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position of the connection between two-dimensioal conformal theory and 

a three-dimenional gauge theory whose lagrangian is the Chern-Simons 

density. 

This report has been reproduced directly from the best available copy . 

•This work was supported by the Director, Office of Energy Research, Office of High Energy 
and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under 

Contract DE-AC03-76SF00098. 



TABLE OF CONTENTS 

1. Introduction 5 

• 2. Monopole Backgrounds on the World Sheet 11 

3. Parafermions and Coset ~lodels 50 

(a) The Abelian Coset Model 51 

(b) The Non-Abelian Coset Model 92 

4. Classical W-Aigebra.s and :-;on-Abelian Coset Models 128 

5. Chern-Simons Quantum Mechanics, Modular Invariance and Monopoles 139 

6. Conclusion 17.5 

• 

4 



CHAPTER 1: Introduction 

Since 1984 there has been strong renewed interest in field theory in two and three 

dimensions. In that year Green and Schwarz discovered an anomaly-free string theoryl 

thereby launching hopes that there might be a unique, finite fundamental theory of gauge 

interactions and gravity. In the intervening years although the prospect of understanding 

physical interactions in terms of string theory have dimmed there have been vigorous efforts 

and inroads made in understanding aspects of low-dimensional field theory. 

String theory is an old subject that was first motivated by an attempt to understand 

the strong interactions2 • In particular it was discovered3 that, in the large N limit of 

the gauge theory Sl:(N), the dominant contributions from perturbation theory come from 

planar diagrams. This combined with earlier work4 suggested that one may think of mesons. 

hadrons and other strongly interacting particles as being essentially quarks tied together 

by tubes of strongly interacting gauge bosons. 

This idea was further expanded upon in ref.[5] in which a quantum mechanical theory 

of such an extended particle was described in terms of a lagrangian that measured the area 

of the_ surface swept out by the tubes as they propagate in space. It was thus discovered that 

because the area of the sheet swept out by the string didn't depend on the co-ordinates used 

to label the points in the sheet, that the resulting theory had a two-dimensional conformal 

im-ariance. The picture is as follows; as the string propagate in some background space. 

the functions that describe how the string is situated in space at every instant (called 

the embedding fields) if viewed in terms of the two-dimensional co-ordinates of the sheet, 

become fields of a conformal field theory. In two dimensions the conformal group is infinite

dimensional and its representations have been studied in ref.(6]. 

Two-dimensional systems that possess conformal symmetries are of interest for rea

sons other than string theory. Indeed, any two-dimensional system undergoing a second 

order phase transition will be describable at the critical point in terms of a conformal field 
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theory. Although there are very stringent conditions for the existence of phase transi

tion:; in sy!>tems of such low dimensionality there are a wealth of examples provided by the 

known conformal field theories. For more on the connection between conformal invariance 

and statistical mechanics see ref.[7]. Thus, conformal field theory is a subject that joins 

string theory, statistical mechanics and the representation theory of infinite-dimensional lie 

algebras in an unusual harmony. 

Conformal field theory has also lead to a surge of interest in possibly understanding 

theories of gravitation. In particular it was known from the early days of string theory that 

any string theory necessarily contains states of arbitrarily high spin and in the simplest 

consistent string theories that were written down there appeared massless spin one and 

spin two fieldse. The massless spin one fields were thought of as gauge bosons and the 

massless spin two field was to be identified with the graviton. Indeed, it was known that 

any interacting massless spin two excitation must contribute to the Einstein-Hilbert action 

and therefore may be thought of as a typ·e of graviton9 • In addition to finding these massless 

states the string also had excitations that had negative mass-squared. These states, called 

tachyons because their dispersion relation indicates that they travel faster than the speed of 

light, are not permisable on physical grounds. Furthermore, the early string theorists were 

interested in a theory of strong interactions and so didn't want a theory with either massless 

spin two fields or tachyons. Later it was found that in the supersymmetric generalization 

of string theory there are no tachyon states10. Although this theory still had a massless 

spin two field, many physicists began to regard this theory as a toy model for a theory with 

both gravitation and gauge interactions. 

Indeed, gravity arises in a very natural way in (closed) string theory. As remarked 

earlier, one may think about the string propagating in some background spacetime in terms 

of constrained embedding fields. These fields become those of a two dimensional field theory. 

Such a system has been analyzed in detail in ref.[ll] in which it is shown that consistency 

of such a model (at the level of quantum mechanics) requires the background spacetime to 

be a solution of the free space Einstein equation. This is a very stringent condition and 
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may be understood from many points of view. 

Trying to understand gravity as a quantum theory has been a hallmark of string 

theory. Although two dimensional gravity is trivial (in the sense that the equations of 

motion are satisfied identically) conformal in variance is part of the classical in variance of 

a two dimensional gravity theory. Understanding how to represent this classical invariance 

as unitary transformations on the Hilbert space of the theory gives one a sense of what 

a quantum theory of gravity might look like. One conventionally thinks of only metrical 

theories of gravity but it has been pointed out in ref.[l2] that if one imagines including in the 

path integral contributions from metrics that are singular and of arbitrary signature (called 

studying gravity in the "unbroken" phase to draw analogy with the phases of the </>4 model) 

one may rewrite three dimensional gr~vity as a topological theory. By a topological theory 

we understand a field theory that does not involve the background metric. Thus integrating 

over the metrics (as one is instructed to do in a path integral of gravity) is trivial. This idea 

had its antecedent in understanding t~ree dimensional topological gauge theories13. One 

particularly interesting facet of this approach is that it allows one to understand conformal 

field theories from another point of view, namely the conformal invariance is a residual 

symmetry of the three dimensional general c~ordinate inva.riance. There is still much to be 

done to understand more precisely the connection between the three dimensional topological 

field theories and two dimensional conformal field theories. 

This thesis contains work done over the last few years that pertains to the abo\'e 

discussed topics. Since most of this work has already been published an effort has been 

made to preserve the form in which the work appeared. For each paper the title page has 

been included because of joint authorship. Chapter I contains the paper "Monopoles on 

the World Sheet" in which the effect of including non-trivial gauge backgrounds in the path 

integral of a simple coset model is investigated. Coset models are a particularly ubiquitous 

type of conformal field theory and so the phenomena remarked upon here are presumed to be 

of a general nature. Chapter II contains two monographs on computing the Poisson brackt>t 

of coset models, the first one for the case of abelian cosets and the second one for non· 
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abelian cosets. The results of this investigation compare with the classical limit of certain 

known theories and really provides a unifying fram~work for sem.klassically understanding 

these theories. The Poisson bracket of chapter II is then used in a short note in chapter 

III to show how one may understand the classical limit of ll-' algebras. Finally, chapter IV 

contains a paper which explores the connection between topological field theory in three 

dimensions and conformal field theory in two dimensions. Chapter V contains a conclusion 

and this authors' outlook. 
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CHAPTER 2: Monopole Backgrounds on the World Sheet 

Since the advent of string theory it has been useful! to thing about the string propagat

ing in some geometrically fixed, i.e. classical, background. In this first paper we investigate 

what effect a monopole background will have on a string. As described in the introduc

tion to this work, this is an interesting question because a broad class of models (the so 

called coset constructions) for the compactification of the theory involve integrals over a 

non-dynamical gauge field. Thus it is natural to ask what may be learned about the theory 

by studying it in non-trivial gauge backgrounds. 

The entire paper is a description of a very particular type of coset i.e. those cosets 

that may be realized in terms of free fermions coupled to an abelian gauge field (as an 

example consider S0(2n)/S0(2) · cosets). Highlights include a new spectrum for states 

propagating in this monopole background and also novel modular properties at genus one. 
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I. Introduction 

Compactification has emerged as one of the central problems of string theory. 1- 8 Vari

ous compactification schemes have already led to the construction of semi-realistic models . 

The simplest version, the toroidal compactification, can be described either in the language 

of bosons or of fermions on the world sheet.9- 13 These models have, in general a built-in 

SO(N) Kac-Moody algebra. The next simplest version of compactification makes use of the 

coset construction. 14 By projecting out a suitable subgroup of the initial compactification 

group, it is possible to construct various non-trivial models, including the whole series with 

central charge less than one. 14 This projection can be carried out implicitly by coupling 

suitable currents of the free fermion model to gauge fields without kinetic energy terms. 

These gauge fields then act as lagrange multipliers and set the corresponding currents equal 

to zero. 8, 15,16.17 

In this paper, we investigate the possibility that the gauge fields used in the coset 

construction have non-trivial topological structure. The simplest possibility is an abelian 

gauge field with non-·vanishing total flux over a compact surface; the total flux is then 

quantized in integer multiples of fundamental monopole charge. (For an excellent review, 

see ref.(20]). In section 2, we consider the model where the U(l) current of free ferrnions 

with a flavor quantum number is coupled to a gauge field. \\'e allow the gauge field to carry 

non-trivial monopole charge by introducing a "classical" background field with non-trivial 

topology. In the next section, correlation functions of gauge invariant fermionic bilinears are 

explicitly calculated by carrying out the summation over backgrounds of different monopole 

charge. The result of this two dimensional "instanton" calculation is similar to the four 

dimensional one: invariance under chiral rotations is spontaneously broken. We have also 

factorized the correlation functions and study the resulting spectrum. In section 4 we 

investigate the modular invariance of the model by studying the zero mode solutions on 
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the torus. Although we present some unusual features, the standard sum over the four 

spin structures is still modular invariant. Finally, in the last section, we summarize our 

conclusions and discuss possible extensions. In the appendix that follows, the analysis of 

modular invariance is extended to non-zero modes. 
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II. The Model. 

We start with K. Dirac fermions in two dimensions, coupled to an abelian gauge field 

A,.. that serves as a Lagrange multiplier. The action is given by 

,. 
C = L: tP(i ,+ ,4)tP0

, (2.1) 
a=l 

where the metric is Euclidean and the two dimensional gamma matrices are hermitian. 

Integration over the gauge field imposes the constraint that the current must vanish 

j,.. = L:ti?;,..?Pa = 0. (2.2) 
Q 

Since this constraint is awkward to implement directly, it is customary to first eliminate 

the gauge field by a redefinition of the fermion fields. Consider taking the gauge 

which allows one to set 

where o is a scalar field which can be absorbed by a redefinition of the fermions: 

with /3 = h1i2· However, by virtue of the anomaly equation 

where, 

},..,3 = i L:tP/,../3tP0 = EJ.Wj,_, 
a 

15 
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(2.3b) 

(2.4) 

(2.5a) 

(2.5b) 



this redefinition induces an extra term in the action: 

K. 2 b..C = --(8;A>) . 
2rr 

(2.6) 

So far, all this is well known; however, here, we wish to generalize the preceding analysis 

to gauge fields associated with monopoles. Consider a compact surface, I:, like a sphere or 

torus; then it can be shown for arbitrary genus that the gauge configurations satisfying the 

monopole quantization condition 

(2.i) 

with N = integer, can be included in the functional integral over the gauge field A~. If I\' is 

different from zero then it is not possible to globally define an A~ satisfying eq.(2. i); rather 

the vector potential '"ill be a nontrivial U ( 1) bundle. 

In particular, the field ¢ of eq.(2.3b) cannot be defined globally. To overcome this 

problem, we replace this equation by 

(2.8) 

where A~ is a fixed, patch-dependent gauge field that satisfies eq.(2. i), and the field¢ is now 

globally defined. One may think of .4~ as a classical background field that carries the net 

monopole flux, and¢ may be thought of as the quantum field (responsible for redistributing 

the given monopole flux) to be path integrated. This model is still conformally im-a.riant, 

both classically and quantum mechanically, since a conformal transformation would change 

A~ only by terms that can be removed by suitable gauge transformations (A~- A~+o~o, a: 

not respecting Do = 0 necessarily) and shifts in ¢. Since we wish to perform path integration 

over a and¢ the model is manifestly quantum mechanically conformally invariant. Taking 

into account eqs.(2.4), (2.6) and (2.8), the final Lagrangian is 

(2.9) 
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where 

(2.10) 

and ~ satisfies the quantization condition eq.(2. 7). Actually there is a term missing from 

the above Lagrangian. This term contains the Faddeev-Popov ghosts from the gauge con

straint eq.(2.3a) and it plays an important role if the above model is incorporated into a 

string compactification scheme. It is, however, not relevant to the developments in this 

paper and will henceforth be omitted. 

· The Lagrangian given by eq.(2.9) is conformally invariant, and, as pointed out in the 

introduction, it can be used for string compactification or in its own right as an example 

of a conformal two-dimensional model. The calculation of the functional integral using the . 
Lagrangian of eq.(2.9) proceeds as in the standard instanton calculations: one has to inte

grate over the quantum fields for a fixed A~, and then sum over different A~ corresponding 

to different N (so long as A~ satisfies the conditions eq.(2.7) and eq.(2.3a)). 

In the next section, we shall present the details of the calculation of various correlation 

functions for the model on the plane. Before delving into these computations we briefly 

review some of the standard instanton lore that is relevant in our case. The most important 

feature of a calculation of the type outlined above is the resulting spontaneous breakdown 

of inva.riance under chlral rotations given by 

(2.11) 

As a result, the right and left fermion numbers are no longer separately conserved in the 

presence of monopoles; only their sum remains a good quantum number. The violation 

of chirality satisfies the following selection rule: If, in a given process, Nr and Ne are the 

number of the right handed and the left handed fermions (of any flavor) respectively, then 

the amplitude for the process is nonzero only when 

(2.121 
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where N is the monopole number. This selection rule directly follows from the existence of 

zero mode solutions to the Dirac equation in the presence of a non-trivial background. The 

index theorem guarantees the existence of N square integrable solutions to the equation 

(2.13) 

For positive N, the solutions are right handed (-y3 77 = TJ), and for negative N, they are left 

handed (1'3 77 = -TJ). Strictly speaking, these statements hold only on a compact surface, 

and later we will look for the solutions of eq.(2.13) on the plane, supplemented by the point 

at infinity. For A.~. we choose. 

(2.14a) 

where g is a smooth function with the following asymptotic behavior: 

g - -Nloglxl, 
l.rl-oo 

(2.14b) 

in order to satisfy eq.(2.i). 

In this fashion a Dirac singularity is introduced at infinity. It is possible to avoid this 

singularity by considering two overlapping patches, one around the origin and one around 

infinity, accompanied by two different functions g+ and g-, to be used in eq.(2.14a). One 

may easily verify that both methods yield identical end results and so for the purpose of 

exposition we choose to work entirely in one patch thereby putting a Dirac string at infinity. 

With the background given by eq.(2.14a), eq. (2.13) splits into two decoupled equations: 

Oz( TJR) - 8z(g )TJR = 0, (2.15a) 

(2.15b) 

where z = x + iy, z = x - iy. The solutions are given by 

TJR = fR(z)h(z, z), (2.16a) 
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(2.16b) 

where h = exp(g) and !R.L are entire analytic functions of their respective arguments. By 

virtue of eq.(2.14), the asymptotic behavior of his given by 

(2.17) 

Now, let us require the 7J be square integrable. For positive N, only 'TJR is square 

integrable, and the entire function fR has to be a polynomial of maximum degree N - 1. 

For negative 1.V the roles of 7JR and TJL are interchanged. The zero mode solutions are 

therefore given by the following list: 

(2.1 ia) 

for N > 0, nm,L = 0 and 

'TJm,R = 0 

n L = zmh-1(z,z) •tm, (2.1 ib) 

for N < 0, where m = 0, 1, 2, N- 1 throughout. 

There is small technical problem related to the question of square integrability on a 

plane. The flat metric which we have been using so far would eliminate the mode cor

responding to m = N - 1. By mapping the plane onto a suitable compact surface, for 

example, the sphere, and using the natural metric on this surface, one can easily show that 

this mode is indeed square integrable. Apart from this single issue, the details of the metric 

never enter the problem. 

So far, we have only considered the integer (periodic in rigid rotations of 211" about 

z = 0) modes. We know from standard string theory that half-integer (antiperiodic) modes 

are also important. They are properly defined on a double-cover of the plane, and the 
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corresponding wave functions are given by taking m = -~, ~. · · ·, N- ~- These functions 

will be used in constructing amplitudes in the next section. 

As expected for the periodic modes, the N square integrable solutions saturate the 

two-dimensional index theorem. Let nn(nL) be the number of right (left) handed zero 

modes. The index theorem; 

(2.18) 

is satisfied by the above solutions in eq.(2.17a,b). (C1(A) is the first chern invariant for the 

bundle A 14 ). We may include the antiperiodic modes in our accounting by looking at the 

double-cover of the sphere in which the total flux (and C 1(A)) will be 2.V. 

20 
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III. Correlation Functions on the Plane 

In this section, we sketch the calculation of various correlation functions on the plane 

and explicitly display some typical ones. We shall consider correlation functions of gauge 

invariant operators bilinear in the fermion fields. These fall into two classes: The chiral 

charge conserving operators (currents) given by 

j~1\z) = ~(z)tJ/i(z)- ~tJ/i + i..&;(¢)6°13, 
7r 

j':8 (z) = ~(z)~(z)- ~~- i..&z(¢)6°13 
7r 

(3.1) 

which belong to the first class, and chiral charge changing operators given by 

(3.2) 

which belong to the second class. The expressions following the arrow signs are in terms 

of fermion fields redefined according to eq.(2.4). The resulting 4> dependence in eq.(3.2) 

follows directly from eq.(2.4). On the other hand, the derivation of the 4> dependence in 

eq.(3.1) is more subtle; one has to either use the anomaly equation eq.(2.5a), or go through 

a point-splitting procedure in defining the currents. 

· Our goal is to deduce the spectrum of the theory from the correlations functions, 

and also to write these functions in factorized form in terms of vertex operators. Along 

the way, we will verify several analogues of the standard results of instanton physics in 

four dimensions; among them that chiral symmetry is spontaneously broken without the 

appearance of a (massless) goldstone mode. 

The starting point for the calculation of correlation functions is the standard functional 
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integral: 

(j(zt)j(::'l) · · ·j(zn)) = z- 1 j D¢D;D¢>j(z1)j(z'2) · · ·j(zn) N~oo exp [! d2z.CN(z)]. 

(3.3) 

In this expression, each j stands for either type of operator given in eq.(3.1) and eq.(3.2), 

and also, in order to simplify , .. ·riting, flavor indices are suppressed. 

The partition function, Z, is given by a similar integral without the operator insertions. 

and .CN is the lagrangian of eq.(2.9). The final sum is over background fields A~(N), labeled 

by the monopole charge S. The functional integral over the fermi fields can be carried out 

by first expanding these fields in eigenmodes of the Dirac operator; 

N-1 

t;>(z) = L Cm71m(z) + · · ·, 
m=O 

N-1 

~(z) = L Cm71~(z) + .. · (3.4) 
m=O 

and then integrating over the expansion coefficients c and c. In the above expression. we 

displayed only that part of the expansion that runs over the zero modes, since we shall 

only use the zero modes in the following discussion. The importance of the zero modes is 

due to the fact that upon substituting the mode expansion eq.(3.4) into .CN we find that 

the action is independent of c and c and, therefore (by Brezin integration), the functional 

integral vanishes, unless each coefficient appears once and only once in the expansion of the 

bilinear operators. From this observation, the following selection rules easily follow: 

a) The partition function Z receives contributions from the N = 0 sector only. 

b) When gil the bilinears are in the first class (eq.(3.1)), again only the N = 0 sector 

contributes. Since, in this sector, A~ can be set equal to zero, the model reduces to 

a sum of massless free fermions and a single massless free boson. 15l Clearly, nothin!.! 

new or interesting emerges from probing this sector. 
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c) Consider correlation functions of only second class bilinears. For the sector with 

monopole number N, a non vanishing correlation function must contain a minimum 

number of bilinears in order not to vanish. This occurs when all the zero mode func

tional integrals are each accompanied by a t/J or t~;• from the corresponding bilinear. 

The following selection rules are then easy to verify: For N > 0, the minimal nom,an

ishing correlation function must be built out of s+ 's only, and for N < 0, out of s_ 's 

only. Furthermore, referring to eq.(3.2), each flavor index o, as well as each index /3, 

must appear precisely INI number of times, and the selection rule of eq.(2.12) will be 

satisfied. In summary. for a given N, the "minimal" correlation functions contains 

INI K bilinears of second class, with each flavor index appearing INI number of times. 

Also, the insertions are necessarily all right handed ( s+ 's) for N > 0, and only left 

handed ( s_ 's) for N < 0. 

We shall now carry out the fermionic integrations for the minimal (simplest nonvanish

ing) correlation functions. It is clear that the answer will be an antisymmetrized product 

of the zero mode wave functions, given by eqs.(2.17), and so, up to an overall sign, the 

particular order in which each flavor index is attached to a particular bilinear is of no con

sequence. In other words, there is only one minimal correlation function to compute, and 

the computation can be done by choosing a particular set of flavor indices that satisfy the 

selection rules. Furthermore, the result factorizes, so it is sufficient to compute the zero 

mode contribution for a single flavor and fermion number; the final result is then a product 

of the partial results for different flavor species and fermion numbers. This is due to the fact 

that complete factorization is spoiled only by the necessity of skew-symmetry of the wave 

function for identical fermions; for non-identical fennions, there is no such constraint. At 

the cost of a slight abuse of notation, let us denote the result for a single species of fermions 
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by 

N-1 

VR = (II 1P.R(z~),) 
n=O 

N-1 

v~ = (II ~(z~)), (3.5a) 
n=O 

so that the complete result for positive N is given by 

I< I< 

vR = II vR II v~. 
o=1 13=1 

A similar result with \'R's replaced by \'L's holds for negative N. For the sake of clarity 

we have denoted by z~ the co-ordinate of the nth insertion of the a flavored bilinear. The 

expression for the \ ··s is easily calculated and yields 

N-1 

\'R =no II h(z~,z;:), (3.6a) 
n=O 

,.,·here no is the Van der ~Ionde determinant: 

D01 = det i(z~)m I = II (z~ - z~), ( 3.6b) 
n>m 

with nand m taking values from 0 toN -1. The result for the V's one obtains by replacing 

z's by z's, \l:ith the following overall result: 

(3.ia) 

where, 
~< N=1 { ~< N-1 } 

H =·II II h2(z~, ~) = exp 2 L L g(z~, Z!) , 
o=l m=O o=1 m=O 

(3.ib) 

and 

I< 

F = II II (z~- z~), 
o=l m>n 

I< 

F = II II (Z! - ~). ( 3. i c) 
o=l m>n 
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Having completed the fermionic part of the functional integration, we now do the 

integration over the field ¢. The lagrangian for¢ is given by eq.(2.9), supplemented by the 

exponentials in¢ resulting from the redefinition of the fermion fields. (See eq.(3.2)). The 

resulting functional integral is; 

(3.8a) 

with, 

(3.8b) 

This gaussian integral is easily done by shifting ¢ by 

(3.'9a) 

where ¢c satisfies 

(3.9b) 

Noting that 

p: = -Dg (3.10) 

from eqs.(2.10) and (2.14a), the solution to eq.(3.9b) is 

( 3.11) 

It is easy to verify that ¢c is not singular at lzl = oo, since the singularity of g given 

by eq.(2.14b) is cancelled by the sum over the logarithms. This is as it should be, since the 

coefficient of the logarithm at infinity measures the monopole ftux, a.nd in the separation 

of the gauge field given by eq.(2.8), ¢ wa.s stipulated not to carry any monopole flux. 

Substituting eq.(3.11) ba.ck into eq.(3.8a), we have 

B = AH-1 
exp {- 2~ L log lz:- ~~2 }, 

a,/3,m,n 

(3.lla) 
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where 

A= exp(-- d*z g(Dg)) "' I , 
21!' 

(3.11b) 

is a normalization constant. The final answer for the minimal correlation function is then 

the product of three factors: VR given by eq.(3.7), the factor A given by eq.(3.11b), and a 

remaining fermionic determinant due to non-zero modes; 

<IJ s~8 ) =A' exp { E E log jz~- z~l2 

oJ a m>n 

(3.12a) 

with :\' given by 

A' = Adeto ( i 9'+ .A c). (3.12b) 

The subscript 0 is a reminder that zero modes are to be omitted in computing the deter-

minant.-Although we assumed N > 0 in calculating this result, an identical expression is 

obtained if we start with .Y < 0 and replaces+ 's by s~s. 

A few comments about eq.(3.12) are in order. Firstly, the factors involving position 

variables (z's) are completely independent of the details A~, or equivalently, of g. They 

depend only on the monopole charge N, and even then only indirectly thorough the range of 

the indices m and n. (Remember, they run from 0 toN -1). The factor H, which depends 

on g, has disappeared completely from the final expression. The normalization constant 

:\' could still depend on g; it is, however, quite easy to show that it does not. 0ne makes 

an infinitesimal change in A~ and a compensating change in ¢, and using the anomaly 

equation eq.(2.5a), it is possible to show that these changes cancel. This is a statement 

of the fact that the result eq.(3.12) is gauge invariant. Thus, the correlation function is. 

as it should be, independent of the arbitrary split introduced in eq.(2.8). Although the 

preceding discussion establishes that A' is independent of the details of A~, it may depend 

on the monopole charge N. In the appendix, by evaluating the fermion determinant, we 
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shall show that this dependence is of the form 

(3.13) 

where ..X is a constant, which can be thought of as an effective coupling constant of the 

chirality violating process. 

Our next task is to deduce the spectrum of the N -:F 0 sectors from eq.(3.12). Since 

eq.(3.12) is in the standard Koba-:-;ielsen form, it can be factorized in terms of the well

kno\\"Il string vertex operators that depend only on the momenta entering the vertices. The 

exponent in eq.(3.12a) corresponds to the coulomb energy of various charges located at 

points z~. The momentum flowing into the vertex a,t z~ is simply the charge located there. 

Comparing eq.(3.12a) with the expression 

W = ~ L p~ ·p~loglz~- ~~2 
o,,8,m,n 

(3.14a) 

for the coulomb energy, we arrive at the following condition: 

Q {3 c 1 
Pm · Pn = Vc;r{3 - ~ (3.14b) 

The minimal solution to these equations can be expressed in terms of K. orthonormal 

vectors fP as 

where 

Q •Q 1 ""~ 
Pm = P - - L..,.- P ' 

K. {3 

•Q ~ c p • p = Vc;r{3• 

(3.1.5a) 

(3.1.5b) 

It is important to notice that the momenta do not depend on the subscript m, and 

therefore, the solution eq.(3.15a) is valid for all N. This means that we can forget about the 

monopole flux and simple assign momenta to both fermions and antifermions in accordance 

with their flavor only through eq.(3.15a). The constraint 

(3.16) 

27 



satisfied for all m, guarantees overall momentum conservation 

(3.1i) 
a,m 

if and only if each flavor index occurs with the same multiplicity. This multiplicity is exactly 

N, the monopole charge. An identical momentum assignment can be made for left handed 

fermions when N is negative. 

It is of interest to im·estigate the mass spectrum that follows from the momentum. 

assignment eq.(J.l-5). Consider a channel in which the ath flavor occurs n° number of 

times, where n° is a non-negative integer. The lowest squared "mass" in this channel is 

(3.18) 

Of course, starting with the lowest 1.\12 , there are integerly spaced higher excited states. 

If it were not for the second term in eq.(3.18), this spectrum could be identified with the 

spectrum resulting from toroidal compactification in K dimension. Eq.(3.18) corresponds 

to a compactification on a Lorentz lattice with a constraint and although the lattice has 

an indefinite metric the spectrum is readily seen to be non-negative (this is ammended by 

including contributions to M 2 from string excitations). 

Let us now examine correlation functions with a non-minimal number of second class 

bilinears for a given N, which, for the sake of definiteness, is again taken to be positive. 

In this case, there are a certain number of left-handed bilinears (s_ 's), in addition to s+ 's. 

The extra t/JL's will then contract with some of the tPR's, and the extra ;j)L's will contract 

with t/JR's, leaving behind an equal number (i.e. N) of uncontracted t/JR's and t/JR's. The 

uncontracted fermions make up the "minimal" correlation function which absorbs all the 

zero modes, and which has already been evaluated. The contractions will result in a product 
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of two point functions, to be calculated in the presence of the external field A~ given by 

eq.(2.14a). The two point functions, defined by, 

(3.19) 

satisfy the following equations: 

N-1 

2i(8zG:n + 8z(g)G2d = 62(z- z')- L 17m(z)17~(z'). (3.20) 
m=O 

The sum that appears on the right hand side of the second equation is over the posi-

tive chirality (right handed) zero modes defined by eq.(2.17a). In computing the G's, the 

functional integral over tt·R and ~ R is performed over only the non-zero modes, since the 

zero modes have already been accounted for by the minimal part of the correlation function. 

The delta function on the right hand side of the second equation in eq.(3.20) has then to be 

projected into the orthogonal complement of the space spanned by the zero modes, thereby 

explaining the appearance of the summation term. Of course, eq.(3.20) are only valid for 

N > 0; for N < 0, the roles of left and right, i.e. G12 and G21 have to be interchanged. 

The solution to eq.(3.20) is easy to write down: 

G12(z, z') 
__ 1 h(::)h-1

(::') _ ~1 (~) .• ( ') 
- 2 · 1 £- 17m .. Xm Z • 

1rl Z- Z m=O 

__ 1 h-1(z)h(z') _ NL-1 (~) • ( ') 
- 2 · -=1 Xm .. 17m Z • 

1rl z- ;; 
m=O 

(3.21) 

where Xm are solutions to the equation 

(3.22) 

After having gone through the trouble of projecting out the zero modes from the two 

point functions, we shall now argue that such a projection is unnecessary. In computing 
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the contractions, one can replace eq.(3.21) by the following simplified version: 

G
12 

_ {; __ 1_h(z)h-1(z') 
12 

- 27ri z - z' ' 

G
21 

_ {; __ 1_ h-1(z)h(z') 
21 - 27ri z - Z' . (3.23) 

To see how this comes about, note that the extra terms in sum in eq.(3.21) contain a zero 

mode wave function 1Jm or ry;,.. By fermi statistics, the product of these wave functions 

have to be antisymmetrized, so that for a fixed flavor index, each value of m can occur at 

most once. But each value of m has already appeared once in the "minimal" part of the 

correlation function; hence, the contribution of this extra term vanishes. 

Having taken care of the fermionic integration, we now return to the functi~nal in

tegration in the ¢ field. Immediately one sees that in this case, eq.(3.8b) is amended by 

additional terms of both signs. This is due to the fact that we have additional s_ 's and 

s+ 's and with the s_ 's there appear negative exponents of the field ¢J compared to s+ 's. 

(see eq.(3.2)). Equation (3.8b) is therefore replaced by 

L<f> = -
2
: (8~¢)2 - ;¢r= + 2¢(z) L q~62(z- z~), 

a,m 

(3.24) 

where q~ is +1 or -1, depending on whether the insertion at z~ is an s+ or an s_ respec-

tively. The integration over ¢J can be carried out as before, with the result that the flux 

dependent factors h and h-1 in eq.(3.23) are again canceled, just as they did in deriving 

eq.(3.12a). We will not exhibit the final answer, since it is somewhat complicated to write 

down. It turns out, however, that the result can be compactly written as a factorized oper-

ator expression in terms of free fermion and boson fields. The appearance of free fermions 

is not surprising since after the cancellation of the factors h and h-1 in eq.(3.23) one is 

left with free fermion propagators. Let us then define massless free fermion fields '1/Jo,R and 

'1/Jo,L• with the two point functions 

--~ 1 1 1 
('1/Jo,dz)t/Jo,dz)) = -

2 
.--,ca~, 

7rl z- z 
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(3.25) 

Since the field 4> of eq.(3.24) is essentially a free boson'field, it is convenient to define 

two fields, one right moving and one left moving, by 

(4>-(z)Jb_(z')) = -log(z- z') 

(3.26) 

Finally, to take care of the contribution of the zero modes, we define four sets of scalar 

fields, labeled by the flavor index a:: 

(4>~.R(z)<f>!.R(z')) = -6o13log(z- z'), 

(¢~.dz)<f>!.L(z')) = -60 13log(z- z'), 

(4>~.R(z)~.R(z')) = -6o13log(z- z'), 

(4>~.L(z)~.L(z')) = -6o13log(z- z'). (3.27) 

Two point functions with mixed indices are, as usual, defined to be zero. The fermionic 

bilinears can now be expressed in terms of these free fields as follows: 

tP~(z)tP~(z) - exp((2K)-1(¢+(z) + <f>_(z))] 

{ exp [2-!i[<f>~.R(z) + <f>!.R(z)]] + ~.R(z)~.R(z) }• 
~(z)tJ.{(:) -+ exp [-(2K)~(4>+(z) + <f>_(z))] 

{ exp{2-1i[4>~.L(z) + ~.L(z)] + ~.dz)~,L(z) }· (3.28) 

To establish this correspondence, one must show that the correlation functions are 

correctly reproduced by the right hand side of eq.(3.28). The exponential factor in front 
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obviousiy reproduces the result of integrating over ¢, and the bilinears in free fermions 

provide the fermionic contractions. Comparing with the first term on the right hand side of 

eq.(3.12a), it is also easy to verify that the exponential in flavored scalar fields q/:z reproduces 

the contribution of the zero modes. 
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IV. The Torus and Modular Invariance. 

In this section, we study the model on a surface of higher genus, namely, the torus, and 

pay particular attention to the modular properties of theory. Consider the two dimensional 

field theory given by eq.(2.9) on a torus corresponding to the parallelogram with side (0, 1) 

and {c, d), where 

T = c+ id ( 4.1) 

is the modular parameter (see Fig. 1 ). The problem is simplified considerably by choosing 

the flux density Fe. defined by eq.(2.10), to be constant over the torus. This choice has 

the advantage of being modular invariant: it is therefore possible to study the modular 

properties of the fermion sector separately, without having to worry about the scalar field o. 

Furthermore, the problem of solving the Dirac equation in the presence of a uniform external 

magnetic field is a standard one going all the way back to Landau, and it has recently 

been studied by several authors from different points of view.21 ),lS),l9 ) In the interests of 

completeness and clarity, we present a brief exposition below. 

Let us begin by noting that the monopole quantization condition, eq.(2. i) valid for 

surfaces of arbitrary genus in this case reads 

P:d = 2rrN ( 4.2) 

where N, as before, is the integer monopole number. \Vithout any loss of generality, we 

can make the following convenient gauge choice for A~ (see eq.(~.3a)): 

- 2rrN 
A~= 0, A~= -P:y = --d-y. ( 4.3) 

We are interested in finding the eigenfunctions of the Dirac operator 

( 4.4) 

on the torus. In this section we solve the massless Dirac equation and investigate the 

modular groups action on these zero modes. In the appendix the massive Dirac equation 
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is solved a.n-i it is :::ho\\"'l that these non-zero modes transform exactly as the zero modes 

under modular tra.nsformatior.s. 

The equation for the zero modes, eq.(2.13) with potential given by eq.( 4.3), has the 

following general solutions: 

rrNy2 

TJR = !R(z)exp(--d-), 

-rrNy2 

TJL = fL(z) exp( d ), ( 4.5) 

where the f's are analytic functions in their respective arguments and are determined by the 

choice of the boundary conditions. Along the horizontal direction, we impose the standard 

periodic (P), or antiperiodic (.4) boundary condit"ions 

TJ(Z + 1) = ±TJ(Z). (4.6) 

We will show later that this choice of boundary conditions is the minimal set for which one 

ca.n construct modular covariant Green's functions. \Ve pause to remark that in the .V = 0 

(free) case it is the requirement of modular covariance at higher loop (g 2: 2) that picks 

out eq.( 4.6) as the minimal set of boundary conditions but with N ¥: 0 it will be shown 

that this spin structure is necessary at one loop. As a result of the non-vanishing total flux 

the torus (eq.(4.21)), we cannot impose a simple boundary condition like eq.(4.6) in the f 

direction. This follows from the fact that in a.n ambient magnetic field the two independent 

covariant translation operators no longer commute and therefore cannot be simultaneously 

diagonalized. The most general boundary conditions in the f direction consistent with 

non-vanishing total flux, turn out to be 

TJ(Z + T) = exp( -2rriNx + it5)TJ(z), (4.7) 

where t5 is an arbitrary constant ( z independent) phase. These boundary conditions are 

readily satisfied by taking f's to be suitable modular functions i.e. Jacobi theta functions 22>; 
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however, both TJR and TJL cannot simultaneously be normalizable. If N > 0, the only 

normalizable solution for TJL is trivial: 

TJL = 0, ( 4.8a) 

whereas, a special solution for TJR is obtained by taking 

fR = lh(Nz, N-r), {4.8b) 

where 83 is one of the standard Jacobi theta functions. For N < 0, the roles of R and L 

are reversed. Without any loss of generality we henceforth take N positive. 

The solution eq.(4.8b) satisfies the boundary condition eq.(4.7) with 

6 ~ -1rNc. (4.9) 

To find the general solution corresponding to an arbitrarY. 6, we take advantage of trans-

lation in variance: We can translate the coordinate z in eq.( 4.8b) by an arbitrary complex 

quantity zo to construct a whole set of new solutions. However, such a translation must be 

accompanied by a non-trivial phase factor in order to satisfy eq.(4.7): 

[
21l"i1Vyoz] f- exp d 83(N(z + zo), N-r). (4.10) 

The boundary condition eq.( 4. 7) is now satisfied, but the other boundary condition 

given by eq.( 4.6) is violated, unless we require that 

NYo n 
-r=2· 

where n is an integer. The corresponding zero mode TJ is given by 

1rNy2 . n 
TJ = exp(--d- + 1rtnz)83(Nz + 2T +a, N-r), 

where, for convenience, we have defined 

nc 
a= Nxo- -. 

2 
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We note that even n correspond to periodic boWldary conditions in the x direction, 

whereas odd n yield antiperiodic functions. The range of the integer n can be taken to 

be from 0 to 2N -·1, and the range of the real number "a" is continuous, there are then 

infinitely many solutions! However, only a finite number of them are modular covariant, by 

which we mean that they transform into linear combinations of themselves under modular 

transformations. It is well known that the modular group can be generated by two special 

group elements: 

and, 

z- z, T- r+ 1, 

, z 
z- z = --, 

T 

, 1 
T- T = --. 

T 

( 4.13a) 

(4.13b) 

To test whether 17 given in eq.(4.12a) is covariant under theses mappings, we need some 

standard identities for theta functions. The identities that are useful with eq.( 4.13a) read 

( 4.14a) 

for even N and, 

(4.14b) 

for odd N. 

Hence, for even N there is no constraint and for odd N if a certain value of a appears, 

then the value a- ! must also appear. The transformation given by eq.(4.13b) is more 

complicated; to implement it, we need the following series of identities: 

. _l ( . (Nz+jr+a)2
) , a , n r' 

Nr) = ( -lT) ~ exp -m Nr 8a(z + NT - 2N, N ), 

( 4.15a) 

and, 
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Comparing the argument of the theta function on the right hand side of eq.(4.15b) 

with that in eq.( 4.12a), it is clear that we must require 

n' 
a+i= -, 

2 
(4.16) 

where n' is an integer. Since e is also an integer and a is defined up to an additive integer, 

its values can be restricted to 0 and !· We express this by setting 

m 
a=-, 

2 
( 4.17) 

where m = 0 or 1. ~v!odular invariance therefore restricts the allowed zero modes to the 

following discrete set conveniently labeled by two integers m and n: 

(4.18) 

where m = 0, 1 and n = 0, 1, ... , 2N- 1. The even (odd) values of nand m correspond to 

periodic (antiperiodic) solutions in the x and f directions respectively. We have introduced 

an additional multiplicative constant on eq.( 4.18) compared to eq.( 4.12a) in order to simplify 

its transformation properties under the modular group. In what follows there will be no 

need to normalize solution eq.(4.18). We also note that the number of zero modes is in 

agreement with the index theorem eq.(2.18): If we consider only P P (periodic in both 

directions) solutions, n ·= even and m = 0, there are then N zero modes which is the 

correct number. When anti-periodic solutions are also included, one must consider fourfold 

covering of the torus, which, while quadrupling the total flux also increases the number of 

solutions to 4N. 

The zero mode solutions defined by eq.(4.18) have simple transformation properties 

under the modular group given by eq.(4.13). Considering first the translation given by 

(4.13a), we have, 

( 4.19u 1 
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for N = even and, 
1l'in2 

T7m,n(Z, T + 1) = exp( 
4

N )17m+n+l.n(Z, T), ( 4.19b) 

for N = odd. Using the abbreviation (P, P), (P, A), etc. to denote periodic (P) or an

tiperiodic (A) boundary conditions along x and f directions, we can express the content of 

eq.(4.19) in the following way: Under T- T + 1, we have for even N 

(P, P) ;::: (P, P), (A, P);::: (A, A) 

(P, A) ;::: (P, A) (4.20a) 

and, for odd N 

(P,P) = (P,A), (A,P);::: (A,P) 

(A, P) ;::: (.4, A). ( 4.20b) 

For even N, the modular transformation properties of fermions are unchanged by the 

presence of the monopole background; they are identical to the free fermion transformations. 

For odd N, one sees that switching A and Pin eq.(4.20b) we reproduce eq.(4.20a). One 

way to think of this change of statistic is that for odd N the angular momentum in the 

gauge field of the fermion-monopole system will be a half-odd integer so the definition of 

a fermionic system for even N will be different from that at odd N. 

Consider now the inversion given by eq.{4.13b). We have 

where, 

N-1 { . } 
T7m,n(z,r) = exp(ix) I: exp - ~n(e+ ;) T7m+U.n(z',r'), 

i=O 

z2 
x = -1l'NRe(-). 

T 

(4.21a) 

( 4.21b) 

The overall phase in this transformation can be understood as follows: the transfor

mation eq.( 4.13a) interchanges the two sides of the the basic parallelogram, which results 
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in a change from the gauge given in eq.( 4.3) to a new gauge given by 

( 4.22) 

where x is precisely given by eq.(4.21b). We can again express the covariance of these 

solutions by studying how the transformation T - -1/T exchanges solutions of various 

boundary conditions. Under z- -;, T- -~ For all N, 

(PP) = (P, P), (A, A)~ (A, A), (AP) ~ (P, A). (4.23) 

These are again identical to the free field transformations. As a result, jUst as in the free 

field case, we obtain a modular invariant answer by summing over the four spin structure 

(P, P), (A. P), (P, A) and (A, A). Here. however, we have a slightly stronger result: For odd 

.N, ( P, P) is not modular invariant by itself (see eq.( 4.20b) ), so it is really necessary to sum 

over all of the four spin structures. In contrast, in the free case, (P, P) is modular invariant 
. 

on the torus, and one has to consider higher genus surfaces to obtain the above result. 

One final point concerns the GSO projection. We know that the summation over the 

spin structures is equivalent to projecting out the sector of the spectrum with odd fermion 

number. In the free field case, one can carry out this projection in the even and odd chirality 

sectors separately, since the left and right fermion numbers are separately conserved. In the 

presence of the monopole background, however, only the total fermion number is conserved. 

and therefore only a single GSO projection is allowed. 

In closing this section, let us summarize what we have learned so far. We have shown 

that zero mode solutions on the torus transform into linear combinations of themselves: 

this is certainly necessary for modular invariance, but is it sufficient? The simplest criteria 

is the invariance of the fermionic determinant on the torus; but in the presence of the 

non-trivial monopole background, this determinant vanishes because of the existence of the 

zero modes, and so it is trivially invariant. One would then compute chirality changing 

39 



correlation fWlctions on the torus and examine their modular properties. We have not 

carried out such a calculation; however, we wish to point out a feature which can deduced 

with any detailed calculations. Modular transformations are accompanied by chiral (axial) 

rotations of the world sheet fermions; this is true even for free fields and remains true in the 

presence of the monopole background (see appendix). In the case of free fields, however, 

chirality is conserved, and the phases due to the chiral rotations cancel. On the other 

hand, in the presence of the monopole background, we have chirality changing correlation 

functions, which will then acquire a phase under modular transformations. We do not 

think that this destroys the consistency of string theories based on the model presented 

here; however, this point needs to be investigated further. 
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V. Summary and Possible Extensions 

In this paper, we have presented a conformal field theory, based on a topological ex

tension of a class of standard coset construction. The model has possible applications to 

string theory and two dimensional statistical mechanics, as well as being of interest in its 

own right. It is also an example of an instanton calculation that can be carried out exactly. 

The coset construction we considered was based on gauging the U{l) subgroup. It is 

of some interest to generalize this to models where a non-abelian group is gauged. Such 

models are quite complicated and usually end up being equivalent to a W.Z.W. model. 

\Vithout going into the details, we can try to guess what effect monopoles will have on the 

general features of these models. In the non-abelian case, the functional integral over the 

gauge field on a compact two dimensional surface can be classified by its topology. For 

example, consider the surface of a sphere (52), the inequivalent gauge fields are classified 

according to the center of the non-abelian group, which means that there is typically a 

multiplicative conserved quantum number Z., which replaces the additive monopole charge 

in the abelian case. We expect that most of the results we have obtained will remain true 

with the replacement of Z {the set of monopole charges in U{l) monopole) by Zn.. For 

example, in the non-abelian case chirality will be broken modulo n, etc. This may be a 

promising line of investigation for future work. 
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Appendix 

In thls appendix we solve the eigenvalue equation 

(A.l) 

on the torus with Teichmiiller parameter T = c+id where A~ is as given in eq.(4.3). Squaring 

p A to diagonalize the above eigenvalue equation we learn 

( .4..2) 

where f. is a non-negative integer corresponding to the mode of the harmonic oscillator (to 

which PA 2 reduces), often in these types of problems called the Landau level. As discussed 

earlier, for f. = 0 either 1/.JR (N > 0) or tPL (N < 0) will have a _nontrivial zero mode 

solution. For arbitrary e the solution to eq.(A.l) is (for definiteness taking N > 0); 

\If e. (j) = ( t/Jfi> ) , 
f ,,,l-1 
~(j) 

(.4.3) 

where (j) indexes any possible degeneracy at level f. and f is a constant that depends on 

f., (j) and the normalization convention. Adopting the same boundary conditions as outlined 

in section 4, we find that, as expected, each level is exactly 4N -fold degenerate, and the 

most general wave function for each component of the spinor in eq.(A.3) at level C is a 
j 

superposition of"basis functions labeled by m and n: 

(.4..4) 

where n is an integer between 0 and 2N - 1 and m is either 0 or 1. The spin sector 

identification is the same as before. (See the paragraph following eq.(4.18)). He denotes 

the f!h Hermite polynomial. In this form one sees immediately that under the modular 
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transformation T - T + 1 the solutions eq.(A.4), for every e, transform precisely the :.arne 

way as the zero modes, as is shown in eqs.(4.20a,b) .. 

To consider the action of solutions eq.(A.4) under T- -1/T, z- -z/T it is convien-

tent to use the generating function for the Hermite polynomiais; 

oo 
8
t 

e-.s2+2"Y = L 1He(y) 
l=O f.. 

to cast a sum in f. (the Landau level) of the solutions eq.(A.4) into (m, n fixed); 

oo 
5
e 

R(s n m) - '""' _,,,l , , - ~ e• "'(n,m) 
£=0 • 

(
-r.Xy

2 
2 {2';N ( nd )) 

=exp d +ir.nz-s +2syd Y+ 2N 

• nT m . ~2Nd 
X 83( N z + - + -2 - 18 --,NT) 

2 1r 

(.4..5) 

(A.6) 

Proceeding with the modular transformation T- -1/T in the fashion outlined in section 

4 and using the identities eq.(4.15a) and eq.(4.1.5b), we find that a solutions with definite 

n, m again becomes a linear combination of the solutions in the other sector (identical in 

form to 4.21a) and that the generating function parameter 8 scales by the factor ei.:> = #· 
Expanding the generating function we then find that the f!h solution acquires an overall 

phase eit¢ so that the general solution eq.(A.3) transforms as 

lilt= ( t/,Jt ) - ( ei¢t/,Jl) x phase. 
f t/,Jl-1 f t/,Jl-1 

(A. i') 

which is, of course, precisely what one would expect from the behavior of the two-dimensional 

Dirac equation (eq.(A.1) or the free dirac equation) under modular transformations. 

Finally, from the eigenvalues given by eq.(A.2), the determinant of the non-zero modes 

can be computed using a suitable regularization, for example, the zeta function regular-

ization. It is then easy to show that the dependence of the determinant on N is trivial, . -

justifying eq.(3.13). 
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These ideas have motivated this author to study other systems (such as Chern-Simons 

field theory, as described in the last contribution to this thesis) from this point of view. 
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CHAPTER 3: Parafermions and Coset Models 

Coset models seem to play a central role in the classification of rational conformal field 

theories. Although their lagrangian has been known for a long time, little has been done 

to understand even thier classicq,l structure via these lagrangians. The lagrangians for the 

coset models we will consider in these next two papers are the gauged Wess-Zumino-\Vitten 

lagrangians. Starting from these lagrangians, the following papers show how to derive the 

Poisson bracket of the coset models. 

In this semiclassical treatment the Poisson structure is neatly represented in terms of 

"classical parafermion ., fields. Indeed we show that for the abelian coset the Poisson algebra 

indeed closes on these classical parafermions and that for the non-abelian coset the Poisson 

structure closes on the space of all colorless (\vith respect to the action of the subgroup) 

operators built out of the classical parafermions. Other highlights include understanding the 

coset models as special types of non-linear a models and also finding a free field realization 

of the Poisson structure. Also some initial attempts are made to understand what we can 

learn about the full quantum theory by directly analyzing these lagrangians. 
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I. Introduction 

The construction of two dimensional conformally invariant field theories is a open prob

lem of mathematical physics with applications to statistical mechanics in two dimensions 

and string theory. Although no general method is as yet known, a number of interesting 

special constructions have been proposed. 1- 6 One of the oldest methods is the coset con

struction, which can be thought of as a natural generalization of the Sugawara construction. 

Historically these models have been formulated ad hoc thus it is clearly desirable to have a 

more systematic approach to them. This paper espouses a completely lagrangian viewpoint 

of the coset construction. In a seminal paper \Vitten showed that the \\''ess-Zurnino-Witten 

(\\'Z\V) lagrangian is conformally invariant, has an underlying affine current algebra and 

that it correctly implements the Sugawara construction.7 It was later shown that the coset 

models also ha\'e a lagrangian basis, obtained by "gauging" an appropriate subgroup of the 

WZ\V lagrangian. The corresponding gauge field is not dynamical but acts as a lagrange 

multiplier to project out the currents belonging to a particular subalgebra. If these models 

are quantized in axial gauges, they can be written as a direct sum of several WZW models 

and hence are clearly conformally in\'ariant.8- 11 

In this paper we will investigate the gauged WZW model in the physical (unitary) 

gauge. For simplicity, we will restrict ourselves to gauging an abelian subgroup, although 

our methods generalize to non-abelian subgroups. We hope to treat the non-abelian case 

fully in a subsequent paper. In the pure (non-gauged) WZW model, it is well known 

that formulating the model in terms of currents leads to great simplifications. In particular. 

choosing light come coordinates one finds two sets of conserved currents; one set independent 

of the coordinate x+ and the other independent of x_. Fundamentally this is a consequence 

of conformal invariance. Furthermore, these currents satisfy simple commutation relations 

(i.e. they form an affine algebra). Following this lead we search for conserved currents in the 

gauged WZW model and try to formulate the model entirely in terms of these currents. Then 
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the usual local currents will be gauge dependent and therefore only covariantly conserved. 

The basic idea of the paper is to build a new set of gauge invariant currents wh.ich are truly 

conserved by attaching a Wilson line to the old gauge covariant currents. These new currents 

are therefore conserved and gauge invariant but non-local. It is these new currents that 

we call "classical parafermions". They are reminiscent of the usual parafermions although 

these were first introduced in a somewhat different context. 12 

Next we study the commutation relations between parafermion fields. Since parafermion 

fields are non-local, equal light-cone time commutation relations between them are ill

defined and must be replaced by the more general concept of operator product expansions. 

Our approach to this problem is a classical one; before quantizing the theory we compute the 

Poisson brackets of the parafermion fields. Th.is is a well-defined but laborious calculation, 

to which the bulk of the paper is devoted. We also point out several simplifications which 

make the calculation for a general group feasible. The resulting Poisson brackets between 

parafermion fields are quite simple. They are the classical analogue of the operator product 

expansion. These Poisson brackets are also satisfied by suitably defined functions of free 

fields. This provides a map (classically) from the original gauged WZW model to a free 

field theory. In particular we recover the classical limit of the Wakimoto-Nemeschansky 

construction. 13- 15 Once the theory is expressed in terms of free fields, it is possible to go 

beyond the classical theory and define various expressions by normal ordering operator 

products and introducing appropriate (finite) renormalization constants. 

- The coset model of SU(2)/U(l) is especially interesting. It is one of the very simpllest 

of cosets and will be discussed at lenght in th.is paper. In the unitary gauge this model 

reduces to a 0'-model different than that expected for the coset on geometric grounds, 

and is not just an 52(= SU(2)/U(l)) 0'-model. To distinguish this 0'-model from the 

vector coset 0'-model we call them chiral coset (c.c.) 0'-models. These c.c. 0'-models have 

curvature and therefore non-zero beta function. The mapping described in the preceding 

53 



paragraph maps this theory into a free field theory which is conformally invariant. This 

appears paradoxical since the beta function is not preserved in this mapping. However since 

the mapping is non-local there is no real paradox, only local field transformations preserve 

the beta function. 16•17 Incidentally, this mapping provides a classically exact solution for 

the SU(2)/U(l) c.c. 0'-model. 

The last section of the paper is speculative and deals with issues which go beyond 

the classical limit. We discuss the Z~c grading of the parafermions of level k and we also 

construct soliton solutions in SU(2)/U(1) c.c. 0'-models tentatively identifying them with 

parafermions. \Ve also discuss the possible connection with Feigen-Fuchs-like constructions18 

and the connection between screening.charges and a natural 0 parameter that appears in 

our treatment. 
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II. The Model 

For the sake of completeness we now briefly review the coset construction. We begin 

with the Wess-Zumino-Witten action, 

where x: = xo±x1, 8: = 1<8o =t=81) and where g£9 is a lie group-valued field, Tr is taken in 

some representations of !J., tht: lie algebra of 9. (Tr is normalized so that Tr('r0 1b) = 2c5ab). 

By well known arguments, the coefficient k is integer.7 As was shown in reference,7 the 

currents generated by the symmetry g - A(x_)gB(x+), where A, B are G-valued fields, 

satisfy the 9Jc (called "9 level k") Kac-Moody algebra. 

It was known early on 1·9 that ''removing" components lying in a lie-subalgebra of the 

currents above (i.e. by simply setting them formally to zero) yields a new representation 

of the Viragoro algebra. One way to remove certain components of the (;-currents is by 

introducing lagrange multiplier fields that, upon path-integration, set the specified comp~ 

nents to zero. Siace this technique is well known let us discuss the particulars of the model 

under study. As discussed in ref.[9, 10, 11] one starts with a 9Jc theory, identifies a vector 

subgroup 1-f. C 9 and introduces an 1r -valued (1r denotes the lie algebra of H) gauge field 

A: that transforms contragrediently to the vector 9Jc currents we wish to project out. For 

the lagrangian in eq.(2.1) the "left" and "right" currents are 

. ik -1a 
)+ = -g +9 

11' 

. ika -1 
J- = -- -99 . 

11' 
(2.2) 

Under the subgroup ?-f.'s action (B£1-f., Ban arbitrary constant element) g- B-1gB, the 

i: transform by j: - B-1 i:B and therefore it is useful to introduce fields A: such that 

under this action A:- B-1 A:B so that Tr(A+i- +A-i+) is invariant. In order to set the 

1r -components of the j: to zero at every point we must promote the ?-f.-action described 
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above to a local symmetry. One then finds the gauge invariant lagrangian, 

Varying g by gauge transformations described above we find that the theory has the 

currents 

ik 1 J_ = --(D_g)g-
1f' 

(2.4) 

where D± = O±- i[A±· :\o\v using the equations of motion one sees that the h components 

of these currents vanish. i.e. Tr(haJ±) = 0 

1 
= 2{1- M);b1 Tr(g- 18+ghb) 

= -~ Tr(8_gg-1hb)(1- M)b"a1 (2.5) 

where the matrix M is defined by. 

(2.6) 

with sum over repeated indices implied and no distinction is made between raised and 

lowered indices. Note that M(g)t = M(g-1) and that (1-M) is not an invertible matrix 

iff gf..1i.. That is, for gf..(}/11. the matrix (1-M) will be invertible. Note also that these 

A± ( eq.(2.5)) are the solution of the equations of motion found by varying the action of the 

lagrangian of eq.(2.3) with respect to A±· Other equations of motion for this lagrangian 

tell us that the currents in eq.(2.4) are covariantly conserved, 

(2. i) 

The fact that these currents J± are cova.riantly conserved ( eq(2. 7)) and don't have any 

component in the subalgebra h (eq.(2.5)) leads one to surmise that they are functionally 
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related to the parafermions. This intuition turns out to be more or less correct. \Ve will 

discuss this at length in the next section. 

Finally, to close this section, notice that for arbitrary A± we have the following useful 

identity 

(2.8) 

where F is given by 

(2.9) 

This identity is analogous to that of the ungauged WZW model in which one finds 

It was this identity in the ungauged WZ\V model that ensured the conservations equations 

for the right and separately for the left moving currents were actually the same equation. 

In the gauged case, eq.(2.8) evaluated using eq.(2.i) implies 

F=O (2.10) 

where we have used the fact that (1 - M) is invertible for a generic choice of g. This 

result will be used in the next section in which we identify the classical parafermions. In 

computing Poisson brackets, however, one wishes to compute the full variation of the action 

(i.e. with fields "off-shell") and cannot use the equations of motion. However, in section 

VI and section v11 in discussing the semiclassical treatment of the classical parafermions 

we often use F = 0. 
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HI. The Classical Parafermions 

Rather than trying to canonically quantize the action of eq.(2.3) directly we have the 

freedom to first perform canonical transformations on the classical fields before identifying 

the operators which we wish to canonically quantize. Note however that, as usual, this 

procedure may yield a quantum theory different from that found by actually trying to 

canonically quantize the action eq.(2.3) directly; i.e. classical canonical transformations may 

be nonunitary when implemented quantum mechanically. This is an important philosophical 

point of this exposition. Our aim is to form composite operators, 1/;, of the original degrees of 

freedom whose Poisson bracket look like those expected of free parafermions. For example. 

we expect the Poisson algebra of the l/J's to close, and therefore that the Poisson bracket of 

two 1/;'s is expressible completely in terms of '1/J. We will then write down free field (Bosonic) 

lagrangians which furnish a representation of the Poisson algebra of the l/J's. This allows 

one to consider canonically quantizing the theory of the l/J's by writing them as composite 

operators of free bosons. In a sense this procedure can be carried out for any field theory 

by inverting the LSZ relation between the full (interacting) quantum field and the free field. 

In practice however, actually trying to invert the LSZ relations is impossibly unwieldy and 

involves nonlocal expressions. However for the theory oflagrangian eq.(2.3) there is a simple 

way of "discovering" the parafermion as a composite and mildly nonlocal operator of the 

fields. 

In order to motivate this further, consider what properties we expect the parafermions 

to possess. In particular, we expect: 

1) Gauge invariance; Since we're gauging and performing a functional integral over the 

gauge field the relevant remaining physical fields should be gauge invariant. 

2) Coset-valued field; As described is the introduction the functional integral over the 

gauge field should project out all components of fields in ft . Thus 1/; representing t h" 
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remaining degrees of freedom should be coset-valued i.e. have components in 9.\11 

only. 

3) Conservation The expected conformal nature of the underlying coset model suggests 

that the currents representing the coset model's physical degrees offreedom be separa-

ble into holomorphic and antiholomorphic pieces. Thus we expect 1/J's (which represent 

these currents) to depend on either only x+ or only x_ e.g. for the left handed field 

1/.J we require a+ t/J = 0. 

These characteristics strongly suggest that the classical parafermions 1/.J is related to the 

coset currents, J, of the previous section (see eq.(2.4)). But J is not gauge invariant and is 

not conserved but is only co\ariantly conserved (see eq.(2.7)). The obvious choice for '1/J is: 

(3.1) 

where U is the Wilson line 

(3.2) 

where P stands for path ordering of the exponential in eq.(3.2). Note that since J_ is coset 

valued 1/.J is as well. Also, 1/.J is gauge invariant at x and eq.(2.7) may be written a+-,:.·= 0. 

Because it has a Wilson line dangling from it, 1/.J is nonlocal. This Wilson line gives ~.:-· 

unusual statistics. Furthermore the base point (xo) dependance of U and therefore of 1:.: 

introduces further subtleties. Both of these matters are discus!"ed in much more detail in 

the appropriate places in later sections. 

For the purpose of computing Poisson brackets of 1/J's the form of U must be modified. 

Namely, U as defined in eq.(3.2) involves integrating along a time-like line and t/.J will thus 

be a functional of the field A+ 's history. This would make the direct computations of 

the Poisson bracket between two 1/.J's problematic. Instead, using eq.(2.10) F = 0 we may 
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motivate rewriting U in terms of ec~ua!· t~mP. quantities as; 

(3.3) 

from now on we refer to 1/J as defined in eq.(3.1) with U of eq.(3.3). In section V for 

computing the Poisson bracket of two 1/J's we will retain 1/J as defined with U of eq.(3.3) but 

will not assume F = 0. 
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IV. Poisson Bracket Generalities 

The lagrangian of the gauged WZW model eq.(2.3) has the very important property 

that it involves terms at most linear in 8+. Regarding x+ as (light cone) "time" we now 

analyze this theory classically. Rather than studying the theory's Hamiltonian directly we 

make use of the canonical method for identifying conjugate variables of a theory whose 

lagrangian is first order in time derivatives. Let's now sketch this standard procedure, 

retaining ref.(7) for further reference. Imagine a theory whose actions in given in eq.(4.1). 

( 4.1) 

where the <Pi are dynamical fields. The above lagrangian contains terms only first order in 

time derivatives. Varying the fields in an arbitrary way cpi - cpi + dcpi we find 

J . dcpi 
6/ = d..uF··-dt 

<y I) dt • 

with Fij being an antisymmetric matrix defined by; 

F·("') = oAi(cl>) _ 8Aj(C>) 
'J '+' o<PJ o<P' • 

(4.2) 

(4.3) 

Note that since the variation of I is essentially a quadratic form in dcpi we can use Fij to 

define the Poisson bracket between the <Pi's; 

( 4.4) 

if F-1 is not defined we must choose a subspace of the dcpi on which F is nonsingular. This 

subspace is that of the physical degrees of freedom. For the case we wish to study, the gauge 

symmetry of our action makes F singular and simply fixing gauge to a unitary (physical) 

gauge ensures F's invertibility. Note furthermore that we may use the symplectic form F-1 

of eq.( 4.4) for computing the Poisson brackets of arbitrary functions of fields as follows: let 

P( ct> ), Q( ct>) be two arbitrary functions of the fields <Pi. To compute their Poisson bracket we 
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use the following one-forms, 

and then by definition 

{P Q} = oP oq {d<P' d4}} = oq (F-l)j' oP 
• o<P' 8</>1 • 8</>1 o<P' 

·we will often need to compute the Poisson brackets of arbitrary one-forms 

(4.5) 

(4.6) 

these forms are not necessarily closed or exact and we will define their Poisson bracket to 

be 

(4.i) 

thus their Poisson bracket is a linear combination of Poisson brackets of the basis one-forms. 

Let's now return to the theory of the gauged WZ\\" model whose lagrangian is given 

by eq.(2.3). Again, we imagine having already performed the integrations over A± so for 

the A± in eq.(2.3) we substitute eq.(2.5). If we now compute the variation of the action 

with respect to the arbitrary variation g- g + 6g we find, 

(4.8) 

where F is that of eq.(2.9). We will regard 6g as an arbitrary variation and when we wish 

to imagine having chosen a particular co-ordinate system of 9 we will think of 6g as a form 

dg. Note that J+ = ~g- 1 D+g is a lie algebra element orthoSonal to fr i.e. "pointing 

into the coset" and that furthermore D_J+ points also into the coset. The second term of 

eq.( 4.8), F, of course lies entirely in fr . 

Since we wish to compute Poisson brackets in this theory but using the machinery 

presented in the previous paragraphs, we must write the variation of the gauged \VZW 
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action given in eq.( 4.8) in a form more similar to that of eq.( 4.2). Note that in eq.( 4.2) 6I is 

written as an antisymmetric (in all indices) form and is antisymmetric under the interchange 

of~~ and d<Pi. We now will re~t eq.( 4.8) in a form in which this antisymmetry is manifest. 

To this end define 

(4.9) 

where h0 are the generators that span fr. Then, concentrating on the second term of eq.( 4.8) 

we have, 

(4.10) 

which, using the property that Mt(g) = M(g- 1), is 

(4.11) 

~ow using the identity eq.(2.8) and the fact that D+J- points only into the coset (and so 

is orthogonal to o A in the lie algebra g_ ) we have; 

(4.12) 

and thus eq.( 4.8) may be recast as; 

(4.13) 

Note this expression is of a form similar to that of eq.( 4.2) and it is this form of OJ that will 

be used for the bulk of the ensuing computation. Again, the operator D_ is not invertible 

unless we fix the gauge completely. 

The variation of the action eq.(4.13) is for a general WZW coset model. In the next 

section we will study the abelian coset model (the case in which 7-f. is abelian) in detail and 

leave the applications of eq.( 4.13) to nonabelian cosets {7-f. nonabelian) for future work. 
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V. Pt:'isson Brackets of the Abelian Coset 

w~ n;)w specialize to the case of abelian cosets. By abelian coset we mean that 7-f., the 

subgroup being "modded" out, is a subgroup of the torus of 9. Thus 1r is a subalgebra of 

the Ca.rtan subalgebra. To begin computing physically meaningful quantities we imagine 

completely fixing gauge. Although an explicit form of gauge fixing will not be necessary for 

what follows we imagine completely fixing gauge with a unitary gauge condition !(9) = 0 

where f involves no spatial derivatives. Thus the remaining degrees of freedom will be 

physical. Choosing such a gauge has it's subtleties, particularly with lagrangians that have 

"topological terms" as that of the gauged WZW model and we will discuss some of these 

matters later. For the present discussion we ignore these subtleties. 

For the purposes of this calculation it is necessary to choose co-ordinates on 9. Since 

we have fixed gauge it will be particularly convenient to choose co-ordinates that naturally 

"stay" in this chosen gauge. We now use this notion to motivate a particularly useful set 

of co-ordinates on 9. As noted earlier, the action of the gauged WZW model has a global 

symmetry under 9- A9B with .4, BEQ. Part of this 9 x 9 chiral symmetry then gauged 

i.e. a particular vector subgroup of 9 x 9 given by g - U 9U-1 with U E'H. was made a 

local symmetry of the action. The axial global symmetry 9 - BgB BE'H. is still a good 

symmetry of the action and furthermore will not take gout of the chosen unitary gauge. 

Thus co-ordinates associated with this axial symmetry are a natural choice. Keeping this 

in mind we can always decompose g as; 

g = CBgBC- 1 (5.1) 

where B, C E'H. and gE9 is constrained in the following way; set C = 1 (since it corresponded 

to the gauged 1-f. invariance) and let g satisfy the unitary (e.g. physical) gauge conditions 

described in the beginning of this section, leaving BE'H. arbitrary. This forces g to depend 

on 191 - 217-f.l independent co-ordinates (the 191 and I 'HI are the dimensions of 9 and 1-(. 
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respectively), pt, in some nontrivial way. Fortunately an explicit form ofg is not necessary 

for further computation. To fix notations and conventions let B = e'80 h" with haEf't, 

with {ha}, as before, forming a suitable basis of ft, and IJC' being real-valued parameters. 

Furthermore we will think of g as eiptrt where ~ f. 9. \ft span the vector space of 9. 

orthogonal to ft. We will indicate a coset index by l, m, n and an ft index a, b, c. In these 

co-ordinates a general variation of g may be written 

(5.2) 

where {,} is an anticommutator. Again note that this variation keeps gin the chosen gauge. 

The particular form of J(f win not be needed in the rest of the calculation. 

We are now ready to compute Poisson Brackets of fields in the gauged WZ\\' model. 

Instead of computing the Poisson brackets of just any quantities20 we follow the intuition 

of section III and concentrate our interest on the Poisson brackets of t/J's, the classicai 

parafermions. First note that it is simple to verify that left moving and right moving 

parafermions' Poisson bracket is zero. 

Note that unlike the case of the ungauged WZW model,7 the relevant conserved cur

rents, e.g. the t/J's, cannot be expressed directly in terms of the forms that appear in 

eq.(4.13). Thus it will be necessary to compute Poisson brackets of several other quantities 

in addition to that of the forms that appear in eq.(4.13). In particular we need the Poisson 

bracket between F of eq.(2.9) and the co-ordinates IJC',pt. Indeed, using eq.(5.2) in eq.(4.8) 

(which is simply another form of eq.(4.13)) we find that 

61 = ~ j cPxdtr Tr(ha F)+ ... (5.3) 

where .... stands for terms involving dpt. By diJC' we mean diJC' considered as a form in the 

tangent space of co-ordinates IJC', pt as described in Section IV. Note that this expression 

implies F = 0 as an equation of motion, completely consistent with the analysis of Section 
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II. Equation (5.3) implies the followir.g Poisson brackets: 

{dOO(x),P(y)} :: ~tabt5(x- y) 
k 

{dl(x), P(y)} = 0 

(5.4) 

Note that the second Poisson bracket is the result that 8 and pare independent parameters 

and that eq.(5.3) is the variation of the whole action. By this we mean F that appears in 

the first term is eq.(5.3) considered as a form F (for the purpose of computing it's Poisson 

bracket) in the tangent space to 8, p co-ordinate space can be written in terms of the inverse 

of the symplectic form. Then eq.(5.4) follow from computation of the Poisson bracket using 

eq.(4.6) in summary, the content of these equations is that ea is canonically conjugate to 

pa. Thus, to compute the Poisson bracket of any quantity with F we need only compute 

that quantities variation with respect toea and do not need to concern ourselves with its 

variations with respect to the pt (all th~ other co-ordinates). This is the reason we'll never 

need to know the precise form of the J(l of eq.( 4.2). Extensive use of this observation is 

made in the computation of Poisson brackets. 

As pointed our earlier, the classical parafennion, 1/;, has several important properties; 

1/J is coset-valued, gauge-invariant and satisfies simple "free-field" equations of motion (see 

description of 1/J in Sections III). For the abelian coset 1/J of eq.(3.1) may be written 

(5.5) 

where 

X=~~ A_dx_. (5.6) 

The parafermion 1/J is really a bilocal field since the Wilson line depends on the base-

point x0 of integration in eq.(5.6). Thus, technically speaking, it appears that 1/J is not 

even a gauge invariant field since under gauge transformations at xo, 1/J will transform 

homogeneously. 
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This subtlety proves to be no obstacle for computing Poisson brackets of the abelian 

coset but demonstrates a critical difference between the abelian and nonabelian cosets. This 

point will be discussed further in the last section. 

This subtlety aside, we see that the parafermion t/J is gauge invariant, conserved on-shell 

and is a non-local functional of the field g (namely x is nonlocal). Computing the Poisson 

bracket of two t/J's directly is cumbersome and so, in order to simplify the calculations. it 

is useful to write t/J entirely in terms of gauge-invariant quantities. To this end define the 

follo.wing gauge invariant quantity; 

(5.7) 

in terms off the classical parafermion t/J of eq.(5.5) has the following simple form 

(5.8) 

Now, as described earlier, in order to compute t/J's Poisson brackets we would, in general. 

need to know it with respect to coordinates oa and pt, l"nder an arbitrary variations of g. 

t/J changes by 

(5.9) 

where, written in co-ordinates oa' pt the df is; 

-i 
df = 2 {/, h" }dtr + [!, dx] + .... (.5.10) 

where {,} is an anticommutator and ... here represent terms involving dpt. At this point 

it is important to remark that for the rest of the calculation we will only need to know the 

d/JG terms of df explicitly. the dpt terms Poisson brackets will be borne out automatically 

in the calculation. This is a technical point which is explained more fully in the appendix. 

It is also convenient to write 6/ of eq.(4.13) in terms off and other gauge-invariant 

quantities. One finds, 

(5.11' 
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where H = J dz~!£(x- x')F(x') and F is given by eq.(2.9) specialize~ to the abelian case 

and £( x - x') is the antisymmetric 8-function, 

£(x- x') = { 
1 

-1 

x > x' 

x < x'. 
(5.12) 

A comment is in order by way of explaining df and H. In keeping with the discussion of 

section III describing the use of forms for facilitating the generalized Poisson bracket, we 

regard d/ and H as forms in the tangent space of the parameters fJG, pt. In this notation 

df is a closed form that may be regarded as a linear combination of closed forms dfJG, dl 

In this same sense by H we mean the form found by replacing all the 0+9 in the expression 

for H by d9. ?<.!ore explicitly said, H is 

H=x-A (5.13) 

where A is as defined in eq.(4.9) but where 69 has been replaced with d9 and by x we mean 

"in the expression Jr o+A-dx_ replace {)+9 with d9". \Vith 61 now written in terms of 

these forms we will employ the generalization of the Poisson bracket described in section 

IV. 

Now simply defining R = J-1(df + i(H, !]) = Rlrf and using eq.(5.11) we have the 

following Poisson bracket; 

( 5.14) 

As is obvious comparing the form R with that of dt/J, the dt/J cannot be expressed entirely 

in terms of R. Thus in computing the Poisson bracket between two tb's we will need to 

know the Poisson bracket between df and H, etc. Using eq.(5.4) and the definition of H 

we have 

(5.1.5) 
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The other manipulations necessary to compute the Poisson bracket between two w's is 

straight forward but tedious and is detailed in the appendix. Here we present the final 

result; 

i 21r ali' , i' , { tP (x), t/Jm(y)} = k f rmm tP (x)t/Jm (y)t:(x- y) 

+ i/mntJ,n(x)b(x- y) 

k r:.'( )r:im - -u X- y u 
7r 

(5.16) 

where. as before the index a runs only over generators is 1't and l, m, l', m' run only 

over coset directions. The ru' are. of course, the structure constants of the Lie algebra 

Jali' = ! Tr(ha[-rf, ,l']) with hat:l't and -rl, ,l' € !1. \l't. Note that, as expected, the Poisson 

bracket of eq.{5.16) does indeed satisfy the Jacobi identity. The Jacobi identity was checked 

by hand and makes critical use- of the fact that 1't is an abelian subalgebra. Thus we've 

learned that the classical Poisson algebra of the t/;'s closes. We will show that this algebra 

may be represented in term of free fields. 

We now specialize to the case of SU(2)/U(l) with the convention that the coset currents 

t/.'+• tj;_ point in the directions '-• '+ respectively and that 13 is the generator of the [:(1) 

subgroup (the C.S.A.) being H. In this simple case t/J = tP+'- + tP-'+ and now using 

eq.(5.16) the Poisson bracket of two t/J's reads 

( 5.17) 

Note again that this Poisson bracket closes, and that, since t/J is a "conserved" quantity 

(8+¢± = 0) and further since the Poisson bracket of conserved quantities is also a conserved 

quantity, the right hand sides of eq.(5.16) and eq.(4.17) involve simple products of the -r,::'s 

only. This is as expected. Indeed all the classically conserved quantities are just polynomials 

of W± 's. Thus with this classical approach one cannot conclude what functions of fields 
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become the the primary fields of the quantum theory or even surmise how many primary 

fields there are. These are questions answerable only by actually trying to canonically 

quantize this theory and studying the composite operators that appear in the operator 

product expansions. 

In analogy with conformal field theories' algebraic formulation we define a local "stress"-

energy tensor for this SU(2) coset by, 

T(x) = c¢+(x)tb-(x). (5.18) 

(Remember that the± are group indices and that tP±(x_) are both left handed fields) where 

c is a constant that will now be determined. The Poisson bracket for T with tP± is; 

-2k 
{T(x), tt·±(y)} = -c6'(x- Y)tP±(x) 

7r 
(5.19) 

choosing c = -rr f2k we see that tP± indeed transform as crural conformal fields. It is now 

simple to compute the Poisson bracket between two T's. 

{T(x), T(y)} = c'(x- y){T(x) + T(y)} (5.20) 

which is the expected result. Note that the algebra of the T's contains no central charge. 

Again this is expected since we are only computing (classical) Poisson bracket. 

To now connect this approach with the Feigen-Fuchs-like construction (at the classical 

level). W~ find a fr~field representations for the algebra of the SU (2)/ U( 1) model depicted 

in eq.(5.17).13- 15 The fact that this may always be done for a well~efined Poisson bracket 

is guaranteed by Darboux's theorem. Simply counting degrees of freedom indicates that if " 

it is possible to bosonize the tP± in eq.(5.17) one will need two bosonic fields. Denote these 

free, two-dimensional bosonic fields by tPh <f>2. We have 

1 
{dti>o(x),dti>o(y)} = 26ooE(x- y) o,/3 = {1,2} (5.21) 
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where the d signifies that, as explained earlier, we are thinking of the Poisson bracket as an 

antisymmetric bilinear form. Now taking a hint from the functional form of the SU(2)/[,'(1) 

parafennion (and also knowing the form of the correct answer13- 15) we form the ansatz, 

(5.22) 

where B± and A are yet-to-be-determined local functionals of <l>t. </>7.. Now writing out 

eq.(5.17) we have; 

(5.23a) 

-1f' 
{dB+(x) + iB+dA(x), dB_(y)- iB_dA(y)} = 

2
k E(x- y)B+(x)B-(y) 

2k £'( ) 2ik £( '( --u x-y --ux-y)A x). 
1f' 1f' 

( 5.23b) 

Of course one also has the equation similar to eq.(5.23a) but involving B- coming from the 

Poisson bracket of two tjJ_. Note that choosing A(x) = -ij'f<t>t(x) the terms on the right 

hand side are quadratic in B±. Furthermore, in order to get terms involving 6(x- y) and 

c'(x- y) we need B± to be a linear functional of ¢ 1 and <1>7. involving derivatives. Thus take 

for B± the following ansatz, 

(5.24) 

The Poisson bracket for two t/J_ 's impHes e2 = -tl and solving for c, C, e, e by using 

eq.(5.23b) one finds, 

(5.25) 

Let us pause to make some comments concerning this representation. Note that </>1 and 

<1>7. are really complex fields and that tP± are not Hermitian conjugates. Actually since we 
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a.re doing a completely classical analysis there is really no notion of hermiticity, but fields. 

a.re simply real or complex. In the representation we have chosen the t/J a.re indeed complex. 

This is presumably the classical analogue of the quantum result in which ghost fields a.re 

employed to construct t/J. 13- 15 Note also that this is not quite the same as the full quantum 

result of ref.[l4] and that, although they agree in the (classical) limit k - oo, there a.re 

(presumably) renormalization effects in the quantum theory at finite k that change result 

eq.(5.25). 

We close this section by noting, as was pointed out in ref.[21], that the functional 

determinant between the fields that make up the currents of the SU(2)/U(l) model and 

the free fields used above is nontrivial. It involves spatial derivatives and may be integrated, 

as was done for example with the conformal anomaly, to yield a crucial term in the quantum 

effective action. 
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VI. Solitons; An Example 

In the previous section the parafermionic currents of the abelian coset were constructed 

and their Poisson brackets studied. Continuing in the vein of analyzing the theory classically 

we would like to study solutions to the equations of motion in the simplest possible abelian 

coset, i.e. that of SU(2)/U(l). To be explicit let {CTa} be the Pauli spin matrices in the 

fundamental of SU(2). A general group element 9£9( = SU(2)) will be written 9 = 9o1 +i§·u 

with g = (9t.92.93) and with the condition that 95 + ~ = 1. We now choose the U(l) 

subgroup generated by CT3 of SU(2) to be the abelian subgroup 11. which we are gauging. 

Strictly speaking both the gauge fields and the currents are in the adjoint representation 

and so expressions such as 9-18±9 are interpreted as being in the adjoint even though 9 

is in the fundamental representation. Since the lagrangian of eq.(2.3) has a local gauge 

invariance under which 9(x)- U9U- 1(x) with U£U(l) we may choose a gauge slice in 

which 92 = 0. (By 92 we mean the second component of the g vector in the definition of 

the group element 9 = 9o1 + i§ · u). This can always be done, and furthermore this choice 

completely fixes the gauge freedom except at points where 9(x) is an element of 11.. This 

choice of gauge also makes the WZW term equal zero naively. Ostensibly the entire support 

of the WZW term must come from the points (or lines) on which 9(x)£1l.. This is a subtle 

point and one which we will return to in subsequent work. Notice that although this choice 

of gauge makes the WZ\V term of C vanish, the WZW term still effects the definition of 

the currents and therefore the A:J:. Indeed writing the coset lagrangian of eq.(2.3) in this 

unitary gauge (92 = 0) and using the A± of eq.(2.5) we find, 

( 6.1) 

where we have used the fact that 95 + ~ = 1 to eliminate 91 • This lagrangian is not that 

of an 5 2 = SU(2)/U(l) o--model, which is the model one would recover from this coset 

were there no WZW term. This new o--model will be referred to as the chiral coset ( c.c.) 
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0'-model in order to distinguish it from the ordinary coset 0'-model. 

This lagrangian is not manifestly chiral and has a residual global 0(2) symmetry on the 

fields go, 93· Essentially this left-over symmetry is due to the isometry of the coset space 

and using Noether's theorem we find that the corresponding currents are, 

'7 - .!!_ (938±90- 9o8±93) -.1±- 2 • 
2tr 9t 

(6.2) 

Note that these currents bear a striking resemblance to the A: or eq.(2.5). Indeed we have, 

k :J_ =-A_ 
1r 

(6.3) 

and so the current conservation condition 8+:1- + 8-:l+ = 0 implies F = 0 (where F 

is as in eq.(2.9) specialized to the abelian case). This may be trivially generalized to 

arbitrary abelian coset models. The lagrangian of eq.(6.1) is not conformal in the ordinary 

sense. Indeed, considered as a 0'-model, this lagrangian has nonzero beta function as it 

corresponds to a O"-model with negative curvature. 16•17 One may wonder how a lagrangian 

with non-zero beta function could possibly describe a conformally invariant theory. Since 

this problem is clearly beyond the reach of the semiclassical approach used in this paper, we 

can only speculate about possible resolutions. One possibility is that the model is conformal 

when expressed in terms of the parafermion field t/,J, which is expressible in terms of the 

original group variables g through a non-local mapping (eq.(5.5)). Non-local mappings are 

not, in general, expected to preserve the curvature and the beta function. It is therefore 

quite possible that a model with non-trivial beta function can be mapped into a free field 

theory through a non-local mapping. Another possibility is that the gauge fixed form of 

the lagrangian eq.{6.1), although classicaly correct, receives quantum corrections. It may 

also be that there are non-perturbative corrections to the ~ta function that cause it to 

vanish. These questions are presently under study. 

Let us now write the classical parafermions of the previous sections for this model 

SU(2)/U{l) in terms of g0 and 93· It is convenient to use complex notation to represent 
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this gauge-fixed g. Let u = go+ ig3 and u• = 9o - ig3. The classical parafermion tf.-•- is 

then 

(6.4) 

where we have used the conservation equations F = 0. The tP+• which completes the 

SU(2)/U(l) parafermion doublet (recall that here the subscript ± on t/J is a group index 

and not a Lorentz index), is the conjugate of t/J_; 

(6.5) 

Notice that these t/J of eq.(5.5) and eq.{5.4) do satisfy the equations of motion expected 

for free massless fermions (&+¢ = 0). Since tP± solve such simple equations of motion it 

is perhaps difficult to imagine them as nontrivial solutions of differential equations, i.e. as 

solitons. Let us construct an actual soliton solution to the equations of motions of lagrangian 

of eq.(6.1). First it is convienent to choose the c~rdinates fJ, ¢J defined by 

sin fJ = V 9o 2 + 93 2 

cosf/J 90 
= -V.;::9o~2 =+=9=3 ~2 (6.6) 

in which lagrangian eq.(6.1) is 

( 6. 7) 

To look for soli tonic solutions consider fJ, ¢J to be functions of x only. Notice how similar 

this lagrangian is to that of a 5 2 a-model (one would replace tan2 (J with sin2 fJ to get an 

S 2 a-model's lagrangian). Indeed the equation of motion for ¢J (which may deduced from 

current conservation above whose charge generates <P - # const.) is 

n is real and constant (6.8) 
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which when substituted into the equation of motion for (} yields exactly the 5 2 equations 

of motion for 8; 
n2 

a;fJ- 2 = o. 
tan(} sin () (6.9) 

This has the well known solution 

cosfJ = ~sinx with n < 1 (6.10) 

where because of the scaling freedom in x we have, for convienence, scaled n to be some 

number less than one. This classical symmetry of the equations of motion is as expected 

since £ contains no dimensionful parameters. 

It is more difficult to solve eq.(6.8) for 4>(x) and here we present only the foi"II!ula for 

the advance of 4> as we integrate eq.(5.8) from x- x + 211". One finds 

21rn 
~4> = j;f(1 -In!) (6.11) 

this means that along one "swell" of the soliton the vector (g0 , gl) does not rotate into 

itself but rather is displaced angularly by ~4> in eq.(6.11 ). Although this seems strange we 

are for the moment working in an open topology and so are really interested in how much 

the phase of 1/J±. advances,not of what happens to the original fields go, g3 • We will discuss 

particulars of a compact topology in the next paragraph. Indeed referring to eq.(6.4) and 

eq.(6.5) we find an additional contribution to the phase of 1/J coming from the exponential 

factors which when combined with~¢ of eq.(6.11) yields 

21rn 
phase advance of 1/J±. = ±-

1 
-
1 

. 
z-z+2w n 

(6.12) 

Most often one is interested in the gauged WZW model on a compact space. Then 

single-valuedness of the fields g0, g3 requires that the extent of the manifold in x, our scaled 

co-ordinate, is 21rN so that referring to eq.(6.11) nN is an integer. Thus we expect n to 

be rational, and so at fixed compactification the functional integral will get contributions 
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from these N solitons. In summary, we have shown that solitons are a plausible candidate 

for the classical parafermions. 
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VII Semiclassical Musings 

There are, at this point, many questions this approach leaves open. In this section we 

mention only a few things that might prove useful for relating this work with the vast body 

of literature on the Wess-Zumin<rWitten model and coset constructions. The discussion is 

mostly semiclassical and is not to be regarded as rigorous. 

To begin with note that the classical parafermions of eq.(3.1) in the abelian coset are, 

by construction, invariant under vector U(lt transformations (r is some number less than 

the rank of g_ ) but under the axial U (1 t, generated by the algebra of anticommutators, 

the t!J's acquire extra phases. As an example consider the case SU(2)/U(l). Then global 

axial transformations g - ei9'f"J ge+i9'f"J lead to 

·s 
tP- - e' t/J- (7.1) 

where, as usual, theW± are assumed to be in the adjoint representation. These transformed 

tP± again satisfy Poisson algebra eq.(5.17). Note that in the Feigen-Fuchs construction in 

section IV this symmetry corresponds to shifting ¢ 1 (in eq.(5.25)) by a constant. But in 

the quantum theory one will, in general, be concerned with a Feigen-Fuchs construction 

(or a WZW model) on some compact space and so the zer<rmode of ¢ 1 (the mode ¢ 1 = 

constant) will be an operator and not allow the above symmetry. Said a different way. 

the classical symmetry ¢t - <1>1 + c, c constant, does not survive quantization, i.e. is not 

representable by a unitary transformation on the Fock space. It is well known that this 

phenomenon occurs in theories of systems at criticality, such as that of a condenced Bose 

gas where fermion number is spontaneously broken by the ground state. Also, in a compact 

space the zer<rmode of ¢ 1 will be related to the monodromy of the parafermions and so 

will take on discrete values. Thus the rigid axial U(l) breaks to some subgroup Zk and this 

remaining symmetry is associated with the grading of the parafermionic algebra. 12-IS \\·e 

discuss this point from a different point of view in the next few paragraphs. 
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1. Parafermion statistics What statistics the paraferntions obey is a question that 

can only be answered fully in the quantum theory of the model. However, we can get some 

indication of nontrivial statistics through the following semi-dassical argument. Define 

the Green's functions of the quantwn theory through the usual functional integral. The 

parafermions can be defined covariantly on a general surface by 

(i.2) 

where x(x) = fc dy~-' .4~-'(y) and D~-' = 8~-' - i[Aw It is important to realize that in com

puting Green's functions. A~' should be treated as an independent field to be integrated. 

In particular, A~' is no longer a pure gauge, since eq.(2.9) will now have source terms at 

the location of various fields. Furthermore, since A~' is not pure gauge, the field x and 

therefore 1/J~-' explicitly depend on the path C. We may think of the path C as a branch 

cut in space and the resulting Green's function as non-single valued, again reflecting the 

parafermionic nature of 0~-'. It is possible to investigate this more quantitatively as follows: 

Next, consider a field u with chiral charge, i.e., a local field that transforms non-trivially 

under chiral transformations. Specifically, we can take u to beg transforming as described 

in section IV. Next, consider the Green's function G =< tP~-'(x)u(y) >. More generally, G 

could depend also on other fields, but since they play no role in the following argument, 

we have suppressed them. Fix x and imagine moving y adiabatically around a closed path 

circling x. Were it not for the branch cut C, G would return to its original value at the 

end of this adiabatic transport. However, because of the presence of the cut, there is a 

discontinuous jump in the phase of G as the cut is crossed, and so G acquires a phase upon 

returning to its original location. To compute this jump in the phase, we need the \Vard 

identity resulting from invariance under these chiral transformations. Consider the Greens 

function 

(1.3) 
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Now in the functional integral defining this green's function make the finite local chiral 

transformations g(x)- Hc(x)g(x)Hc(a) where He= exp ( -4 La 9a(x)ha). The functional 

integral is invariant under this change of variables (assuming the absence of anomalies). 

Under this the u transform as 

(7.4) 

The change in the action is given by eq.(5.3) with infinitesimal d9a 's replaced by the finite 

9's above. Thus we have the following Ward identity 

(exp c: J d2 y ~ 9a(y)Fa(Y)) u(xl) .... u(xn)) exp (i ~ aa9a(Xt)) 

= (u(xl) ... u(xn)) (7.5) 

Now we are ready to compute the jump in the phase of G of eq.(7.3) as one the coordinates 

crosses the cut C. _This crossing can be thought of as a distortion of C by a small area L: 

and under such a change inC the factor x in the definition of t/J~ changes by (see eq.(5.6)), 

(i.6) 

and 1/J ~ changes by 

W.(z)- exp (- JL. d'yF(y)) W.(z)exp (!L. d2yF(y)) . (7. 7) 

So the expectation value of< t/J~(x)u(y) >now acquires extra factors. Let us work out the 

case of SU(2)/ 1(1) in detail. In this case, eq.(7.7) becomes (suppressing Lorentz indices) 

,p,. - ,p,. exp ( ±i fL. d'yF,(y)) (7.8) 

where we recall both t/J: and A: are in the adjoint representation ( ± and 3 are Lie algebra 

indicies not Lorentz indices). Thus we learn that under this transport 

(t/J:(x)u(y))- (t/J:(x)exp(±i J d2 zF3(z))u(y)), 

E 
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where I: is a small area which includes the point y. Now for u take the combination 

u = go + ig3. Then from the transformation g - H c9 H c we find 

(7.10) 

so a 3 = -1 in eq.(7.4). Now we evaluate eq.(7.9), taking 83(x) =±I inside y inside L: and 

83 = 0 outside L· This gives 

(tb±(x)u(y))- (tb±(x)u(y)) exp ( =F i:) (7.11) 

so, y must go around x a full 2k complete times to return to its original value. This agrees 

with the usual 2k-valuedness of parafermions. 

2. Bilocality Let us return briefly to the discussion of the w's bilocality and ~havior 

under gauge transformations. If we allow gauge transformations at xo, the base point of 

integration used in defining x (see eq.(5.6)), then 

(7.12) 

is no longer quite correct, for to derive it we needed the step 

(7.13) 

making use ofF = 8+.4- - 8_A+ = 0. However, there is a contribution to eq.(6.13), 

the lower limit, which we neglected. This unpleasantness can be avoided by considering a 

product of a cluster of parafermionic fields whose chiral charges add up to zero. The chiral 

charge is the same as the flux carried by the integral in eq.(7.13) and since these fluxes 

add up to zero, the end point contributions from the common end point x0 also cancel. 

This suggest that in the quantum theory of parafermions, one should only consider neutral 

Green's functions, i.e. Green's functions with total charge zero. Alternatively, one should 

introduce a "background" charge at x0 to balance the total charge. -With this proviso, the 

results of the previous sections remain unaltered. However, notice that the abelian nature 
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of the conserved charges is an important restriction in rea.ching this conclusion. We hope 

to consider the non-abelian extension of these ideas in a future publication. 

3. The e-term To the action of Lagranian eq.(2.3) we may add a term 

(7.13) 

where the ea are constants. This term is a total divergence and so will ROt modify the 

equations of motion in the absence of external sources. If the action is defined on a com-

pact space this term can be integrated to zero if the possible monopole contributions are 

neglected. However, if a Green's function is computed, this term can no longer be dropped. 

Consider a field in the Green's function located at point y, which carries chiral charge, i.e., 

transforms non-trivially under g- HcgHc. Then the currents generated by these charges 

are 

in the absences of sources. However, in the presence of the chiral field located at y, the 

eq.(7.14) has a source term on the right hand side: 

k 
-_FG(x) =a~ .:r(x) = const .. 62(x- y). 
1r /J> 

(7.15) 

The integral in eq.(7.13) can then be converted into a path integral around the point y 

(where the source is located), 

j d2xFa(x)- fc dx~A~(x) (7.16) 

where C surrounds y. The right hand side of eq.(7.16) can then be thought of as (partially) 

screening the charge located at y. This is analogous to the screening charges of the Feigen-

Fuchs construction, so it is natural to conjecture that there is a connection. However, the 

Feigen-Fuchs charges are quantized, and it is clear that a treatment that goes beyond the 

classical approach presented here is needed. 
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Conclusion 

Sta.rting with the gauged Wess-Zumino-Witten model, we have used classical ideas to 

motivate the canonical transformations necessary to recover the conformal coset models. In 

essence this gives a "top--down" approach to understanding the rather ad-hoc Feigen-Fuchs 

construction. Essential to the success of this program, the Poisson brackets of the classical 

parafermions in the gauged WZW model have been computed and yield the expected results. 

This work is being extended in several ways, the most interesting being the nonabelian 

coset (l't is chosen nonabelian.) Much progress has been made on this approach with the 

hope that it will lead to nonabelian Feigen-Fuchs constructions. 
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Appendix 

In this appendix we provide some details about the computation of the Poisson bracket 

of the classical parafermions eq.(5.16). Recall that in terms off given in eq.(5.7), t/J, the 

classical parafermion is given by; 

(A.l) 

Recall also that f is a gauge invariant quantity. The following calculation detailed in this 

appendix is rather involved. Although the result eq.(5.16) is simple we have found no 

equally simple way of deriving it. We now describe a tedious brute force calculation. First, 

in computing Poisson brackets of two tb's it is convenient to contract all of t/J's indices rather 

than explicitly displaying them. So, as is done in ref.[7] for the ungauged WZW model, let 

P(x_),Q(x_) be arbitrary functions wjth coset space indices and form t/Jp and tPQ given, 

for example, by 

t/Jp = j dx_ Tr(P(x-)t/J(x-)). (A.2) 

Recalling that dt/; = ~ J8_(J-1df)f- 1 we have that 

1/Jp = -:k j Tr(J- 1df8_(J-1 P f)) 

=- j Tr(RiL(/-1 P f)+ i:Ha_(J- 1 P f)+ H[t/J, P]) (A.3) 

in which 1/Jp stands for dt/Jp viewed as a form and where the definition R = J- 1 ( df- i(H, f]) 

is used. Consider now forming the Poisson bracket { t/Jp, t/JQ}· Using the form 1/Jp above, 

{ t/Jp, t/JQ} will involve several terms. We parse these as follows; 

{ t/Jp, tPQ} = B + C where 

B = {! Tr(RlL(J-1 P !)), j Tr(R1J_(J-1QJ))} 

C = { j Tr ( RO_(J- 1 Pf) + ~H (i: 8_(!-1 Pf) + [t/J, PJ)), 

j Tr(H( i: 8_(J-1Qf) + [t/J, Q]))}- (P :o== Q) (A..t) 
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Now using eq.(5.14) one may simplify the expression for 8 

8 =; J Tr(f- 1Qf8_(J-1 p f)) 

- 2~ J "f. Tr(haf- 1Qf) Tr(ha8_(J-1 P f)) 

= ; j Tr(Q{}_P) + i j Tr([P, Q]¢) 

-
2
: J '2:. Tr(haf- 1Qf) Tr(ha8_(J- 1 P f)) 

a 
(A.5) 

where the term involving {Tr(haf- 1Qf) Tr(ha{J_(J-1 P f)) arises in 8 because the traces 

are over all the generators whereas in eq.(5.14) the R's point only into the coset (the sum 

'2:. is over generators of 11.). 
a 

To simplify C we must compute Poisson brackets of H with H and R. Since H = 

r dx-!£(x- x_)F(x_) and H, as a form, is defined below eq.(5.12) in the text, eq.(5.4) 

implies eq.(5.15), 

{df1l(x),Hb(y)} = ~t5ab£(X- y) 
2k 

{d/(x),Hb(y)} = 0 (A.6) 

where, again, the index f. runs only over generators in the set g_ Vr. Since H has non-ze·ro 

Poisson brackets with fJC co-ordinates only, then in order to compute the Poisson bracket 

between H and R we need only isolate the d9 part of R. Now recalling the definition 

R = f- 1(df- i[H, f]) we have, 

Tr ( R{}_(J- 1 Pf) + ~H( i: {}_(J- 1Pf) + [¢, P])) 

= Tr (!- 1df8_(f-1Pf)- ~He: {}_(J- 1Pf) + [¢,P))) (.4.7) 
and now using eq.(5.10) we may rewrite this term as, 

Tr ( R{J_(j-1 Pf) + ~H c: {}_(J- 1 P f)+[¢, P])) 
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= Tr ( ~ dOO [~[t/7, P]ha + 2k11'ha8_(J- 1 P !)] 

+ ex~ A) [i: a_u-l P f)+ [t/7, PJ] + .. .) (A.8) 

where ... means terms involving dpt that won't contribute to the Poisson bracket of C in 

eq.(A.4), Note that we have used the fact that H = x- A. Putting this into C one finds 

that the .terms involving {x +A, x- A} vanish identically by antisymmetry in P and Q. 

Then C simplifies to 

J ""' i [ k -1 C ={ Tr(~d00(2tb,P]ha+ 211'ha8_(J PJ)), 

j Tr(H( i: 8_(J-1Qf) + [1/J,Q]))}- (P- Q) 

= 
4
: j dxdy€(X- y) Tr([h0 , P]t/J)(x) Tr((ha, Q]t/J)(y) 

+ 
2
: /LTr(ha/-1Q/)Tr(h0 8_(J-1PJ)) 

a 

(A.9) 

where use has been made of eq.(A.6). Now combining B and C we find the final result 

{1/Jp, tPQ} = ~k j Tr(Q8_P) + 2i j Tr([P, Q]tb) 

+ ~ J j dxdy€(X- y) l:Tr([ha, P]¢)(x) Tr([ha, Q]tb)(y) 
a 

(.4.10) 

This result is of a rather simple form considering the derivation. Note that all the terms 

of eq.(A.lO) are relevant and that the first one becomes the central term is the algebra of 

eq.(5.16). 
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I. Introduction 

Coset models 1•2•3 are among some of the most interesting examples of two dimensional 

conformal theories 4•5 . The primary fields of these models and their various properties 

are under intensive study at the present time 6 • Most of the approaches used so far are 

algebraic in nature; however, it is well known that an alternative method 7 that starts with 

the gauged WZW lagrangian is also available8. In this latter approach, the question of how 

to fix the gauge immediately arises. A popular choice is the axial gauge 9 , which leads to 

a description in terms of non-interacting WZW models 10- 14, some of which correspond to 

ghosts. The BRST invariance plays a crucial role in establishing unitarity 14•15•16; a situation 

that is quite standard in gauge theories in general when an unphysical gauge choice is made. 

An alternative possibility is the unitary (physical) gauge 17, which was used to investigate 

abelian coset models in an earlier paper 18• It was shown in that paper that coset models 

can be reformulated in terms of fields which are chirally conserved, gauge invariant and 

which satisfy a simple closed PB (Poisson bracket) algebra. It was then natural to identify 

these fields with parafermions 19, which are known to be the primary fields of the coset 

models 20 • The PB algebra was shown to lead easily to the free-field realizations 21 •22 •23 of 

the parafermionic fields. 

In ref.[l8] the factor group of the coset was taken to be abelian, although it was pointed 

out that most the results easily generalize to the non-abelian case. Our main goal in this 

paper is to carry out this generalization. We shall see that, although many of the results 

carry over easily, there are some important differences as well. Our approach is the same 

semi-classical approach used in ref.[l8]; we start with the gauged WZW lagrangian, define 

(classically) the parafermion fields, compute their PB's, use these results to give a simple 

construction for the parafermions, and finally quantize the model. 

The paper is arranged as follows: In section II, we review briefly the gauged WZW 
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model, the construction of the parafermionic fields and the calculation of their PB's. The 

latter calculation is somewhat involved and it was presented in full detail in the abelian 

case in ref.[18). Here we do not repeat it but instead we focus on the new complications 

that arise in the non-abelian case. The basic problem is the following: the parafermionic 

fields are constructed by attaching a Wilson line to the currents of .the WZW model to 

make them gauge invariant, and although these fields are locally gauge invariant, they 

transform non-trivially under the group that operates at the end point of the 'Wilson line. 

Parafermions therefore carry a (globally) conserved quantum number (color),associated with 

a fixed end point, which we shall call the base point. The completely gauge invariant 

quantities are constructed out of parafermions by forming" color" singlet combinations, and 

they are the true physical variables of the theory. They are also multilocal, since they are 

functions of several coordinates. For this reason, in calculating PB's of various qu~tities 

it is usually easier to work with parafermions rather than directly with gauge invariant 

quantities. Unfortunately. as we shall show, the PB's of parafermions close into themselves 

only in the abelian case; the PB's of non-abelian parafermions receive additional complicated 

contributions from the base point. We shall argue that these base point contributions are 

gauge artifacts which cancel in calculating the PB's among gauge invariant (color singlet) 

variables, and this naturally leads us to define "generalized" PB's where the base point 

terms are dropped. A price is paid in doing this; the generalized brackets no longer satisfy 

the Jacobi identity and therefore generate a non-associative algebra. However, we prove in 

appendix A that the color singlet sector of this algebra is associative, which is to be expected 

since this sector is gauge invariant and base point independent. Therefore, in one sense, the 

non-associative algebra is purely a calculational tool; on the other hand, it is possible to 

view it as parafermions having non-associative statistics. Of course, since parafermions are 

by construction confined in this m_odel, this abnormal statistics is not directly observable. 

It is amusing to note that a special non-associative statistics has already been proposed as 
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an alternative description of quark cofinement 24 • 

In the next two sections of the paper (sections III and IV),we describe an explicit 

realization of the parafermion fields which we call the free current construction. This can 

be viewed as a natural generalization of the well-known free field realizations of the abelian 

coset models 25•26•27 except in this case free fields are replaced by currents that satisfy 

the affine algebra 28•2 generated by the original Lie group. The basic idea is simple; the 

Wilson lines attached to the parafermions are replaced by the corresponding path ordered 

exponentials of the free currents. We show in section III that, classically, this costruction 

reproduces all the properties of the parafermion fields; in particular, again neglecting the 

base point contributions, the PB's derived in section II are recovered. 

Our treatment thus far has been cia:ssical; however the free current construction sug

gests a natural method of quantization.The basic idea, pursued in section IV, is to replace 

the classical free currents that satisfy the affine PB algebra by operators that satisfy the 

corresponding commutator algebra. This process inevitably leads to divergences which have 

to be eliminated by renormalization. We conjecture that all color singlet amplitudes are 

rendered finite by multiplicative renormalization, and we verify our conjecture in lowest 

order perturbation. Once the operator construction is renormalized, it should be possible 

to extract all of the primary fields of the model through the short distance expansion of 

the color singlet operators; the gauge invariant, multilocal operators constructed out of free 

currents therefore "package" the primary fields of the coset model. At the cost of having to 

deal with non-local operators, this approach has the advantage of avoiding complications 

of gauge dependent methods, such as ghost fields and screening charges, common in Feigin

Fuchs type constructions 29• The last sec.tion summarizes our conclusions and suggests 

possible extensions. 
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II. Review of the Gauged WZW Model 

We start with the Wess-Zumino-Witten model in light-cone coordinates (x± = x0 ± 

Xl ; o± = 1/2(8o :r: ot)), where 9 takes values in some Lie group G. 

Letting H be some subgroup of G, and h the Lie algebra of H, we define: 

where A± takes values in h The gauge fields A± act as Lagrange multipliers that remove the 

components of the conserYed currents lying in the subgroup H. We now have the currents . 

ik -1 J_ = -- (D_g) g 
7r 

(2.3) 

equations of motion 

(2.4) 

F=o·. 

As Lagrange multipliers the gauge fields A± can be solved explicitly in terms of g = g(x±)· 

In order to simplify the quantization procedure, we may perform a convenient canonical 

transformation on the classical fields such that the resulting physical degrees of freedom are 

the parafermions t/;. We expect t/; to have the following properties : 

1. Coset-valued: We have used the gauge field to project out the subgroup components, 

leaving only coset-valued degrees of freedom, i.e. we expect: 

tr (hat/;) = 0 'v'ha E h (2.5) 
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2. Gauge Invariant: We a.sk that the coupling introduced in eq.(2.2) render the action 

gauge invariant under : 

(2.6) 

3. Chirally Conserved: The anticipated conformal structure of the underlying coset 

model suggests : 

\Vith these properties in mind, we define 

where J is the current defined in eq.(2.3) and U is the Wilson line defined by 

U(x,xo) = Pcexp(i 1: dx'J..IAJ..I(x')). 

(2.i) 

(2.8) 

(2.9) 

Pc represents "path ordering" the exponential along a. curve C which connents the "ba.se 

point" x0 to x. The Wilson line U satisfies the important semigroup properties 

(2.10) 

Since F = 0 cla.ssica.lly, U, and consequently '1/J, do not depend on the path C, but only 

on the endpoints. Fixing the ba.se point xo we view '1/J a.s a. function of a. single variable 

x. Defining g a.s the Lie algebra. of G, J(x) e g- hand therefore '1/J, which is just J(x) 

conjugated by an element of H, is also a. member of the coset g- h. Ignoring ba.se poinr 

contributions (which will be considered shortly), '1/J is locally gauge invariant and chirally 

conserved. These properties follow from the equations of motion eq.(2.4), and the Wilson 

line identity 

XJ..I ( &: - iAJ..I (x)) u (x, Xo) = 0; xj..lis tangent to cat x. (2.11 I 
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To construct Poisson brackets, we will identify x+ with time, and x_ with space, and 

focus on the t/J_ component of t/J, which satisfies 

(2.12) 

For the computation ofthe Poisson bracket it is advantageous to replace U defined along 

the x+ axis with U defined along the x_ axis, using the equation of motion F = 0. In the 

sequel, when no space-time index appears, a space index (-) is implied. We have, 

U (x, x 0 ) = Pexp (i 1: dx' A_ (x')) 

I!.• =I!.·- = -u-1 (x, x0 ) J_ (x) U (x, xo) 

The integration being carried out at fixed time (fixed x+)· 

(2.13) 

(2.14) 

For the physical observables, the above mentioned base point contributions should 

vanish. A complete set of such variables constructed from the local parafermions is given 

by the following set of "multilocal" observables 

O(xt,X2,' · ·Xn) = tr{t/:(xt)1b(x2) · .. 1J)(xn)} 

= ( -1) 11 tr {J (xi) U (xi, x2) J (x2) · · · J (xn) U (xn, x1)} (2.1.5) 

"~lultilocal" is used in the following sense: The local parafermion is equipped with a non

abelian tail, analogous to the Dirac tail of the electromagnetic monopole_ When we .. tie" 

these tails together in a gauge invariant manner, as shown above, we remove this non-local 

dependence. If we were to reinstate the full tw~dimensional freedom of these objects. we 

would find that two non-overlapping observables Ot and 02 would satisfy Bose statistics 

with respect to one-another. 

Truly local objects can also be extracted from these observables by letting the space 

variables approach each other and expanding in the differences (Xi-xi). When we quan t w·. 
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this procedure will give us the operator product expansion, the coefficients of this expansion 

being identified as the primary fields. The parafermions are treated as building blocks of the 

physical observables. We find that in general it is much easier to work with the parafermions 

1/J, rather than the observables oi directly. 
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III. Poisson Bracket of Non-Abelian Coset Parafermions 

In order to quantize this theory, treating the parafermions as local observables, we 

need first to compute the classical Poisson brackets of the parafermions. This calculation 

is somewhat involved, and was given in detail in our first paper concerning abelian coset 

models. Our aim in this section will not be to repeat this calculation, but to pinpoint the 

major differences between the abelian and non-abelian cases. In the present non-abelian 

case, complications arise due to base point dependent terms. In retrospect, these compli-

cated terms can be dropped at the cost of introducing a non-associative generalized Poisson 

algebra for the parafermions. \Vhen we project onto the "multilocal" observables defined 

above, the base point dependent terms cancel and associativity of the Poisson algebra is 

restored. \\'e see then that at this stage, the non-associative algebra may be viewed simply 

as an aid in simplifying algebraic calculations. We begin by reviewing the computation of 

Poisson brackets for lagrangians linear in time derivatives. Let 

I= j dtAi(¢) d¢; . 
dt 

The variation of I is given by 

fJl = dt6<1J' E _; · J . d¢· 
. I] dt ! 

E 
_ 8A; 8Aj 

ij = -----
8¢j 8¢; 

Defining the exact one-form d¢; = d<i>i, we have the following Poisson bracket: 

( 3.1) 

(3.2) 

(3.3) 

In the sequel, {,} will refer to the classical Poisson bracket, wheras [,] will represent commu

tation in the Lie algebra. We generalize this procedure to include inexact forms. Boldface 

characters "V" will represent one-forms in the field space, while plain characters "V" rep-

resent the corresponding dynamical variables linear in time derivatives : 

va = va (<I>) d<l>i 
' dt 

(3.4) 
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If the variation takes the form, 

then we have the result, 

( -t)ji {Vi,Wj} = E 

(3.5) 

{3.6) 

If E is not invertible, constraints must be imposed on the dynamical fields. In applying 

this procedure to the action given in eq.(2.2), invertibility is achieved through gauge fixing. 

The detailed form of this constraint is not important since we will work only with gauge 

invariant quantities (up to surface terms at the base point). For exa.tnple, we replace the 

group element g( x) by the gauge invariant function f( x ), 

f(x) = U (xo,x)g(x)U(x,xo) (3.7) 

and thus we have, 

(3.8) 

We want to express t5I in the form of eq.(3.5). To do this we introduce the following gauge 

invariant quantity 

H (x) = 1r dx'U (xo, x') F (x') U (x', xo) 
ro 

and its corresponding form 

H (x):: rz dx'U (xo, x') F (x') U (x', xo) 
lro 

The form F is derived from F by replacing f)_g by dg as explained earlier. We have 

(3.9) 

(3.10) 

(3.11) 

The symbol" t5" signifies the variation of the action under a variation dg of the field variable. 

This notation is employed in an effort to conform to the mathematical literature. Using 

eq.(3.6), we can immediately read off the PB's (Poisson brackets) 

(3.12) 
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(3.13) 

-rl taking values in the coset g- h. The aim is to compute the PB's of 1/J. We express d¢ 

in terms of R and H, 

(3.14) 

In the ungauged WZ\V action, the term with H is absent, and the PB's of the parafermions 

can be immediately evaluated using eq.(3.12). However, in the present case, it is also 

necessary to compute the PB's of H with both H and R. Since H is expressed in terms 

of U and F, it is important to observe that there exists a simple set of field variables 

canonically conjugate to F. Consider the variation of g(x) generated by infinitesimal"axial" 

transformations, 

(3.15) 

with [, ]+ being the anticommutator and ha E h. Under this transformation, the variation 

of the action has the simple form 

(3.16) 

From this expression we deduce 

(3.11) 

To compute the PB of an arbitrary form V with F , we isolate the part of V corresponding 

to the axial variations given in eq.(3.15), 

(3.18) 

where p's are the coordinates which supplement the axial coordinates IJ. Then 

( 3.19) 
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Therefore, it is sufficient to isolate the d8 components in Rand F to complete the calculation 

of the PB's of two parafermions. The final result is best expressed in an index free notation. 

To that end define: 

1/Jp=: j dxtr(P(x)¢(x)); P(x)Eg-h. (3.20) 

The result is 

' 2kf ·j { ,Pp, tt:Q} = -;- dx tr (Q (iLP)) + 2z dx tr ([P, Q] ¢) 

+ 
2
: j dxdy c (x- y) 'Etr([ha, P(x)] ¢(x)) tr([ha,Q (y)] ¢(y)) 

a 
(3.21) 

the sum being carried out over the subalgebra h. This is the result given in ref.[l] for H 

abelian. It is important to check that the above algebra satisfies the Jacobi identity, 

. L {{¢Pp¢P:2},¢p3} = 0 (3.22) 
cyclic 

the sum being taken over cyclic permutations of 1,2 and 3. This identity is satisfied by 

eq.(3.21) when His an abelian subgroup of G, but in general is violated for non-abelian H 

(see appendix A for details). The term responsible for this violation is the third term in 

eq.(3.21), which is non-local and is responsible for the unusual statistics satisfied by 1/; 18. 

Note that the first two terms are the standard local terms of affine Lie algebras, and clearly 

satisfy the Jacobi identity. 

The Jacobi identity is preserved under canonical transformation, so a mistake has to 

.have been made. The error can be traced back to our deduction of eq.(3.1 i) from eq.(3.16). 

which is valid only if the components of F are linearly independent. That is, only if there 

is no linear constraint of the form 

(3.23) 
a 

where Ca depends on g(x) but not on 8tg(x). Such relations(s) indicate we are working 

with a constrained system and the right hand side of eq.(3.17) must be modified to 

(~.2-1) 
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where pcb is the projection of the unit operator bab in the subspace orthogonal to the 

constraint(s). The existence of such a constraint can be seen from a purely group the-

oretical point of view. In addition to eq.(3.15), consider the infinitesimal vector (gauge) 

transformation 

{3.25) 

The existence of a linear relation between 6Ag and 6vg would imply that a certain linear 

combination of axial transformations is equivalent to a gauge transformation, which leaves 

the action unchanged. Since dO is arbitrary, this implies a linear relation on F of the form 

eq.(3.23). If h is the abelian Cartan subalgebra of g then no such relation exists, and 

eq.(3.1 i) is unchanged. This can be proved trivially by diagonalizing h and writing out 

such a linear relation in components. However, if h is non-abelian the situation is quite 

different. Consider for example the case G = SU{2) X SU(2), and H = SU(2) (the diagonal 

subgroup). If we take SU(2) in the fundamental representation, we can paramaterize (g1,g2 ) 

as, 

(3.26) 

Here Ui fori= 1, 2 represent the Pauli matrices that generate the two SU{2) factors, and I 

the corresponding unit matrix. In this notation, we can parameterize the subalgebra h by 

The desired linear relation is then given by 

_ a X b 
n = Ia x ~; 
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ni= 

hE h. (3.21) 

(3.28) 

boa- a.ob 
Ia x ~ · 

(3.29) 



It follows that 

(3.30) 

(3.31) 

The existence of such linear relations of this type, in many cases, follow from simple counting 

arguments. For example, consider the coset SU(5)/SU(4). The dimension of SU(5) is 24, 

while for generic g, the rank of 8A and 6v are 15 and 12 respectively. Since 15+12 > 24, 

linear relations must exist. It is not true that such degeneracies exist for all non-abelian 

cosets, however they did exist in most of the cases we studied. 

The modification of the PB of dO and F changes the computation of the PB's of the 

parafermions in a subtle way. This modification tells us that a subset of chiral tran'!!forma-

tions are gauge transformations, and we are instructed to project out these variations in 

the PB relations. Such a projection is unnecessary when computing PB's between gauge 

invariant quantities. For example, both R and H are formally gauge invariant. 'When we 

go to compute the PB of R and H with F , we isolate the part of R and H corresponding 

to chiral variations dO. However, if those chiral variations are along a gauge direction then 

the corresponding variation of R and H is zero by gauge invariance. This would seem to 

indicate that the naive calculation based on eq.(3.17) was legal. However, R , H and 1/J 

are not completely gauge invariant, rather there is gauge dependence at the base point 

xo. When computing the PB, one has to do integration by parts, which give rise to base 

point contributions that depend on the projection operator P of eq.(3.24). As a result, the 

PB's of two tb's do not close into 1/J's as in eq.(3.21), but there are additional unpleasant 

contributions from the base point. However we do not compute these extra tenns explicitly 

since the advantage of working solely with the one-body 1/J's would then be lost. 

We can avoid these complications by recalling that ultimately we are only interested in 

the truly gauge invariant observables of eq.(2.15). In computing the PB of two such observ-
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ables, the base point contributions all cancel, since these are pure gauge terms. Equh:a.l.ently, 

we may notice that the gauge invariant observables of eq.(2.15) do not depend on the base 

point, suggesting that the unwanted terms must cancel. These clearly are not independent 

arguments, but merely two sides of the same coin. It follows that although eq.(3.21) is 

not correct as it stands for non-abelian cosets, it is still perfectly alright to use it as an 

intermediate step in computing the PB's of gauge invariant quantities, such as those given 

in eq.(2.15). 

Recall that t/J is a coset valued field, 

Tl E g- h. (3.32) 

This index forms a representation of the subgroup H of G. It is useful to think of it as a 

conserved, non-abelian, global quantum number (color), generated by H. The gauge invari

ant observables (O's) are then the global color-singlet combinations of the parafermions. 

For these color-singlet obsen:ables, it .is alright to use eq.(3.21) in computing PB's. To 

summarize, 

a) The color-full parafermions ( t/J) are the building blocks of color-singlet physical quan

tities. It is much simpler to work with t/J's rather than the color-singlet observables 

directly. 

b) The PB's given in eq.(3.21), although not correct for the t/J's themselves, give the 

correct result when used in calculating the PB's of color-singlet observables. The 

extra terms needed to correct eq.(3.21) are contributions from the base point, and 

thus all cancel when considering the "multilocal" observables of eq.(2.15). 

As a check, we have verified that the Jacobi identity is satisfied for the PB algebra of 

color-singlets (see appendix A). 
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From a somewhat different point of view, we may postulate eq.(3.21) as a non-associative 

algebra between the components of '1/J. Clearly the correspondence with Poisson brackets is 

lost, nor is it possible to quantize such an algebra, representing t/;'s as operators in a Hilbert 

space. However, as stated earlier, if we project onto the color-singlet "multilocal" observ-

abies defined in eq.(2.15), the algebra is rendered associative. We identify this image as the 

true Poisson algebra, and as we shall show later, this algebra can be quantized consistently. 

In a rather different approach the non-associative nature of one-body operators in a 

confining theory was first considered in ref.[24], where octonians, the simplest realization of 

a non-associative ring, were postulated as a physical algebra. It is possible that similar non

associative algebras could be derivM from other confining systems such as two dimensional 

QCD. The existence and classification of this type of nontrivial structure in non-associative 

algebras may also be interesting from a purely mathematical point of view. 

We conclude this section with a generalization of eq.(3.21) to the case where g is the 

tensor sum of two affine lie algebras of different central charges. That is, 

h = g~c. +k:o the diagonal subalgebra. (3.33) 

These cosets give an important class of examples, containing the minimal models3 . Calcu

lation of the PB's requires a slight generalization of the preceeding calculation. We present 

·only the final result. The coset valued t/J takes the form 

t/J = L t/Ja (rf- r;). ( 3.3-i) 
a 

\\'e define 

P = L pa (rf- r;) i p = L pa ( rf + r;) , (3.3) I 
a a 

and present the result 
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211' J + kt + k
2 

dxdye: (x- y) tr ([¢ (x), P (x)][¢ (y), Q (y)]). (3.36) 

Just as in eq.(3.21) this algebra is non-associative due to the neglect of base point contri-

butions. 
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IV. "Free Current" Realization of Parafermion Algebra 

We would like to realize the classical algebras given in eq.(3.21) and eq.(3.36) in terms 

of free fields. We have found that the simplest route to achieving this is given by a two step 

process. In the first step we realize the algebras given in eq.(3.21) and eq.(3.36) in terms of 

a free current algebra or affine algebra. The second step being the well known realization 

of affine Lie algebras by free fields25•26•27• That is, we give an explicit construction of the 

coset models in terms of currents of the ungauged WZW model. The construction is very 

simple, and its quantum extension, discussed in the next section, presents a starting point 

for constructing the primary fields of the model. 

We will start with eq.(3.21) and try to find an explicit constuction for 1/J in terms 

of fields that satisfy simple, local commutation relations (or Poisson brackets). The only 

consistent local algebras that we are aware of are either the affine algebras or the free 

field algebras, which can be reguarded as a special case of the former. We cannot hope to 

reproduce eq.(3.21) exactly, since it is non-associative; however, we can realize eq.(3.21) up 

to base-point dependent surface terms. We mimic eq.(2.8) by writing 

1/J (x) = w-l (x, xo) E (x) w (x, Xo)' ( 4.1) 

where W replaces U and E replaces J. W is a bilocal H -·valued field defined as a path 

ordered product, as in eq.(2.9) 

W (x, xo) = Pcexp (i ~~ dx' B (x')) 

To proceed we will need the identities 

OrW(x, y) = iB(x)W(x, y); 811W(x, y) = -iW(w, y)B(y). 

( 4.2) 

( 4.3) 

We require B and E to have local PB's. The non-local term of eq.(3.21) is entirely due to 

the non-locality of the Wilson line W. 
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lt is pe;;sibl:: to avoid path-dependent terms in the Poisson brackets of the parafermions 

expressed in eq ( 4.1) if we require B and E to satisfy an affine algebra with correctly chosen 

central charge. \Ve introd";Jc~ the free current 

(4.4) 

with the following affine algebra 

Define: 

(4.6) 

With these currents defined, we identify 

(4.i) 

with constants o:,/3, and "' to be determined. We need to compute the PB's of Wand E. 

as well as lV with itself. In keeping with our policy of suppressing indices, it is useful to 

introduce the following 

Wz =I dxtr(W(x,xo)Z(x)) (4.8) 

with P(x) E g- h; Z(x) E H. Letting K be an arbitrary dynamical variable, the necessary 

formulas take the form 

{Wz, K (y)} = i/3 I dx 1: dx' {P (x'), K (y)} tr (W (x, x') haw (x', x0 ) Z (x)) (4.9) 

{Wz17 Wz2 } = -/32 I dx I dy 1: dx' £ dy' {r (x') ,r (y')} 

· tr (W (x, x') haW (x', xo) Z1 (x)) tr (w (y, y') hbW (y', Yo) Z2 (y)) . (4.10) 

To avoid ill defined terms in eq.(4.10), we have temporarily introduced two distinct base 

points xo and Yo· To evaluate eq.(4.10), we substitute the PB given in eq.(4.5), and integrate 
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the derivative of the delta function by parts. After some algebra, we arrive at 

o./32 j {Wz1' Wz2 } = 4 dxdy (e(xo- y) + e(x- Yo)- e(x- y)- e(xo- Yo)) 

· tr (W(x, Yo)ha Z1 (x)) tr (W(y, xo)ha Z2(y)) 

+i~
2 

(a/3- 1) j dxdy j dx' tr (W(x, x')haW(x', xo)ZI(x)) 

·tr(W(y,x') [ha,F(h)(x')] W(x',Yo)Z2(Y)) . (4.11) 

The last term, which involves integration over x', cannont be reexpressed in terms of H' 

alone. If this term does not cancel, the PB of two tj;'s will not close. We are forced to 

require 

a/3 = 1 . (4.12) 

At this point, we drop the terms dependent on the base point. As in the previous section, 

these terms would have cancelled after projecting onto color-singlet observables. \Vith these 

simplifications, we have 

Finally, we need to compute the PB of E with W. Employing eq.(4.8), we have 

{Wz, Fp} = - 2~ j dxdy tr (W(x, y)haW(y, xo)Z(x)) tr ( ha [F(c)(y), P(y)]) . ( 4.14) 

Putting together the above relations we obtain the result 

{t/Jp~t/JQ} = -")'2 a j dxtr(PozQ)- i")' j dxtr([P,Q]¢(x)) 

+_!_ j dxdy e(x- y) tr ([ha, P(x )] tf;(x)) tr ([ha, Q(y )] ¢(y)). ( 4.15) 
4a 

Taking a = kj2rr ; ")'= -2, we have complete agreement with eq.(3.21). We note that the 

central charge of the affine Lie algebra eq.(4.5) is the usual quantized value k/2rr, k E Z. 
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as required by unitarity. This construction ca..:. ea.-;ily be ~xtended to the model defined in 

eq.(3.34). We define two commuting a.ffi.:!~ algebras as follo\\·s 

{ 
k -/ } k2 I /cl i ( [ k l ] ) F(2)(x),.l"(2)(y) =-

8
1!'6(x-y)6 -46(x-y)tr r(2),r(2) F(2)(x) ( 4.16) 

{.r~) (x) ,Ff2) (y)} = 0 . 

Defining the diagonal subalgebra F = F(l) + Fc2), the construction of eq.(4.1) realizes the 

algebra of eq.(3.37) upon setting 

(4.17) 

In closing this section, we will check two simple consequences of our construction. 

Consider the simplest gauge invariant function given by 

0 (x, y) = tr (¢(x)¢(y)) = 4 tr (.r(c)(x)W(x, y)F(c)(y)W(y, x)). (4.18) 

As explained in ref.[18], we expect to recover the classical stress tensor as x - y. This is 

the classical analogue of the leading term in the operator product expansion. From eq.( 4.1 ), 

we have 

0 (x, x) ::= 8 2: .rt(x)Ft(x) . ( 4.19) 
teco•et 

Up to an overall normalization constant, this is the classical analogue of the Sugawara 

construction for the coset model. 

One other non-trivial check is to verify that all gauge invariant functions lie in the 

coset. In operator language, they should all commute with currents that belong to the 

subgroup H. The classical analogue is the following PB relation 

(4.20) 
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for all observables 0 defined in eq.(2.15). Using eq.(4.13) and eq.(4.14), we have 

{ W(x, xo), F(h)(z)} =- !~ ( -t5(x- z)haW(x, xo)- t5(xo- z)W(x, xo)ha). ( 4.21) 

Using this result in eq.( 4.17) for O(x, y), it is easy to show that the PB's of W's with :F(h) 

cancel against the PB's of :F(cl and :F(h)· The result generalizes in a straightforward fashion 

to the complete set of observables given in eq.(2.15). 
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V. Quantization of the Poisson Algebra 

We would like to generalize the realization of the classical parafermion algebra to a 

quantum construction. We replace the classical variables F 1(x) by operators and the Poisson 

algebra eq.( 4.5) by the corresponding commutator algebra. The resulting expressions are 

divergent, and regularization and renormalization schemes are necessary. The relation ~ = 

kj2rr , with k E Z clearly survives quantization. On the other hand, /3 and "f of eq.(4.7) 

may need renormalization. \Ve will show that the classical relation 

(5.1) 

remains valid to at least first order quantum corrections. This relation may, however, 

undergo finite renormalization at higher orders. Finally "f, .which is classically an arbitrary 

normalization constant, needs infinite renormalization after quantization. We will argue 

that -y is multiplicatively renormalized, and therefore t/J is rendered finite by a multiplicative 

renormalization constant. As it should be clear from the above discussion, our treatment 

of the operator construction is still preliminary and more work needs to be done to put it 

on a firm foundation. 

When we replace the classical variables F 1(x) by operators satisfying the affine algebra, 

we face the question of the ordering of factors in eq.(4.1) and in the definition ofW (eq.( 4.2)). 

Even classically, F is a matrix in color space, where operator oredering is prescribed by path 

ordering the exponential. When the classical F 1( x) become operators, it is natural to impose 

the same path ordering for these operators, treating the two spaces as a tensor product. In 

this way, we also preserve the important semigroup properties (see eq.(2.10)). Clearly W 

and t/J are riddled with infinities which come from the coalescing of the arguments of two or 

more F operators. There are various ways of regulating these expressions. For example, one 

could discretize the space variable "x", and write W as a product. Another method, which 

we have found more convenient for our calculations, involves dampening the contributing 
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modes in momentum space. \Ve express the operator algebra in mode number 

(5.2) 

1 "' . with F(x) = -
2 

~e•p·r,rP. 
1r p 

(5.3) 

where p ranges over the integers, or half integers. To regularize, we replace eq.(5.3) 

with F(x) = ..!_ "'eip·r-eipl_r: 
2:rr ~ p 

p 

(5.4) 

The regulator "e" is a small positive quantity, and the operators Fp still satisfy the algebra 

eq.(5.2). However, the affine algebra in position space eq.(4.5) is repalced by a non-local 

algebra. The realizations given in eq.( 4.1) and eq.( 4.2) remain unchanged, with the provision 

that the regulated F's be used, and that operators should be path ordered in the same 

manner as the classical Lie algebra generators. 

\Ve first investigate the structure of the divergent terms in W. We start with the 

defining relation eq.(4.2), where F(h) is given by the regulated expression eq.(5.4). We 

expect the leading divergence to be present in the vacuum expectation value of W. We 

define the vacuum 

(5.5) 

Set F(x) = F(+) + F(-)• where "+" ("-") are positive (negative) frequency parts. (The 

possible zero mode is not relevant to our discussion). By splitting F in this way, we can 

express the vacuum expectation value of W in terms of a differential-integral equation 

where ha E h. Consider the commutator in the above equation in the limit e -+ 0, i.e·. 

without the cutoff 
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whe~e 6(+) indicates the positive frequency part of the delta function. We now repeat 

the classical argu.m~nts leading to eq.(4.11) : use integration by parts on the first term of 

eq.(5.7) with respect to x', and when the derivative operator is applied toW use eq.(4.3). 

Just as in the classical case, the terms obtained in this way cancel against the contribution 

from the second term in eq.(5.7) if o./3 = 1. This leaves us with the end point contributions 

from the limits of integration at x and y. This argument breaks down when the regulator e 

is reintroduced; there is no longer a complete cancellation between the first and the second 

terms of eq.(5. 7). However, on intuitive grounds, one may expect the terms singular in e 

as e - 0 will cancel in this way. We show in appendix B that this expectation is justified 

to at least the lowest order in 1/k. What happens at higher orders is an open question. 

However, assuming that the singular terms continue to cancel, we have the following result 

8:r < OIW(x, y)IO >::! - i: Co!+>(o) < OIW(x, y)IO >, (5.8) 

where Cis the Casimir of the subgroup H 

I = identity matrix, (5.9) 

'and o! +) is the regulated delta function 

(5.10) 

In deriving eq.(5.8), we have only retained terms singular as e - 0, which come from 

integrating 8:ro<+>(x- x') with respect to x' and picking up the end point contributions at 

x = x'. Integrating eq.(5.8), we find the following singularity structure 

< OIW(x, y)IO >~ exp (-~~ (x- y)) ·finite factor. (5.11) 

This formula supports our contention that the only infinite renormalization needed is a 

multiplicative one. Physically, the result is quite plausible : the Wilson line carries an 
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infinite amount of energy per unit length due to its infinitesimal thickness 

energy per unit length = ck . 
2 e 

( .j,l2) 

This result is valid to lowest order in 1/k ; it may well be modified at higher order. 

Finally, we would like to mention that the quantum analogue of eq.( 4.20) can also be 

derived, subject to the assumptions leading to eq.(5.8). 
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VI. Conclusions 

In this paper, we have extended the results of our earlier work on abelian coset models 

to non-abelian cosets. As before, starting with the ·gauged WZW lagrangian, we have 

shown how to define the parafermion fields and derived their Poisson bracket algebra. As 

explained in the text, we were naturally led to introduce a non-associative algebra for 

the parafermions which reduces to an associative algebra in the physical (gauge invariant) 

sector. \Ve have also given a simple construction for this sector in terms of free currents 

that satisfy a classical affine algebra. Replacing the classical current algebra by its quantum 

version gives a fully quantum mechanical construction, which is the natural generalization 

of the free field realization of the abelian coset models. \Ve have also taken the initial steps 

in carrying out the program of renormalizing the quantum construction. Several problems 

remain for the future, the most important one being the question of renormalization. Also, 

generalization to non-compact cosets should be straightforward, perhaps making it possible 

to investigate the unitarity of these models 30• Finally, it remains to be seen whether more 

general conformal models 31 can be discussed within the framework introduced here. 
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Appendix A 

We show that the algebra given in eq.(3.21) satisfies the Jacobi identity eq.(3.22) after 

projecting onto color-singlet observables. When we su~stitute eq.(3.21) into eq.(3.22), we 

will get an expansion in ki, with i = -2,-1,0,1,2. It is not difficult to show that all of these 

terms cancel even for single, color-full parafermions, with the exception of i = 0 and i = -2. 

The term independent of k (i=O) has two contributions. One term where the k-independent 

term of the PB is used twice, and one where the non-local term proportional to .:(x - y) 

is in the inner PB, and then the "central charge" term is used in the outer PB. These 

terms combine to give a restatement of the Jacobi identity for the underlying semisimple 

Lie algebra, and in this manner give a nontrivial restriction on the coefficients of the PB 

of eq.(3.21 ). If we label the coefficients of the three terms of eq.(3.21) as a,b,c respectively. 

this restriction takes the form (where the normalization of the trace takes the customary 

form tr( 'T'a'T'b) = 2cab) 

( .4.1) 

which is satisfied in our case. Let this expression fix c in terms of a and b. We can arbitrarily 

scale the paraferrnions '1/J to fix b. This leaves a single overall normalization constant for 

the right hand side of the Poisson algebra. We now concentrate on the leading term (i = 

-2), and work with the truncated algebra 

{'1/Jp,t/JQ}= j dxdy.:(x-y)Ltr(P(x)[ha,¢(x)])tr(Q(x)[ha,¢(x)]), (.4.2) 
a 

the sum being carried over the subalgebra h. With O(x) = O(xt.X2 1 ... ,xn) defined in 

eq.(2.15), we wish to show that 

L {{01 (x), 02 (y)}, 03 (z)} = 0 (.4.3) 
cyciic 

Define: 

(AA) 
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and similarly for Y and Z (involving 'IP(Yi)'s and '!P(zi)'s repectively). We have 

(A.5) 

where "a" is summed over the subalgebra h, and the dummy indices "i" and" j" are summed 

over the multivariable index range of "x" and "y" respectively. We can write 

(.4.7) 

,-ab 0 ! 0 h od 0 

• xab xba- {0 i'#i ·"'ii sastzs zes t e z entzty . ii - ii - /aDc.Xf i=i (Ao8) 

where !abc are the structure constants of the Lie algebra g. Since we are summing over 

permutations, we are free to permute the second term of eq.(A.S) twice in (x,y,z)o After 

rearranging dummy indices, and employing eq.(A.6), this expression reduces to 

(.4.9) 

we sum permutations, and rewrite dummy indices to arrive at 

{ {01, 02} '03} = !abcXfYf z~ (e (xi- Yj)e(x,- Zk) + e (Yj- Zk) e (Yj- xi)+ e (Zk- x,) € (.:~,:- Y;) 

(.4.10) 

Now employing the identity 

e( x - y) e ( x - z) + e (y - z) e (y - x) + e ( z - x) e ( z - y) = 1 '</ x, y, z E R, (.4011) 

we have 

L {{Ol(x),02(y)},03(z)} = LfabcXfY}Z~ = LfabcY}Z~L:Xf · (Aol2) 
cyclic i,j,k j,k 
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By color neutrality, the sum over "i" on the right hand side of eq.(A.lO) vanishes, giving 

the desired result. 'We may also notice that if we had not used color-singlet observables, the 

Jacobi identity would not have been satisfied in general, but if just one of the observables 

is a color singlet, the Jacobi identity is satisfied. 
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Appendix B 

In this appendix, we verify the cancellation discussed after eq.(5. 7), to lowest order in 

1/k. First, expand lV in a power series, 

(B.1) 

where Wn takes the form 

(B.2) 

The cancellation referred to above takes place between Wn and Wn-1; the c-number con-

tractions between F's in Wn (first term of eq.(5.2)) cancel against the operator contractions 

(second term of eq.(.5.2)) of Wn-l· Notice that these terms are of the same .order in 1/k. 

To illustrate the cancellation, consider the simple example of W4 and W3. As part of this 

calculation, consider the c-number contraction between Fp1 and FP3 

(B.3) 

where we have suppressed some irrelevant multiplicative factors. Setting p 1 - io /8z3 and 

integrating by parts, we obtain 

(B.4) 

Now compare this result with the q-number contraction between Fp1 and FP'J in W3 
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(B.5) 

Notice that the two terms given by eq.(B.4) and eq.(B.5) would have cancelled except for 

different dependence on the cutoff e. To see what happens as e - 0, take the vacuum 

expectation values of ~V3 and H'4 

< Oj{W3 + ~V4)IO >- L (p + q + i(x- y) + q e-ip(z-11) - 1 e-iq(z-y)) 

>0 
qp2 p p2(q-p) (q-p)q 

p,q 

p,eo 

· (exp(-!(p + q + IP + ql))- exp(-2q(p + q))) . "(B.6) 

A straightforward examination of this sum shows that as e - 0, it is non-singular if the 

difference x- y is held fixed at some finite value. This demonstrates that the singular terms 

in e present in the contraction of H'3 and H'4 cancel. The only singular term that survives 

is an end point contribution given by eq.(5.11). 
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Contributions and Interests 

This work is the logical extension of the previous paper to the case of a non-abelian 

coset. The initial set up of the problem thus borrows heavily upon the formalism of the 

previous work and besides checking many of the equations in the front sections, this authors' 

main contribution to this work is in section IV where some of the set up of eq.( 4.3) through 

eq.(4.11) is displayed and again in section V where this author contributed to the discussion 

of how to regulate these path-ordered exponentials as quantum operators and in particular 

to the ideas and eq.(5.8) to eq.(5.12). Also much effort was made by this author to formulate 

the proof of the closure of the (classical) algebra on the space of colorless operators that is 

described in appendix A. 

There are certain topics of interest not fully covered in this paper which interest this 

author deeply. The most fundamental is simply in what way can one regulate path-ordered 

exponentials to consider them as quantum operators. The present work only approaches 

this idea which seems to be a central one for understanding this lagrangian approach to 

conformal field theories. One is also forced to understand the meaning of path-ordered 

exponentials of gauge fields as quantum operators to really fully understand the connection 

between conformal field theory and Chern-Simons field theory. As of this writing this is an 

ongoing project of this author. 
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CHAPTER 4: Classical W-Algebras and Non-Abelian Coset Models 

Coset models often furnish examples of conformal. field theories with a group of sym

metries larger than the conformal group. This larger symmetry algebra, the so called 

W-algebra or extended conformal algebra, may be understood classically in a universal way 

from the Poisson algebra of the coset models developed in Chapter 3. 

This paper concisely shows how to understand the universal features of W-algebras 

from the Poisson structure of the underlying coset model. It also describes a natural gen

eralization of the W-algebras that is an algebra of multilocal operators. 
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Recently there has been much interest in W algebras1- 8 • These algebras are generated 

in the operator product expansion of the primary fields of rational conformal models, and 

can be considered to be natural generalizations of the Virasoro algebra. The classical limits 

of these algebras are of particular interest2 , and in this paper, we present a simple method of 

generating a large class of classical W algebras. This class- includes the already well-known 

W3 and W4 algebras as well as some new algebras which, to our knowledge, have not yet 

appeared in the literature. We show that the generators of these algebras can be built out of 

parafermion fields introduced in ref.[9,10]. The parafermion fields themselves satisfy a very 

simple Poisson bracket algebra, which turns out to be the basic irreducible structure out 

of which one can build the more complicated algebras. As a result, a great simplification 

is achieved, if only at the classical level. In this sense, the parafermions are analogous 

to quarks and the primary fields are the composite fields formed from the "quarks". The 

algebra of "quarks" is, not surprisingly, much simpler than the algebra generated by the 

composite operators. We will then go on to show that the parafermion algebra suggests a 

natural generalization of W algebras that involves multi-local operators. 

Let us focus on those conformal field theories that can be described in terms of gauged 

WZ\V models. As is well known, after integrating over the gauge field we will be left with 

a conformal model defined over a reduced set of fields. These models are refered to as coset 

models and in what follows we will consider coset models of a very particular type: we take 

g to be the direct sum of two copies of an affine lie algebra with arbitrary central charges 

k1 and k2 , and take h to be the diagonal subalgebra 

g = 8k1 $ g~ h = 8kd ~ diagonal subalgebra. ( 1) 

This choice is dictated solely by the fact that these cosets have been discussed at length in 

many previous works 3•5•6 ·8 and much of what we will do here can be easily generalized to 
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other types of coset models. The WZW action corresponding to the coset of eq.(l) is 

(2) 

Here 91 and 92 take values in the adjoint representation of some lie algebra, and the gauge 

field A: takes values in h, the vector sum of these two representations. Note however that 

the currents of this model 

J ili. -1D + ili. -1D + = ,.. 91 +91 ,.. 92 +92 

(3) 

with 

D: = 8: - i[A:, 

are neither chirally conserved nor gauge invariant. It is possible to construct "almost" 

conserved and "almost" gauge invariant fields by attaching Wilson lines to the currents; 

these are the "parafermions" of re£.(9,10]. For simplicity we shall consider only J_ and drop 

the lorentz index. Thus with x = x_ take 

1/J = 1/J_(x, x0 ) = -U-1(x, xo)J_(x)U(x, xo) , (4) 
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where 

U(x,xo) = Pexp (i 1: dx'A-(x')) , 

is the path-ordered Wilson line. One can easily show that 

(5) 

provided that in applying the equations of motion the contributions from the (fixed) base 

point are neglected. Also, t/J is "almost" gauge invariant in that it transforms only under 

the global group defined as gauge transformations evaluated at the base point xo. In what 

follows we will think of this base point as a point at infinity. The "physical" fields are 

constructed by forming invariant (i.e. singlet) combinations of the parafermions under the 

remaining global color group h described above. They are (classically) base p_pint indepen-

dant and therefore truly conserved as well as gauge invariant. They are the classical primary 

fields of the model and we wish to show that their Poisson brackets close to form a classical 

W algebra. These algebras are generated by the basic Poisson brackets of the t/;'s which 

may be found by studying the lagrangian eq.(2) (see ref.[9,10] for a derivation). To avoid 

confusion we use {,} for the Poisson bracket and reserve [,] for Lie algebra commutators. 

With 

we have 

(6) 

(kl~ic:l)e(x- y) Lcde radefbec:,pd(x)¢e(y) 

where the indicies belong to the adjoint of h and the fabc•s are the structure constants of 

h. The first two terms are familiar from affine (current) algebras and the last term reflects 
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the non-locality due to the Wilson line attached to each field. In computing the Poisson 

bracket of eq.(6) the base point contributions have again been neglected. This has the 

peculiar effect that the resulting algebra seems not to be associative (the Jacobi identity 

is not satified). However, as shown explicitely in ref.[10], the color singlet composites built 

out of the t/J's do satisfy an associative algebra. This is expected since these functions do 

not depend on the base point classically. 

The simplest neutral combination one can form is obtained by tracing an arbitrary 

power of t/J. Switching to mode number and scaling appropriately to conform to the litera-

ture we have 

(7) 

where for convenience we set 

(8) 

For concreteness we take g = su(N) and compute the Poisson brackets of the operators in 

eq.(7) from eq.(6) 

{ W~l, W~"')} = (m(s'- 1)- n(s- 1))W~,t~'-2l 

_ iQ(.t-llk"'-t> ". ·w<.s-t>w<"'-:-t> 
211' '-.J; J m-; n+; 

(9) 

In the limit N- oo only the first term survives and we have the su(oo), e.g., lV00 algebra. 

For finite values of N both terms are present and furthermore all w<a) for s > n can be 

expressed in terms of w<.s') _for 1 < s' ~ N. For example in the cnse of su(3) we have 

w< ... > _ ia "w<2l .w<2l. 
m+n - 411' ~ m-; n+; (10) 

J 

which follows from the trace identity 

valid for traceless 3x3 matrices 
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We therefore find the closed algebra 

{ u;:<2> n':<2>} - (m- n)W(2) m ' n - m+n• 

{ wJ?>' W~3)} =(2m- n)l~~!n. (11) 

{ lV(3) nr(3)} = io (m- n) ~ w<2) w<2) 
m • n 671" L....l m-l n+l 

This agrees with the classical limit of the quantum W3 algebra in which one retains only 

the term with the least singular short-distance behavior. A similar algebra can be deduced 

for lV4 • We note that these algebras have the simple universal form given in ref.[2]. For 

finite N, we see that the lVv algebra is nonlinear. This is simply due to structure constant 

identities used to reduce algebra elements H'( .. ) for s > N. It is interesting to note that these 

algebras are insensitive to the second two terms of the algebra given in eq.(6). \Ve nov.· turn 

to a generalized algebra that will involve the later terms of eq.(6). 

We now discuss a generalization of W algebras that is suggested by analyzing \\'Z\V 

models in terms of parafermions. The Poisson algebra of eq.(6) may be used to compute 

Poisson brackets of gauge-invariant, multilocal functions. As described in ref.[lO], the result-

ing Poisson bracket does satisfy the Jacobi identity. In analogy to eq.(7) consider multilocal 

functions of the general form 

(12) 

This is a natural generalization of eq.(7). As we saw earlier, the fact that the fields in eq.(7) 

are all taken at the same point makes any Poisson bracket of these quantities not depend 

on the second and third terms of eq.(6). For multilocal hnctions the Poisson brackets will 

involve the second and third terms in a non-trivial way. Thus, although the k-dependance of 

the Poisson bracket may be scaled out in the local case, there will be residual k-dependance 

in the algebra of multilocal expressions. 

We now illustrate this non-local algebra with a simple example. Consider the case of 
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{SU{2)~c1 X SU(2)k-J)/SU(2)Jc1+k-J· In this case, the algebra closes on the first two functions 

W( Xt x2) = tr ( t/.1{ xt)t/J( x2)) 

W(x1x2x3) = tr(t/J(xt) [t/J{x2), t/J(x3)]) 

We have the following· algebra 

{W(xtx2), W(YtY2)} = -ac5'(xt- Yt)W(x2Y2) +perm. 

-i/36(xt- Yt)W(XtX2Y2) +perm.+ 2")'8(xtX2i YtY2)W(XtX2YtY2) 

{W(x1x2), W(YtY2Y3)} = -a6'(xt-yt}W(x2Y2Y3) +perm. 

-i/36(xt-ydW(XtX2Y2Y3) +perm. 

+2")'8(XtX2i YtY3)W(xtX2YtY2Y3) + 2")'8(xtX2i Y2YJ)W(XtX2Y2Y3Yd 

{W(xtx2x3), W(YtY2Y3)} = -a6'(xt-YdW(x2X3Y2Y3) +perm. 

+i86(xt-YdW(x2X3YtY2Y3) +perm. 

+2")'8(xtX3i YtY3)W(x3X2XtY 1Y2Y3) + 2")'8(x2X3i YtY3)W(x2X3XtY1Y2Y3) 

+2")'8(xtX3i Y2Y3)W(x3X2X1Y2Y3Yt) + 2")'8(x2X3i Y2Y3)W(x2X3XtY2Y3Yt) 

(13) 

(14) 

( 15) 

{16) 

We have indicated by "perm." the terms obtained by symmetrizing or antisymmetrizing 

with respect to the arguments in the appropriate way. Note that W(x 1x 2) is symmetric 

in Xt and x2, and that W(x1x2x3) is antisymmetric in x1 ,x2 and x3. The 8 function used 

above is defined as 

and measures the overlap between the intervals [xt, x2] and [y1, Y2l· If one interval contains 

the other or if they are disjoint, it vanishes. If the intervals overlap, 8 is ±1 depending on 

the sense of the overlap. It is simple to extract a truly local algebra from the multi-local 

functions by expanding in power series in the differences of arguments, as in the operator 

product expansion. Finally, we need to show that the functions appearing on the RHS of 

eq.{14), eq.(15), and eq.(16) can be written in terms of the functions given in eq.(13). This 
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follows from elementary identities between su(2) structure constants. For example, 

W(x1x2x3x4) = !W(x2x3)W(x1x4)- !tV(x1x3)tV(x2x4) 

-~lV(x2x6)W(x4xs)lV(x1x3)- iW(xtxs)W(x4x6)tV(x2x3) 

(18) 

Using these equalities it is possible to express eq.(14)-(16) as a closed algebra. It should 

not be difficult to discover similar algebras for coset models based on other groups. These 

algebras (like their local counterparts) take on their complicated, nonlinear stn.ictu-re due 

to these types of reduction identities. 

In conclusion we have shown that the Poisson bracket of the gauged WZW model 

(eq.(6)) suggests a multi-local generalization of classical W algebras. 

We would like to thank E. Kiritsis for useful conversations. 
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CHAPTER 5: Chern-Simons Quantum Mechanics, Modular lnvariance and 

Monopoles 

Chem-Simons ga.uge theory is a. general co-ordinate invariant field theory in three

dimensions tha.t is intimately connected with two-dimensional conformal theories. In this 

chapter we use Chem-Simons theory to investigate properties of the related conformal field 

theory. 

One thing of particular interest is to show how the modular properties of the confor

mal field theory may be understood in term of the Chem-Simons field theory. This paper 

contains a construction of the space of conformal blocks a.t genus one, and then proceeds 

to use Chern-Simons theory to conpute the ma.tricies tha.t represent the modular transfor

mations. Since this paper develops a. realization of the operator approach, it is possible to 

give explicit formulae even for the general non-abelian ca.se. Finally, by including monopole 

backgrounds, some properties of the conformal model in higher genus are understood. 
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I. Introduction 

Following the seminal work by Witten 1, there has been sustained interest in under

standing conformal field theory in terms of three-dimensional Chern-Simons gauge theory. 

Many authors have explored the connection between the Hilbert space of the Chern-Simons 

gauge theory and the space of conformal blocks. One particularly illuminating formulation 

that has emerged from these investigations is that of the effective quantum mechanics of 

the Chern-Simons field theory2·3 •4 ·5. 

In other developments it has been noticed that introducing non-trivial backgrounds in 

a two-dimensional field theory allow one to understand novel features of the conformal field 

theory. For instance in ref.(6) it was shown that it is possible to infer the modular properties 

of a theory in higher genus by doing a genus one calculation in the presence of a monopole. 

In this note we will briefly review the use of monopole backgrounds for studying con

formal theories of free fermions. We then generalize this technique to study the modular 

properties of the space of conformal blocks entirely from within Chern-Simons theory. Along 

the way we develop an explicit operator construction of the Wilson lines which become the 

Verlinde operators (of ref.(l7) for example) in the language of conformal field theory. This 

extends the work of previous authors 5•4 • 

The methods employed in this paper are pedestrian and the examples provided are to 

elucidate the properties of more complex cases to which this work trivially generalizes. In 

keeping with that spirit, in section ll we review the case of the Ising model (or a model 

with any number of free fermions) in nontrivial gauge backgrounds. Section III contains 

a lightning review of what has been done with Chern-Simons quantum mechanics and is 

meant to acknowledge the work of a few of the many innovators of Chern-Simons quantum 

mechanics. It provides an introduction to the rest of the paper. Section IV combines the 

ideas of sections II and III for Gaussian models and section V applies the techniques of 
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section II to the case of arbitrary simply-laced semisimple Lie group. To demonstrate this 

technique the cases of Chern-Simons theory of SU(2) and SU(3) are done in detail. Section 

\1 is a short conclusion and discussion of results. 
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II. Monopoles, Modular Invariance and Free Fermions 

In studying conformal theories it is often useful to imagine that the quantum degrees 

of freedom of the theory are coupled to external (i.e. classical background) fields. We will 

concentrate on the very particular case of non-trivial gauge connections. Free fermions 

are perhaps the very simplest of conformal theories7 and the idea of coupling their U(l) 

current to an abelian gauge field was motivated by the coset construction of ref.[7,8,9]. The 

resulting theory is still naively conformal because the gauge field is introduced as a Lagrange 

multiplier field and has no kinetic term. In that construction one imagines that functionally 

integrating over the gauge field eliminates certain degrees of freedom of the free fermions 

and thus reduces the model of free fermions ( i.e. a fermionized version of an SO(n) model 

for example) to a coset model (in the case of SO(n) to the coset SO(n)/U(l)). Typically, 

due to the equations of motion for A,.., one considers integrating over only flat connections 

but if one is to take the functional integration seriously one must include contributions from 

non-flat connections as well. 

Coupling fermions to a non-flat abelian gauge field was perhaps first studied by Landau 

and is of interest, for example, in understanding the quantum Hall effect (for a treatment 

of that problem which shares some analogy with this present work see for example ref.[lO]), 

and has come up before in string theory11•12. Looking at the effect of monopoles directly 

in Chern-Simons has been explored recently in ref.[l3] which has a completely different 

thrust than this present work. In ref.[6] an effort was made to understand how including 

monopole contributions modifies a model of free fermions. One finds that for fixed genus 

the integration over non-flat connections breaks into a sum over sectors indexed by the 

monopole number i.e. first Chern class, N, of the connection. In addition to finding a new 

spectrum and correlation functions, sectors with different first Chern class (mod 2) had 

different modular properties at genus one. Indeed it was found that for those sectors in 
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which N was even C\ne had the usual modular properties at genus one (here given in terms 

of the spin structure for the minimal modular invariant set of sections) 
+ + + + 

T:v- : ( ~ ~ ) - ( ~ = ) (2.1) 

+ 
but that in sectors in which N was odd the behavior of the blocks under T were quite 

different: + + + 

T:vood : ( ~ ~ ) - ( ~ ! ) (2.2) 

The transformations of the blocks under-S was found tobe The same for any N. Interestingly. 

although the modular properties at one loop for the N =0 sector imply the ( +,- ), ( -.+ ), ( -,-) 

sections form a modular in\'ariant subspace, we see that including the monopole sectors 

suggests that this subspace of sections is not modular invariant and that in order to \\Tite 

a modular invariant theory it will be necessary to include ( +,+) sections as well. This is 

analogous to the Ising model in which at genus one the ( +,+) sections do not contribute 

but that for consistency of the model in higher genus one does need to include them. 

There are many ways to understand this result. First, were we to study the problem 

of free fermions in a genus g>2 surface E we might consider concentrating on a degenerate 

case of the rueman surface !: in which we have a series of tori connected with thin tubes. 

Call E 1 just one of these tori with a piece of a single tube. In order to study operators and 

determinants of operators on such an object it is of course sufficient to simply specify bound

ary conditions for each non-trivial cycle of the torus with a point removed. Furthermore. 

operators involving derivatives must now contain covariant derivatives and since 

1.. r R = 2 - 2g 
21r }E 

(2.3) 

for the whole surface E we know that where the tube connects to the torus there must be 

curvature. This means that the connection, w~, associated with transport on the torus with 
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a point removed is non-fiat. Furthermore since the isometry group of the tangent space of 

a Reimann surface is 0(2) the geometrical connection, w,.., may be thought of as an abelian 

gauge field A,... Indeed "trading" w,.. for A,.. and there~y requiring A,.. to satisfy 

(2.4) 

where F is the field strenght of A~-', suggests that the Gauss-Bonnet result may be under-

stood as something like a monopole quantization condition. This is also suggested by the 

form of the index theorem in two dimensions. Note that although in ref.(6] one always chose 

the flux to be uniformly distributed we will show in the appendix that concentrating the 

flux in one point will not change the modular properties under T. Thus we learn that for 

studying the modular properties of sections we need only specify the first Chern class of 

the bunale Aw "Trading" w~-' for A~-' means that sections of operators such as the covariant 

derivative D (involving just the geometrical connection) correspond to sections associated to 

a charged species on the torus (geometrically flat) with monopole background. • Indeed, in 

both cases, specifying boundary conditions will restrict one to a particular class of sections 

and furthermore one sees that there is a natural relation between the norms defined on the 

function spaces in th~ two cases. Using this result we may now explain why the modular 

properties are modified by the presence of a monopole. For simplicity imagine spreading 

out the abelian flux uniformly over the entire torus (which we now think of as the plane 

modulo the lattice). The generator S of the modular group really only corresponds to a 

rotation in the plane about a point and a little thought indicates that its action on sections 

will not be modified by the presence of an ambient magnetic field (this is shown in full 

detail in ref.[6]). The T transformation however really corresponds to a translation in an 

ambient magnetic field and thus will be associated with a residual gauge transformation. 

"Strictly speaking, introducing flux will not preserve the holomorphic factorization of the theory but here 
we will be only working with one half of the theory anyway and so do not have to concern ourselves with 
this point further. 
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In the case- of odd monopole charge this will result in a nontrivial phase contribution to 

the transport, i.e. the boundary conditions of the sections will change. Let's make this 

concrete in a picture. Denote the sides of the torus as C1 and C2 (as shown in Fig. 1), and 

denote the boundary condition of a given section by (A,B) where generally A and B are 

non-abelian phases (or group elements) but for the case at hand take the values +1 or -1. 

-Of course, when there is no flux one finds for T and S 

T: (A. B)- (A, BA-1 ); S: (A, B)- (B,A- 1
) (2.5) 

which leads to the usual transformation described in eq.(2.1). The natural way to think 

about T in this context is that in the new torus after performing T the new cycle C2' 

(see Fig. 1) is composed of the original C2 followed by the C1 cycle and so to find out 

how transport on the new torus compares with the old one we must simply compose the 

respective transports. The fact that this results in A - 1 B instead of AB is really just 

the difference between viewing the transformation as passive rather than active on the 

transport. Here we choose it as in eq.(2.5) to be consistent with the convention of most 

authors. Note that this convention gives, as abstract group elements 5 2 = C, the charge 

conjugation operator and (ST)3 = 1. Now let's consider what happens when one includes 

the background gauge field of a monopole. As seen from the figure, the transport along C2' 

is no longer simply determined by the composition of the transport along C2 then Cl. In 

addition to the composition of transport along those cycles there is an additional phase due 

to the flux inside the triangle C2C1C2' . Since for connections with unit monopole charge 

the transport around the entire torus is trivial, the additional phase acquired by transport 

along cycle C2' relative to that of C2 is -1 (because the triangle C2C1C2' has exactly half 

the area of the torus). For those who feel uncomfortable with this analysis because of the 

use of "uniform flux" we refer to the full result of the appendix which demonstrates that 

for any flux distribution the additional phase under Tis as described above. Thus with this 
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additional phase we find that eq.(2.5) is modified 

T: (A, B)- (A,-BA-1); S: (A, B)- (B,A-1
) (2.6) 

Note that throughout S is unchanged. Eq.(2.6) yields the relations of eq.(2.2). Notice 

that with larger monopole charges the above argument implies that for even monopole 

charge one has the behavior of eq.(2.1) and for odd monopole charge one finds the behavior 

of eq.(2.2). Again, since the N=1 monopole corresponds naturally to a torus with a single 

tube attached (see eq.(2.4)) which is related to the boundary of moduli space for a genus two 

surface, we rediscover the bit of string theory lore that if one satisfies the modular in variance 

through to second loop then the theory is modular invariant for arbitrary genus. Thus 

modular properties of the conformal blocks of a theory in higher genus may be understood 

by using monopole backgrounds in genus one. 

Another way to understand this property is through the fusion algebra of a theory of 

free fermions. Take for simplicity the case of a single real fermion, i.e. the Ising model. 

One knows that in the Ising model there are exactly three primary fields namely 1, t/J and 

a of conformal dimension 0, 1/2 and 1/16 respectively. These fields correspond to linear 

combinations of the ( -,- ), ( +,- ), ( -,+ ) sectors. Note that these three fields form a modular 

covariant set at one loop. The ( +,+) sector has a zero mode (i.e. constant sections) and 

so does not contribute to the partition function at genus 1. However were we to imagine 

constructing a two-loop amplitude by using the fusion rules the natural object to study 

would be the one point functions on the torus. There is a non-trivial one point function 

on the torus that involves the insertion of the 1/J. In order to see why this one point 

function doesn't vanish it is necessary to include in the path integral the contributions to 

this amplitude coming from the ( +,+) sectort. Simply said, the zero mode is absorbed by 

the insertion of the 1/J and thus the ( +,+) sector that was formerly not included on the 

1The authors are indebted to E. Kiritsis for a clarification of this point. 
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grounds that it was zero at genus one is needed to make the two loop calculation modular 

invariant. Now, were we to construct Green's functions on the torus with a monopole 

background we would find that, as a consequence of the index theorem, the only non-zero 

Green's functions involve an "additional" insertion of the fermion. This means that every 

non-zero Green's function has as a first approximation the same modular properties as the 

zero modes. That this behavior persists to all orders is proven in ref.(6] in which it was 

shown that all modes (zero and non-zero modes) have the same modular properties. Thus 

it is not a surprise that we learn about the modular properties of the theory in higher loop 

by studying the theory in the background of a monopole. 
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III. Chern-Simons Quantum Mechanics 

Let us now briefly review the development of the effective quantum mechanics of Chern

Simons theory. As described by Witten1 the Hilbert space of Chern-Simons theory is 

isomorphic to the space of conformal blocks of the underlying conformal field theory. This 

identification follows from studying the degrees of freedom of the Chern-Simons theory after 

gauge fixing, and understanding the action of the residual general co-ordinate invariance 

of the theory in terms of conformal transformations. This was expanded upon in several 

very readable papers for the case in which the spatial part of the 3-manifold is a torus2•3•4•5• 

In essence these works suggest that ,choosing the axial gauge (Ao = 0), one should first 

satisfy the constraints classically (which are that the non-abelian flux vanishes eve~ywhere 

on the 2-manifold) and then proceed to enforce the quantum mechanical commutators on the 

operators associated with the observables. As shown in the above references, the observables 

are the nontrivial Wilson lines. For a torus (without a point removed) the Wilson lines are 

the traces of the holonomies around the two non-trivial cycles of the torus. As before we 

label the· holonomies by A and B. These are the path-ordered exponentials of the gauge 

fields along the paths Cl and C2 respectively. Then the classical constraint that the flux 

vanish reads, 

(3.1) 

where I is the identity. As was done in the above references, we satisfy this constraint by 

taking A and B to be in the maximal torus of the group and without loss of generality may 

also take the gauge field to be constant and in the Cartan sub-algebra. Let 

( 3. '2 I 

where the T's are generators of the Cartan sub-algebra. Now one implements the canonical 
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commutation relations implicit in the Chem-Simons theory and finds 

(3.3) 

where 

~lc = 1 (3.4) 

and where n is a number that depends on the normalization of the generators and k is 

the coeficient in front of the action. This is the naive result. This relation is amended 

in the non-abelian case in that k is shifted to k + c where c is the quadratic casimir in 

the adjoin~. These points are discussed at length from the point of view of Chem-Simons 

theory in ref.[4,19,20,22,23] and is understood from the two-dimensional action functional 

approach in a non-perturbative way in ref.[14,15]. At any rate, we save the complexities of 

the non-abelian case for later. For the abelian case we haven= 1 and it is easy to see that 

we may represent .4 and B in the above algebra in terms of k-dimensional matrices. 

For completeness we compute the S and T matrices of the abelian Chem-Simons theory. 

This is often called the Gaussian model because it is equivalent to a free compactified 

boson. Although T and S are computed in ref.[4,16], we wish to display them here as 

finite dimensional matrices on the space of conformal blocks because these matrices will 

be useful for comparison later when we develop the theory for the case of the non-trivial 

backgrounds. Viewing T and S as residual general co-ordinate transformations we now 

write how the components of the vector field A$o& transform, 

T: (a,/3)- (a,/3- a); S: (a,/3)- (13, -a) (3.5) 

In terms of the holonomies we find, 

T: (A, B)- (A, rBA-1 ); S: (A, B)- (B,A- 1), (3.6) 

where 

(3.i) 
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Because these are symmetries of the underlying conformal model we expect that T and S 

may be represented in terms of unitary transformations on the k-dimEmsional subspace of 

the conformal blocks. In the basis where A is taken to _be diagonal (and B is thus a raising 

operator) we find 

b l" 
Sti = ../kC'; (3.8) 

where a is a phase that is to be deterlllined in terms of the central charge of the conformal 

theory (see for example [16]) and the phase inS called b may be partially fixed by requiring 

that the S and T form a representation of the modular group, namely that as before S 2 = 

C and (ST)3 = I. Without loss of generality we take b = 1. Again note that 5 2 is only 

equal to I for k= 1 and k=2. 
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IV. Monopoles in Abelian Chern-Simons Theory 

Having developed some intuition about monopole backgrounds and knowing the for

mulation of the Gaussian model, we now explore some features of this model in higher loop 

by using monopole backgrounds. We begin by studying abelian Chern-Simons theory on a 

manifold with topology R x :E1 where :E1 is a torus with a point removed. If we consider 

only trivial sections of the abelian line bundle over :E1 we recover the case studied in the last 

section (the flux is zero everywhere on the torus, even at the point removed.) Instead con-

sider non-trivial sections of the abelian line bundle. We implement this as follows. Imagine 

holding fixed a classical background gauge field A~ that is the gauge field of a monopole 

whose flux is entirely concentrated at the missing point, and then use Chern-Simons theory 

to study the behavior of the quantum fluctuations about that backgroUnd. For convenience 

we restrict the quantum fluctuations to be in a trivial bundle i.e. we allow for no non-trivial 

operator insertions at the point removed. This restriction makes the problem solvable but, 

as described in section II, unfortunately makes the connection of this technique with the 

one-point functions indirect. Also note that the analogy between geometrical connection 

and gauge field described in section II is not so direct because we have started with a theory 

that was metric-independent and so we should generalize the earlier argument to this case. 

Furthermore we suspect that it is necessary to include the sectors with non-trivial bundles 

for the theory to have well a well defined cluster decomposition. With these points in mind 

we write the total A~ for the abelian case as 

( 4.1) 

This may be simply generalized to the non-abelian case by taking A~= A~+U-1 A~U where 

U is just the path-ordered exponential of the A~, a fiat connection with trivial homotopy. 

That this is a consistent decomposition of A~ may be seen by writing out the field strength 

F, for this A~ or just recognizing that if A~ was a pure gauge (which is true classically) 
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A~ and A~ would be gauge transforms of one another. At any rate, when considering 

nontrivial backgrounds we will always simplify the problem by puting the A~ in the same 

Cartan sub-algebra as A~ and so the decomposition of_ A~ will indeed become linear. Also 

note that when this decomposition eq.( 4.1) is substituted into the action functional, and 

A~ is treated as a classical field, that the commutator of the A~ components is the same 

as in eq.(3.3). Furthermore, as far as quantization of the monopole is concerned, for the 

abelian case we imagine working with U(1) compact. As usual the non-abelian case takes 

care of itself because path-ordered exponentials are charged and thus defining monopole 

charge in the non-abelian case is unambiguous. The monopole quantization condition is of 

course the same for every genus. For an excellent review of monopoles the reader is referred 

to the monograph of Coleman18.- A little thought convinces one that the moduli space of 

the A~ is again (for the torus) two-dimensional and that eq.(3.1) holds with A and B the 

path-ordered exponentials of the full A~ of eq.(4.1). Notice that although A~ is not single 

valued on the torus, because of the quantization condition the holonomies A and B are well 

defined. 

Although the operator algebras with and without the monopole look identical, they 

differ in their behavior under modular transformations. As explained in the appendix, and 

as discussed in section II, the monopole introduces an additional phase in the definition of 

T on the operators A and B. We find that for the case of odd monopole charge we again 

have 

TNodd: (A, B)- (A,-rBA-1
); S: (A, B)- (B,A- 1). (4.2) 

Notice that TNodd is different than the T in the case of even monopole charge given in 

eq.(3.6). As a matrix on the space of states TNodd is (compare with the T of eq.(3.8)) 

(4.3) 

Notice that this new T is still diagonal and that the vacuum-vacuum matrix element 
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(given by Too) is unchanged. In general we expect that adding the monopoles does not 

change the central charge of the theory and one shouldn't take the -1 's as a sign that the 

conformal dimensions of certain fields have jumped in the presence of the monopole. After 

all, we are including the nontrivial monopole sector to study the behavior ofT and S in 

higher genus and so the conformal dimensions are not necessarily equal to the phases of 

the diagonal elements ofT. At any rate we do learn the amusing fact that S and T:'Vod.d 

do, in general, form only a projective representation of the modular group. By "projective" 

we mean that (ST)3 = dl where d is some phase that cannot be removed by unitary 

transformations of the operators. For the abelian case at even k this is detailed in Table 1. 

The case of k odd is more difficult to characterize and will be commented on later. 

k d 

2 -i 

4 -1 

6 i 

8 1 

10 -i 

12 -1 

14 i 

16 1 

Table 1 : the abelian case, even k 

Note that computation suggests (ST)3 = ( -i)k/2[. 

The fact that the monopole in this Gaussian model acts the same as in the Ising model 

case (introducing a -1 phase in the T action and neatly falling into classes of odd and 

even monopole charge), and the four-fold periodicity of the projective representation of the 

modular group in the Gaussian model, at this point seem mysterious. They will in fact 
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be neatly understood from the operator construction of the SU(2) Chern-Simons theory 

discussed in the next section. 
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V. Monopoles in Non-Abelian Chern-Simons Theory 

We now discuss some generalities of the operator approach to Chern-Simons effective 

quantum mechanics for a non-abelian gauge group. The motivation for much of the discus

sion comes from ref.[4 ,19]. 

Generalization of the simple techniques used above for the abelian case to the non

abelian case is not completely obvious. First, although the commutator of the two comp~ 

nents of the gauge field naively looks the same as above, one knows from general conformal 

field theory results that the relevant parameter for the description of the conformal blocks 

is not k but k + c where cis the quadratic casimir in the adjoint representation (normalized 

soc = n for SU(n)). Furthermore, the conformal blocks are indexed over a specific set of 

the integral representations, which are a set of fundamental weights all displaced from the 

origin by p which is half the sum of the positive roots4•19•20•22•23• It is not completely clear 

how these shifts are to be implemented in the Chern-Simons effective quantum mechanics. 

Here we present an unambiguous and pedestrian implementation of these shifts in a manner 

which makes sense of the Verlinde operators entirely in the context of Chern-Simons field 

theory. 

In short we find that one may represent the individual elements of the path-ordered 

exponentials as products of operators of Gaussian models. This is vaguely reminiscent of 

the conformal field theory lore that ultimately conformal theories are theories of free fields 

with unusual statistics. Although we represent the terms in the Wilson line by products of 

Gaussian models the theory is not a simple product of Gaussian models. Instead, enforcing 

gauge in variance of the Wilson line and modular in variance will result in a truncation of the •· 

Hilbert space of the product of the Gaussian models that will, in a sense, give the resulting 

theories their non-trivial statistics. 

We first represent the Wilson line operators on the trucated Hilbert space. We must 
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then relate this to the gauge invariant observables of the Chern-Simons field theory. Since 

the observables are already in the torus of the group, the only residual gauge transformations 

are those associated with the Weyl action. We find that requiring the observables to be 

gauge invariant is equivalent to representing them on a subspace of states, each state of 

which is odd under all involutions of the Weyl group. Since T and S commute with the 

action of the Weyl group, these states form a modular invariant subspace. This will all be 

made explicit in the examples below. Finally let us remark that after finding these states one 

will be left with a natural way of interpreting the shift.\- .\+p. The construction ofT and 

S for the non-abelian case has been outlined in ref.[4]. This reference has a simple abstract 

formula for T and S and is unclear about the actual representation ofT and S as matrices 

on a finite dimensional Hilbert space. This is due perhaps in part to the fact that there is 

confusion about actually understanding the Wilson line as a regulated quantum mechanical 

operator19• Below we construct an operator approach to the observables in Chern-Simons 

effective quantum mechanics and will explicitly construct the T and S matrices of the 

conformal theory entirely within the context of Chern-Simons gauge theory. This will be 

necessary for understanding how the non-abelian monopoles change the modular properties 

of the non-abelian theory. Once this operator construction is completed we obtain the T 

and S matrices for any monopole background. 

The fundamental group of the torus has two generators, Cl and C2. The only gauge 

invariant quantities of the theory are the traces of the Wilson lines about these two loops. 

Again, classically these Wilson lines must commute since Cl·C2 is homotopically equivalent 

to C2·Cl. As described earlier, this implies that we may require the gauge field A~' to take 

values in the Cartan sub-algebra. Define the algebra elements 

a(t) = ai(t)vi = fc1 dx~'A~vi 

b(t) = bi(t)vi = fcl dx~A~,) 
( 5.1) 

where the Vi (i = l, ... ,r; r = rank (G)) are the simple roots. The components along the 

157 



diagonal of the path-ordered exponentials are then given by products of operators of the 

type, 

(5.2) 

With these variables, the effective action takes the form 

k+cj · S - - dt a· (t)C ·b· (t) - 21r I IJ J (5.3) 

where Cij =< "'' lvj > is the Cartan matrix. This action is linear in time derivatives and so 

give the following C.C.R. 

[a· b·]- -·~(C-1) 
" J - k+c ij 

A,BjA,-1 B3-1 = exp (~(C-1 ),3) 
(5.4) 

To realize these commutation relations, we diagonalize the r commuting A, matrices. Their 

eigenvalues for a given state will label the position of that state in the weight lattice. The 

B1 matrices will act as raising operators along the r primary weight vectors. 

Let's now explicitly study the case G = SU(2). The the rank is one and the quadratic 

Casimir c = 2. The Cartan matrix is just a number (2 in our convention) which implies 

that c-1,3 = 1/2. Thus the Gaussian model we use to represent the elements of the path

ordered exponential has 2( k+2) states. Figure 2 contains a diagram of the lattice of integral 

weights of the model for k = 4 . 

. For convenience of exposition define k' = 2(k+2). The T and S of the k'-dimensional 

Gaussian model is as described in eq.(3.8) in which k is replaced with k'. We now im

plement gauge invariance by using the Weyl group, W, to break this space of states into 

Weyl covariant subspaces. The key reason why this is a sensible thing to do is that Weyl 

transformations always commute with T and S (since one corresponds to gauge tranforma

tions and the other correspond to ~ordinate transformations they commute classically in 

the Chern-Simons lagrangian and thus here are taken to commute quantum mechanically) 

and so constructing the characters of the Weyl action in the Gaussian Hilbert space will 
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automatically yield modular invariant and Weyl CO\'al'iant subspaces. Thus representing the 

algebra of observables on these subspaces will correspond to implementing gauge im'al'iance. 

In the case of SU(2) level k there are two subspaces 

Odd under W; li > -lk'- i > for 0 < i < k' /2 

Even under W; 10 >, lk' /2 >, li > +lk'- i > for 0 < i < k' /2 

· Now we may implement the shift .X - .X+ p by realizing that (corresponds to the state 

i =1 and so this state should be thought of as the "shifted vacuum". We can thus rule 

out relating the states even under W to those of SU(2) level k becauiie they mix with 10 > 

which. if 11 > is to be the new vacuum, IO > has negative relative conformal dimension. The 

states which are odd under W form a modular invariant subspace and are the correct ones 

for realizing the SP(2) level k model. Indeed, they correspond to spins i < k/2. Writing 

( .j ,.j) 

Note that as expected the central charge is 3k/k+2. 

·we now consider what happens when we include monopole backgrounds on the world-

sheet. In SU(2) there are strictly speaking no topological monopoles since the group is 

homotopically trivial. Instead, were we to consider the group SU(2)/ Z2 = 50(3) we would 

have two distinct monopole-sectors. It is not difficult to see that in terms of the operators 

above, the monopoles in this case simply modify T exactly as in eq.(4.3) of the Gaussian 

model (the two monopole sectors in the SU(2)/ Z2 model correspond to charge even and 

charge odd in the abelian case). It is well known that the SU(2)/ Z2 model is only well 

defined for k = 0 mod( 4) and the periodicity of the projective representation found ( ,_..,., 

Table 2) is suggestive of that factt. Furthermore, including the monopole modifies the T· 

'The authors thank K. lntriliigator for a discussion of this point. 

159 



eigenvalues of those states of the SU(2) model that are contained in the SU(2)/ Z2 model 

all in the same way. This is a phenomena we will see occur in the SU(3)/Z3 model, and is 

probably generic. We feel it is suggestive of the fact tha~ these models are modular invariant 

in higher genus but clearly much work remains to be done on this. \Ve will comment further 

on these observations later. 

k d 

1 -i 

2 1 

3 -i 

4 -1 

5 i 

6 1 

7 -i 

8 1 

Table 2: SU(2) level k 

:\ote computation suggests (ST)3 = -( -i)kJ. 

~ext we consider the group G = SU(3) at level k. We have c=3 and G is rank 2. The 

Cartan matrix is, 

c = ( 2 -1); 
-1 2 

Let e be a primitive root of unity of order 3(k+c), i.e. e<k+c> = 1. We have, 

A1B1A1-1 B1-1 = ~2 
A B A -1 B -1 - c2 

2 2 2 1 2 1- .. 
A1B2A1- B2- = ~ 

A2B1A2-1B1-1 = ~ 
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Now define the basis '1/Jij such that 

A1'1/Jii = ~'1/Jii 
A2'1/Jii = {il/Jii 

The commutation relations of eq.(5.7) give 

B1'1/Jii = l/Ji+2.i+1 

B2tPii = tPi+1.i+2 

(5.8) 

(5.9) 

We thus need keep only the connected sector of states '1/Jij that satisfy the condition i + j = 

0 mod(3). Implementing periodicity of the canonical variables leaves a finite set of states 

(the dimensionality of which is 3(k + c)2). We have thus created a fundamental cell of 

( Aw / ( k + c )AR) where Aw is the weight lattice of G and AR is the root lattice. 

The next step is to calculate the S and T operators of this Gaussian model. To 

accomplish this, we again implement 

T: (.4,B)- (A,rBA-1); S: (A, B)- (B, A-1) (5.10) 

where r 2 = {. \\'e find, 

(5.11) 

Sij,kt =< '1/JiiiSitt'kt >= 1 {-[~(ik+it)-~(il+ikl] 
J3(k + c)2 

(5.12) 

These matrices satisfy the defining relations of SL(2,Z). 

Finally, we need to implement the anomalous shift A- A+ p where pis one half the 

sum of the positive roots. Thus p indicaties the new vacuum state (conformal dimension 

zero). We first identify the Weyl orbits of (Aw/(k + c)AR)· As expected we find that the 

number of orbits with length equal to the order of the Weyl group is equal to the number 

of modular invariant states in the theory. The general formula for SU(n) is, 

(n + k -1)! 
(n- 1)! (k)! 

161 

(.5.13) 



We identify each Weyl orbit of maximal length with a different primary field. We ·then 

construct a modular invariant sector by choosing one linear combination of states from each 

of these special Weyl orbits. To achieve this we empl9y the identity (i.e. T and S again 

commute with Weyl transformations) 

< w'IS, Tl?P >=< w?P'IS;Tlw?P > {5.14) 

where w is an arbitrary element of the Weyl group. For SU(3) the orbits are of length 1. 

3 and 6. To reduce T and S to the modular invariant sector, we choose coefficients for 

the six states of a given orbit of length six to be a nontrivial character of the \Veyl group. 

This necessarily will be orthogonal to states in the orbits of shorter length. For k = 1 

the resulting 3-dimensional vector space is in fact modular invariant. We now give explicit 

details. 

The Weyl group ofSl:(3) is generated by the reflections w1 and w2. As unitary matrices 

on the basis gi\'en above we have, 

(.5.1.5) 

There are three Weyl orbits of order six in (Aw/(k + c)AR) at k + c = 4. These are shown 

below in Figure 3. In Figure 3 states related by the Weyl group are labelled with the same 

letter. Note that there are 15 = 6! / 2! 4! different Weyl orbits. The three orbits of order 6 

are labelled a,b,c. Each maximal orbit is isomorphic under the W~yl group, with the action 

shown below in Figure 4. If we choose the coefficients (also defined by WitP = -¢ ; i = 
1,2) given in the diagram for each of the three sets of states, we obtain a modular invariant 

subspace, with the followingS and T matrices (the ordering of the basis is a,b,c) 

5=(: :, :); T=(:: :); 
1 ,., ,.,2 0 0 T'J 

with ry3 = 1 . 
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These satisfy the defining relations of SL(2,Z). The effect of a classical monopole back

grounds is easily calculated using the above techniques with the simple result 

(

1 0 

T0 = 0 7J1+2n 

0 0 

with rl = 1 (5.17) 

where the monopole number n runs over the set 0,1,2( E Z3 ). It is simple to show that 

(STn)3 is proportional to the identity for the three choices of n. Note that T and S are 

similar to the T a.nd S of the Gausia.n model at (odd) k::i3 but that here it is simple to 

characterize the sectors with monopoles. Also note that the only state whose T eigenvalues 

doesn't change with the inclusion of the monopoles is the state in the SU(3)/Z3 model. 

163 



VI. Conclusion 

We have shown the modular properties of a conformal field theory at genus one change 

in the presence of a monopole in a way tha~ is indicative of the modular properties in higher 

genus. Furthermore with an explicit operator construction of the algebra of observables in 

Chern-Simons theory we have used monopoles to provide insight into the center-moded 

models of ref.[24,25]. \Vork under way includes understanding the orbifold constructions 

(for example see ref.[26]) from the point of view of Chern-Simons theory with classical 

backgrounds and better understanding the connection between monopole backgrounds and 

the general theory in higher genus. 
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• 
Appendix 

In this appendix we show that the modular properties of the conformal blocks under ·• 

T depend only on the first Chern class of the gauge btindle and not on the distribution of 

the flux. We simply compute the line integrals along C1 and C2 (see Fig. 1) of an arbitrary 

flux distribution and will find the behavior under T to be that described in the text. As 

usual, the gauge field for the monopole, A~, has been gauge transformed into the Cartan 

sub-algebra and therefore it will be enough to consider the abelian case. Furthermore we 

ignore possible additional classical holonomy. Note that since A~ is not periodic we expect 

that we will not be able to represent it as a theta function on the torus. Instead we do a full 

analytic calculation of the line integrals in a non-holomorphic gauge. In Coloumb gauge, 

(.4.1) 

we may solve the equation, 

(A.2) 

in the plane and find for A~, 

( .4..3) 

where thee has been added to regulate the singularity at x' = y' = 0, the position of 

the flux. Now we gauge transform this result to Ac2 = 0 gauge. This will be a convenient 

gauge for computing the line integrals after we dice up the plane into tori. At any rate, in 

the plane in this gauge we have 

A c - 8 - a tan + 8 f· my' [ mx' ( IY'I )] 
1 

- x'2 + y'2 + e - x Vx'2 + e Vx'2 + e :z' 
A~ =0 (A.4) 

where f is a function of x only and will be determined by physical grounds that will be 

described shortly. 
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Now we imagine drawing in this plane the lattice generated by two discrete translations 

where we, without loss of generality, take one translation to be z - z + 1 and, per usual, 

the other to be generated by z - z + T where T = c + id. In order to now have an gauge 

field that is still not periodic but respects the symmetries of the gauge field of a monopole 

on a torus we imagine solving eq.(A.2) for a delta function in each cell of the lattice. Since 

we are interested only in whether the line integrals of A~ are dependant on the distribution 

of the flux we restrict ourselves to computing them. Simply translating and summing the 

.4~ we have above will not lead to a well defined sum and so we regulate it in the following 

natural way. In the chosen gauge eq.(A.4) we see that the integral along sides 2 and 4 (see 

Fig 5) are indeed equal and that therefore the condition on _the total flux is given by 

hAc - ~ Ac = 2rrm , (.4.5) 

where m is some fixed number which represents the flux at Xo and is not necessarily an 

integer. Actually computing this from an .4~ found by performing a lattice sum over 

individual translated A~'s of eq.(A.4) tells us how to regulate the sum by converting it to 

a line integral from -oo to +oo with a single source and then systematically including the 

other poles in the plane in a consistent way .. One finds that in eq.(A.5) only the last two 

terms of Ac1 contribute and that the integral of the term involving f contributes exactly 

half of the right hand side of eq.(A.5). Now in computing the line integral along path 2 

in the same way as for eq.(A.5) one finds that the contributions from the first two terms 

cancel and that one is left just with the contribution from the f term. Since f is only a 

function of x and since the path has advanced only c units per cell to the right we have 

(.4.6) 

Now note that this result did not depend on where one placed the flux. Also, since this line 

integral occurs in an exponent, one finds that under T (in which c goes to c + 1) the new 
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phase acquired ~y the exponential is. 

additional phase = (.4.7) 

and now summing up contributions from many different fluxes at various locations so that 

the total flux, m, is integer (i.e. requiring monopole quantization) we find the additional 

phase acquired under T is precisely that described in the text. Note also that T will in 

general move the flux around but will not change the first Chern number (the total monopole 

charge) of A~. 
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Figure 1 

Figure 2: Arrows indicate states realated by Weyl group 
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Figure 4: The action of the Weyl group on an orbit of maximal 
order. The Numbers in the boxes correspond to coefficients used to 
form the single state 
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Contributions and Interests 

This author initiated this project and was motivated by the intriguing connection 

between conformal field theory and Chern-Simons theory that was pointed out by 

Witten in ref.[l]. The bulk of that which is new ·in this paper, with the exeption of 

the pleasingly general formulation of eq.(5.1) and eq.(5.3) and some of the details of 

the SU(3) case (both of which were done by S.A. Hotes), is this author's contribution. 

As of late there has been additional work done on understanding the observeables as 

operators on the Hilbert space constructed here. A simple picture of the fusion rules 

and the Verlinde conjecture emerges. This will appear in the new version of the paper 

to be published. 

Open ·questions of interest are, for example, how to prove the Verlinde conjecture 

from this point of view _and whether one might understand the geometrical structure 

behind coset constructions. These and other questions are currently under scrutiny. 



.. 
CHAPTER 6: Conclusions and Outlook 

Although each of the preceding chapters have concluding sections, here we wish to 

point out some of the unifying themes and results of this work and also to connect 

this work to some of the recent investigations by other authors. 

One underlying idea of this work is understanding Wilson lines as quantum mechani

cal operators. In typical higher-dimensional gauge theories trying to understand the 

\Vilson lines as quantum mechanical operators is a troublesome task. However in low

dimensional gauge theories of the type studied here (both the two-dimensional \\"ess

Zumino-\Yitten model and Chern-Simons field theory) one has an infinite-dimensional 

symmetry group which acts to organize the physical degrees of freedom of the theory 

and possibly allow one to understand the Wilson line as a quantum mechanical opera

tor. Indeed, recently Alekseev, et.al. have understood the \Vilson lines of particularly 

simple conformal theories as quantum operators by using a lattice regularization. 1 ~ ot 

suprisingly the Wilson lines form a realization of a quantum group. In their approach 

they start with Poisson brackets that are very similar to that of eq.(5.16) of Chapter 

II, section a. It seems that a promising approach for further study would be to find a 

continuum regularization of the Wilson line. 

Interestingly enough, one may study the particularly simple conformal theories inws

tigated by ref.[l] as Chern-Simons field theories. Then, as shown in chapter \", it is 

possible to understand the 'Wilson lines quantum mechanically at least for the torus 

without introducing a lattice regularization or indeed any regulation at all! Unfortu

nately this approach is not as general as the approach of ref.[l) and much work remain~ 

to be done to see if it is profitable to use techniques from Chern-Simons theory to 

understand the quantum mechanics of Wilson lines for a general situation. 
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Another theme of this work has been to try to understand conformal models from 

a lagrangian point of view. Here of particular interest is understanding the gauged

WZW model as a type of non-linear t7 model. Recently Mandai et.al2 and Witten3 

have tried to understand what string propagation on various two-dimensional back

grounds is like by studying cosets of sh WZW model. ~ would be expected, the 

resulting lagrangian is very similar to that of eq.(6.7) chapter III, section a. It would 

be interesting to pursue the two-dimensional spacetime interpretation of various coset 

models to get a glimpse at the nature of stringy gravity. 

Low-dimensional field theories, although an old subject that has been intensely stud

ied, continues to be a rich testing-ground for some of the most interesing questions 

and intriguing ideas of physics. This author feels that much is yet to be learned by 

the continued vigorous efforts of many researchers in this topic. 
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