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Abstract 

In part one we report on field calculations along the conductor in the end region of the SSC 
arc-quad. We have determined that the maximum field in the 2D section is 5.04 tesla located at 
the pole turn of the inner layer somewhere in the middle of the cable (strand 9)( fields are at 
6500 A f. At the "end" the maximum field is slightly higher 5.09 tesla located at the overpass 
( strand 11). The iron contribution was included assuming infinite permeability. In part two 
we include results of a 3D representation of the magnetic field inside the bore. The complete 
analysis, for which a brief description has been included here , is described elsewhere*. This 
form for presenting the field is suitable for interfacing with other codes that make use of the 3D 
field components ( particle tracking and stability). 

Part 1 — maximum field at the conductor 

The conductor geometry and fields are summarized in the following figures. 
+ The 40 mm SSC Arc Quadrupole - Magnetic Design — S.Caspi, M.Helm , and L.J. Laslett 
, SC-MAG-314 , LBID—1677 , November 1990. 
* 3D Field Harmonics — S.Caspi, M.Helm , and L.J. Laslett, SC-MAG-328 , LBL-30313 , 
March 1991. 
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Figure 1 Coil schematic and IRON location in the end region. 
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Figure 2 Conductor geometry in the end region of the SSC quad — LAYER-1 TOP. 

Figure 3 Conductor geometry in the end region of the SSC quad — LAYER-1 SIDE. 
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Figure 4 Conductor geometry in the end region of the SSC quad — LAYER-2 TOP. 
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Figure 5 Conductor geometry in the end region of the SSC quad — LAYER-2 SIDE. 
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Figure 6 Strand number and location where fields have been calculated. 
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SSC Arc - Quad 
End Region - Conductor only 
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Figure 8 Absolute field along pole lum — CONDUCTOR ONLY. 

5 



4000.0 

3000.0 

m 2000.0 

1000.0 

0.0 

strand 14 

strand 1 

SSC Arc Quad 
Iron contribution. 

Iron Free 

0.0 5.0 10.0 15.0 30.0 

Distance along strand (czn) 

Figure 9 Absolute field along pole turn — IRON ONLY. 
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Figure 11 Absolute fbld along strands 1 and 11 — with and without iron. 
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Figure 12 Absolute Held at the end oveipass. 
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Figure 13 A 3 dimensional plot of :'ie field magnitude as a function of strand number 
and position along the cable — view is from the straight section towards the "end". 
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Forces and Torque 

We demonstrate a possible detailed calculation by producing the field around the strands of 
the pole turn of the inner layer in the straight section. The figure below shows the locations 
where the fields have been calculated. The next figure plots the absolute field at each location. 
The force on this turn was calculated to be Fx=131 lb/inch , Fy=-107 lb/inch. 
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Figure 14 XY location around pole turn where field is calculated. 
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Part 2 — 3D Field Components inside the bore. 

We note that in the curl-free divergence-free region near the axis r=0 the field components 
may be expressed as given by B = — W where V is a scalar potential function for which 
V 2V = 0. The proposed solution can be written in the form : 

K = ^V„(r , : )s in7i0 
n=l 

with : (1) 
1 
rdr\r Or ) + dz">- r* 

We note that if V n were to be free of any z-dependence, the acceptable solution for V„ near 
the axis would be expressed by a single term proportional to r" (i.e., involving r raised to the 
positive power n); more generally one would represent V n by a power series involving factors 
r**2k, commencing with r", and employing z-dependent coefficients : 

i=o 
with C n tt(z) satisfying the recursion relation (2) 

r i.\- 1 rf2C„,t-i 
4k(n + k) dzL 

The magnetic field can be derived accordingly as : 
dV„ _, Br ii = —^— sin nO = o r n ' ' " sin nO Or 

Bg „ = V„ cos nO — gfnr"~ cos nO (3) 
r 
oVn B- „ = —-—sinnC = g2nrnsmnO Qz 

In order that the series for V„ satisfy the differential equation written above we introduce 
.4„(z) and express the coefficients gv„ , g$n as general functions of r and z as shown below : 

„ l , . . i _ r i ,a+l n'.{n + 2k) A2k). ,2k 
22H-!(n + k)\ 

Explicitly we can write the above as : 

+ ;lSl(;, + l)(H + 2)(n + 3) ' 4 " ( z ) ' ' 

W M ( r , .-) = -„/!.(.-) + ^ T ) . < ; ( ^ ' - 2 " 32(, i + l ) ( , i + 2 T i : : " ( j ) r " 

+ :iS1(I; + l)(r 1+2)(n + 3 ) / 1 " ( 2 ) ' ' 

(4) 

(5) 
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In analogy to Equations 4 and 5 wc write : 

or explicitly : 

°-lr>* = - ^ + K^T)** - 32(,i + l1)(n + 2)^"(^'-4 ( ? ) 

We have computed g m , gg„ and gzn from which the A(z) and its derivatives have been 
computed. In the following figures we show results for the A's derived from the conductor 
only, the iron only, and both iron and conductor together. For the conductor alone the A's have 
been computed up to sJiz' for n=2,6,10,14 and 18. The quality of the iron contribution at the 
present time is limited and therefor the A's for the iron have been computed only to ^ j f° r 

n=2,6 and 10. For the conductor+iron case we have carried the A's up to n=14. 

14 



11000 

10000 

90 00 

6000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

SSC Arc q u a d - QC 
AZ(i) ml r=1.0 cm 

Figure 16 The quad funcUon ( n=2 ) A2(z) — CONDUCTOR ONLY. 

SSC Arc Quad - QC 

600 

700 

A2(i) .t r=1.0 cm 600 

700 - ^ • 

600 1 

GOO 

400 

300 y 
200 \ i 
100 V •_ 

20.0 

2 (cm) 

Figure 17 The quad funcUon ( n=2 ) A2(z) — I R O N O N L Y . 
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Figure 18 The quad function ( n=2 ) A2(z) — CONDUCTOR and IRON. 
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Figure 19 The first derivative function of n=2 — A2'(z) — CONDUCTOR ONLY. 
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Figure 20 The 6rst dcrivaiiw function of n=2 — A2'(z) — IRON ONLY . 
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Figure 21 The first derivalive function of n=2 — A2'(z) — CONDUCTOR and IRON. 
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Figure 22 The second derivative function of n=2 — A2"(z) — CONDUCTOR ONLY. 
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Figure 23 The second derivative function of n=2 — A2"(z) — IRON ONLY. 
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SSC Arc Quad - QC 
A2"<z) at r=1.0 cm 

Figure 24 The second derivative function of n=2 — A2"(z) — CONDUCTOR and IRON. 
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Figure 25 The 3-rd derivative function of n=2 — A2'"(z) — CONDUCTOR ONLY. 
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Figure 26 The 3-rd derivalive function of n=2 — A2'"(z) — CONDUCTOR and IRON. 
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Figure 27 The fourth derivative funcUon of n=2 — A2""(z) — CONDUCTOR ONLY. 
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Figure 28 The fourth derivative function of n=2 — A2""(z) — CONDUCTOR and IRON. 
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Figure 29 The dodccapolc function A6(z) — CONDUCTOR ONLY. 
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Figure 30 The dodecapole function A6(z) — IRON ONLY. 
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Figure 31 The dodecapole function A6(z) — CONDUCTOR and IRON. 
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Figure 32 The first derivative function of n=6 — A6'(z) — CONDUCTOR ONLY. 
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Figure 33 The first derivative function of n=6 — A6'(z) — IRON ONLY. 

23 



SSC Arc Quad - QC 
.0 

AB'(z) at 1.0 cm 
.0 

• 

5 111 A : 
"I • ' \ : 

"I • 

! | : 
I -

" 

- 1 0 

• 
V 

2 (cm) 

Figure 34 The first derivative function of n=6 — A6'(z) — CONDUCTOR and IRON. 
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Figure 35 The second derivative function of n=6 — A6"(z) — CONDUCTOR ONLY. 
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Figure 36 The second derivative function of n=6 — A6"(z) — IRON ONLY. 
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Figure 37 The second derivative function of n=6 — A6"(z) — CONDUCTOR and IRON. 
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Figure 38 The 3-rd derivative function of n=6 — A6"'(z) — CONDUCTOR ONLY. 
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Figure 39 The 3-rd derivative function of n=6 — A6'"(z) — CONDUCTOR and IRON. 
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Figure 40 The fourth derivative function of n=6— A6""(z) — CONDUCTOR ONLY. 
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Figure 41 The fourlh rtoivative function of n=6— A6""(z) — CONDUCTOR and IRON. 

27 



SSC Arc Quad -QC 
AIO<x) »t r=1.0 c 

< 0.8 
% 

-0.2 
10.0 30.0 20.0 

Z(cm) 

Figure 42 The 20 pole funcUon A10(z) — CONDUCTOR ONLY. 
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Figure 43 The 20 pole function A10(z) — IRON ONLY. 
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Figure 44 The 20 pole funclion A10(z) — CONDUCTOR and IRON. 
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Figure 45 The first derivative function of n=10 — A10'(z) — CONDUCTOR ONLY. 

29 



SSC Arc Quad - QC 
AlQ'(i) at r=1.0 cm 

h : 

Z(cm) 

Figure 46 The first derivative function of n=10 — A10'(z) — IRON ONLY. 
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Figure 47 The first dcrivaUvc function of n=10 — A10'(z) — CONDUCTOR and IRON. 
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Figure 48 The second derivative function of n=10 — A10"(z) — C O N D U C T O R ONLY. 
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Figure 49 The second derivative function of n=10 — A10**(z) — IRON ONLY. 
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Figure 50 The second derivaiive funclion of n=10 — A10"(z) — CONDUCTOR and IRON. 
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Figure 51 The 3-rd derivative funclion of n=10 — A10'"(z) — CONDUCTOR ONLY. 
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Figure 52 The 3-rd derivative function of n=10 — A10"'(z) — CONDUCTOR and IRON. 
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Figure 53 The fourth derivative function of n=10 — A10""(z) — CONDUCTOR ONLY. 
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Figure 54 The fourth derivative function of n=10 — A10""(z) — CONDUCTOR and IRON. 
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Figure 55 The 28 pole function A14(a) — CONDUCTOR ONLY. 
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Figure 56 The 28 pole function A14(z) — CONDUCTOR and IRON. 
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Figure 57 The first derivative function of n=]4 — A14'(z) — CONDUCTOR ONLY. 
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Figure 59 The second derivative function of n=14 — A14"(z) — CONDUCTOR ONLY. 
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Figure 60 The second dcrivaiivc function of n=14 — A14"(z> — CONDUCTOR and IRON. 
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Figure 61 The 3-rd dcrivaUvc function of n=14 — A14'"(z) — CONDUCTOR ONLY. 
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Figure 62 The 3-rd derivative function of n=14 — A14'"(z) — CONDUCTOR and IRON. 
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Figure 63 The fourth derivative function of n=14 — A14""(z) — CONDUCTOR ONLY. 
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Figure 64 The fourth derivative function of n=14 — A14""(z) — CONDUCTOR and IRON. 

SSC Arc Quad -QC 
A18(:) »t r-1.0 cm 

l\ 

\ \ 

10.0 20.0 

Z(cm) 

Figure 65 The 36 pole function A18(z) — CONDUCTOR ONLY. 
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Figure 66 The first derivative funcUon of n=18 — A18'(z) — C O N D U C T O R ONLY. 
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Figure 67 The second derivative function of n=18 — A18"(z) — C O N D U C T O R ONLY. 
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Figure 68 The 3-rd derivative function of n=18 — A18'"(z) — CONDUCTOR ONLY. 
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Figure 69 The fourth derivaUve funcUon of n=18 — A18""(z) — CONDUCTOR ONLY. 
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