications to the heterotic string [11] mark the beginning of
the present era. A general review of affine-Sugawara contructions and coset constructions
is given in Section 2.2. Sce {12, 13, 14] for further historical remarks on affine-Virasoro

constructions.

The general Virasoro construction [15-17)
T(L)= L** oy} BN

on the currents J, of affine g {2, 3) systematizes Lhe direct approach used by Bardacki and
Halpern (3, 5] to obtain the original affine-Sugawara and cosct constructions. Requiring the
operator T(z) = ¥, L™ 2=™-2 in (1.11) to satisfy the Virasoro algebra (1.1) results in the
Virasoro master equation [15-17}

Lab - 2LachLdb _ Ldlf’foenjﬂb - Ld[g[,ﬂ(ﬂl’b)e

(1.12)
¢ =2Gp L%

for the inverse inertia tensor L = L% The master equation contains the affine-Sugawara
nests * and many new conforinal constructions g# on the currents of affine g.

In particular, broad classes of exact solutions with unitary irrational central charge

on compact g have recenitly been announced (18], The growing list presently includes the

*The afline-Sugawara nests [18] include the affine-Sugawara constructions (3, 5, 9}, the coset constructions
[3, 5, 10] and the nested coset constructions [19].

unitary irrational constructions [18,20-23)

(( simply-laced g, )")¥, (1.13a)
sU3)¥,
SU@Basic = SUBBuy SUGDa) SUGE (1.13b)

SU3)4 ) SU@E )
SO(2n)*{d,4},n >3

So(n)¥,, = SO(5)*(d, 6); (1.13¢)
50(2n + 1)¥{d,6];2, n > 3
SU(4)¥[m,7);.
Sum¥,.... ={ @*m, Tha (1.134)
SU(5)*[m, 2]

which are obtained in the BASIC D Dynkin D Mazimal sequence of subansitze, in
S$0(n)diag and in SU(N)metric: The exact constructions in (1.13¢,d) will be obtained in

Chapters 2 and 3 respectively. The value

c((SUBME,,) =2 (n - %) ~1.7439 (1.14)

is the lowest unitary irrational central charge yet observed {22].

A very large number [18]

N(g)=2"9,  n(g) = dimg(dimg — 1)/2 (1.15)

‘of solutions is expected generically on arbitrary level of any g, eg. N(9) =

1 billion on SU(3), so the exact constructions in eq.(1.13) are only the first glimpse into a
generically-irrational affine-Virasoro universe of immense new structure.

A high-level (semi-classical) expansion of the master equation [22] has been developed
which marks a bifurcation in the study of new conformal constructions on affine g: The
expansion is capable in principle of sceing all solutions whose high-level behavior is O(k~1),

which includes all high-k smooth unitary solutions [22]. Following Ref.{22], we refer to



these O(k~') constructions as the class of high-k smooth constructions on g, which we will
also call the level-families. As a specific application, the high-level expansion was used in
Ref{22] to see all unitary high-k smooth constructions in the ansatz SU(3)pasic-

In other directions, the master equalion has been identified as an Einstein system on
the group manifold [16], and a world-sheet action [24] has been obtained for the generic high-
level smooth affine- Virasoro construction. Moreover, classical construction of primary fields
[24] has been studied in the generic theory. The master equation has also provided an exact
C-function and C-theorem |25}, 50 that the associated flow on affine-Virasoro space may be
an exact renormnalization group equation. Finally, the superconforinal master equation [26)
has been obtained !, which colle.cts all the superconformal constructions of the Virasoro
master equation on g, X SO(p,q);. This reference also obtains the super C-functif)n and
super C-theorem on N=1 affine-Virasoro space, as well as a graph theory of superconformal
level-families, and the N=2 superconformal master equation.

As in general relativity, consistent ansitze (18,20,22,23] have played a central role in
solving the Virasoro master equation (1.12). Although the conformal field theories of a
generic ansatz can be expressed in any basis, there may exist special ansitze whose forms
are simple in certain preferred bases. Moreover, the high-level analysis of relatively simple

ansitze is a useful tool in seeing the structure of these slices of affine-Virasoro space.

The main topic of this thesis is the study of a family of simple metric ansitze on g
ab 1
Ginetric : LT = E(Aa + ’\b)"ab (1.16)

in which the inverse inertia tensor is proportional to the Killing metric n, of g. These
metric ansitze are associated Lo a class of “magic” bases in which any two generators of Lie

g commute to no more than a single generator.

A review of the general affine-Virasoro construction (1.11) is given in Section 2.2.1.

Vin special cases, the question of supersymmetry was addressed earlier in [27, 28). .

The remainder of Chapter 2 is devoted to the simplest case of (1.16),
S0(n)aiog :  the diagonal ansatz on SO(n) (1.17)

with diagonal Killing metric n, in the physicist’s standard basis of SO(n). The application
of the higli-level expansion to this ansatz, shows an isomorphism between this subset of
unitary, generically irrational affine-Virasoro constructions and the set of graphs of order
n [29, 30). The graphs label the level-families of SO(n)4iag, With graph isomorphisms in
Aut SO(n). Conversely, the isomorphism provides a Lie group and conformal field-theoretic
organization of graph theory, which may be interesting in mathematics. The material in
Chapter 2 has been published by M.B. Halpern and the author of this thesis in Ref. [23).

In Chapter 3 the generalization of S$0(n)4iag to the more general class of metric ansitze
(1.16) is discussed and it is shown that each of these ansitze is consistent in the Virasoro
master equation given a “magic basis” of Lie g. The structure of each gmesric is clearly visible
in Lhe high-level expansion and, moreover, .wllcn a magic basis is real, the corresponding
Ginetric i5 a large system of unitary, generically irrational conformal field theories.

It is likely that many magic bases can be found, but the two known examples are the
Cartesian basis of SO(n), which gives SO(n)diay, and the Pauli-like basis of SU(n), which
gives the ansatz

* SU(n)metric:  the metric ansatz on SU(n) (1.18)

with a non-diagonal Killing metric. In both cases the sets of of conformal field theories
are generically unitary because both magic bases are real. The ansatz SU(n)metric will be
discussed in Chapter 3 to illlustrate the features of a general metric ansatz. Moreover, a
new phenomenon is observed in the high-level expansion of this ansatz, since irrationalily
of the central charge is visible at finite order of the expansion.

We also define the “sine-area graphs” of SU(n) which label the conformal field theories

in SU(n)metric. 'The prescription for defining these sine-area graphs for SU(n) can be easily



generalized, so that each magic basis of g defines a generalized graph theory on g which

labels the conforinal field theories of gnetrec.

Chapter 2

Graph Theory, SO(n) Current
Algebra and the Virasoro Master

Equation

2.1 Introduction

The purpase of this chapter is the detailed study, primarily by high-level expansion, of a

new ansatz of the Virasoro master equation (1.12)
S0(n)diag : the diagonal ansatz on SO(n)

whose set of high-k smooth constructions is generically irrational. High-level analysis pro-
vides a strong argument that each of these constructions is unitary down to some finite
critical level, in accord with our expérience in Refs.[18,20-22] and the additional exact so-
lutions of this chapter.

Our central result is that the physically distinct {20,22] high-k smooth constructions
in SO(n)diay-are in one-to-one correspondence with the unlabelled graphs of graph theory

(29, 30]:

each distinct (high-k siooth) affine-Virasoro construction in SO(n)aiag



++ each unlabelled graph of order n. 2.11) tions live only on $0(4n) and SO(4n + 1) with half-Sugawara central charge, whose
- This means, on the one hand, that the high-k smooth constructions in SO(n)aio, are clas- values raise the question of new rational central charges.
sified by the set of all graphs. Conversely, a gronp-theoretic and conformal field-theoretic Graph symmetry also determines a hierarchy of consistent subansitze in SO(n)diog-
identification is obtained for every graph of graph theory, which may be interesting in Beginning with the smallest subansitze, we report the following exact unitary irra-
mathematics. tional constructions,

SO0(2n)*#[d,4), n2>3
The .isomorpllism begins a cross-fertilization of the subjects: S0(5)*d, 6] (2.1.4)
1. Graph theory — conformal field theory S0(2n + 1)¥{d, 6]"" » n23
. R . and three selfl K-conjugate constructions
Beyond taxonomy, graph theory is important in counting constructions and the anal-

ysis of residual automorphisms [20,22], syminetries, consistent subansitze and exact S0(4)¥[d,4], SO(5)¥(d,2), S0(5)*(d,6), . (2.1.5)

solulions.
The names of these constructions include the size of the smallest subansatz in which

For example, the asymptoti It i i
! nple, the asymptotic results their graphs appear, and we remark that the constructions on SO(2n+ 1) are the first

N(SO(n)) = O(e"‘“"z)/s) (2.1.20) unitary irrational constructions on non-simply-laced g. The maximal-symmetric con-

struction SO(2n)¥, (18] also occurs as the most symmetric set of graphs in SO(2n #. .
N(So(")diag = graphs of order n) = O(e"z(l“z)n) (2.1.26) ( )M (18] Y 4 { ( )d ag

2. Id tl - h ¢l
N(affine-Sugawara nests in SO(n)diay) < O(e"‘"") (2.1.2¢) Conformal fie 1eory = graph theoty
Translating from conformal field theory, we find a number of equivalent categories in

arc scen at large n for t i
larg or the total number of constructions on SO(n), the number graph theory,

of unlabelled graphs, and the number of affine-Sugawara nests in SO(n)giag. The

. . . e affine-Sugawara construction = complete graph
asymptotic forms (2.1.2b,c) show a dramatic dominance of new constructions over old

constructions, so that e K-conjugate construction = complement of a graph
s §

e cosel construction = complete N-partite graph
the generic graph in SO(n > 1)4,0p is a new construction. (2.1.3)

and a number of categories which are apparently new in graph theory,
It also follows from (2.1.2a,b) that the full space of solutions on SO(n) is a structure

which is much larger than graph theory. ¢ the affiue-Sugawara nested graphs

. : #
Graph theory was particularly helpful in finding the new self-K-conjugate construc- o the graphs (:"“ of the new constructions SO(")dian
tions, which are the sell-complementary graphs {24] of graph theory. These construc- . e the afline-Virasoro nested graphs

9 10



o the irreducible and new irreducible graphs

e the broken N=2 affine-Sugawara nested graphs.

In general, the names of these graphs are derived from their corresponding conformal
constructions. The irreducible graplis are particularly important because every graph
can be uniquely constructed from the irreducible graphs by affine-Virasoro nesting
(18). '

We have also constructed a graph function ¥(G), the novelty number of G, which

appears to act as an order parameter for the graphs G* of new constructions.

The material in this chapter has been published in Ref.[23] and my thesis advisor Prof.
M.B. Halpern is the co-author of this paper. This work was a close collaboration with
Professor Halpern, since there were a number of earlier papers in which we had learned
to work together. | believe that 1 contributed approximately half the ideas in this paper,
and more than half the computational results. In particular, I was solely responsible of the

novelty number of Section 2.8.

2.2 General Virasoro Construction on Affine g

2.2.1 The Virasoro master equation

The general afline-Virasoro construction is [15,17]

TL) = L% 300y 5y [L), LU)) = (m - n) LU 4 l%m(m2 ~ Dbmino  (221)

with symmetric normal ordering Ty = $JuJs § = Tha [15] on the currents J, of affine g
[2'3]
(m) jln)y _ . cj(min)
[43™, ™M) = if 048 + mGapbmino (2.2.2)
where f,,© and G,y are respectively the structure constants and general Killing metric of g.

Analysis of the system (2.2.1-2) results in the Virasoro mmaster equation and central charge

1

[15,17)
Lab = 2LocGa‘Ldb _ Ldl’"!x‘fﬂb _ Ldfmlfﬂ(nlab)e
(2.2.3)
€ =2G,L*

for the inverse inertia tensor L% = L of the Virasoro operator (2.2.1). The construction
is completely general since ¢ is not necessarily compact or semi-simple. In particular, to

obtain level z; = 2k;/¥7 of g; in g = ®ygr with dual Coxeter numnber k= Q1/v}, take

Gy = @1kmly, f.20a° = — ©1Qunky (2:24)

where 5!, is a Killing metric of g;. The master equation has been identified in Ref.[16] as an
Einstein-like system on the group manifold: The central charge of the ge‘neral construction
is ¢ =dim g — 4R, where R is the curvature scalar.

We remark on some general properties of the master equation which will be useful in
the analysis below:
1. The affine-Sugawara construction (3,5,9) L, is

ngt zydimgy

L = —l—‘, = =
s SOt T T ahy

(2.2.5)

for arbitrary level of any g, and similarly for L), when h C g.

2. K-conjugation covariance [3,5,10,15]. When L is a solution of the master equation on g,

then so is the K-conjugate partner LoflL,
L=t - E=c¢-c (2.2.6)

while the corresponding constructions 7'(L) and T(L) form a commuting pair of Virasoro

operalors.

3. Affine-Virasoro nests [18]. Repeated embedding by K-conjugation produces the affine-

12



/

Virasoro nests. For example, the nests on ¢ D A’ D h are
Ly or L,f : (h or h#¥)
Ly —(Lyor L) o W/(hor h¥) (22.7)
Ly~ Ly +(Lyor L¥) : g/W[(h or h¥)

where Ly is the affinc-Sugawara construction on h and L,f is any new construction h¥ on
h. According to eq.(2.2.6), the central charges of these nests are (cj or c,f), cn — (cp or c,f)
and ¢; — cp + (ch Or ct) respectively. The special case of affine-Sugawara nests is realized
by restriction to affine-Sugawara constructions at the bottom of the nests. Irreducible
constructions {18] are reviewed in Section 2.2.2.
4. Counting. The master equation (2.2.3) is a system of dim g(dim g+1)/2 coupled quadraltic

equations on an equal number of unknowns L® = L%, so that a very large number {18]
N(g)=2"@  n(g) = dimg(dimg — 1)/2 (2.2.8)

of solutions is expected generically on arbitrary level of affine g, after gauge fixing [22] the
inner automorphisims of g. As in general relalivity, new solutions of the master equation have
generally been obtained with hierarchies of consistent ansatze and subansitze {18,20,22),

beginning with the basic ansatz on simply-laced g [18}.

5. Radial and angular variables. Unitarity on positive integer level of compact affine g
requires [10,18}
L° = real (2.2.9)

in any Cartesian basis, so all unitary solutions are naturally included in the eigenbasis [22]
1ot =y, (2.2.10)
3

with A, = real the radial variables and Q € $O(dim g) the angular variables. ‘This eigenbasis

is convenient for level z of simple compact g with
Gap = kboy, T =2k[y? (2.2.11)

13

. x
since the master equation takes the form
M1 - 260,) = 3 A2, — Aa)fA, (2.2.12a)
od
0= A0+ X = A futafotrr a<b (22120)
od
Jobe = fap QPO (2.212¢)
c=2kY A (2.2.12d)
P

with all 2 dependence in the SO(dim g)-twisted structure constants Jasc of g.
6. High-level expansion. A high-level (semi-classical) expansion of the system (2.2.12) was
developed in Ref.[22], which is capable in principle of seeing all high-k smooth (O(k~"))

solutions of the master equation on any manifold. The results at leading order are [22)

L~ 1Lk = %}: 5D, cxeo= . (2.2.13a)
Ag"’:%ﬂ, 8,=00r1,a=1,...,dimg (2.2.13b)
0=Y0.00,+8-6)/D7D, ac<p (22130

od
it = Lawe SR (2:2.13d)

so that, in particular, all high-k smooth constructions approach integer central charges cg
at high level. Values of the high-k twist (o) are determined by the quantization condition
(2.2.13c) (or higher-order analogues) for each choice {8,} of the radial variables. The high-
level expansion was applied to see all the high-k smooth solutions on SU(3) in the basic
ansatz, and the expansion also provided structural clues which were sufficient to obtain the
exact form of all the high-k smooth unitary irrational constructions SU(3)§AS’C in the

ansatz [22,21].
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The high-level expansion was simple for SU(3)gasic because the angular variable in

QAB‘¢ 0 ¢ —sing
oo = ( ) ) , B¢y = (cos o ) (2.2.14)
[}] 1 sing cos¢

this case [22]

is a single angle of rotation ¢ on the Cartan subalgebra, so that the quantization condition
(2.2.13¢) is a one dimensional problem. More generally, the quantization condition (2.2.13c)
on the angular variables will be progressively more difficult to solve on larger groups.

One hope for simplification of the master equation and its high-level expansion is the

existence of small consistent ansitze, such as the metric ansatz

L* = S (Ao + M) (2.2.15)

) -

where 1, is the Killing metric on compact g. The consistency of a metric ansatz is generally
basis dependent, since the form (2.2.15) is not covariant. We restrict our discussion here to

the case of Cartesian coordinates, where the metric ansatz becomes a diagonal ansatz

L = Aibas (2.2.16a)

M- 2000 = 35 Al(2A = M) [ (2.2.168)
J14>" =0, Ved (2.2.16¢)
c=2kY A (2:2.16d)

whose consistency condition (2.2.16c) guarantees that the off-diagonal master equation
(2.2.12b) is salisfied identically for 22 = §°0. The consistency condition means that any
two generators of g commute to no more than a single generator, which is not true for SU(3)
in, say, the Gell-Mann basis. As we note in the following section, however, the consistency
condition is satisfied in the physicist’s standard Cartesian basis for SO(n). Metric ansitze

on other manifolds will be discussed in Chapter 3.

2.2.2 The diagonal ansatz on SO(n)

We label the Carlesian generators J;; of SO(n > 3) by the vector indices 1 <i < j < n,s0
that a = (,j) = 1,...dimg = n(n — 1)/2. The Cartesian structure constants and Killing

metric are

vi
Jal® = ‘11‘2"—(5,-,.6!'6,“ — &8l 8 — sl s] 4 sust sl (2.2.17a)

2, n=3

2.2.17b
1, n24 ( )

Nija = 8ibj,  TE {
where ¢ is the highest root of SO(n) and AlrB*l = A"B® — A*B’. The structure constants

in this basis satisfy the consistency condition (2.2.16¢) in the form
Sisad *Siud %7 =0,V (5,5) and (k,0) (2.2.18)

because (r, s) is uniquely determined for each fixed choice (i, 5) and (k,{) when £,/ is
nonvanishing.

It follows that the diagonal ansatz on SO(n)

LS p s 22.19)

it Lig
S$O(N)diag : L"'“E;ﬁ&k@h T(L)= v 2
i<y

is a consistent ansatz. The radial variables are \;j = L;;/¢?, and the simplest form of the

ansatz is obtained with the symmetrization convention

Li=Li, i#3: Li=0. (2.2.20)
The master equation for $O(n)diag
n n
Lij(1 - zLy) - rLij Z(L-‘H'le) +7 z Lulij =0, i<j
s s (2.2.21)
c=z Z Li;
i<j

follows with eqs.(2.2.17) and (2.2.19-20) from the radial equation (2.2.16).
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The following properties of SO(n)y;,, will be useflul below:

1. Counting. The master equation (2.2.21) in the diagonal ansatz shows dim SO(n) = (3)

quadratic equations on an equal number of unknowns, so that
N(SO(n)diag) = 203} (2.2.22)

solutions are expected generically for any level of SO(n)y;ag.

2. Unitarity. Unitary solutions on positive integer level of SO(n)aisg are recognized when

Li; = real . (2.2.23)
since the Cartesian currents satisfy J.-(;")' = J_.;""_

3. K-conjugation covariance. According to ¢q.(2.2.6), the K-conjugate construction i.-,-

i.,',' = Lij(80(n)) - Lij, é= E:(—:(:nlt)/% -c
) (2.2.29)
L;;(SO(n)) = ;_-0-—1'(!1——2—)

is obtained whien L;; is a construction in SO(n)giay-

4. Subgroups, cosets and affine-Sugawara nests. The diagonal ansatz on $O(n) contains

only those subgroups

h(50(n)diag) = SO(1my) x SO(m3) x ... x SO(mp)

N (2.2.25)
Zm.-:n, 2<N<n~-1, m2>1

i=1
whose generators are a subset of the generators J;; of SO(n), and not linear combinations
of these generators. Any SO(1) factor in (2.2.25) is the trivial construction L(50(1)) = 0.
Moreover, each factor SO(m;) occurs in its own diagonal subansatz, S0(m;) diag, s0 further

.

subgroup nesting follows the saime pattern * within each SO(m,). Note that any factor

*For example, SO(20)/(S0(n) x SO(n))/SO(n)v , with SO(n)v the diagonal subgroup of SO(n) x SO(n),
is excluded because this nest requi linear combinations of the gencrators J,,.

SO(3) is embedded at level 7z = 2z in SO(n 2 4);, while SO(m; > 4) is always a regular
embedding.

We define the fund, tal affine-Sugawara nests N, in SO(n)diay as those obtained

by subgroup nesting with SO(n) at the top. Moreover, we will say that a fundamental nest

Na(d) has depth d when it contains d layers of subgroup nesting. The first three depths are

d=1: 50(n)
_ S0(n)
4221 3(50(n)aing)
_ S0(n)
4=3 mf-,%;"—;h X §0(m3) X ... x SO(mp) (2:226)
SO(n)

SO(m SO(m
F(’7L§L7$o mbag) X F(ﬁ"_f)_)so o X ...%x S0(mn)

SO(n)
SO0(m SO{m. SO(m
Hsoi"u“...; x hisolmniaa..s X...X msoi"miaa..i

and so on for deeper nests. The bottom of each nest is the collection of constructions at the

bottom of all the nesting columns. The fundamental affine-Sugawara nests A, (d) and their
K-conjugate nests N, (d) on SO(n) ! form the set of all affine-Sugawara nests in SO()diag,
which are all known rational constructions in the ansatz.

§. Affine-Virasoro nests [18]. The more general fundamental affine-Virasoro nests on g are
those constructed with g at the top, allowing general constructions on smaller manifolds at
the bottom of each nest, including new constructions h* h C g. Together, the fundamental
afline-Virasoro nests and their K-conjugate nests form the set of all affine-Virasoro nests,

which contains all affline-Virasoro constructions on g. Examples of fundamental affine-

FFlie K-conjugate nests of the fund tal affine-Sug a nesta in €q.(2.2.26) are obtained by removing
SO(n) from the wp of cach construction. More generally, the K-conjugate neats A, (d) on SO(n) are
products of fund tal afline-Sug; a nests on smaller manifolds.




Virasoro nests in $0(n)giag include

SO(n) S50(n) SO(n)
SO(m < n)*'  SO(m)¥ x SO(n ~ m)’ %Qé""?%‘%

and the fundamental affine-Sugawara nests in eq.(2.2.26).

(2.2.27)

6. Irreducible constructions [18]. The reducible constructions on g are the fundamental
affine-Virasoro nests of depth d > 2 and their K-conjugates on g, all of which involve sub-
constructions on smaller manifolds. The irreducible constructions on g are therefore the
aIiin&Sugawa:a construction on g and any new irreducible constructions g*,g/g* which
contain no subconstructions on smaller manifolds. Note that the new irreducible construc-
tions are such that both g* and g/g* are non-trivial irreducible constructions, whereas, the
single “old™ irréducible affine-Sugawara construction is K-conjugate to the trivial construc-
tion L = 0 on g. The maximal-symmetric constructions [18)
So(2n)¥,, SO(2n)/50(2n)%, (2.2.28)

are examples of known irreducible constructions which are also found in SO(2n)diaq.

Irreducible constructions are important because affine-Virasoro space may be organized
as the set of fundamental afline- Virasoro nests with irreducible constructions at the bottom
of each nest, plus the K-conjugates of these constructions. Moreover, since all irreducible
constructions nest identically into larger groups, the irreducible constructions provide a
fundamental measure of old versus new constructions, which, loosely speaking, mods out
by the affine-Virasoro nesting.
7. $O(n) automorphisms and vector-index relabelling. After gauge-fixing the master equa-
tion (or its consistent ansdtze), there generally remains a discrete set of residual level-
independent automorphisms {20,22) under which the master equation transforins covari-
antly. The residual automorphisins divide the solutions L into physically equivalent sets
of solutions called automorphism cycles whose members have the same central charge and

conformal weights. We refer below Lo Lthe automorphism class of any solution L as auto L.

19

In the case of SO(n)4iag, any relabelling of the vector indices {i} of a solution L;; is also
a solution, and it is easily checked that the relabellings are inner automorphic in SO(n). A
solution L is said to have a symmetry when one or more inner automorphisms act trivially

on L. It follows that

auto L = {non-trivial relabellings of vector indices in {L;;}} (2.2.29)

and dim(auto L) < n!, the equality being attained when the solution has no symmetry. A
representative of each automorphism cycle is obtained by choosing a particular labelling in

each auto L.

8. Conformal weights. The L%-broken conformal weights of the integrable representation
T, are the eigenvalues of A = LT, T} (13,18]. The result
T .
A=Y Ly, 1<€i<n A (2:2.30)
2 k#i

is obtained for the n conformal weights A; of the vector representation (T;j) 1y = i(6;16;5 —

5;18.0) /T2 in SO(n)diag.
2.2.3 High-level expansion and unitarity
We discuss the high-level expansion [22}
l 00 ( _ o0 _
Li=_3 L%, c=) ¢ (2.2.31)
p=0 p=0
of the master equation (2.2.21) in the diagonal ansatz. The zeroth order solution is
D=0, 6;=00r1, 1<ifj<

gy TV 3 * - Jsn (2'232)

and the moments of order p > 1 are unambiguously computed from the recursion relation

p-1
LY = (1-26;) {}_j LYl

a=1
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n P-1
+13 [Z(L!}’(Lff:"'“" +L5) - L!,"L};’""’)]} (2.2.33q)

I#iy [e=0
=3 LY. (2.2.335)

i<y
The results
4 LW b
Li=2 44407, e=Y0;+-3 L +0=")

' ' (2.2.34)

n
LY = —r 37 (85000 + 6;0) + (1 - 26,)0,8,)
1#ig

are obtained through order p = 1.

Inportant features of the high-level expansion in this case are:

1. Each high-k smooth solution in $O(n)4i., may be unambiguously labelled by the

values {8;;} of its zeroth order radial variables,
Li;({6:5}) — {8i;} . (2.2.35)

This distinguishes 2(3) high-k smooth constructions in SO(n)gia,, in agreement with
the generic counting in (2.2.22). SO(n)4iay may also contain sporadic solutions at

particular levels, which are inaccessible to high-level analysis (see Appendix 2.B).

2. The moments Lg) are real to all orders, so that, according to eq.(2.2.23) each high-
k smooth construction in SO(n)4i,, is “unitary to all orders”. More precisely, the
reality .of Lg—’) guarantees unitarity within the radius of convergence of the high-level
expansion. Since there is no reason to suspect a zero radius of convergence [18,20-22},
we conjecture that all the high-k smooth solutions in SO(n)gi,, are unitary down to
some finite critical level. The conjecture is true for the exact new constructions in

Section 2.7, whose critical levels, in accord with Refs.[18,21,22), are quite Jow.
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2.3 Graph Theory and SO(n)giag

2.3.1 Graph rules

According to eq.(2.2.35), it is natural to represent each high-k smooth construction L({6;;})

in SO(n)4iag by a labelled graph ¥ G,
each high-k smooth solution in §O(n)diay ++ each labelled graph G, of order n
L(Gn) ~ Gn (23.1)

whose set of points V(G) = {i} and (undirected) lines E(G) = {(ij)} is obtained by the

graph rules:
S0(n) vector indices § «— points § in graph G
(23.2)
8;; = 1 « line between points i and j in G.
Ani diate consequence is the high-level form
l L] L]
TGN ~ -5 D IR{ 0/ (23.3)
(i/)EE(G)

of the Virasoro operator of each high-k smooth construction L{G) in SO(n)disy-

In our discussion of graph theory below, the qualifier “high-k smooth” is implicitly

assumed when we refer to constructions in SO(n)diay.
2.3.2 Affine-Virasoro constructions as graph functions

Each affine-Virasoro construction L®® in $O(n)dia, is computable in principle, through the
master equation, as a graph function L%(G) on its graph G. As an example, we have

computed the first two moments of the central charge ¢(G)

«(G) = dim E(G) = 3 Y di(G) (2.3.4a)

A labelled graph of order n is a collection of n labelled points (vertices) and a set of undirected lines
{edges) which connect distinct points such that no more than one line connects any two points. The number
2G3) of (high-k emooth) solutions in SO(n)diag is equal to the number of 1abelled graphs of order n (30].
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alG)=r (_g T dGHA(G) - 1) + s:;.) <0 (2.3.4b)

for any graph G, using eqs.(2.2.31) and (2.2.34). Here d;(G) is the degree § of point i in G,
and ¢3 is the number of triangles in G. The inequality in (2.3.4b) follows from the general
result that the asymptotic value cg of the central charge is approached from below [22].

Similarly, the high-level L**(G)-broken conformal weights of the vector representation
© .
A(G) = g;(_c__) +0"%), a%G) = ‘i‘z—G), i=h...n  (235)

are identified with (2.2.30) as proportional to the degrees of G.
The leading terms of the inverse inertia tensor are

7! 4 2721 (~(di(G) + d;(G) - 2) + I(i, j)) + O(z™>), G has a line (ij)
Li(G) =

0 -z %73, 5) + O(z73), G has no line (i7)
(2.3.6)

where I(i, 7) is the number of points { # i, j in G which are connected to both of the points

i and j. More generally, the exact result
Lij(G) =0 when G has no path of any length from i to j (23.7)

is obtained to all orders from the recursion relation (2.2.33a).

The result (2.3.7) implies a physical characterization of the disconnected graphs: A
graph is connected if each distinct pair of points is connected by some path of lines, and
disconnected otherwise. Exanples are given in Fig. 1. Each disconnected graph is the
union G, UG2U... UGy (see Fig. 1) of some set of connected graphs {G,;}. It follows
f;OIn the result (2.3.7) that the disconnected graphs are reducible constructions (see Section

2.2.2) with commuting Virasoro operators T(L(G,)).

$The degree d.(G) = E.‘_ 8,4 of point ¢ is the number of lines attached to the point (30).
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2.8.3 Automorphisms and isomorphisms

The automorphism cycles of SO(n)diq, are easily understood in graph theory. Two graphs
are isomorphic when they differ by a relabelling of their points. The particular relabellings
of a graph G which preserve the same set of lines {6;; = 1} form a group autoG of
(graph)automorphisms (or trivial isomorphisms) of the graph. Physically, auto G is the

symmetry group of the graph G. It follows from our discussion in Section 2.2.2 that

SO(n) automorphisms = graph isomorphisms (2.3.8q)
auto L(G) = {non-trivial isomorphisms of G} (2.3.8%)
1 representative of auto L(G) «~ 1 unlabelled graph G (2.3.8¢)

and, more physically, that
each physically distinct affine-Virasoro construction in SO(n)diag

+~+ each unlabelled graph of order n. (2.3.9)

This one-to-one correspondence describes an immense structure in SO(n)4iag, which is itself

much smaller than the space of all solutions on SO(n).

It also follows from (2.3.8b) that the dimension of the SO(n) automorphism cycle of a
construction L(G,) in SO(n)diag is equal to the number of non-trivial isomorphisms of G,

so that
n!

5(G,)
where S(G) =dim(auto G) is the symmelry factor ¥ of the graph. The related, but somewhat

dim(auto L(G,)) = (2.3.10)

more technical conclusion

symmetry group of L(G) = autoG (2.3.11)

¥The basic composition law for sy try lactors is S(Gy U G3) = (S(G\)S(Ga) where { = 2 when
Gy = G3 and ¢ = 1 otherwise.
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will be established in Section 2.6.
We employ only unlabelled graphs below, unless stated otherwise, as representatives of

the physically distinct conformal field theories.

2.3.4 Afline-Sugawara nested graphs

In this section, we ‘idenlify the graphs of the affine-Sugawara nests in SO(n)aiag-

1. Affine-Sugawara graphs. These are the graphs of order n > 1 with all possible lines
K, = complete graph on n points

(2.3.12)

= affine-Sugawara construction on SO(n)
shown for 1 < n < 6 in Fig. 2. The affine-Sugawara graphs are the most symmetric
connected graphs, with auto K,, = §,,, dimn(auto K,,) = n! and dim(auto L(K,))=1. The

composition law for affine-Sugawara graphs
G(SO(n)) = K., G(S50(m)x SO(n)) = K, UK, (2.3.13)
will be useful below.

2. K-conjugate graphs. The high-level form of K-conjugation in $O(n)4iqg

0;— b, =1-6;, co— o= (;) ~¢o (23.14)

is obtained from (2.2.24). For each graph G, of order n, the map (2.3.14) defines a K-

conjugate graph * G, on SO(n)
Gn: V(G =V(G.), E(G.) = E(K.) - E(G,) (2.3.15)
which represents the K-conjugate theory

L(G,) = L(G.) = L(K,) - L(Ga) (2.3.16)

*The K-conjugate graph G of a graph G ia called G =G, the complement of G, in the literature of graph
theory.

25

of the theory L(G,). The degrees of Gy, satisfy di(Ga) = n — 1 ~ di(G,)-

As illustrated in Fig. 3, the K-conjugate graph G, is obtained on the points of Gp,
by removing the lines of G, from the affine-Sugawara graph K,. It follows that K, is
the totally disconnected graph of order n, such that L(K,) = L(K,) = 0 is the trivial

construction on $O(n), and K, = K| is the trivial graph. It is also clear that

autoG = auto G

(2.3.17)
dim(auto L(G)) = dim(auto L((G))
since K-conjugation is a 1-1 map.
3. Subgroup and fundamental coset graphs. The subgroup graphs in $O(n)dia,
G(h(50(n)diag)) =K, UK, U ... UK,
(2.3.18)

N
Y mi=n, 2<N<n-1, m21

i=1
are obtained from h(SO(n)aiag) in (2.2.25) with the composition law (2.3.13). The subgroup
graphs are disconnected graphs of order n because of the range restrictions on {m;}.

The fundamental coset graphs of the fundamental coset constructions SO(n)/h(SO(n)diay)

are obtained by K-conjugation of the subgroup graphs in (2.3.18). A useful identity is
GUG =G+ 6, (2.3.19)

where the join G + G; of two graphs is defined by connecting every point in G, to every
point in G3. It follows that the fundaniental coset graphs of SO(n)aia, are the connected

graphs
G(50(n)[h(SO(n)diag)) = G(h{SO(N)diag)) = Kumy + Kz + - .4+ Kimyy-  (2.3.20)

In graph theory, the complete N-partite graphs are obtained in this way as the join of N > 2

Lotally disconnected graphs. It follows that the affine-Sugawara graphs K, are the complete
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N-partite graphs of order n = N, and that

fundamental coset graphs in $O(n)4iay
(2.3.21)
= complete N-partite graphs of order n > N .

Fig. 4 contains a representation of general complete bipastite(2-partite) and 3-partite
graphs. In these representations, each circle, called a lacuna of the graph, contains one
of the totally disconnected graphs K., in (2.3.20). The lincs of the graphs connect all
points in distinct Jacunae.

4. Affine-Sugawara nested graphs. The fundamental affine Sugawara nested graphs G(A,(d}))
of depth d are the graphs of the fundamental affine-Sugawara nests A (d). The affine-
Sugawara graphs in Fig. 2 and the fundamental coset graphs in Fig. 4 are the fundamental
affine-Sugawara nested graphs of depth 1 and 2 respectively.

Physically, the fundamental coset graphs in Fig. 4 are formed by removal () of
subgroup graphs from the complete affine-Sugawara graph. More generally, the fundamental
nested graphs at depth d are formed by removal of fundamental nested graphs of depth d -1
on smaller manifolds froin the affine-Sugawara graph:

G(nest of depth d) = G ( Sugawara )

nest of depth d — 1 (23.22)
= G(Sugawara) © G(nest of depth d — 1).

Alternately, we may think of the nested graphs at depth d as formed by insertion (60) of

fundamental nested graphs of depth d — 2 into the fundamental coset graphs

Su)gawara
___subgroups

Glnest of depth d) = G | S epth d =2

(2.3.23)
= (G(cosets) 6 6 G(nest of depth d — 2)

since Lhe nest of depth d — 2 is itself removed from the subgroups.
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A precise definition of this recursive structure is
fundamental affine-Sugawara nested graphs of depth d > 3

= fundamental coset graphs with insertion of depth d — 2
graphs built by insertion of at least one fundamental affine- (2.3.29)
Sugawara nested graph of depth d — 2, and any number
of affine-Sugawara nested graphs of depth < d - 2,

in the lacunae of complete N-partite graphs.

Insertion of a nested graph in a lacuna of the same order is not allowed. Fig. 5a shows
two fundamental affine-Sugawara nested graphs of depth 3, obtained from the coset graphs
of Fig. 4 by insertion of depth one affine-Sugawara graphs in their lacunae. Fig. 5b is
a fundamental nested graph of depth 4, obtained from a coset graph by inserting another
depth 2 coset graph in one of its lacunae !. The graphical form of the recursive definition
(2.3.24) is given in Fig. 5¢.

The last form of the definition (2.3.24) and the schematic representation of the funda-
mental affine-Sugawara nested graphs in Figs. 4 and 5 are designed to exhibit the N-partite
structure of the nests, since we will see below that the N=2 nests play a special role. The
complementary representation in Fig. 6 shows the nested graphs as an alternating sub-
traction {open areas) or addition (shaded areas) of the lines of affine-Sugawara graphs.
The bottom of each nest is the set of innermost open and shaded areas. For example, the
bottom of the depth-two nest consists of two open areas, which records that two smaller
affine-Sugawara graphs have been removed. The open spaces of this representation are not

the lacunae of complete N-partite graphs, however, since the spaces do not contain all the

Algebraically, the first four nest depths show the alternating pattern: G(N,.(1)) = Ka, G(ML(2)) =

- {+K), GN(3)) = (+ UK} and G(N.(4)) = [+ U+K), where the order of the K’s and K’s may vary

from 1 to 5 — 1. More generally, the d — d 4 ) operations K — +K (d odd) and K — UK (d even) generate
the algebraic formn of the fundamental nests at arbitrary depth.
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points of the graphs.

The fundamental afline-Sugawara nested graphs G(N,,(d)) are always connected graphs
of order n, while the K-conjugate nested graphs G(MN,(d)) are always disconnected ¥ graphs
of order n. Together, they form the set of affine-Sugawara nested graphs, which contains

all known rational constructions in $O(n)giqg-
2.3.5 Affine-Virasoro nested graphs

‘The more general fundamental affine-Virasoro nested graphs are the graphs of the fur;da-
mental affine-Virasoro nests, defined in Section 2.2.2. These graphs retain the subgroup
nesting structure in Fig. 6 of the fundamental affine-Sugawara nested graphs, now allowing
general graphs at the bottom of the nest. Together, the fundamental affine-Virasoro nested
graphs and their K-conjugate graphs form the set of all affine- Virasoro nested graphs, which

includes all graphs.
2.3.6 Irreducible g}aphs

A graph G is called (ir)reducible if L(G) is an (ir)reducible construction in SO(n)diay (see
Section 2.2.2). (Ir)reducible graphs are characterized as follows.

Disconnected graphs are always the unions of graphs on smaller manifolds, so it follows
from our discussion in Section 2.2.2 that disconnected graphs are always reducible graphs,
and hence that irreducible graphs are always connected. We also know from Section 2.2.2
that a) the affine-Sugawara graph is the only irreducible affine-Sugawara nested graph on
each manifold and b) the new irreducible graphs G are those for which both G and G are

irreducible, and hence connected.

IThe K-conjugate graphs G(N.(d)) = G(Nw(d)) of the fund tal affine-Sugawara nested graphs
G(Na(d)) are unions of fundamental affine-Sugawara nested graphs of lower order.
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This establishes the characterization

G is a new irreducible graph iff G and G
(2.3.25)

are both non-trivial connected graphs
since K, is the only irreducible graph on SO(1). The characterization (2.3.25) is a useful
tool in the identification of new constructions below. Fig. 7 displays a more complete map
of irreducible and reducible graphs in graph space.
Irreducible graphs are important because graph space may be organized as the set of
fundamental aﬁin&Viramro nested graphs with irreducible graphs at the bottom of each
nest, plus the K-conjugates of these graphs (see Section 2.2.2). The unique decomposition

of a graph into irreducible components is discussed in Appendix 2.C.
2.3.7 Counting old and new constructions

We consider the following basic numbers

gn = number of all graphs of order n

Cn = number of connected graphs of order n (2.3.26)
C(AS). = { number of connected (fundamental)
"~ 1 affine-Sugawara nested graphs of order n.

The first two numbers are known in graph theory [29], and the recursion relation

n—-2 :
C S
C(AS), =2C(AS)ur+ Y. 1 (”(') +C(AS) ’) . c(AS) =1
) =2 Pl)
pli)no
n-2
{p(i) 2 0} are the partitions of n = Y ip(i) (2.3.27)
i=2
is derived in Appendix 2.A. Other numbers of interest §
D,, = number of disconnected graphs of order n
The ted (fund tal) afline-Sug; a nested graphs G(Na(d)) are in )-1 correspondence with

the disconnected affine-Sugawara nested graphs G(Na(d)) by K-conjugation (sec Section 2.3.4).
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=gn—Ca
g(AS), = number of affine-Sugawara nested graphs of order n
= 2C(AS)a (2.3.28)
D(AS), = number of disconnected affine-Sugawara nested graphs of order n
= C(AS)n
C¥# = number of new connected constructions of order n

= C. - C(AS)a

are expressed in terms of the basic numbers (2.3.26). The values of g,,, Cn, C(AS), and

C¥# are given for 1 < n < 10in Table 1.

The results of Table 1 show a dramatic dominance of connected new constructions
over connected known constructions as n increases. Similar behavior is observed for g¥ =

9n — §(AS),, and g(AS), when disconnected graphs are included. The asymptotic results ¥
Ca ~ gn = O™ /Y, SO(n> 1) (2.3.29a)
C(AS)n = 9(AS)a/25 O M),  SO(n» 1) (2.3.290)

are a quantitative statement of the dominance of new over old constructions in $O(n)giay.
The asymptotic bound (2.3.29b) on the number of fundamental affine-Sugawara nests in

S$0(n)diag i8 oblained in Appendix 2.A. The corresponding characterization
the generic graph in $O(n > 1)4iay is a new connected construction (2.3.30)

follows immediately from (2.3.29).

Y1t is known in graph theory that the generic large-order graph is connected, and the asymptotic estimate
Cn ~ gn in (2.3.29a) is given in Rel [29]; The exponential order of g, is the exponential order of the numbee
‘203) of solutions in SO{n)ae,, since auto L(G) is combinatoric and hence factorial.
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A fundamental measure of new and old constructions is provided by the irreducible
graphs, whose definition, loosely speaking, mods out by the affine-Virasoro nesting (see
Sections 2.2.2 and 2.3.6). These graphs are counted as follows. At order n, define ir,,
ir(AS), and ir¥ as the total number of irreducible graphs and the number of old and new

irreducible graphs respectively. Then we know that
ir(AS)a =1,  dr,=ir¥ 41 (2.3.31)

since the affine-Sugawara graph K, is the only irreducible affine-Sugawara nested graph on
SO(n). 1t follows from Fig. 7 that

ira = Cp — C(red)s (2.3.32a)

Clredjn=Dn~1=g,-C,~ 1 (2.3.32b)

where C(red), is the number of connected reducible graphs in $O(n)4ag. The last form in
(2.3.32b) follows with D,, = g, ~ Cn. The result for new irreducible graphs

ir# =2C, - g, (2.3.33)

is then obtained from eqs.(2.3.31) and (2.3.32).

Numerical values of ir,, ir(AS), and ir¥ are given for 1 < n < 10 in Table 2, which
shows that the dominance of new over old constructions in SO(n) i, is even more dramatic

after moding out the nests. The asymptotic behavior of the irreducible graphs
ir# ~ ity ~ Co ~ g = O™ W0 D/2) (2.3.39)
is obtained from eqs.(2.3.29a) and (2.3.33), and, finally, the characterization
the generic graph in SO(n 3 1)4iag is a new irreducible construction (2.3.35)

follows from this behavior.

ic., > D, is a conscquence of the result (2.3.33), since the ber of new irreducible graphs is non-
negative.
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2.4 Application to SO(n < 8)4jag

Table three lists the unlabelled graphs of order 6, which are the physically distinct construc-
tions in SO(6)diag- The table can be used for SO(n < 6) as well, since the constructions
with m trivial subgraphs appear first, without the trivial subgraphs, as constructions in

. §0(6 — m)giag. The following data are given:
1. The graphs G of the high-level sector numbers 0 < ¢g = dim E{G) < 7.

2. The automorphism group auto G of each graph, e.g. Z;3 x S3 for SO(6)/SO(5)/S0(2)

in sector 6.

3. The dimension of the SO(6) automorphism cycle dim(auto L(G)), computed from
€q.(2.3.10).

4. The conformal field-theoretic name of each construction. The affine-Sugawara nested

graphs are identified from their N-partite characterization in Section 2.3.4. Figs. 8a

and 8b show examples of the translation from the symmetrically-drawn graphs of -

the table to the N-partite forms. The remaining new constructions are assigned an
SO(n)* name which also indicates the size of the subansatz in which the construction

is found (see Section 2.6).

5. The L°®(G)-broken conformal weights 2zA,(G) =~ 2A!°) = di(G) of the vector repre-

sentation at high level.

6. The K-conjugate graph G of each G. These graphs fill the remaining high-level sec-

tors B < & = dimE(G) = 15 — ¢ < 15, with autoG =auto G, dim(auto L(())

=dim(auto L{G)) and 23 = d(G) = 5 - d,(G).

In agreement with Table 1, Table 3 shows g = 156 distinct constructions in SO(6)yiag,

of which g, = 1,2,4,11 and 34 constructions appear first in SO(n)4ia9, n=1,2,3,4 and 5.

!

a3

‘The remaining numbers of Table 1 may also be verified for n = 1,...,6 from Table 3, and,

in particular, there are 90 new constructions in SO(6)diag, of which 79 are connected.

The new irreducible constructions on SO(n) are easily recognized by their name,
S0(n)* or SO(n)/SO(n)*, so that eg. SO(4)*{d,4] x SO(2) in sector 4 is reducible
on SO(6) while SO(4)¥(d, 4] in sector 3 is irreducible on SO(4).

In agreement with Table 2, Table 3 identifies 9 new irreducible constructions in SO(4)4iag
and SO(5)diay *

c0=3: SO(4)*[d,4)

co=5: SO(B)*d2] ; co=5: SO0(5)*d,6]
(24.1)
ww=4: SO(5)*(d,6}; ; co=6: SO(5)/SO(5)*(d,6]x
0=4,5: SO(B¥d,Tha ; co=6,5: SO(5)/SO(5)*d, Th
The first five constructions of this list are obtained exactly in Section 2.7. Among the 68

new irreducible constructions in SO(6)diag, the maximal-symmetric constructions (18}

o =6: SO(6)¥ = S0(6)*(d,3]
(24.2)
c=9: 50(6)'/50(6){, = S0(6)/50(6)*{d, 3]
were identified from the high-level behavior of the known solutions. The exact forms of the
next most symmetric constructions

c0=6: SO6)*[d,4 ; co=9: SO(6)/SO(6)*|d,4] (2.4.3)

are also obtained in Section 2.7.

*The first three irreducible constructions in the list (2.4.1) are plea of sclf-K-conjugate constructions
(see Section 2.5.5).
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2.5 The Graphs G# of SO(n)}.¢

2.5.1 Identity graphs

Intuitively, new constructions are less symmetric than old constructions, which are excep-
tional points with special inertia tensors, cominuting currents and so on. Graph theory

provides a more quantitative staleinent of this expectation.
The affine-Sugawara graphs K, and their K-conjugate graphs K, are the most sym-
metric graphs, with symmetry factors S(K,) = S(K,) = n!. In fact, the affine-Sugawara

nested graphs always have at least a Z; symmetry, so that their symmetry factors satisfy
S(GNu(d))) = S(GNL(d)) 22 . (25.1)

This argument goes as follows: By repeated application of autoG=auteG and S(G, U
Giy...UGN) 2 ﬂ.’i, 5(G.), the symmetry factor of any affine-Sugawara nest is greater
than or equal to the product of symmetry factors of the subgroups at the bottom of the
nest, as illustrated in Fig. 10. It follows that, among the affine-Sugawara nests, the chain
nest SO(n)/SO(n ~ 1}/SO(n - 2)/ ...50(3)/50(2) with § = §(G(50(2))) = 2 has the
smallest possible symmetry factor.

In contrast, the identity graphs I are completely asymmetric with $(/)= dim(auto [)=1,
and they are ubiquitous since the generic large-order graph is an identity graph {29]. It

follows that ¢

the generic new construction in SO(n » l):-aa is an identity graph (2.5.2q)

the gencric large-order identity graph is a new construction - (2.5.2b)

since the generic large-order graph is also a new construction (see Section 2.3.7). It also
follows that constructions with a symmetry are exceptional cases, including those new

constructions with § > 2.
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We have already encountered the first 8 non-trivial identity graphs, collected in Fig.
8, which are identified in Table 3 as new constructions in SO(G)z-n - Moreover, the charac-
terization

all identity graphs are new constructions : (2.5.3)

follows because the affine-Sugawara nested graphs always have a symmetry.
2.6.2 Connected incomplete bipartite graphs
Connected incomplete bipartite graphs are complete bipartite graphs with one or more lines
removed such that the incomplete graph remains connected. Two examples of these graphs
are given in Fig. 11a. The K-conjugate graph G of a connected incomplete bipartite graph
G is formed by connecting two affine-Sugawara graphs with one or more lines. It follows

from the characterization (2.3.25) that
connected incomplete bipartite graphs are new irreducible constructions (2.5.4)

since G and G are both connected in this case.

Physically, the connected incomplete bipartite graphs are the broken N=2 coset graphs
obtained by removing lines from the graphs of the fundamental N=2 cosets SO(n)/(SO(p)x
50(n - p)). The example in Fig. 11b is identified in Table 3 as a new construction in
SO(6)diag-

An equivalent statement of the result (2.5.4),
connected incomplete graphs with x(G) = 2 are new irreducible constructions (2.5.5)

is obtained in terms of the chromatic number ! x(G) of a graph, since a graph is bipartite

A coloring of a graph G is an assigninent of a color to every point in G. The chromatic number x(G) is
the smallest number of colors such that no two points of the same color are connected by a line [30].
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iff x(G) = 2. As examples, the cycle and path graphs

Can = cycle of length 2r, n >3
(2.5.6)
P, =pathoflength n—-1, n>4

are new irreducible constructions, as illustrated with the colors r and w in Fig. 12. The
cycle Cg and the paths Py, Ps and Py are identified as new irreducible constructions in Table

3.

2.5.3 Broken N=2 affine-Sugawara nested graphs

In this section, we introduce the broken N=2 affine-Sugawara nested graphs, which gener-
alize the broken N=2 coset graphs and which may provide a process which generates all
new irreducible graphs from the graphs of the old constructions.

We define the broken N=2 affine-Sugawara nested graphs as the connected graphs,
shown in Figs. 11 and 13, which are obtained by removing lacunae-connecting lines from
the fundamental N=2 affine-Sugawara nwicd graphs. The K-conjugate graph G of any
broken N=2 nest G is also connected since at least one lacunae-connecting line has been

removed from G. It follows from the characterization (2.3.25) that }
broken N=2 afline-Sugawara nested graphs are new irreducible constructions. (2.5.7)

An example of this result is given in Fig. 13b, which is identified as a new construction in

Table 3.

We have also compiled a list of all broken N =2 affine-Sugawara nests of order n < 6.

!Broken affine-Sugawara nested graphs are not always new constructions when N > 3. For example,
breaking all the lines between two lacunae of a complete tripartite graph (cuset construction) gives a complete
bipartite graph (coset construction).
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Comparison of this list with the data of Table 3 supports the complementary conjecture,
conjecture 1: At order n, the set of broken N=2 aﬂ'ln&Sng,awa.ra. nested
graphs contains all new irreducible constructions in the lower (2.5.8)
half 1 < co < [% ('2')] of the high-level sectors of SO(n)iag-
An implication of this conjecture is that all new irreducible constructions in the upper half
of the high-level sectors can be obtained by K-conjugation of the broken nests.

2.5.4 An edge theorem for SO(n):hg

It has been observed empirically for the new constructions (1.13a,b) that [22]

rank g < ¢g < dimg — rank g
(2.5.9)
when g¥ is a new irreducible construction on compact g

where ¢ is the high-level central charge of g#. The inequalities (2.5.9) are true in SO(n)‘f_."
as well, since they follow with co=dim E from the (stronger) edge theorem

SO0(n)%,,:  n-1<dimE(GH#(irr) < %(n ~1)(n-2) (2.5.10)

where G¥#(irr) is any new irreducible graph of order n. The proof of the edge theorem
is as follows: We know from (2.3.25) that G¥(irr) and G#(irr) are both connected, and,
moreover, that at least n — 1 lines are necessary to connect n points. It follows that
co=dim E(G¥(irr)) and éo=dim E(G#(irr)) are both greater than or equal to n — 1. The
edge theorem (2.5.10) follows since ¢ + & = n(r — 1)/2 on SO(n).

2.5.5 Self-K-conjugate constructions

An unlabelled graph G is self-K-conjugate (or self-compl tary [29]) when G = G. At

the level of labelled graphs, G and G are isomorphic, and the corresponding constructions

L(G) and L(G) = L(G) are SO(n) automorphidally equivalent, so that ¢ = & = ¢;/2 for

38



self-K-conjugate constructions. It follows that a) self-K-conjugate constructions exist only
on SO(4n) and SO(4n + 1), since co = & =dim g/2 requires that dim g is even, and b) the
half-Sugawara central charges

c_z:n(4n—l)
T r4dn-2
_zn(4n+1)
T z44n-1

50(4n) :
(2.5.11)
S50(4n+1):

are determined for self-K-conjugate constructions before obtaining the exact solutions.

The first six self-K-conjugate constructions are given in Fig. 14, and the first three of
these were encountered as new irreducible constructions in 30(4)z“ and SO(5)£“. More

generally, the number s, of self-K-conjugate constructions in SO(n)z-"

n 45 8 9 12 13 16 17
(2.5.12)
s, 1 2 10 36 720 5600 703,760 11,220,000
and the asymptotic behavior of s,
n?—2n
%4n = ——— (14 O(n?/2""))
i (2.5.13)
Suny1 = (1 + O(n?/2'y)

n!
are known in graph theory [29].

Although all the self-K-conjugate constructions on a given manifold have the same
central charge, each construction is physically distinct {not S§0(n) automorphically equiv-
alent to any other), with distinct conformal weights, since each construction is a distinct
unlabelled graph. Distinct high-level conformal weights on each manifold is easily verified
for the graphs of Fig. 14, and is recorded explicitly in Table 3 for the two self-K-conjugate
graphs on SO(5). ‘

The exact form of the first three seclf-K-conjugate constructions is obtained in Section
2.7. The constructions are generically unitary with generically irrational conformal weights,

both of which are expected for generic self-K-conjugate constructions. In this circumstance,
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it is possible to imagine that all the sell-K-conjugate solutions in a given SO(n)4qy are
connected by a continuous c-fixed quadratic deformation which is a solution of the full
master equation on SO(n).

Except in special cases, we have been unable to construct the half-Sugawara central
charges (2.5.11) by affine-Sugawara nesting on any compact g. These central charges, and
the values ¢ =13/10, 20/11 and 31/11 reported on SU(3) [21,22], should be investigated

carefully since the question of new rational central charges is conceptually important.

2.5.8 Cartesian product graphs

Cartesian product graphs [30] may be defined analytically with our original variables {6;;,6;; =
0}, where 6,;=1 is a line from point i to point j. When {6;,;, = 1} and {6;,;, = 1} are the
lines of two graphs G, and G,,, then the Cartesian product graph Gu,n; = Gn, X-Gh, is

defined on the product points [iy, i3] or {ji, j2), with lines
Otiv ialin o) = BivsBinis + Binin i, - : (2.5.14)

This operation is a direct construction of the high-level inertia tensor L'(g) = 8;; of the
product graph in terms of the high-level inertia tensors of the component graphs. Pictorially,
G = Gy x G is constructed as shown in Fig. 15: Replace each point in (say) G; by copies
12 G1, - .. of the graph G}, and each line in G; by a set of lines which connect only copied
points ¢/,i”,... in the copies of G;. Since the order nin; of a product graph G,,., is
multiplicative, it is clear that these graphs are a relatively small subset of all graphs.

It is our intuition that

conjecture 2: Cartesian product graphs are new constructions
(2.5.15)

(except K3 x K3 and Ky x G)
since the product operation is foreign to the affine-Sugawara nesting operations. It suffices

to verify conjecture 2 for products G x G3 of two graphs, and in fact only for products of
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two connected graphs since the identity
(G, UG) x Gy = (Gl X G;;)U(Gz x (G3) (2.5.16)
implies that products of disconnected graphs are new when the products of their connected

components are new.

With the characterization (2.3.25) we have checked that conjecture 2 is true for the

product graphs through order 8. The conjecture is also true for the maximal-symmetric

construction {18])

G(50(2n)/SO(2n)¥,) = K2 x K, (2.5.17)

whose graphs, given in Fig. 16, were identified from the high-level behavior of the known

solutions. More gencrally, the theorem
(connected bipartite graph) x (connected bipartite graph)

= new irreducible construction (except K; x K3) (2.5.18)

is established pictorially as follows. When G, and G; are connected graphs with chromatic

number two, then x(G' x G2)=2 as well since the two-color scheme of G| can be consistently
reversed for nearest neighbor copies of G, (see Fig. 15). These x = 2 product graphs are
connected and, except for K3 x K3, they are incomplete, so (2.5.18) follows from the theorem
in (2.5.5). K3 x K3 is the complete bipartite graph SO(4)/(S0(2))®>. An example of this
theorem is the set of n-cubes Q, = Qn-y x K3, Q, = K, for n > 3, shown forn = 3 in Fig.

17.

2.6 Graph Symmetry and Consistent Subansitze

In this section, we discuss the hierarchy of consistent subansitze in SO(n)giap, which may be

determined in principle by studying the symmetry groups auto G, of the graphs of order n.
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The subansitze provide the names of the new constructions (see Table 3) and the strategy

for exact solutions in the following section.

As a first step, we study the symmetry of the exact solution L(G). Recall from Section

'2.3.3 that the lines {0;; = 1) of G satisfy

8i5 = O (iymis) (2.6.1)

when # €autoG is a relabelling in the symmetry group of G. The result (2.6.1) is a
high-level symmetry of the construction L(G), expressed as a relation among the high-level
components of its inertia tensor Lg-” = 6,;. In fact, the high-level symmetry (2.6.1) persists

to all orders in the high-level expansion, so that the same symmetry
Lij(G) = Luiya(;(G), V€ autoG (2.6.2)

is obtained for the exact solution L{G). To see this, one needs the iterative lemma

LPG) = L, (6)  when LG = LIT,©0).  (269)
which is not difficult to check from the recursion relation (2.2.33a). The statement previewed

in Section 2.3.9
symmetry group of L(G) = symmetry group of G = autoG (2.6.4)

follows immediately from the result (2.6.2).

The exact symmetry of L(G) in (2.6.2) determines the smallest consistent subansatz in
which the construction is found. As an exercise, we will determine the smallest sub‘ansﬁtze
of all the new irreducible constructions in 50(5)::“, whose graphs (up to K-conjugation)
are given in Fig. 18: The two graphs of Fig. 18a have auto G=2;, the non-trivial element
being a simultaneous 1 ~ 2 and 3 « 4 interchange. It follows from (2.6.2) that both graphs

occur first in the six-parameter consistent SO(5) subansatz
)

S0(5)[d,6): Lz, Lay, Lia=La, Liy=Las, Lis=Las, Lis=Lss. (2.6.5)
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The two graphs of Fig. 18b occur first in the seven-parameter consistent subansatz
So(s)ldv 7]: Lllv LZMv Lu. L:ss. L|3 = Lz:). Lu = Lu. Lu = Lzs (2.6.6)

because auto G=Z} with non-trivial element x=(12). Finally, the self-K-conjugate graph of

Fig. 18c occurs first in the two-parameter consistent subansatz
SO(5)d,2): Lia=Liz=Las=Las=Lss, Laa=Liq=Laa=Lis=Las (26.7)

with auto G=Ds in this case. The hierarchy of subansitze (2.6.5-7) is complete for SO(S):_-“
since each subansatz is K-conjugation covariant.

Note also that SO(5){d,2) C SO(5)[d, 6], so the solutions of SO(5){d, 2] will appear as a
factorization sector [18,20,22] of higher symmetry in the larger subansatz SO(5)(d, 6). More
generally, these factorizations are best studied in sum and difference variables, since, ac-
cording to (2.6.2), the appearance of any smaller subansatz is characterized by the vanishing
Iof a set of difference variables L;; — Ly(iya(j)-

We are now in a position to define our labelling scheme for new constructions, which

was employed explicitly in Table 3. The general subansatz in SO(n)4ioy is named
SO(n)[d, s) - (26.8)

where d denotes the diagonal ansatz and s is the size of the subansatz. For example, Table
3 records that all new irreducible constructions in 50(6):'-“ are contained in consistent

subansitze of size
50(6)%,,: +=3,4,56,7,7,8,9,9,11 and 15 (2.6.9)

where s=15 is §O(6)aiq, itsell. Distinct subansitze of the same size are distinguished by
primes. The new irreducible solutions are named in their smallest subansatz and numbered
according to

| SOMm)*(d,s);, i=1.2,... (2.6.10)
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when they fall in the lower half of the high-level sectors of the subansatz. This is a
complete labelling of solutions in SO(n):_.u', since the higher sectors are completed by
S§0(n)/SO(n)¥(d, s)i.

An obvious strategy for new exact solutions is to begin with the smaller subansitze,
which contain the graphs of higher symmetry. This is a program which we begin in the
following section, but which we cannot finish without further insight: The graphs of lower
symmetry occur in larger subansitze, and, in particular, the ubiquitous totally-asymmetric

identity graphs occur in no subansatz smaller than SO(n)ai,, itself.

2.7 Exact Solutions in SO(“):IN;

.2.7.1  SO(2n)}, = SO(2n)*[d, 3] and SO(2n)*[d, 4]

The graphs of the maximal-symmetric construction on SO(2n) {18], shown in Fig. 16,
are the most symmetric new irreducible graphs in SO(n)4iag. The maximal-symmetric
construction has autoG = Z3 x S, when n > 3 (and Z; x D4 at n=2) and appears first in
the three-parameter subansatz
Lij=Loginyj = La, 1<i<j<n
SO(2n)pm = SO(2n)(d, 3] Linyi = L, 1<i<n (2.7.1)
" Limi=L,  1Sifjsn
which is the maximal-symmetric subansatz [18] in Cartesian coordinates 5. The identifica-
tion

S$0(2n)¥, = SO(2n)*(d, 3] (2.7.2)
follows for the maximal-symmetric construction in the present taxonomy.

The next most symmetric new irreducible graphs in 50(2n)4iag, shown in Fig. 19, have

The Cartan-Weyl basis of Ref (18] is A = L./(2n —2) and Ly = (L. ¥ La)/2.
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autoG = §,,, n > 2. These constructions appear first in the four-parameter subansatz

L.‘,‘ = Lp, L,,“",w,' = L;‘, 1<i<j<n

50(2n)(d, 4] (2.7.3)
inti=Ley, 1€8<n; Linyj=L, 1<i#j<n

which contains the maximal-symmel-ric subansatz (2.7.1) when Ly = Lj. In sum and

difference variables L* = L. + L, Lt = Ly £ L}, the explicit form of SO(2n){d, 4} is
L(A-(z+n-2 L+ (n-2)L; - nL}) =0 (2.7.4a)
LI2-(z+2n-2)L}Y +2(n-2)L]) - (z - 2) (L) - 2(n~2)L7L} =0  (2.7.4b)
Ly -nL} +(n-2)L] ~(z+n-2)L})=0 (2.7.4¢)

LI2-(z+n=2)L} +2(n~2)L] —2nL}) + (n - 4)(L])?
(L3P -2n-2)L LY —(z +n-2)(L;)* =0 (2.7.4d)
.. . +

c= ?(nLc ~(n=-2)L; +(n-1)L}) (2.7.4¢)
which shows the maximal-symmetric subansatz as the factorization sector Lj =0 in (2.7.4c).

The subansatz (2.7.4) contains 12 known solutions and the following four new solutions

1
+_ 7t - —

LI=1L} = T7on _2(1 +n(n - 2)R) (2.7.5q)

_ z4+n—~6

L = o= —_—
c=nR, L; =nolt Tvn 2 (2.7.5b)

= (21 2)(z - DR

= 2(1'__*’2"__2)( n—1-n(n-2)(z - 1)R) (2.7.5¢)
R=(z>+2(n-2)x +n® - 8n +8)"1/2 (2.7.5d)

which are labelled by n = 11, 0 = £1. The values of 7 correspond to K-conjugation and the
values of o are SO(2n) automorphically equivalent. For either value of @, these solutions
are identified as '

S50(2n)*{d,a): n=+1 (co=n(n+1)/2)

(2.7.6)
50(2n)/S0(2n)*[d,4]: n=-1 (co=3n(n—-1)/2)
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by matching the high-level form of the central charge in (2.7.5¢) to the number of lines in
the graphs of Fig. 19. This family of solutions includes the self-K-conjugate construction 1
SO(4)#(d, 4] and the K-conjugate pair of constructions SO(6)#(d, 4] and SO(6)/SO(6)*[d, 4],
all of which appear in Table 3.

For z € N, these constructions are unitary down to very low level, as expected: A
complete list of nonunitary points is z = 1,2,3 for SO(4), z = 1,2 for SO(6) and z = 1
for SO(8) and SO(10). The constructions are generically irrational, with rational subcon-

structions only for n = 2 and levels 1 and 2 of any n 1.

A special point is the level 3 construction SO(6)¥[d, 4] which is identical to the maximal-

' symmetric construction (50(6)2' )as at this level. This phenomenon is an isolated equiva-

lence * or accidental crossing of solutions at particular finite levels, since the graphs of the
constructions are distinct. The value c(SO(ﬁ)g[d, 4)) = c((SO(G)g)M) o 2.9597 is also the

lowest unitary irrational central charge in this family of constructions.
2.7.2 The subansatz SO(2n + 1){d, 6}

The most symmetric new irreducible graphs in SO(2n + 1)aiag, # > 2 are the four graph
families shown in Fig. 20. All these constructions reside in the six-parameter subansatz
Lij=Lpn, Lajingj=L}, 1<i<j<n
S0(2n +1)[d,6] § Linyi=L.,, 1<i<n; Lingj=L, 1<i#¢j<n (27.7)

Ligngt = Lr, Lngignpn =Ly, 1<i<n

¥The sell-K-conjugate construction SO(4)*[d, 4], whose graph is the first in Fig. 19, has the expected
central charge 3z/(z + 2) of SU(2) and irrational conformal weights. Despite’ the coincidence of central
charges, this construction is not a point in the quadratic deformation (SU(2) x SU(2))* {18). SO(4)*(d, 4]
should be compared to points in known linear deformations of SU(2), [12).

¥The centeal charges at levels 1 and 2 ase half integer (> 3/2) and integer, with irrational conformal
weights, 80 these levels should be compared to particular points of known deformations.

*Soine of these equivalences are well known. For example, the Sugawara construction SO(2n), at level 1
is equivalent to the construction on the maximal torus of SO(2n), although the graphs of these constructions
are distinct. The equivalence phenoinenon also occurs in irrational constructions at rational points which
are affine-Sugawara nests.
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with auto G = S, when n > 31. The form of 50(2.n+l)ld,ﬁ] in suin and difference variables
is
L;(1=(x+n-2)L} + (n-2)L] —nL} - L}) =0
L2~ (z 420 - 2)L} +2(n - 2)L] -~ 2L}) - (z - 2)(L] )}
-2n-2L7LE - (7P + (L} =0
Ly =nl} 4+ (n-2L; ~(z+n-2)L} L+ L7(L} - L})=0
LY@2-(z+n=2)L} +2(n—2)L] - 20L} — 2L} )+ (n - 4)(L])?
(L) —2n—-2)L7LY — (x40 - 2L + (L} + (L7 -2L;L; =0
L:(l—nL:+(_n-2)L; ~(z4+n-1)LH=0
LH2-(z+2m-DL}) - (z-1) (L7 =0

c= %(nL: ~(n=2)L7 +(n- DL} +2L}) (27.8)

where L%, L} are defined in the previous section and L = L, & L!. This subansatz
contains SO(2n)[d,4] when L7 = L} = 0, and it also contains the subansatz SO(5)[d, 2}
when L}=L}=L}, Ly=L;=~L; at n=2.

The exact constructions in Sections 2.7.3-5 are solutions of the system (2.7.8). Before
the details, here is an overview of the situation.

S50(2n + 1)[d, 6) contains 48 solutions which are known or were obtained in the previous
section, and 64 solutions generically. The generic count of 16 new solutions is accurate
except at level 2, where the only new solutions, given in Appendix 2.B, are the new quadratic

deformations SO(2n + l)z#[d, 6] with ¢ = n.

tThe first colunn of Fig. 20 shows that the case of SO(5) is special: The graphs at the bottom of the first
two graph families arc the self-KK-conjugate constructions on SO(8), while the third and fourth graph fanilies
coincide at order 5. Moreover, the pentagon graph SO(5)#(d, 2] has the higher symnetry auto G=Ds, and
occurs first in SO(5)[d, 2).
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Among the 16 new solutions for z # 2, we will obtain the following 8 solutions across
all n
50(5)*{d, 6], and SO(5)¥[d,2] (4 copies each) (2.7.9a)

SO(2n + 1)
SO(2n + 1)¥[d, 6], 2

These constructions are the first two graph families in Fig. 20. We obtain the remaining 8

S0(2n + 1)*{d,6),; and (n > 3, 2 copies each). (2.7.9b)

solutions only for n = 2

SO(5)

50(5)¥(d,6]; and SO(5)*[d, 6];

(4 copies each). (2.7.10)
which are the lowest graphs of the third and fourth graph family in Fig. 20.
2.7.3 The sell-K-conjugate constructions on SO(5)

The 8 solutions in eq.(2.7.9a) are the self-K-conjugate constructions

1
L::L::L:’:T_’_s, z#2

S0(5)*{d,6), (2.7.11a)
-~ y-_ 9T n
ST A R FE)
L::L;":L:’:xis, z#2

S0(5)¥(d, 2) (2.7.118)

- - - n
L = [, = — = e
e =0l =-oly = =TT

where ¢ = 41 are SO(5) automorphically equivalent and n = %1 is K-conjugation, which

is also an $O(5) automorphism in these cases. Both constructions have the half-Sugawara

central charge
o= S5z
Tz43

which is characteristic of sell-K-conjugate constructions (see Section 2.5.5).

z#£2 (2.7.12)

The self-K-conjugate constructions are unitary for integer ¢ > 3. The conformal
weights of the vector representation are irrational for SO(5)#{d, 6] and rational for S0(5)*(d, 2)

but irrational conformal weights must be expected for higher representations in both cases.
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2.7.4 SO(2n +1)¥[d,8};2, n >3

The 8 solutions in eq.(2.7.9b) $

1
LT A S L —
L =L =L = (1 4 0(n=28)
e (-dztn-3)S
L; =98, Ly =-no Para— , Ly =na$§ |
nx /
c= m(2n + 1 —n(n-2)(z - 2)S) (2.7.13)

S=(+2n-Dz+n*—6n+57Y2 z#2
are distinguished by n = %1, 0 = 1 and € = 1. The values of 5 correspond to K-
conjugation, the values of o are SO(2n + 1) automorphically equivalent, and the values of
€ label physically distinct solutions with the same central charge but different conformal
weights.
For n > 3, and either value of o, these solutions are identified as

50(2n + Y*[d,6);: e=n=+1 (co=n(n+3)/2)

SO(2n +1)/50(2n + 1)*[d,6),: €= -n=+1 (co=n(3n-1)/2)
(2.7.149)
SO(2n + 1)*[d,6)1: e=-n=—~1 (co=n(n+3)/2)

50(2n 4+ 1)/50(2n + 1)*[d,6]);: e=n= -1 (co=n(3n-1)/2).
In this case, the identification requires matching L.‘-?)(G) = @;; for the appropriate graphs
against the high level form of the solutions (2.7.13).

These constructions are unitary for all positive integer level (except £ = 2). They are

also generically irrational, with rational subconstructions only at level 1 $. The value

c((som¥)(d,6)12) = Tgé (7 - #) ~ 3.8011 (2.7.15)

Y The self-K-conjugate constructions on SO(5) are included in the solutions (2.7.13) when n = 2. The
identification is SO(5)¥[d,6), when ¢ = 1 and SO(5)*[d, 2] when ¢ = — 1.

$The central charges at level one are hall integer (> 3/2) and integer, with irrational conforinal weights,
80 they should be compared to particular points of known deformations.
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is the lowest unitary irrational central charge in this family.
2.7.5 SO(5)*[d, 6]z
The 8 solutions on SO(5) in eq.(2.7.10)
LF=—(+2mz+1)Q) Lt =——(1-nz+2)(z~1)Q)
c 243 A T e 43
1 - _ —noQ
+__1 _ - 2 2_ 4y~
L} = 50—, Lo =T Vz? +2)(22 - 4z - 2)
L; _ _L: —')‘Q

z  z(z-1)

c= ﬁi(s - n{z - 1)(z - 2)Q)

z-1
Q= v:’—:‘—823—4:7—32z—16' T#2

are distinguished by n = %1, 0 = 11 and € = %1, where n is K-conjugation, and g, ¢ label

z(z —4)(z? +4) (2.7.16)

SO(5) automorphically equivalent solutions. By comparison of graphs and solutions, the

identification

50(5)*(d,6la: n=1 (co=4)
(2.7.17)
50(5)/SO(5)*[d,6la: n=-1 (co =6)

is established for each fixed choice of ¢ and e.

These constructions are unitary and irrational for all integer £ > 5. The value
. 25 4
# = e )~
c ((.5‘0(5)s )[d,6]3) =3 1 5m) =~ 2.6963 (2.7.18)

is the lowest unitary central charge of the family, and this value is also the lowest unitary

central charge yet observed on non-simply-laced g.

2.8 The novelty number v

We have constructed a graph function v(G) which we call the novelty number of G because

it appears to distinguish between the graphs G(AS) of the known rational constructions
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and the graphs G* of the new constructions,
conjecture 3: v(G(AS)) =0, vG¥) > 0. (2.8.1)
‘The novelty number is

sL% 3" d,(G)(24(G) ~ 1) + 8t~ dty + 60, ~ 1205 + 3 di(G)d,(G) -2 T &(G) (282)
i W (i '
where

t3 = number of triangles in G, t4 = number of squares in G
t; = number of squares with one diagonal in G (2.8.3)
t} = number of K-subgraphs in G
and the sums in (2.8.2) are over the lines (i) of G and the points (ijk) of each triangle in
G.
It is sufficient to verify conjecture 3 on connected graphs, since the novelty ,number is
additive (G} U Ga) = v(G,) + v(G,) on disconnected graphs. The conjecture has been

verified for
1. the graphs in the first ten sectors of Table 3,

2. the affine-Sugawara construction K, and the graphs R,, + l;',._,, of the fundamental

coset constructions SO(n)/(SO(p) x SO(n — p)).
3. the cycle graphs C3, with
UCH=0; v(Can)=2n,n23 (2.8.4)
where Cy is the graph of SO(4)/(S0(2) x SO(2)),
4. the path grapls P, with
v(iP) =0, vwW(P)=n-3,n23 (2.8.5)

where P and P; are the graphs of SO(2) and SO(3)/50(2),
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5. the exact constructions of Ref.{18] and Section 2.7 with
¥{(SO(2n)/SO(2n)}) = n(n ~ 1)(n - 2)
HSO@nY¥{d, 4]) = n(n — 1)/2
v(SO(5)*(d,2)) =5
(SO(5)*[d,6})) = 1 (2.8.6)
v(50(2n + 1)*{d,6},) =Sn(n—1)/2, n>3
H(SO(2n+ 1)¥[d,6h) =n(n-1)/2, n>3
v(SO(5)*(d, 6)) = 2

In cases 3, 4 and 5, we emphasize that the novelty number vanishes precisely for those low

n members of the graph family which are affine-Sugawara nested graphs.

Appendix 2.A: Counting affine-Sugawara nested graphs

We first obtain the recursion relation (2.3.27) for C(AS),, the number of connected (fun-

damental) affine-Sugawara nested graphs. The basic idea is to start from the relation
C(AS), = D(AS), (2.A1)

and express the number of disconnected graphs in terms of C(AS)m<n. It is convenient to

divide the disconnected graphs into two types I and I7,

D(AS)n = Dy(AS)n + Dy1(AS)n (2.A.20)
_ [ number of disconnected affine-Sugawara nested graphs

Di(AS). = { of order n with at least one trivial subgraph (2.4.2)
_ [ number of disconnected affine-Sugawara nested graphs

Du(asy, = { of order n with no trivial subgraphs (2.4.2)
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. L]
" . 3
which are counted separately below Y. distinct nests in (SO(3))” are
so@ | 288
I. The disconnected graphs of type I have the form KU (general affine-Sugawara nested |
graph of order n — 1}, so that
SO(3) x SO(3) x SO(3) = Y ]
(2.4.6)
D(AS) = 2C(AS)n-1 (2.4.3) So@)xSO@)x 358 = o | .
50(3) x ——‘;}5" 3 « —Hs" A = . (-
follows with eq.(2.A.1). som © so@

H.

The disconnected. graphs of type II may be written as

(50(2))"” . (50(3))"” o (50(..-2))""‘"’

SO SO SO
St} x Bty < B = bowes
where the right-hand side phrases the example as the placement of p(i) = 3 identical

objecta « in C(AS); = 2 boxes. The result is C(AS)!:” = (3+§") = 4 distinct nests

(2.4.4) in the superfactor (SO(3))3.
n-2
Z; ipli)=n, pi)20 More generally, C(AS)!"('An is computable as the number of ways to place p(i) identical

where the vertical dots indicate arbitrary nesting in each product group SO(¢). We
emphasize that each of the p(i) factors (SO(i)/ .. .) in the superfactor (SO(i)/ .. .)?t%)

is identical in unlabelled graph theory.

To count these graphs, we first establish that

objects in C(AS); boxes, which is also the number of ways to partition p(i) identical
objects with C(AS); — 1 walls (the dotted line in eq.(2.A.6)). Equivalently, the result
(2.A.5) is the number of ways to place p(i) identical objects on a total number p(i) +

C(AS); — 1 of available sites = objects plus walls.

The total number of nests at fixed {p(i)} is a product over the nests of each superfactor,

o) _ (Pi) +c(AS)i - l)

c(AS)TT = ( p(s) (2.4.5) and the result for type I nests

is the number of distinct affine-Sugawara nests in each superfactor (SO(i)/ ... )P0, Di(AS)a= 3O "I:f (p(!) + izgs)i - l) 2.47)
where C(AS); is the number of fundamental affine-Sugawara nests in each identical ' ) =3, :

factor SO(i). To understand (2.A.5), consider first the example of (SO(3))3. There
are two fundamental nests SO(3) and SO(3)/S0(2) in each identical SO(3). The

is obtained by summing over all partitions {p(i})}.

Having computed D;(AS),, and Dy;(AS), in terms of C(AS)ym<n, the recursion rela-

YExamples of type I on SO(6) are SO(5) x SO(1) = SO(5) and SO(5)/(SO(4) x S0(1)) = SO(5)/SO(4),

while SO(2) x $O(4) is type 11 because it uses all six points. tion.for C(AS),, given in eq.(2.3.27) of the text, follows with eqs.(2.A.1), (2.A.2), (2.A.3)

and (2.A.7).
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We remark in passing that the same argument on the set of all disconnected graphs

gives the following relation

Cn=gn_Dn=gn_(Dl.n+Dll.n)
Cim (2.A.8)
= 2 TG
pls 1-3

which may be used to compute C, from Cn¢n and g,. C, is computed from g, by a

different route in Ref.[29).

We finally establish an upper bound on C(AS), as follows. Any disconnected graph of
order n=0dd may be decomposed as

(connected graph of order 1 < i < (n — 1)/2) U (graph of order n — 1) (2.A.9q4)

for one or more values of 5. Similarly, any disconnected graph of even order may be decom-

posed either as
(connected graph of order 1 < i < (n - 2)/2) U (graph of order n — i) (2.A.9)

for one or more values of i, or as

(connected graph of order n/2) U (connected graph of order n/2). (2.A.9¢)

Then, the upper bound on all disconnected graphs
D { T Cigani n = odd
n (2.4.10)
):(n ’I)/? Cigni + (Cn/l)" n = even

follows because the decompositions (2.A.9) are not unique.

The bound (2.A.10) may be restricted to affine-Sugawara nested graphs, so that the
simple upper bound
n—~1

C(AS)a = D(AS)s < 3 C(AS)C(AS)n-i (24.11)
i=1
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is obtained with D(AS), = C(AS)., g(AS)n-i = 2C(AS)a—i and symmetry about i = n/2.
The right-hand side of (2.A.11) is an upper bound on the right-hand side of the recursion

relation (2.3.27) for C(AS),, so the solution C(AS )!.m) of the simple recursion relation

n-1
C(AS)m= = ¥ C(AS)™Ic(AS)™,  c(AS)™ =1 (2.4.12)

satisfies C(AS), < C(AS)S.M). The solution of (2.A.12) is

n

C(AS)t™ = 2(7::1—) (2:) . CAS) < 5(31—) (2") (2.4.13)

which implies the asymptotic bound in eq.(2.3.29b) of the text.
Appendix 2.B: The deformations SO(2n + 1)§[d,6], n > 2

The only new solutions at level 2 of SO(2n 4 1)[d,6] are the two-parameter quadratic '

deformations which we call SO(2n + l)f[d. 6},
Lf= 0= (a4 DL +(-2)L0), LE =L}

LT =nR, Ly = '—':[-n +ef1 - a(L5 ) (2.8.1)
R= ,/L:‘(z- (2n +1)LY)

c=n.

The deformations are labelled by € = 11, n = %1 and arbitrary values of the deforma-
tion parameters L} and L7. The values of ¢ label two distinct deformations within the
construction. The unitary range of the deformation parameters

o<L <2 ——<IZ <

1
< < a1l 3= (2.B.2)

(TR

defines a rectangle in parameter space. At fixed ¢, the construction is closed under K-

conjugation on SO(2n + 1)

Bty =1 .,(2+l L¥,-L7) (2.B.3)
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which shows that K-conjugation in this case is 7§ — —n plus a reflection about the center
of the unitary rectangle.

The conformal weights of SO(2n + l)z‘[d, 6] are continuous functions of the deforma-
tion parameters, and we have checked that the construction is not equivalent to any known
quadratic deformation. The physical content of the construction should, as usual, be com-

pared to known linear deformations [12].

Appendix 2.C: Decomposition of a graph into irreducible graphs

In Sections 2.3.5 we noted that the set of all graphs is equal to the set of affine-Virasoro
nested graphs. This set consists of the fundamental affine-Virasoro nested graphs and
their K-conjugates. Moreover, the decomposition of a given graph as an affine-Virasoro
nested graph with irreducible graphs at the bottom of each nest, is unique. As pointed
out in Section 2.3.6, this provides a reorganization of graph theory. In this appendix we
will describe a procedure for finding the nesting structure of a given graph as well as its

irreducible graphs at the bottom.

The procedure for a given graph G is as follows
1 If G is connected go to step 2a; If G is disconnected go to step 2b

2a If G = K,, the complete graph for some n then stop; otherwise compute the K-
conjugate graph G. If G is connected then G (and G) is irreducible and stop; If G is

disconnected repeat step 2a for each connected component of G.
2b Go to step 2a for each connected component of G.

By following through the steps described above, one can actually unravel the nesting struc-
ture of any graph, and ultimately find the irreducible graphs that are the “basic building
blocks” of the graph. More precisely, in this way every graph can be written as a unions

and/or joins of irreducible graphs.
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Chapter 3

Magic Bases, Metric Ansatze and

Generalized Graph Theories

3.1 Introduction

In this chapter, we generalize the graph-theory ansatz SO(n)aiay to a family of metric
ansitze

1
Imetric: L% = 300 + de)nas (3.1.1)

which includes SO(n)dio, a8 a special case with diagoﬁal Killing metri¢ 7 in the Cartesian
basis of SO(n). More generally, the metric ansitze are associated to a class of “magic”
bases in which any two generators of Lie g commute to no more than a single generator.
Wkhen a magic basis is real on compact g, the corresponding ansatz gmeic is a large system
of unitary, generically irrational conformal field theories, whose structure is visible in the
high-level expansion.

Moreover, each magic basis of g defines a generalized graph theory on g which, as
in SO(n)diag, labels the level-families of gmewric. The graph isomorphisms of the general-
ized graphs are permutations in Autg, just as the isomorphisms of graph theory live in
Aut SO(n) - so that isomorphically-equivalent generalized graphs are physically-equivalent

level-families of conforinal field theories in gmetric.
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‘We focus in this chapter on the only other known example of a magic basis, beyond
the Cartesian basis of SO(n), which gives SO(n)aiag (see Chapter 2), namely the Pauli-like

basis of SU(n) [31), which gives the ansatz
SU(n)metric :  the metric ansatz on SU(n) (3.1.2)

Because the magic basis is real, the set of conformal field theories in the ansatz is generically
unitary. Moreover, high-level analysis shows that this set is also generically irrational. In
particular, the high-level expansion of SU{n)netric shows a new phenomenon: Due to the
trigonometric structure constants of the Pauli-like basis, irrational central charge is clearly
visible at finite order of the expansion.

We also obtain a number of exact unitary irrational constructions in SU(R)metric
SU4)*(m, 7ha (3.1.30)

SU(5)¥[m,2} (3.1.3b)

and, in particular, the construction in (3.1.3b) shows irrational central chasge at finite order

" of the high-level expansion. Further exact constructions
. SU(3)*[m,2) (3.1.4a)

SU(4)*[m, T4 (3.1.4b)

have rational central charge but generically irrational conformal weights, and (3.1.4a) is in
fact a self K-conjugate construction (see Sect. 2.5.5) on SU(3).

Moreover, we discuss in some detail the “sine-area graphs” of SU(n), with graph iso-
morphisms € Aut SU(n), which Jabel the conformal ficld theories of SU(n)netric- Finally,
we show that given a magic basis of g one can dcfine, in similar fashion, a generalized graph
theory on g, whose generalized graphs label the conformal ficld theories of the corresponding

ansatz gmetric-
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3.2 Magic Bases

We define a magic basis of Lie g as a basis in which the metric is an involutive automorphisms
of g

s = 0%, fae = S (3.2.1a)
and where the structure constants of g satisfy

St fod® = (Ju®)?6*, Vab,c,d (3.2.16)

s0 that two generators of g commute to no more than a single other generator. A useful

identity that follows from (2.2.4) and (3.2.1b) is

v? );(Id")’ = h,. (3.2.2)

A subset of magic bases is the set of real magic basis which satisly the stronger conditions
s = real, invertible, f,,° = real . (3.2.3b)

T = };wn (3.2.3b)

Joa®fod® = (Jod®)?6%, Va,b,c,d (3:2.3¢)

where T, is a matrix representation of g and daggeér is matrix adjoint. The conditions (3.2.3)
are sufficient to guarantee those in (3.2.1).

Known examples of real magic bases include the physicist’s standard basis choice for
$0(n), given in €q.(2.2.17), and the Pauli-like basis of SU(n) which will be given in Section
3.5.

3.3 Metric Ansatze

For any magic basis of g, the metric ansatz (2.2.15) * for the inverse inertia tensor

LG al al
L= 7" b (La=Lint =0 (33.1a)

*The two forms (2.2.15) and (3.3.1a) are equivalent, although (3.3.1a) is preferred for computations.
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T= # Y Lan® 2ads S (3.3.15)
ab

is a consistent ansatz of the master equation, where the linear constraints in (3.3.1a) require
L. = Ly when 1, # 0, maintaining the symmetry of L°®. We will refer to this class of
ansatze as

{Imetric} = {SO(n)diag, SU(n)metrics =+ -} - (3.32)

The reduced master equation in the ansatz (3.3.1)

L1 —zL) =Y L(2La - La)(Jud®*/¥? (3.330)
od

(La— Le)p*t =0 (3.3.3b)

c=:x YL, (3.3.3¢)

follows from the master equation (2.2.3),‘using eq5.(3.2.1) and (3.3.1). Consistency of the
quadratic equations (3.3.3a) with the constraints (3.3.3b) is trivially verified for SO(n)4iqy

since the metric is diagonal. More generally, consistency follows from the identity
o Le(2La - La)(fet®V b = 3 Le(2Ls ~ La)(fed®) M (3349
ot o

which may be derived from (3.2.1) and (3.3.3b). It follows that the system (3.3.3) shows an
equal number v of equations and independent unknowns. In particular, for SO(n)gisy the
number is given in (2.2.22), while the number v(SU(n)metric Will be given in Section 3.5.

We list some useful properties of the ansatz gmeeric

1. It follows from (3.2.2) that the affine-Sugawara construction [3,5,9] L,
1o = L ot _ zdimg

=a o zdm 335
¢'2z+h, o z+h, ( )

is always a solution of (3.3.3).
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2. K-conjugation [3,5,10,15). When L, is a solution of (3.3.3), then its K-conjugate L.

- 1 .
L°=z+l-1,—L“' é=¢cy—-c (3.3.6)

is also a solution, and the two corresponding Virasoro operators T and T form a

commuting pair.

3. Unitarity [10,18). In general the unitarity requirement on L, depends on the explicit
form of the metric. However, when the magic basis is real, unitary solutions (L("‘)' =
L)) require

L, = real 3.3.7)
since in this case the hermiticity property of the affine currents is

I = T g™ (3.3.8)
b

which is the aflineization of (3.2.3b).

3.4 High-Level Expansion of gctric

-
The high-level expansion [22] of gmetric
L. = l o (s) . ~» — - -3
a==3 L2, =Y ez (34.1)
z =0 =0

parellels the expansion (2.2.31) of the graph-theory ansatz SO(n)4i,,. The solution of the
leading equations L'(,O)(l - :L,‘.o)) =0, (L,(,o) - Lgo))n.,b =0is

LM =0, «=Y 6, (3.4.2q)
" 0,€{0,1}, a=1,---,dimg (3.4.20)
8, = 6, when 0, #£0 (3.4.2¢)

where any set {6,)} may be chosen consistent with the constraint in (3.4.2c). In the case of

S0(n)diag, 02 = 8;; is the adjacency matrix of any graph of order n (see Section 2.3.1).
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The higher-order corrections L2 for each choice {8.} are unambiguously computable

from the recursion relation

L =(1-24,) {)3 LY

- (34.3)
+30) t@Le - LL‘”"")(/J)W’}
od =0
so each level-family in gmeeric may be labelled by its high-level form
L({6.}) ~ (6.} . (3.4.4)

Moreover, all the coefficients L,(.') are real when the structure constants are real. It follows
for every real magic basis of compact g that each level-family of gmetric Will be unitary down

to some finite critical level (see Section 2.2.3).

For use below, we also give the explicit form of the central charge

c= );o,, - z%p’ ?:&jo,,[zo.n ~0.) 4 6)(f") + O(=Y). (34.5)

through the first non-trivial order.
3.5 The Ansatz SU(n)etric

The Pauli-like basis given in Ref.{31] is a real magic basis on SU(n). In this basis, the n?

generator of the fundamental representation of U(n)

v . .
T,=Ty= ";’—"u}"”/’g“h". w = il (35.1a)
D=y, (W =6410~61a80y, 1<1,J<n (3.5.10)

are labelled on a two-dimensional integer lattice p = (py, p2), with periods n. The puliback
relation

Titnr) = (~)(Pl+|)'+(l’2+|)'+m’l'[‘ﬂ (35.2)
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can be used to choose the fundamental cell
F: 0<p<n-1, 0<pp<n—-1, p#£0 (3.5.3)
for the n? — 1 generators of SU(n). We obtain the Killing metric

Mg = 53 T TeTe = 177 = 05— (moan) (3.5.40)

. -1 pr=0orpy=0
a(p) = { (3.5.4b)
(..)PI“P)“"‘ PP # 0

and the trigonometric structure constants

293 . .
" =~ 2L o7, D x5 x D/t (3:550)
1 0<p+q<n-1, 0<pp+@a<n-1
(—)prtatt n<p+@<2-2, 0< Ptz <n—1
o(p.q) = (3.5.55)
(-t o<p+qs<n-1, n<pp+<2n-2

(m)ptutetatn p<p g <2m-2, n<p+@<2n-2

" where P X § = piqa — paqu and f(modn), VT is the representative of ¥ in F. Using (3.5.4)

and (3.5.5), it is not difficult to verify that the magic basis conditions (3.2.1) and rea) magic
basis conditions (3.2.3) are satisfied in the Pauli-like basis. We note that in this case the

condition (3.2.1b) is satisfied as a consequence of the Pauli-like property

’#” ~
BTy = gﬂ(ﬂym(ﬁﬂlznﬂn(m«) (3.5.6)

which is sufficient to guarantee (3.2.1b).

Subsitution of the explicit form of the Killing metric (3.5.4) and structure constants

(3.5.5) in the metric ansatz (3.3.3), results in the master equation for SU(n)metric

2 . ”
L,-,-(l - ILﬁ) = ; Z L;(QL; - L(ﬁ_q-)(,,,od,,))smg(n(p x §)/n) (3.5.7a)
q
Lz = L(_p)(modn) (3.5.7b)
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c=1z Z Ly. (3.5.7¢)
4

The explicit form of the symmetry constraints in (3.5.7b) is

Loy = Lin-pop Los) = Liom-p) 1S P<(n=1)/2]
1<p=pr<[(n-1)/2}
Lip,p3) = Lin-py.n—pa) { l<p<pm<n-1 (3.5.8)
where [y] is the greatest integer less than or equal Lo y, so that each variable is paired except

for the three unconstrained coefficients

Linj20) Lions2ys Linsansa) (3.5.9)

on SU(n), n = even. For definiteness, we will choose
1< p=p1<(n/2)
Loy Liogp 15p<[0/2), L, (3.5.10)
I1<p<pa<n-1
as the set of independent variables.

It follows from (3.5.10) that the reduced master equation contains

(n?-1)/2, n=odd

N(SU(R)metric) = 20V Emeand) - y(SU(n) merric) = { (35.11)

(n? +2)/2, n=even
solutions generically for any level of SU(n), where v(SU(n)metric) is the number of inde-

pendent variables in (3.5.10).

Exactly this number of level-families are seen in the high-level expansion
L(ﬁo) =0; co= Zo‘;, 8z = 9(_§)(modn) (3.5.12)
4

and, since the Pauli-like basis is a real magic basis, each level-family of SU(n)metric is
unitary down to some finite critical level (see Section 3.4).
The explicit form of the constraint in (3.5.12) is obtained from (3.5.8) with Lz — 85,

so that the contribution Acg of an independent 8; = 1 to the high-level central charge is

. {l F={(n/2,0),(0,n/2),(n/2,n/2)}
Acp = . (3.5.13)

2 otherwise
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It follows in particular that ¢g is an even integer when n is odd.

As a new phenomenon, we remark that the next order correction to the central charge
2 ' . _ -
c= Z 05— ; 20@{205(1—0(,;_5)(,,“,‘,)+0(5_m,,,°dn)] smz(x(px q“)/n)+0(:: 2) (3514)
4 P4

shows generic irrationality ! already at order x~!, because the squared structure constants
sin?(xs/n) are irrational for n = 5 and n > 7. Beyond the smaller manifolds, rational
central charge can occur only sporadically - when the construction has a symmetry, so that

certain sum rules are active. For example, the sum rule (3.2.2)

2
3 sin®(x (5 x §)/n) = % V§ (3.5.15)
§

maintains the rational central charge of the affine-Sugawara construction. It is clear that
this phenomenon will generate arbitrarily high irrational type [20]} as n increases.

For use below, we also give the conformal weights A = LT, T}, [12,18] of the n or @ of

SU(n)

c

R __c
Aln] = AlA) = n ; L= 3z (3.5.16)
which are degenerate, and the conformal weights of the adjoint
2 . -
Aln? - 15 = Aln® - 1)(-g(modn) = = 3 Lgsin?(x(5 x §)/n) (3.5.17)
3

which show a partial degeneracy analogous to the Lz constraints in (3.5.7b). Generic
irrationality of the conformal weights is also visible in the high-level expansion of these

results.

"The finite-order irrational central charge of these constructions can in principle be seen in other bases,
for example the Cartesian basis of Ref[22]. In this case, the phenomenon arises from the contribution to ¢,
of irrational high-level twists 3,
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3.8 SU(3)metric

3.6.1 The Self K-Conjugate Construction SU(3)#¥[m, 2}

The simplest case of (3.5.7) beyond SU(2)mecric, Whose solutions coincide with SO(3)4iag,
is 5U(3)md,.-c

Loi(1 - zLo) = 2Lox(Lyo + Ly + Ly3) = (Lyolay + LioLia + Ly L13) (3.6.1a)

Lio(} = zLyo) = 2Lio( Loy + Ly + Lya) — (Lor Lz + LosLu + Ly Lia) (3.6.1b)
Lis(1 — zLy) = 2Ly(Lio + Loy + Li2) = (LioLoy + LioLya + Lo Lva) (3.6.1¢0)
Ly3(1 — zLy3) = 2L,3(Lio + Lot + Lyy) ~ (LyoLoy + LioLis + Lo L) (3.6.1d)

c=2z(Loy+ Lo+ L+ L1a) ' (3.6.1¢)

showing 4 quadratic equations on an equal number of unknowns, so that 2¢ = 16 level-
families are contained in SU(3)metric. According to (3.5.10), we have chosen to write the
reduced master equation (3.6.1) in terms of the 4 independent coefficients Loy = Loy,

Lyo = Lo, Lyy = L3a, Ly3 = Lay. The explicit form of the stress tensor in the ansatz
2 . .
T= 'Jj .(—Lon’on-’m - LIOJIoJm - L"J“.’zz + Ln.’n.’n) - (362)

is obtained from (3.3.1b) with the metric (3.5.4).
It is easily checked that the ansatz (3.6.1) is covariant under permutations of the

coefficients L so that the residual automorphisms are
Ly= Ly {5} = (10,01,11,12) (3.63)

where #(p) is any permultation of the independent labels {p}.

Applying our high-level analysis (3.5.12) to the system (3.6.1), we identified the known

level-families in the ansatz which are: L = 0, the affine-Sugawara construction L(SU(3),
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four automorphically equivalent copies of ) and SU(3)/[U(1))?, accounting for a total
of ten level-families. We also find three new K-conjugate pairs

{00|=0|o=l, 011 =0),=0

b01=0,0=0, 6,,=8,=1 (3.6.4a)
{90|=0"=1, 80=0,,=0

b1 =0,,=0, Oo=6,=1 (3.6.4b)
{9m=0.,=|' bi0=6y, =0

80y =013=0, B)p=0,, =1 (3.6.4¢)

all of which have high-level central charge ¢o = 4 = 1dim SU(3). In (3.6.4), the second line
of each bracket is the K-conjugate partner

Oy=1-0; (36.5)
of the first line, and, according to the level-independent automorphisms (3.6.3), each bracket
is automorphically equivalent

0= P (3.6.6)

to the other brackets. Moreover, the K-conjugate partners in a given bracket are automor-

phically equivalent
5= 0,4 (36.7)
50 that each line in (3.6.4) is a copy of a single self K-conjugate construction on SU (3).

The exact form of the new constructions present in the ansatz § U(3)metric

{Lo,zL.o=ﬂ;1+—:,;(l+‘/§f-ﬁ. L1|=le=ﬂﬁj(l“\/§ﬁ)

Lo|=L|o=ﬂ;l+—3$(1_\/§_;_ﬂT)' Lu=Ln=ﬂ;'ﬁ,(n+‘/§§) (3.6.8q)
{Lo|=L|1=m(l+J:‘:f_%). L.0=L,,=?{;1+_3y(1_\/§)
L0,=L.,=m(l_‘/§37)’ Lno=Lu=,7;5§,(l+\/g7,) (3.6.8b)
{L0.=Ln=;(;'ﬁ;(l+‘/;f-_§), Lio=Lu = gy (1 - /)
Lor = Lz = 5k (1 - \/25)), Lio= L = gk (1 +/25) (3.6.8¢)
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4z

43’ z#1 (3.6.8d)

c= %CSU(J) =
can be easily checked from (3.6.1) and shows six automorphic copies of a self K-conjugate
construction on SU(3). The organization of the six automorphic copies in (3.6.8) is analagous
to the arrangement of the corresponding high-level forms in (3.6.4), and, following Section
2.6, we call the construction ‘

SU(3)*[m,2) (3.6.9)

since it occurs in a subansatz of size ¥ = 2 of the metric (m) ansatz on SU(3). The half-
Sugawara central charge (3.6.8d) is characteristic of self K-conjugate construtions, and, as
guaranteed by the high-level expansion, the construction is unitary down to a finite critical

level, which is z = 1 in this case.

We have also computed the L%.broken conformal weights of this construction for the

3 (or 3) and adjoint representation of SU(3), using (3.5.16) and (3.5.17) respectively. The

results

AP = Q) =

2
G (3.6.100)

A;[8)= ———(31

2(r + 3)
show rational, completely degenerate, half-Sugawara conformal weights for the 3 (or 3), but

two irrational 4-fold degenerate conformal weights for the adjoint representation.
3.6.2 The Quadratic Deformation SU(3)¥

Having solved the ansatz (3.6.1) on SU(3) for generic level, we search for sporadic defor-
mations with the predicive method of Ref [25]: We expect sporadic quadralic deformations
for those levels at which two or more constructions, flow-connected at high-level, have co-

incident central charge. We restrict ourselves to first crossings as the level is lowered.

A plot of the central charges of the five level-families that are present in SU(3),eqric
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) (3.6.10b),

is given in Fig. 21, and shows a single first crossing at level three
z=3: SUB/UMP ~SUE¥m, 20~ UM . (3.6.11)
Next, we consider the high-level flow equation [25] of the closed subfiow SU(n)metric
PO =100 1), LY =Ly in (3.6.12)

which shows that the physical flow between fixed points is 8 = 1 ~ 85 = 0. The flow on
SU(3)I,,.,.,,-¢, recorded in Fig. 22, shows that the 446+4=14 representatives of the three
constructions in (3.6.11) are flow-connected at high-level.

Hence we predict the quadratic deformation
SU@¥, c=2 (3.6.13)

which will contain all 14 constructions that have coalesced at level three. Moreover, we can
predict that the deformation § U(3)§ will be closed under K-conjugation, since the set of
high-level constructions involved in the crossing is closed under K-conjugation.

To find the deformation (3.6.13) explicitly, we set z = 3 in the ansatz (3.6.1). The

resulting explicit form of SU 3¢

= ——(l 4+ V3cos ) + Jé51n0cm¢ (3.6.14a)
Ly = (l + V3cos 0) - \l/ésm Bcos ¢ (3.6.14b)
Ly = —=( —V3cos0) + —= \/_ sin@sin ¢ (3.6.14¢)
Lia= —(1 ~V3cosb) - —2l\/§sinos'm¢ (3.6.14d)
0<8<n, 0<$p<2r, c=2 (3.6.14¢)

shows that the unitary deformation is a two-sphere. Moreover, K-conjugation is reflection

through the origin of the sphere
Lf0,¢) = Lo(n — 0,6+ ) (3.6.15)
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and we have checked that all 14 representatives of the constructions in (3.6.11) are particular

points in the deformation.

3.7 SU(“)metrlc

3.7.1 Solution Methodology

We have also studied the ansatz SU(4)meeric

Loi(l —zLo)) = Lo[Lio+ Lia+ Liy + Lis+ Lyo + Laa + 2L3)
- %(Lno + Lia)(Ln + Lia) - La(Lao + Laa)
La(1 - zLp) = Ls[Lio+ Lia+ Ly + Lia+ Lao + Ly + 2La))
- %(LIO + Lia)(Lu + Li3) ~ Lor(L2o + L2d)
Lio(1 ~ zLyo) = LiolLor + Las+ L+ Lia+ Log + Laa + 2L,3)
- Mo+ L)L+ Lis) = Luallon + L)
Lia(1 —zLi3) = LualLoy + Laa+ Ly + Lia + Loa + Laa + 2Lyo]
- %(Lm + Laa)(L + Ly3) = Lio(Loz + L2a)
Lu(l —zLy) = Ln[Lm +Lyp+Liot+Lizt Loyt Lao+2Ly3)
- %(Lo. + L)(Lio + Lya) — Lia(Loz + L)
Lis() = zLy3) = Lisllor + Las + Lyo + Lia + Loz + Lao + 2Ly
- %(Lon + Laa)(Lyo + Li2) — Li(Laz + L)
Loyl —zLoy) =2Loa(Lio+ Liz + Lu + Lia) — 2(LioLia + LiaLh3)
Lao(1 — zL) = 2Lyo(Loy + Laa+ Ly + L1a) —2(LoyLaz + Ly Ly3)

Laa(1 —zL33) = 2Lan(Llay + Las + Lio+ Lia) = 2(Los L1z + LioLya)
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(3.7.1a)

(3.7.15)

(3.7.1¢)

(3.7.1d)

(3.7.1¢)

(3.7.1f)

(3.7.19)

(3.7.1h)

(3.7.13)

c=2(2(Loy+ Laa+ Lo+ Liz + Ly + Liz) + Loa + Lao + L33) (3.7.15)

showing nine coupled quadratic equation;s on an equal number of independent variables
Loy = Loa, Laa = Lay, Lio = Lao, L3 = L3z, Ly = Laa, Lia = Lay (3.7.20)
Loa, Lo, Ly (3.7.2b)

so that 2° = 512 level-families will be contained in the ansatz SU(4)metric-

It is easily checked that the ansatz (3.7.1) is covariant under
Ly= L.z . {9 =(01,10,11,12,23,13,02,20,22} (37.3)

when « is any of the following permutations (of the independent labels {p})

x: 01~23
x3: 1012
m3: 1113 3.74)

we: 0110, 2312 02+~ 20

x5: 0l e 11, 2313, 02— 22
or any combination of these five permuations. For simplicity we have omitted inert labels
in the permutations of eq.(3.7.4).
To obtain explicit solutions of the system (3.7.1), it is useful to introduce the sum and

difference variables

Ly = Lot Ly (3.7.5q)
LE=LotL,y, (3.7.5b)
L =L+l (3.7.5¢)

in which case eq.(3.7.1) takes the form

Lol-1+2(Lao+ L)+ L, + L, + 2L} ) =0 (3.7.6a)
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Liol~V+ 2(Loa + L) + Ly + L, + L) = 0 (3.7.60)

Lif-142Loa + L) + L3 + L+ zL}) =0 (3.7.6¢c)
L2 - (L + LYy = (2 + L)) - (z - 2)(Lg,) + 2L LY, = 0 (3.7.6d)
L2 — (L4 + L, = (2 + L) - (z = 2)(L;p)* + 2L, L}, =0 (3.7.6¢)
L2 - (L3 + Ll ~ (z + 2)L}) - (2 - (L) + 2U3, LY, = 0 (3.7.6/) -

2ot - 2Ly + b — zLaal + (L) — (Ll +(LF) - (L) =0 (3.7.69)

2Lyl - 2(L3, + Ly = zLao) + (L3,)" ~ (L5))* + (L])? - (L3))* = 0 (3.7.6h)
2Lal - 2L + Ly - zln) + (L) ~ (L5) + (L)’ ~ (L)' = 0 (3.7.6i)
e=z(2(Ld, + L+ L) + L + Lo + L) (3.7.65)

which shows a factorization in the first three equations.

We may thus consider eight different sectors of the equations
I. Lz=0,Lg=0,L;, =0: 64 solutions (3.7.7a)

a. Lig#0,L5, =0,L;,=0: 64 solutions
1. b Lig=0,L5 #0,L7, =0: 64 solutions (3.7.7)

e L=0,Lg =0,L7, #0: 64 solutions

a. L #0,Lg, # 0,L};, =0: 64 solutions
HI. § b L #0,L5 =0,L;, #0: 64 solutions (3.7.7¢)
c. Lig=0,L5, #0,L}, #0: 64 solutions

IV. Lig#0,Lg5, #0,L;,#0: 64 solutions (3.7.7d)

and, using Lhe permutation automorphisins me5 in (3.7.4), it is not difficult to show that
the 3 sectors a,b,c within Il are automorphic copies of each other, as well as the 3 sectors

within 111
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The sectors in eq.(3.7.7) may be understood as consistent subansitze, which, as in-

S0(n)diag, can be obtained by restricting to those solutions which posses a symmetry
Ly= Lyz, x€ AutSU(n). (3.7.8)

In particular, requiring invariance under the three permuations xy, 72, 73 gives a six pa-
rameter subansatz SU(4){m, 6] which contains the 28 = 64 solutions in sector I. Requiring, .
invariance under any two permutations in the set {xy, ¥3, 3} defines three automorphically
equivalent seven parameter subansitze, each of which contains the 27 = 128 solutions in

sector | and Ha,lIb or llc. For example, the particular subansatz
SU@)m,7): Lo =Laa, Lio=Lyn (3.7.9)

follows from (3.7.8) using the permutations »; and x3 given in (3.7.4), and contains the so-
lutions in sectors I and Ila. We have solved this x; and 73 symmetric subansatz completely,

and an overview of the 128 solutions in the subansatz is given below.

All the 64 solutions in sector 1 are known constructions. The complete list is

L=0(1), (1)@, WY@,

2 2
waraw, S @, BT,
2
(ﬁj’—((lz)}l—xuu)(a), [SU@2))? (3), (3.7.10)
[su@@p?

0] x U(1) (8), (SU@)? x u(1) (3)

and their K-conjugates on SU(4), where the number of automorphic copies of each solution

is given in parentheses.

Among the 64 solutions in sector Ha, we find 32 known solutions, which are

WP @), WOPQ), So(4)*d,4](4),

74



[svep [su@p
WP wmp

and their K-conjugates on SU(4). The remaining 32 solutions are 4 copies each of 4 physi-

(2), SO(4)*[d,4) x U(1) (4), x U(1)(2) (3.7.11)

callly distinct K-conjugate pairs

SU4)¥[m, 73, ﬁﬁ:—)’ﬂ.—; (3.7.12q)
SU(4)*[m, Th., % (3.7.12b)

whose explicit forms will be given in Sects. 3.7.2 and 3.7.3. We remark at this point that
the level-families in (3.7.12a) have generically unitary ir.rational central charge, while those

in (3.7.12b) have rational central charge but generically irrational conformal weights.
3.7.2 SU(4)*m,7)h2

The explicit form of the solutions in (3.7.12a) is

1 —4z -4 .
Lh= 1+ =+ DR, L =0\ Tone (3.7.13a)

1
th= s (1- - der 0\ -0), Li=0 (37.135)
L} = z_l_“ (1 ~nR(A+e(z + 4)\/;(;_—7)) . Ly =0 (3.7.13¢)
Ly = ;(;1;7) (l ~nR(z* + 22— 4 + 2(z + 1) (x—4)/z)) (3.7.13d)
Lyp= ET;I’—FT) (l - nR(z* 4+ 2z — 4 — 2¢(z + 4)\f(z ~ 4)/:)) (3.7.13¢)

=1 _g=ta

Ln = gy (14 nt16R-¢210)) (3:7.13/)
2—“‘—( n 4)(‘51 n(z - 2)(z* + )R) - (—HQ—O" (3.7.139)
R=(z* - 162% + 16)~'/? (3.7.13h)

where n = %1 is K-conjugation, o,¢ = %1 labels automorphic copies at fixed n and £, and

€ labels physically distinct level-families according to

SUM¥m,7): n=¢€=1 (3.7.14a)
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SU@)¥*[m,7a: n=-€=1. (3.7.14b)
In fact, the two constructions in (3.7.14) are related by a #-coset construction (22}
SU(4)*[m, ]2 = SU(4)*[m, 7}, x U(1) (3.7.15)

with U(1)-current Jy;.
The construction is unitary on positive integer levels z > 5 and generically irrational.

The lowest unitary central charge of the family in (3.7.13) is at level §

c(SU@¥m, 7)) = Tlé (57 - %) o~ 2.8553 (37.16)

and, more generally, the central charge approaches integer values at high level.
3.7.8 SU(4)¥(m,7]s

The explicit form of the solutions in (3.7.12b) is

1 - on
L':" = e L”_t\/_(t=+4 (3.7.17a)
L} = ( L3 =0 (3.7.17b)
Ly = (1 + qq/ ’ Lp=0 (3.7.17¢)

1 +4 T+ 41)(1:2 + 4)

Lo = 3255 (1 2 ‘/ + e " , (3.7.17d)
1 2ne jz4+4 ’(r+4)(z’+4))

Lo = 2(:_+_4) (] 4+ 2= - pr: (3.7.17¢)

z+4
Ly = A +4)( - ) (3.7.17f)
15z n
wrd) 2 (3.7.179)
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where n = 11 is K-conjugation, a,¢ = 11 labels automorphic copies and § = 1 labels phys-
ically distinct K-conjugate pairs with equal central charge but different conformal weights.

The constructions are named according to
SUMA*m,T]s: n=¢£=1 (3.7.18q)
SU(*m,7)e: n=—€=1. (3.7.18b)
The constructions are unitary on r € N, have rational central charge and generically irra-

tional conformal weights. It is interesting to note that a special type of #-coset construction

can be observed in this family
SU4)/SU(4)¥[m, )34 = SU(4)#[m, 7]5. x U(1) (3.7.19)

where the U(1)-curent is J3;. This is an example of a # coset construction, which involves

_ both L and its K-conjugate construction L
L+ L)) =wlw, we AutSUMH); L=1L,-1L. (3.7.20)

It folows that the central cliarge of the constructions L and L can be computed before

obtaining their exact form since

ctl=é=¢y~c 3.7.21)
so that
cg—1 - | ‘
c= —"T, c= -'2—- . (3722)

The results (3.7.22) with g = SU(4) are in agreement with the rational central charges

(SU(4)¥[m, 7)5,0) = (72 - 2)/(z + 4) and (SU(4)/SU(4)¥[m, T)s.4) = (8z + 2)/(z + 4).
3.7.4 SU(4)ietic Versus SO(6)ying

Since SO(6) = SU(4), we have determined the overlap between the two metric ansitze

SO(6)diag and SU(4)inetric. It is not difficult to establish that the two subansitze

S50(6)[d, 7] ~ SU(4)[m, 7] (3.7.23)
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are physically equivalent. A labelled representative of the subansatz SO(6)[d, 7] is

Ly3 = Las, Lya= Laa, Liay, L2a, Lse
SO(6)[d, 7] : (3.7.24)
Lis=Lig= Lys= L, Las = Lze = Las = Lasg

and the exact relation with SU(4)[m, 7] is
Lia=Ln, Lia=La, Ls=La, Lis=Le
Liu=Lwp, Lin=Ln, Lw=Ln (3.7.25)
which is written in the form L;; = Lj for the seven independent coefficients of the ansatz.
Moreover, the identifications

SO6))*[d, )h.23.¢ = SUM@)*[m, Th.a04 (3.7.26)

are established by comparing high-level central charges and conformal weights of the new
#-constructions in SO(6)[d, 7] (which can be found in the high-level sectors 6,7 and 8 of

able 3) and those in SU(4)[m, 7).

3.8 SU(5)meulc

3.8.1 Finite-Order Irrational Central Charge

In Section 3.5. we pointed out that irrational central charge at finite order of the high-
level expansion is seen for the generic level-family in SU(n)meeric. To illustrate this new
phenomenon, we have investigated SU(5)metric, which is the smallest ansatz in SU(n)metric
that shows finite order irrational central charge, since n = 5 is the lowest integer for which
sin(a/n) is irrational. From (3.5.7), it is straightforward to express the 12 equations of the

ansatz in terms of the 12 independent variables.
Loy, Loz, Lio, L2o, Ly, L2z, L2, Laa, Lya, Las, Lyy, Laa (38.1)

and, with (3.5.14), we have analyzed the high-level central charges of the 2! = 4096 level-
familics in the ansatz. The results below are given for the lower half (o < 12) of the

high-level sectors, since the rest of the constructions can be obtained by K-conjugation.
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1. There are three exact rational central charges
¢c=0,2and 4 (3.8.2)
which correspond to the known constructions L = 0, [U(1)]? and [U(1)]*.

2. There are eight distinct potentially-irrational central charges

c={6- g,
8- 1(24,36)
z * ,

(3.8.3)
10 - i(ams.so),

12— %(48,60)) +0(="Y)

which may show irrationality at higher finite order, or inay be the high-level forms of

exact irrational constructions.
3. There are fifteen distinct central charges
48
c= {4 - 5(-’?-33).
8 32,202, 323 2
6 - 5—z(2sll237v2"l + 32,51 + 2’2)v
8 1'3(3’ 2,93 + 353,352 + 243,253 4 353 (3.8.4q)
~ 50391 ¥ 92,80+ dsj, dei + 293,267 + s3) -8.
48
10— 32(43? + 353,357 + 453),
ST BT T SR TP S -2
12— S—I(Ssl + 433,457 + 593,637 + 453)} + O(z™?)
83 =sin?(nf5) = (5 V5)/8, 3 =sin(2n/5) = (5+ v5)/8 (3.8.4b)

which are already irrational at this order.

Each central charge in (3.8.3) and (3.8.4) collects a large number of constructions which

are degenerate at this order, and we have detenmined that the total number of irrational
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constructions represented in (3.8.4) already dominates the total number of potentially-
irrational constructions represented in (3.8.3). Moreover, most of the potentially-irrational

constructions show irrational conformal weights at this order.

The observation of unitary irrational central charge at co = 4 in (3.8.4) (and ¢o = 20 by
K-conjugation) requires an update of the phenomenological inequalities of Ref.[22): So far,
all known unitary irrational irreducible constructions satisfy the high-level central charge
inequalities

rank g < ¢g £ dimg —rankg (385)

which now include ¢g = rank g and dimg — rankg. ,

We finally remark that at least some of the constructions with ¢ = 12 ~60/z + O(z~?)

are sell K-conjugate constructions on SU(5). For example, the candidate

001 =010=611 =012 =63=04=1
(3.8.6a)
1 =0x0=01=0;4=04=053=0
1 12z 60 _
c= §Cgu(5) = z—+5 =12- . +O(z 2) (3.8.6b)
is the high-level form of a self K-conjugate construction, because
O5=1-0;=0,; (3.8.7a)
x(p): 01 « 02,10 — 20,11 «— 22,12+ 24,13 34,14 + 23 (3.8.7b)
is the high-level form of the level-independent automorphism L;-, = Luz)-
3.8.2 Exact Solutions with Finite-Order Irrationality
We have obtained the exact form of one of the K-conjugate pairs in SU(5)meeric
} (z+5)V5-1
Lor=Loa=Liog=Law=Liy=Ly= 147 3.8.8
o1 = Loz = Lio = Lo = Ly = Lz = 5o ( + 1 Joat s 200 =24 (3.8.8q)
: 1 (z+5)V5+1
Liz=Ly=Lin=Lyg=Lijgy= Ly = Bl / 3.8.80
12 24 ] 13 34 " 23 2(2:+5)(l 1 Jox? + 20z — 24 ( )
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12z ( 1 )
c= e pr———— 3.8.8¢
45\ "y 20z - 24 (3.8.8¢)
(n = %1 is K-conjugation) whose irrational central charge is visible at finite order. The
solutions were obtained from a consistent two-parameter subansatz whose form is recorded

in the result, so we call the constructions
SU(5)*[m,2), n=1; SU(5)/SU(5)*Im,2],n= 1. (3.8.9)

The construction SU(5)#[m, 2) with ¢ = 12-12(541/V5)/z +O(z"3) is ipcluﬂed in (3.8.4).
Both constructions are unitary on z € N, with rational points at z = 1,2 and 3, so that
the value
c(sus)¥m,2) = 8 (1 - —‘—) ~ 4.8760 (3.8.10)
9 234

is the lowest unitary irrational central charge in the K-conjugate pair.

3.9 Generalized Graph Theories on g

3.0.1 The Sine-Area Graphs of SU(n)

The signal that the conformal field theories of SO(n)4iay are isomorphic to graph theory is
that the high-level form of the ansatz Lg-)) =6;; € {0,1},1 < i < j < n is the adjacency
matrix of any graph of order n (see Section 2.3.1). This correspondence also underlies the
group- and conformal field-theoretic organization of graph lheory,described in Chapter 2,
which begins by defining the graphs on SO(n) with graph isomorphisms in Aut SO(n).

In analogy with the graph theory ansatz SO(n)giq,, we will define in this subsection a
generalized graph theory on SU(n) interpreting the high-level form of the ansatz, {65} as
an “edge-list”. The resuiting graphs will label the conformal field theories in SU(n)neeric-

To obtain a generalized graph theory on SU(n), imagine first that the 85's of SU(n)metric
are unconstrained in a larger ansatz. We define the “sine-area graphs™ {G} of SU(n) as

the 2771 sets of vectors {{} for which 85 = 1, e.g. the 8 sine-arca graphs of SU(2) in Fig.
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93. The name “sine-area” is motivated below. As usual, complete sine-area graphs satisfy
85 = 1, V p and complementary sine-area graphs G are generated by é,; =1-6;

To complete the definition of a generalized graph theory, we specify the graph isomor-
phisms,

G'=G (39.1)

which define equivalence classes of sine-area graphs analogous to the unlabelled graphs of

graph theory. Guided by the master equation (3.5.7), we choose the graph isomorphisms
O =0,z PEF (3.9.2a)
as those permutations 7 of {5} which satisfy

P (PO iy ey = f5d e (P (3.9.2)

()P (De(@r (i) = W7 (3.9.2¢)
where {p.(P)} is a set of phase factors |p.(p)] = 1, P € F for each allowed permutation.

Using the metric and structure constants of SU(n) in (3.5.4,5) we obtain the explicit

form of the graph isomorphisms in (3.9.2)

#[(F+ §)(modn)] = (x(P) + ;r((ﬂ)(mod n) (3.9.3a)
2(P)pa(d) __ o(x(P), ()

Gt Dlmodm) o) OO (@83

#[(~P)(mod n)) = (—x(p))(mod n) (3.9.3¢)

o() = pu(Ppal(~P(modn)o(x(F) - (3.934)

where 7(p) is a permutation of € F, {p«(F)} is a set of phase factors and 33”-;-?. sin(w (P x
§)/n). The relations (3.9.3a) and (3.9.3b) need only be satisfied for those p, § pairs with

non-zero 3 4.

82



The graph isomorphisms (3.9.2) are real magic-basis-preserving automorphisms of SU(n)
because the automorphisms

Ty = pa(P) T (3.9.4)

satisfy 7}' = Lgnpqly 1t also follows from (3.9.3b) that the graph isomorphisms (3.9.2)

are sine-area preserving

{sine-area( (), n(§))) = {sine-area(§, )} (3.95)

where
sine-area(p, §) = | sin(x(F x §)/n)| (3.9.6)

is the sine-area of any vector pair (5,§ |05 = 65 = 1) in a sine-area graph. In particular, all
the graphs in an equivalence class have the same set of sine-areas. All permutations x(p)
on SU(2) are graph isomorphisms !, and the equivalence classes of the sine-area graphs of

SU(2) are arranged horizontally in Fig. 23.

Following graph theory, a self-complementary sine-area graph
G~G (39.7)

is recognized when it is isomorphic to its complement (see Section 2.5.5).

The high-level constraints 87 = 8(_g(modn) of SU(N)metric select a subset of sine-area
graphs with dimension 2/(5U(Mmerecd which, according to eq.(3.4.4), are in one-to-one cor-
respondence with the level-families of SU(n)mecric. A8 in SO(n)4iay, the complete sine-area
graph on SU(n) is the affine-Sugawara construction {3,5,9] on this manifold, complemen-
tary sine-area graphs are K-conjugate partners [3,5,10,15), and self-complementary sine-area

graphs are self K-conjugate constructions.

¥The 6 permutations of (10}, (01) and (11) are generated by x; (01 — 10) and x3(01 — ,")' which satisfy
(3.9.4) with p.,(10) = p., (1) = ~p4, (01} = 1 and p,,(01) = pa, (11) = ipa, (10) = .
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In further detail, the action of any graph isomorphism 7 on a solution Lgin SU(n)metric

is
Ly= L,,@ , PEF (3.9.8)
which mirrors the high-level form in (3.9.2a). We have checked from (3.5.7), (3.9.2) and

(3.9.8) that the constraints of SU(n)metric are invariant under any graph isomorphism

Li = L(-ﬁ)(mod'n) — L’,= Li—ﬁ)(l‘nﬂdn) . (399)

and that Ly is automorphically equivalent to Ly in SU(n)maric. The point is that, as
in SO(n)diag, the graph isomorphisms are residual automorphisms of the ansatz, so that
isomorphically-equivalent sine-area graphs represent physically-equivalent level-families of
conformal field theories in the ansatz. There are no constraints in SU(2)metric, 50 all the
sine-area graphs of SU(2) are in SU(2)metric, and the conformal- field theoretic names of _
the equivalence classes of SU(2)metric are included in Fig. 23.

As another example, the 24 = 16 sine-area graphs of SU(3)metric are shown in Fig. 24,
along with their equivalence classes and the corresponding conformal-field theoretic name of
each class. In this case, the equivalence classes of the figure can be verified from eq.(3.6.3),
which is the action of the graph isomorphisms on the set of independent variables. We re-
mark in particular that each vertical pair in the self K-conjugate construction SU(3)#{m, 2]
is a pair of self-complementary sine-area graphs.

The enumeration of equivalence classes on SU(n) is the next step in the study of

sine-area graphs.

3.9.2 Generalized Graphs of g

It is clear that the high-level form of each gmetric

L®=¢,€{0,1}, a=1,---,dimg (3.9.10a)
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8, =6, when 1, #0 (3.9.10b)

defines, as in SU(N)metric, an “edge-list” of a generalized graph theory on g, although
a subset of the generalized graphs will be selected when the constraints in (3.9.10b) are
non-trivial.

The discussion in Section 3.9.1 can be generalized for any g, giving a prescription which
defines a generalized graph theory on g, given a magic basis and the corresponding edge-list
{8a,a=1,-: -,dim g} of the corresponding ansatz gmeqric. Without further information, we
may think of the generalized graphs as .the 24m9 gets of index-edges {a)} for which 6, = 1.

The isomorphisms of the generalized graphs are those index-edge permutations » which

satisfy
6, = 6.() (3.9.11a)
£a(@)pe(b) fu(aynpy™ ) = Jar“palc) (3.9.11b)
P (a)Pa(b)ngaynit) = Mab (39.11¢)

80 that x € Autg. We have also checked that, when the magic basis is real and {p.(a)} is

a set of phase factors, then « is a real magic-basis-preserving automorphism of g and
L, = Ly (39.12)

is automorphically equivalent to L, in grmetric. It follows that isomorphically-equivalent gen-

" eralized graphs are physically-equivalent level-families of conformal field theories in gmeeric.
We finally note that the possibility of a simpler description exists when the edge-index

a has a comnposite structure. In the case of the graphs of SO(n)giag, for example, we have
a=ij, 1<i<j<n (3.9.13)

and the set of allowed permutations € Aut SO(n) in (3.9.11) is the set of all permutations

of the graph points {i}.
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3.10 Conclusions

The general class of metric ansiitze developed in this chapter, enables us to study large
slices of affine-Virasoro space.

We have shown that, given any magic basis of simple g, the Virasoro master equation

admits a metric ansatz gmetric
magic basis of g — conformal field theories of gnetric (3.10.1)

whose level-families are classified by their high-level form. The 1-1 correspondence between
the high-level form of each solution and the exact level-family is the essence of the simplicity
of the ansatz.

Each gmetric is a large system of generically irrational conformal field theories. More-
over, when a magic basis is real on compact g, high-level analysis shows that the level-
families of the corresponding gyetric are generically unitary as well. Each of the two exam-
ples of a real magic basis, has resulted in a corresponding metric ansatz with remarkable
structure: The level-families of SO(n)4is, are isomorphic to the graphs of order n [29] and
SU(n)metric shows irrational central charge at finite order of the high-level expansion. Both
ansitze contain self K-conjugate constructions.

Guided by the master equation, we also defined the sine-area graphs of SU(n), which
label the conformal field theories of SU(n)metric- In similar fashion, each magic basis
of g defines a generalized graph theory on g, with graph isomorphisms in Aut g, whose

generalized graphs label the conformal field theories of gpetric- The overall picture is

conforma! field theories of gneric
magic basis of g < . 1l (3.10.2)

generalized graph theory on g

and we expect that many other inagic bases can be found, with their corresponding metric

ansitze and generalized graph theories.
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The master equation seems to define gra'ph theories in order to classify its own solutions.
This connection between the Virasoro master equation and graph theorics has so far been
the best organizing principle, classifying large subsets of the bewildering number of solutions
of the master equation. In particular, each magic basis will give a corresponding ansatz
Gmetric, whose size is as large as one graph-theory unit. The mathemalical structure that
the master equation imposes on its own (generalized) graph theories, associating conformal

field theories to (generalized) graphs, might be interesting both in physics and mathematics.
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Tables

Table 1. Connected constructions in SO(n)aiag

Table 2. Irreducible constructions in SO(n)giag

manifold total irreducible new
irreducible | affine-Sugawara | irreducible

constructions nests constructions

50(n)diag irn ir(AS)a ir¥
S0(1) 1 1 0
50(2) 1 1 0
S0(@3) 1 1 0
S0(4) 2 1 1
S0(5) 9 1 8
S0(6) 69 1 68
SO(7) 663 1 662
SO(8) 9,889 1 9,888
SO(9) 247,493 1 247,492
50(10) 11,427,975 1 11,427,974

manifold all connected fundamental new
constructions | constructions | affine-Sugawara connected

nests constructions

S50(n)diag gn Ca C(AS)n ct
S0(1) 1 1 1 0
50(2) 2 1 1 0
S0(3) 4 2 2 0
SO(4) 11 6 5 1
S0(5) 34 21 12 9
S0(6) 156 112 3 79
S0(7) 1,044 853 20 763
S50(8) 12,346 11,117 261 10,856
50(9) 274,668 261,080 766 260,314
S0(10) 12,005,168 11,716,571 2,312 11,714,259
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Table 3. The graphs of SO(6)gieg

[ G auto G :ni% contormal construction L(G)| {247} G
o] 32 Sg | 1 L-0 (0.0,0.0,0.0) @
1] =2 |2xs, |15 S0(2) (0.0.0.0,1,1) @
2 Tor |zas, | so $0(3)/S0(2) {0.0,0,1,1,2) @
T | @t]es (soe2n’ (0.0.1,1.1,1) @
Il A LS, |sss) 20 S0(3) (0.0.0,2,2,2) @
>—~: S22z, | 60 SO(4)/SO(3) (0.0,1.1.1.3) @
oo o | 222|180 SO(4fd.4] ©.0.1.1.2.2)] <>
S0« | 22z, |180]  (SO(3ySO(2))x50(2) (0.1.1.1.1,2) < >
= zyxs) 15 sog2)® (L1101 @
4 I: D2, | 45 sSoso)’? (0.02.222)] XX
> : Zx2, [180 SO(4)/SO(31/SO(2) {0.0.1,2,2,3) @
._}_. . s, | 30 SO(5)/S0(4) {0.1.1.1,1,4) @—<
oo se| 2, |60 sO(sPid.6l, 0.1.1.2,2.2) @
>_.4 o Z, [360 SO(5(d.7), (0.1,1,1,2,3) <@
A . |spz]e60 SO{3)xS0(2) {0.1,1,2,2.2)
ey
>—. —e | S;x2, | 60]  (sO(aysO@)xSO(2)  |(1.1.1.1.1.3) <Z)
MDA (Z* | 90 (S0(3y50(2))° (1.1.1,1.2,2) <g>
el P X5 [T SO(4Md.4]xSO(2) (11.0.1.22) <>
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Co G auto G Ei%) conformal construction L(G) (2&?’} G
5 N: |@?]| o0 SO(4)/50(2) 10.0.2.23,3) [K>=-
D.( o | 222|180 so(syso4yso(z)y  |e.1.1.2,2.4) @-.
’k S 6 S0(61/SO(S5) (1.1,1,1,1.8) @ .
Q o | Dy | 72 SO(5Yf(d.2) (0.2.2,2,2,2)
ed\e o] Zz |360 s0(5Y"(d.6], (0.1,1,2,3,3) <§
I>_** o] Z2 |360 SO(5Pd. )2 (0.1,2,2,2,3) @
e o | 2Z; |360 sopsysosen, |i.1.2223)] KA
Z*| 90 SO(6)(d.51, (11033 <=
. s, 120 so(sf(a.7], TRRRERT W=
I z, {360 SO(6)fd.9}, (1.1,1,2,2,3) @
—eoeeoe| Z, | 360 S0(6)d.97, (1.1,2,2,2,2) @
>—.—.—‘ 2, |3eo SO(6d. 1], (1.1,1,2,2,3) @
[j —e | Dx2,| 48] (SOMMSO@)*SOR) [(1.1.2.2,2.2) -@-
.é spz,| 60| (so@yso@soE)  |(1.1.2.2.2.2) @}
p—. — | Zx2z,| 180] (sO(4)/50(3)50(2))x50(2) | (1.1,1,2.2,3) <>
6 m : SxZL{ 15 SO(4) (0,0,3.3,3,3) ‘@'
=1 « | 2s:| 60 SO(SM(SO(3)xS0(2))  [(0.2.2,2,3,3) '@4
M o | z2*] 90 80(5)150(4)1(80(2))’ 0.2.2.2,2.4) @—‘
-er—- « | 2z, |3eo]sosysoysoEso) |(o.1.2.2.3.4) w
I><. ZxS,| 60 SO(6)/SO(5)/SO(2) (1.1,1,2,2,5) @ .
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Co G lauto G 8%) conformal construction L(G) {2 J” G
6] I« | z |60 sosysos)ide), fo.z2.23.3)| KA
P - | 7 {360 sospsoEa,  |o.1.23.3.3)] P
O o, | 60 soef=s0(6Md.3l  f2.2.2.2.2.2) E
’_L‘ S, |120 SO(6)7(d.4} (1.1,1,3,3,3) '&
.—Q-. 180 soeMd.7], 102233 M1
b—< 22, | 180 so(6)jd.8], 1.1.223.3)  Jre=
O( Zxz, | 180 s0(6/(d.8), (1.1.2.2,2.4)| D
D« Z, |360 so(6)(d.9], (1.2,2,2,2,3) @
I z, {360 so(6d.97%, 1.1,2.23.3)] <>
O_._. Z, |360 so(6)*(d.11), (1.2,2,2,2,3) <D>
D< | z [a60 soeMa.11], (1.1.1.23.4) >
e | 2. {360 so(ed.11], (1.2.2.2.2.3)] 5]
K z, {360 SO(6/1d.41)s 2224 T
Aol v |20 SO(6)(d. 15}, (1.1.2.23.9)] <]
A A kshz| o (soq)’ (2.2.2.2,2.2) @
N — | (z3°] 90 (SO(4)SO(2)Ix80(2)  [(1.1,2.2.3.3) @-
2 RO PN S0(5)/50(3) 0.2.2.2.4.4)] <
G- - | s, |r120 sosysouysoE)  f.1.3.3.3.4)] P
B> o | 2xz] 180 SO(S)M((SO3V/SO(2))x(SO(2)§(0,2.3.3.3.3) eq
qu @] 90| soeysosmso@y? |n.2.2225 P -

co G auto G ?(%) formal o tion LGY (247} G
7] & |22 |100] sowersosysoEyso@) (1.1.2235)] B> o
K> - 2, }3s0 SO(5¥SO(4)¥(d. 4] (0.2,2,3.3.4) Izﬁ
D>l | @] o0 so((d.5l, 222233) <>
ja s kT SO(6/(d.6} 22233 <P
@« s, jt120 so(ef(d.71, (1.2,2,2,3.4) Q-‘—‘
—P— |Z%|100 soEMa.7]; 019333 G
e | 222|180 soefa.71, (12244 <P
L1 |2=|teo soef(d.7], 222233 <]
¢< ZxZ, | 180 SO(6)(d.8] (1,1.2,3.3.4) @**
04 Zx2,| 180 sO(6)[d.8], (2.2,2.2,2,4) Q}«
({)« 252, | 180 SO(6/(.81 122333
q} z, |3so SO(EP[d.9]5 (2.2,2.2,3.3) E}
I | z 360 so(6(dl, (22333 N
P—— | 2z |360 SO(E[d, 1) 1.2.233.3)] <=7
B Z, |3s0 soEfd.11], (1.2.2.2.3.4) @—o
._M Z, | 3so So(6)f(d. 111, (1.2,2.2,3,4) @—‘
1 1 | 720 soefa.1s),  |0.2233.3 K1
[ﬁ 1 |720 SO(6)1(d,15], .22:23.4) ">
.N. t {720 so(6f*1d.15], 012334 (I
B o |sez] 15 SO(4)xSO(2) (113333 <>
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Figure Captions

Fig.1 a} Connected graphs,;

b) Disconnected graphs.

Fig.2 complelegraphs = affine-Sugawara constructions = fundamental affine-Sugawara nests

of depth 1.
¥ig.3 K-conjugate graphs on SO(3) and S0O(4).

Fig.4 complete N-partite graphs = fundamental coset constructions = fundamental affine-

Sugawara nests of depth 2.

" Fig.5 a) fundamental coset graphs with depth ) insertion & fundamental affine-Sugawara
nests of depth 3;
b) fundamental coset graphs with depth 2 insertion = fundamental afline-Sugawara
nests of depth 4;
¢) fundamental cosel graphs with depth d—-2 insertion = fundamental affine-Sugawara

nests of depth d.

.Fig.6 Complementary representation of fundamental aﬂineSugaWa.ra nested

graphs.

Fig.7 Irreducible and reducible graphs in graph space. The dashed lines indicate the action

of K-conjugation on the graphs of cach category.

Fig.8 a) The comnplete bipartite graph SO(6)/(SO(5) x $0(1)) = SO(6)/SO(5);
' b) The fundamental afline-Sugawara nested graph SO(6)/({S0(3)/S0(2)) x(50(1))*)
= SO(6)/50(3)/50(2).

:I"ig.9 The first eight identity graphs are new counstructions in SO(6)yiay-
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Fig.10 The symmetry factor of this nests is S(G(SO(2)x SO(1)))-S(G(SO(1))-S(G(50(1)) =
2.

Fig.11 a) Connected incomplete bipartite graphs, or broken N=2 coset graphs, are new
irreducible constructions.

b) The broken N=2 coset graph SO(6)/SO(6)*{d, 5.

Fig.12 The cycles C,,n 2 3 and paths F,,,n > 4 are broken N=2 coset graphs and hence

new irreducible constructions.

Fig.13 a) Broken N=2 affine-Sugawara nested graphs are new irreducible constructions.

b) The broken N=2 affine-Sugawara nested graph SO(6)#¥[d, 4).
Fig.14 The first six self-K-conjugate constructions.
Fig.15 The Cartesian product graphs G; x (K7 x K3).
Fig.16 The m;ximal-syumletric construction SO(?u)f,.

Fig.17 The n-cubes Q,, = K3 x Q,,_;,n > 3 are broken N=2 coset graphs and hence new

irreducible constructions.
Fig.18 The labelling is used to obtain the subansatz of the graph.
Fig.19 SO(2n)*(d, 4).
Fig.20 SO(2n + 1)¥[d, 6].
l’ig.?l Central charges in SU(.")),,.,,,.-C: The crossing at level three is the deformation SU(3)§.

Fig.22 High-level flow of the level-families in SU(3)meeric- The brackets show the set {5} for

which ;= 1.

Fig.23 The sine-area graphs of SU(2).
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