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CHAPTER 1. INTRODUCTION 1 

Chapter 1 

Introduction 

Given a finite union r of fixed closed curves in R3 , there is an associated problem of finding 

a surface with mean curvature zero which has r as its boundary. In this paper, a new approach to 

numerically solving this minimal surface problem is introduced. The surface is represented as a level 

set of a global function ~ : ~ -+ R. The surface evolves according to mean curvature flow until a 

steady state solution is achieved. A new system of interpolatory boundary conditions are used to 

maintain the connection between the moving surface and the fixed boundary contou-r~ 

1.1 What is a Minimal Surface? 

Given a finite union r of simple closed curves in R3 a minimal surface is a surface with 

least area that has r as its boundary. The simplest example of a minimal surface is where r is a 

circle and the minimal surface is the disk bounded by r. A more interesting example is the classic 

catenoid surface discovered by Euler [6] shown in Figure 1.1. 

Figure 1.1: Classic catenoid solution of Euler 

From a practical standpoint, minimal surfaces arise naturally in many physical models, the 

most familiar being soap films fitting to a wire boundary. They also appear in the study of statics of 

flexible and inextensible films, translation nets, relativity theory, quantum string theory, computer 
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aided design, medical technology, and even architecture. In general, the problem of producing an 

analytic representation of a minimal surface for a given arbitrary boundary r is exceedingly diffi

cult. Since constructive analytical solutions are impractical, a numerical approximation to minimal 

surfaces becomes a valuable tool. 

1.2 Lagrange Formulation 

The study of the minimal surface problem was begun by J. L. Lagrange (11] in 1762. He 

reasoned as follows: Let 1 be the projection of r onto the xy-plane, and let D be its interior. 

Assume that the minimal surface can be expressed as z = m( x, y) where m( x, y) E r for ( x, y) E 1. 

Define z(x, y) = m(x, y) + E6(x, y) where 6(:r:, y) = 0 for (x, y) E I· Next, define the surface area 

functional A( f) = J JD j1 + z; + z; dx dy. Since m is a minimal surface, then A must have a 

minimum at f = 0, thus A'(O) = 0. By differentiating under the integral sign and setting f = 0, it 

follows that 

Integration by parts gives 

A'(O) = -!r f {.2_ ( m,.. ) + ~ ( my ) } 6(x,y)dxdy 
J D ox j1 + m~ + m~ f)y j1 + m~ + m~ 

Because 6(x, y) can be any smooth function on D, then it follows that 

f) ( m,.. ) f) ( my ) = 0 
ox 0+~+~ +f)y 0+~+~ 

for all (x,y) ED. Carrying out the differentiation produces the equation: 

(1 + m;)m11y- 2m,..11 m,..my + (1 + mpm,..,.. 
(1 + m~ + m~)3f2· = 0. 

(1.1) 

Eliminating the denominator in Equation (1.1) produces what is called the minimal surface equation 

(1.2) 

A geometric interpretation of equations (1.1) and (1.2) is given in the following section. 

1.3 Minimal Surfaces and Mean Curvature Zero 

The mean curvature of a surface at a point is defined as the average of the two principle 

curvatures of the surface at that point. A formula for the curvature in the case where z = m(x, y) 

is given by the left hand side of Equation (1.1). For a complete derivation of the mean curvature 
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formula see [13]. A surface which has mean curvature equal to zero at every point is said to have 

the property mean curvature zero. 

Given a boundary contour r, a surface is locally minimal with respect to r if any small 

perturbation of the surface increases the total area of the surface. A surface is globally minimal if it 

has the least area of any surface which has r for its boundary. Equation (1.1) above indicates that 

if a surface is locally minimal, then that surface has mean curvature zero. A proof of this fact can 

be found in Nitsche [13]. The converse is not necessarily true. In Section 1.'5 a boundary is shown 

admitting a mean c'urv~ture zero surface which is not locally minimal. Surfaces of this type are 

called unstable. However, the accepted definition of minimal surface has been extended to include 

all surfaces with mean curvature zero. It is this extended definition which will be used in this paper. 

Note that numerical area minimizing algorithms will not ordinarily find unstable minimal surfaces. 

For Euler's catenoid solution in Section 1.1, there are at least two solutions which topolog

ically are like a cylinder. One surface is stable and locally area minimizing, while the other is not. 

This may be seen as follows. The formula for the catenoid is given by r(x) = acosh(xfa), where 

r(x) is the radius of the catenoid at the point x along the x-axis and a > 0 is the radius of the 

catenoid at the center x = 0. Suppose that the boundary consists of two rings of radius R located 

at ±b on the x-axis. From this, the parameter a is determined by the equation 

R = acosh(bfa). (1.3) 

If no real value of a solves Equation ( 1.3), then no catenoid solution exists. Assuming that the 

catenoid solution exists, solving for b in Equation ( 1.3) gives b = a cosh -l ( R/ a). Let R be fixed, then 

lima-o b(a) = 0 and b(R) = 0, therefore there exists a value amax such that bmax = b(amax) ~ b(a) 

for all a E (0, R]. Furthermore, for every value b0 E (0, bmax) there exists at least two values of a for 

which b(a) = bo. 

In terms of the catenoid, this means that given R, there is a maximal distance 2bmax where 

the rings may be held apart and still give a catenoid minimal surface. When the rings are less 

than the maximal distance apart, there are two distinct catenoid solutions corresponding to the two 

different values of a. When the rings are exactly 2bmax apart, only one catenoid solution exists. 

When the rings are farther apart, no catenoid solutions exist. For values of b < bmax, the catenoid 

with the smaller inner radius is the unstable solution. 

1.4 Plateau's Problem 

In 1873, J. Plateau [15] published his experimental work on minimal surfaces. He conducted 
-

extensive studies of soap films and soap bubbles. Because of his famous experiments, the problem 

of finding a disk type minimal surface solution for a given single boundary curve has become known 

as "Plateau's problem." After numerous physical experiments, Plateau conjectured that for every 

given boundary contour there exists a minimal surface bounded entirely by that contour. 
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In 1930, T. Rad6 [16] and J. Douglas [4] were independently able to prove Plateau's con

jecture. But while existence had finally been established, the proof did not lead to a practical way 

of computing a surface for a specific boundary. 

1.5 Topological Types of Minimal Surfaces 

In Section 1.3 it was shown that the general minimal surface problem does not have the 

uniqueness property. Even for the simpler problem of Plateau, uniqueness has been proven only 

under very strict conditions. 

As an example, the catenoid solution by Euler is not the only minimal surface which has 

two rings as their boundary. Let the boundary r be given as in Section 1.3. The boundary r is 

shown in Figure 1.2. If the rings are not too far apart in relation to the radius of the rings, then 

Figure 1.2: A two ring boundary arrangement 

three topologically different solutions exist as in Figure 1.2. One solution consists of two flat disks 

Figure 1.3: Two disks Figure 1.4: Euler's catenoid 

(Figure 1.3), a second, called the catenoid is topologically equivalent to a cylinder (Figure 1.4), 

and the third is formed by a catenoid with a disk sewn into the center (Figure 1.5). For the third 

example, the radius of the surface is given by the function 

r(z) =a (cosh c:l) J3 + ~sinh c:l)) (1.4) 
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Figure 1.5: Catenoid with disk 

where a is determined by the equation R =.r(b). 

It is reasonable to think that a catenoid solution exists for rings that are any distance 

apart. It was shown in Section 1.3 that this is not the case. This example illustrates how it is not 

always possible to predict the topology of a potential solution based solely on the boundary. This 

is an important point which affects the way minimal surfaces are computed. 

1.6 Existing Numerical Methods 

There are two general types of numerical Plateau's problem solvers. The distinction be

tween the types depends on the way surfaces are represented. 

1.6.1 Non-Parametric Surface Solvers 

The simplest way to try to solve the minimal surface problem is to represent the surface as a 

function z = I( z, y) similar to the argument given in Section 1.2. Because the surface is represented 

in a non-parametric form, algorithms of this type are called non-parametric surface solvers. In 

general, they work by discretizing a piece of the zy-plane and using the value of I on those grid 

points. The local surface area, the mean curvature, or surface tension of I is then iteratively reduced 

by changing the values of I on the grid. 

A large number of algorithms in this category have been published, for example, see Concus 

[2], Hoppe [10], Elcrat and Lancaster [5], and Greenspan [8]. 

Algorithms of this kind are typically simple to program and computationally inexpensive. 

However, they face certain shortcomings. The most obvious difficulty is how to solve for surfaces 

which cannot be projected one-to-one onto a plane. While special cases may be calculated by using 

symmetry arguments, this type of algorithm is not desirable in the more general case. 

A more subtle, yet critical, failure of these methods is that they explicitly assume the 

general topological type of the final solution. It is not always possible to know a priori the topology 

of the solution as seen in Section 1.5. Since these methods are unable to change topology during 

computation, they have difficulty capturing the correct solution. 
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1.6.2 Parametric Surface Solvers 

In order to solve for surfaces which cannot be projected onto a plane, a second class of 

algorithms has been developed which represent a surface as a collection of connected triangles. 

Similar to the non-parametric surface solvers, the vertices of the triangles are moved iteratively to 

reduce local area, mean curvature, or surface tension. Methods of this type have been developed by 

Brakke [1), Wagner [19), Hinata, Shimasaki, and Kiyono [9), and Coppin and Greenspan [3). 

While this new class of algorithms do solve one shortcoming of the previous class, they must 

still predict the topology of the solution before computing. Again, the inability of the algorithms to 

allow topological changes makes it difficult to find the correct solution. For example, if the cylindrical 

type is predicted when only the disk solution exists in the example above, then these methods result 

in a final solution as depicted in Figure 1.6 (figure from [19]). 

Figure 1.6: Erroneous solution of Euler's catenoid 

This solution is clearly incorrect since the center portion is essentially a very thin cylinder 

which has arbitrarily high mean curvature. Ideally, if that central cylinder could be cut, in other 

words the topology of the surface could change during computation, then false results such as this 

could be avoided. 
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Chapter 2 

Level Set Curvature Motion 

In the previous chapter, the desirability of an algorithm that can predict topological changes 

was discussed. In a paper by Osher and Sethian [14], a technique for following interfaces propagating 

with curvature dependent speed was introduced which allows topological changes. This chapter is a 

summary of the relevant portions of that paper. 

2.1 Lagrangian Representation of Curvature Flow 

To begin, consider a smooth two-dimensional surface S in R3 . At each point x of S, for 

mean curvature flow, the velocity of x is in the direction normal to S with magnitude equal to the 

local mean curvature of S at x. The case of a one-dimensional surface in the plane along with the 

velocity vectors of the surface are depicted in Figure 2.1. More precisely, let So be an initial smooth 

Figure 2.1: One-dimensional curvature flow velocity field 

surface and x(O) = xo E S0 . Then the equation of motion for the point x(t) is given by 

dx 
dt (t) · n = ll':(x(t)) 

x(O) = xo 
(2.1) 
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where n is the unit normal to S at the point z and ~e( z) is the mean curvature of S at z. Recall 

that mean curvature is the average of the two principle curvatures, the sign of which depends on 

the chosen normal to S. However, changing the sign of the normal vector only changes the sign of 

the curvature. Therefore, for this equation of motion it is not necessary to specify which normal 

is used. This formulation of the motion is said to be in Lagrangian terms because the coordinate 

system moves with the surfaceS. 

For example, let So be a sphere of radius R, and choose the inward pointing normal 

everywhere. Then at every point zo, the curvature is given by 1/ R. The solution surface St 

Figure 2.2: Shrinking sphere curvature flow 

satisfying Equation (2.1) is the sphere of radius ../R2 - 2t. In this case, 

z(t) = 11 ;~ 11 ../R2 - 2t, n(t) = - 11;~ 11 , and ~e(z(t)) = JR;_2t. 

It is easy to see that these satisfy Equation (2.1) for all t E (0, R2 /2). 

For the parametric surface solvers which use local mean curvature for their equations of 

motion, the formulation in Equation (2.1) is used for the surface flow. But Sethian (17] noted that 

while this formulation for the curvature flow model is relatively easy to implement, it can eventually 

lead to difficulties. 

One way to numerically model this type of flow is by using marker particles. These marker 

particles correspond to the vertices of the triangles in the non-parametric surface solvers. The idea 

is to pick a number of initial points zo, ... , Zn E So and then allow them to move according to 

Equation (2.1rwhere the normal n and the curvature 1e are computed for each z; by looking at its 

nearest neighbors. Sethian (17] showed that this algorithm has two inherent flaws. First, if points 

should get too close together instability can result. Second, it is not clear what to do if the surface 

should change topology, in other words, if it should merge together or break apart. In this case, the 

concept of nearest neighbors between points must change. 

Not coincidentally, these are the same difficulties that the existing parametric minimal 

surface solvers face. In some circumstances, maintaining stability in these methods is not trivial, 

and at present only ad hoc intervention by the user can alter the topology of the surface. 
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2.2 Level Set Representation of Curvature Flow 

A different approach was introduced by Osher and Sethian is to model curvature flow in 

· an Eulerian coordinate system. To begin, the surface is represented as a level set of some function 

~ : R3 -+ R. An equation of motion for ~ equivalent to the Lagrangian formulation may be found 

by treating every level set ~- 1 (C) as a separate curvature flow problem. This leads to an equation 

of motion for ~ over the entire domain. For the details see Osher and Sethian [14], and Sethian [17] 

Consider an arbitrary level set {x E ~: ~(x,t) = C}. Implicit differentiation with respect 

tot in this equation gives 
dx 

V'~(x,t) · -d (t) + ~1 (x,t) = 0 t . (2.2) 

Note that -V'~/IIV'~II is a unit normal to the level set ~- 1 (C), then by combining Equations (2.1) 

and (2.2), 
-V'~ dx dx 

~~ = IIV'~IIIIV'~II · di"(t) = IIV~IIn · di"(t) = ~~:(x(t))IIV~II. (2.3) 

The mean curvature ~~:(x(t)) can be represented solely as a function of~ and its derivatives by 

~zz(~; + ~;) + ~yy(~; + ~;) + ~zz(~; + ~;)- 2~ry~z~y- 2~yz~y<J>z- 2~rz~z~z 
"= 2<~~ + ~~ + ~n3/2 . (2.4) 

Therefore, the equation of motion for the surface ~-l (C) has been changed into a quasi-linear second 

order parabolic partial differential equation which is independent of the level set value C. 

Returning to the example of the shrinking sphere, suppose the function ~ is initialized by 

~(x, y, z, 0) = Jx2 + y2 + z2 - R. In Section 2.1 the rate of change of the radius of each level set 

of~ with respect to time was calculated to be J R2 - 2t. Using that computation, then ~(x, y, z, t) 

can be determined by looking back in time and determining where the level set including ~( x, y, z, t) 

was at time t = 0. Doing this produces the solution 

~(x,y,z,t) = Vx2 + y2 + z2 + 2t- R. (2.5) 

This solution can be verified by inserting it into Equation (2.3). 

Equation (2.5) shows that every level set of~ is a separate shrinking sphere. No level set is 

any different than any other except for its initial radius determined by the constant R. In fact, the 

shrinking spheres represent a very simple form of changing topology. In a marker particle method, 

special considerations must be taken when fronts get too close together. In contrast, the level set 

formulation allows the spheres to disappear naturally. 

A more interesting example of a topological change was computed by Sethian [18]. He 

considered an initial shape of a dumbbell, two large spheres connected by a cylinder. As predicted, 

the shrinking of the spheres is slower than the shrinking of the cylinder, so the dumbbell eventually 

breaks in the center. The picture of a slice of the object as it shrinks is depicted in Figure 2.3. 

To see how this relates to the level curves of~. Figure 2.4 shows the various stages of the surface 
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C><) 
0 0 

Figure 2.3: Motion of a dumbbell under mean curvature 

0 0 
Figure 2.4: Breaking dumbbell vs. w = 4?(z,y,O,t) 
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4)- 1(0) and the corresponding graph of 4>(x, y, 0, t). Note how the topology changes when the level 

set 4>- 1(0) contains the center critical point of 4> where \74> = 0. 

This new level set approach to curvature flow problems provides remedies to two difficulties 

in the previous formulations. First, marker particle instability is eliminated because the grid remains 

fixed for all time. Second, the surface is able to change topology naturally without the need for ad 

hoc decisions. These two properties can be exploited to create a new minimal surface algorithm. 

2.3 Osher-Sethian Numerical Method 

In [14], [17], a numerical method for modelling curvature flow using the level set represen

tation for 4> was developed. In those papers a more general curvature dependent speed function was 

considered. For the case of speed equal to mean curvature (see [17]), any type of time derivative 

method, for example Euler's method, Runge-Kutta's method, or an implicit method can be em

ployed. For the space derivatives, simple central differences are used. Thus, for Euler's method,"the 

numerical scheme for modelling curvature flow reduces to 

where K(4>n) is a finite difference approximation to the curvature from Equation (2.4). In this case, 

the finite difference approximation is simple central differences for all derivatives of 4> in the interior 

of the domain, thus 

4>~ 1 • L - 4>~ 1 • L 
A. ( •. t ) ..... •+ ,}1< ,_ ,} .. 
~:z: Xs;A:, n ....., 2~x 

4>~ 1 • 1 L - 4>~ 1 "+1 L - 4>~+1 • 1 L + 4>~ 1 • 1 L 4> ( .. t ) ....., •+ ,J+ •"' ·- ,J •"' ' ,J- •"' ·- ,J- •"' 
:z:y x,,,., n ....., 4~x~y 

At the boundary of the domain one sided finite differences are used. 

In order to construct 4>(x, 0) for a given initial surface S, the signed distance function 

from the initial surface is used. For the signed distance, the magnitude of 4> is given by l4>(x, O)l = 

dist(x, S). Given an orientation for the normal n of S, the sign of 4> is determined by the requirement 

that d4>/dnis = 1. As noted above, for mean curvature flow it does not matter which side of the 

surface has positive values of 4>. In the sphere example, 4> was the signed distance from the initial 

surface of a sphere of radius R with positive values on the outside. 
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Chapter 3 

Computation of Minimal Surfaces 

So far it has been argued that a new type of minimal surface algorithm is needed to handle 

the topological complexity of finding minimal surfaces. In the previous chapter, an alternative 

representation of surfaces was described including how this representation would be used to model 

curvature flow. In this chapter a new minimal surface algorithm is described. It uses the level set 

curvature flow model discussed in the previous chapter. 

3.1 Mean Curvature Flow and Minimal Surfaces 

So far, curvature flow has been studied in the absence of any kind of obstacles such as 

boundaries. A possible way to compute minimal surfaces is to attach a surface to a given boundary 

and let it move according to its mean curvature. However, in terms of curvature flow this leads to 

a discontinuous speed function at the boundary. 

For an example of the discontinuous speed, let the initial boundary curve be a circle of 

radius R in the plane and the initial surface be a hemisphere of radius R as in Figure 3.1. At all 

""'-=speed = 0 _/ 

Figure 3.1: Example of a discontinuous speed function 

points up to but not including the boundary, the initial speed of any point on the surface is 1/ R. 
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But at the boundary, we want the speed to be zero. A minimal surface algorithm must be able to 

handle this discontinuity. 

Another difficulty faced by curvature flow concerns the case of when '\7~ = 0, which is 

in the denominator of the curvature formula. Since we are primarily concerned with making ·the 

numerator of the curvature formula tend to zero, the minimal surface algorithm presented here leaves 

out the denominator for the curvature flow. Unless otherwise noted, curvature flow in this chapter 

refers to the curvature formula without the denominator. 

3.2 Basic Algorithm for Minimal Surfaces 

A solution for the discontinuous velocity property is simply to continually "reattach" the 

surface back to the boundary after it has moved away. A diagram of how this might be done using 

discrete time steps is depicted in Figure 3.2. In some sense, the surface is extenc:led by a sort of 

Figure 3.2: Reattaching the surface to the boundary 

annulus consisting of line segments joining points on the fixed boundary to the corresponding points 

where the boundary would be were it allowed to move with the rest of the surface. In the case of 

the hemisphere attached to the circle, in time Llt, the edge of the hemisphere would move towards 

the center a distance of approximately tl.tf R. Reattaching the boundary in this case would consist 

of adding to the surface the annulus of outer radius R and inner radius R- tl.tf R. Thus, a first 

attempt at a minimal surface algorithm based on curvature flow might look like this: 

Algorithm 1 

Step 1. 
Step 2. 
Step 3. 

Move surface according to curvature flow. 
Reattach surface to boundary. 
Go to step 1. 

The algorithm will use the level set formulation of curvature flow to follow the surface 

~- 1 (0). In this formulation, the boundary contour divides ~- 1 (0) into two disjoint pieces, ~- 1 (0) = 

IUE, where E is defined to be the exterior set and the compact interior set defined by I also contains 

the boundary. 
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Once again consider the boundary contour r consisting of a ring of radius R in the xy

plane. One might make the initial guess of a solution to be a hemisphere S of radius R attached 

to the ring. To realize S as a level set of some function ~. the surface S must be continued out to 

the edges of the domain of ~. One way to continue the surface is to let E be the xy-plane minus 

the disk bounded by r, so that ~- 1 (0) would appear as in Figure 3.3. Now~ can be constructed 

Figure 3.3: ~- 1 (0) = E U I · 

by choosing the sign of~ to be, say, negative below the surface and positive above. Clearly, the 

portion of the surface that is of interest is the set I. The set E is only needed to construct ~. 

This example also illustrates the procedure for initializing the minimal surface algorithm. 

First, an initial guess of the solution is made giving the set I. Second, the initial surface is extended 

in some way to the limits of the domain of~ giving the set E. Finally, ~ is initialized by taking 

the signed distance to the surface E U I. We may assume without loss of generality that~ is a coo 
approximation of the signed distance function for purpose of ensuring the existence of the derivatives 

of~- Even though an initial guess is necessary to start the algorithm, it need not be of the same 

topological type as the final solution unlike the existing minimal surface algorithms. 

In reference to step two, reattaching the boundary means changing the value of ~ in a 

neighborhood of the boundary so that ~ = 0 at the boundary. The reattaching process is described 

below. 

3.3 Boundary Conditions 

The process of reattaching the surface to the boundary in this numerical method follows 

from the idea that.~ must only be altered locally at the boundary so that ~ = 0 at the boundary. 

Doing this involves answering two questions. First, how does one model a one-dimensional contour 

on a three-dimensional rectangular grid? Second, how can ~ be altered locally so that ~ = 0 at the 

boundary? 

To illustrate the strategy, c~nsider the simpler problem of finding the shortest distance 

between two points A and B in the plane. The goal is to find conditions on ~ near the boundary 
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(the points A and B) so that <I>(A, t) = <I>(B, t) = 0 for all time. As an example, see Figure 3.4. 

The grid points around the point A are depicted in Figure 3.5. Suppose that the point A is located 

• • • • • • • • 

• • • • • • • • <ll-1(0) 

• 

• • 
• • 
• • 

Figure 3.4: Grid for two points connected by a curve 

• • 

• • 
Figure 3.5: Grid points around the boundary 

directly in the middle between the points g; and Yd· In order for <I>(A) = 0 on a grid, it follows from 

linear interpolation that <I> must be adjusted to satisfy the equation <I>(g;) = -<I>(gd)· Therefore, 

either the value of <I>(g;) or the value of <I>(gd) must be set for all time to be the negative of the 

other. Since the setting of the value of <I> at a particular point is in some sense artificial, in order to 

not influence the motion of the set I, we let the value of <I> closer to I be updated by the curvature 

flow and readjust the point nearer the exterior set E. In Figure 3.5, g; is nearer to I. The point g; 

is defined to be an independent point because the value of <I>(g;) changes only according to curvature 

flow. The point 9d is defined to be a dependent point because at each time step we reattach the 

boundary at the point A by setting <I>(gd) +- -<I>(g;). Here the left arrow indicates the value <I>(gd) 

is being assigned the value -<I>(g;). 

In the following sections we explain how to label dependent and independent points and 

compute their dependency coefficients. Second, we show how labelling should be done to construct 

consistent boundary conditions. Third, we give an example of how to construct the boundary con

ditions for a circle. Finally, we describe an algorithm for computer-generated boundary conditions. 

In general, the boundary conditions will be represented as a vector equation of the form 
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Vdep - Avind where 

Ud,l Ui,l 

Ud,2 Ui,2 
Vdep = Vind = 

Ud,m Ui,n 

and A is an m x n matrix. Since the matrix A only depends on the fixed boundary r, then the 

coefficients of A are constant for all time. The computation of the coefficients for A can be broken 

down into a linear combination of smaller matrix blocks of size 1 x 1 and 2 x 2. 

For the remainder of this section let r = {""Y(s) E R3 : s E [0, P]}, where 1(s) is continuous 

with ""Y(O) = 1(P), be a single boundary contour. 

3.3.1 Definitions 

As 1(s) traverses through the grid, there are three ways it can interact with the grid. Define 

a zero-point to be a grid point g such that g E r. Define an edge to be a line segment L connecting 

two adjacent grid points such that Lnr I 0. Define a pane to be a rectangular region R bounded by 

four connecting coplanar edges such that R n r I 0. An example of each is depicted in Figure 3.6. 

r r 
---"' y g. 

1 

zero point edge pane 

Figure 3.6: Interaction between a curve and a grid 

3.3.2 Grid Point Weighting 

I 
I 

I 
I , 

2 

~i 

The boundary r is discretized into a piecewise linear path with vertices consisting of all the 

intersections of r with zero-points, edges, and panes in the grid. Keeping r fixed then means fixing 

those vertices with respect to the grid. The boundary conditions needed for fixing the vertices require 

that, independent and dependent grid points are designated and that the resulting dependency 

coefficients are calculated. 

For a zero-point g, the point itself is defined to be dependent with no dependency coefficient. 

Since g is always on the boundary and ci> = 0 on the boundary, then ct>(g) - 0. 
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For an edge, one end point must be designated independent, the other dependent. In 

general, the point closer to the interior set I is chosen as independent. In this case, 4>(gd) +-- C~(g;) 

where C < 0 is a constant for all time. To calculate C, suppose the intersection point of r and the 

edge is given by agd + (1- a)g; with Ot E (0, 1). Linear interpolation implies that C =(a- 1)/a. 

h 

Figure 3.7: Dependency calculation of an edge 

For a pane, two adjacent points must be chosen to be independent, the other two are 

then dependent. Again, the two points sharing a common edge nearest to the set I are chosen 

as independent. In this case the two points will straddle the intersection of I with the pane. 

The dependency relation is then a 2 x 2 matrix equation. Let the intersection point be given by 

(1- 0t- /3)Ui,l + ag;,2 + f39d,l· Then the dependency relation is given by 

k 
r' 

I 

Figure 3.8: Dependency calculation of a pane 

[ 
~(Ud,l) l +-- .!_ [ 0t + /3- 1 -a l [ 4>(g;,l) l· 
~(Ud,2) /3 a - 1 /3- Ot ~(g;,2) 

3.3.3 Chain Construction and Consistency 

Unfortunately, the choices made for edges and panes are not independent. There may be 

grid points which belong to more than one pane or edge. Define a link to be either a pane or an 

edge. Define a chain to be an ordered list of links with any two consecutive links sharing at least 
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one common grid point. A simple example of a chain is depicted in Figure 3.9. As a point -y(s) 

5 

1 

Figure 3.9: A sample chain 

traverses the grid a string of connected panes and edges are intersected. 

In general, the complete boundary conditions for r are not one large chain, but instead 

made up of any number of disjoint chains. These chains can be separated in any number of ways, 

for example, r may intersect opposite facing panes, a pane opposite a parallel edge, two opposite 

edges, etc. Some chains are shown in Figure 3.10 

' ' ' I 
' I '• 

Figure 3.10: Example chain separators 

Define a chain to be co-nsistent if every grid point contained in the chain is labelled either 

independent or dependent but not both. The goal of choosing independent and dependent points is 

to construct consistent chains. In the chain shown in Figure 3.9 there are exactly the four consistent 

labellings shown in Figure 3.11. 

Unfortunately, there exist chains which do not permit any consistent labellings. Such chains 

may arise when the grid is too coarse to adequately model a given boundary. To get around this 

problem, moving the boundary with respect to the grid by some small amount f may help. If nudging 

the boundary does not help, then only refining the mesh will eliminate such chains. 

Note that the intersection points between rand the edges and panes of the grid are strictly 

local events, i.e. the location of the intersection of r and pane one in Figure 3_.9 should have no 

influence over the location of the intersection of r in pane four. However, an inconsistent chain can 

lead to dependencies stretching all along the length of a chain. For example, consider the inconsistent 

labelling of the two pane chain in Figure 3.12. In pane one, point A depends on points B and D. 
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5 

1 1 

5 

1 

0 = dependent point 

Figure 3.11: Four consistent labellings 

Figure 3.12: An inconsistent chain labelling 
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In turn, in pane two, point E depends on point A. At the point A, ~(A) is artificially set to force 

~(1(st)) = 0. But now the values assigned to ~(E) and ~(F) are computed using a dependent 

value, so their values are influenced by ~(D) which should not be the case .. A better way to label 

the points might be to let the point D be dependent rather than A. This results in a consistent 

labelling. Notice that in this case, the dependent values only rely on local independent points. 

An algorithm for choosing consistent labellings is given in Section 3.3.8. 

3.3.4 Chains and the Dependency Coefficients 

The structure of the chains also affect the calculation of the dependency coefficients. The 

number of dependent and independent points within a chain may not be the same, so the ~oundary 

conditions may be an overdetermined system of equations. 

For example, consider the labelled two pane chain in Figure 3.13. The dependency relations 

Figure 3.13: Overdetermined labelling 

for such a system are given by 

The values ~(9d,l) and ~(9d,2 ) are overdetermined. One option for solving the overdetermined 

system is to average the values ~(9d,1) and ~(9d,2), thus 

Note that if the surface is a plane, then the ?-Veraging solution is correct. As the mesh is 

refined the surface locally becomes more like a plane. Therefore, as the mesh is refined, the error in 

this averaging process decreases. 
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3.3.5 Example Boundary Construction: A Circle 

To illustrate, as an example, the boundary consisting of chains is computed for a circle. 

Consider a circle of radius 3t parameterized as 

:c(8) = ~. y(8) = 5 + tsin(8), z(8) = ~ + tcos(8) 

Define the grid to have dimensions 2 x 9 x 8 centered about the origin with uniform space step 

h = L This is an exceedingly large space step, but is used here to simplify the arithmetic. For now, 

suppose that the interior set I is in the positive :c direction. This would be the case if the initial 

surface is to be like a cylinder, for example, and this circle is on one end. The relationship between 

the boundary curve and the grid are shown in the two views in Figure 3.14. 

1 2 3 

Figure 3.14: Example of a grid with a boundary curve 

In this example there are fourteen chains, four of which are shown in Figure 3.15. By 

symmetry, it is only necessary in this example to compute the boundary conditions for the first four 

chains. 

Chain 1 

This chain consists of only one link, an edge connecting grid points 91,5,8 and 92,5,8· The intersection 

occurs when 8 = 0 which corresponds to the point !91,5,8+ !92,5,8· Since the set I is in the direction 

of positive z, then the grid point 92,5,8 should be the one labelled independent. Using the formula 

in Section 3.3.2 with o = 1/2 gives the equation 
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/ 
Chain 1 

Chain2 

/7 
Chain4 

Chain 3 

Figure 3.15: Example chains 

Chain 2 

This chain also consists of only one link, a pane connecting the grid points 91,6,7, 91,6,8, 92,6,7, and 

92,6,8. The intersection point occurs at the point (3/2, 6, (9+ 3J5)/2). With respect to the g;id, this 

corresponds to the point (1 -a- /3)92,6,7 + a92,6,8 + /391,6,7 where a = (3J5- 5)/2 and /3 = 1/2. 

As in the previous chain, the independent points should be 92,6,1, and 92,6,8 . Plugging this into the 

equation in Section 3.3.2 gives the equation 

[ 
cl)(91,6,7) ]- [ 3vl5'- 6 5- 3vl5'] [ cl)(92,6,7) l· 
cl)(91,6,8) 3vl5'- 7 6- 3J5 cl)(92,6,8) 

Chain 3 

This chain is made up of four connected panes. Choosing dependencies is similar to the previous 

one pane segment. In this case, the dependent points should be the grid points g1,j,k and the 

independent points should be 92,j,k. It is easy to see that this chain is then consistent, i.e. no grid 

points are labelled both dependent and independent. Once the dependencies are established, then 

the calculation of the dependency matrices proceeds as in chain 2 to get the four matrix equations 

Let A have entries a;j , and similarly for B, C, and D. Then the four matrix equations are combined 
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into the one matrix equation by averaging to get 

cl>(g1,7,8) a22 a21 0 0 0 cl>(g2, 7,8) 

cl>(gl '7, 7) !l2. ~ ku. 0 0 cl>(g2, 7, 7) 2 2 2 

cl>(gl,8, 7) - 0 hl. ~ .u.L 0 cl>(g2,8, 7) (3.1) 2 2 2 

cl>(gl ,8,6) 0 0 £U. ~ .!h.a. cl>(g2,8,6) 2 2 2 

cl>(gl ,9,6) 0 0 0 d21 d22 cl>(g2,9,6) 

Chain 4 

The process for this single pane chain is identical to that of chain 2. 

The remainder of the boundary can be constructed easily by using symmetry, or can be 

done the same way as above. In Section 3.3.8 a computer algorithm for computing these boundary 

conditions is described. 

This example is fairly typical in that the final dependency matrix is in block diagonal form. 

Each block corresponds to each chain segment of the boundary. Provided that the boundary has at 

least one break in it (that is, separates into at least two chains), and that all chain segments have 

at least one consistent labelling, the dependency matrix can always be represented in this form. · 

However, the matrix blocks are not always square, so the dependency matrix is not always square. 

3.3.6 Two-Step Boundary Condition Process 

One difficulty with creating the boundary conditions is that the final solution is implicitly 

assumed to be known before the boundary conditions are generated. Thus, finding the boundary 

conditions for a given boundary curve is a two-step process. First, an initial guess at the correct 

boundary conditions is made and the surface with those boundary conditions generated. The effect 

of poorly chosen boundary conditions results in small perturbations near the boundary, but the 

interior I of the surface will be close to the correct solution. Thus, the second step of the boundary 

generation process is to readjust the boundary using the computed surface as a good approximation 

to the correct solution. Once the boundary is properly adjusted, a better solution can be computed 

with the new boundary using the previously computed surface as the new initial surface. 

3.3. 7 Properties of Chains 

Before any kind of computer-generated boundary conditions can be constructed, certain 

abstract properties of chains and the number of consistent labellings must be derived. Let a pane be 

represented by P and an edge by E. One representation of a chain is as an undirected graph with 

the nodes being the edges and panes. Two nodes are connected if the corresponding edges or panes 

share a common grid point. The chain in Figure 3.9 is depicted in graph form in Figure 3.16. Define 

a chain to have a loop if its graph representation contains a closed loop. In this section, assume 

that no chains form a loop. This assumption essentially guarantees that all chains have at least one 
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Figure 3.16: A sample graph representation 

consistent labelling. By eliminating loops and using the continuity of r, the graph representation of 

chains reduces to a single string of nodes. Therefore, we can represent a chain as a sequence of P's 

and E's. For example, the chain in Figure 3.9 may be represented as PPPPE, or P 4 E. Denote by 

C any string of P's and E's. 

Let C be any chain segment which does not form a loop. Define the function L( C) to be 

the number of consistent labellings allowed by the chain segment C. The following are a set of rules 

which describe how to compute L(C). 

Rule 1 L(Pn) = 4 and L(En) = 2 for n > 0. 

We proceed by induction. Suppose that C = P. A consistent labelling for a single pane P corre

sponds to choosing a side of P to be the dependent side. Since P has four sides, then L(P} = 4. 

Now suppose C = P 2 • The only way panes can be connected is if they share a common edge. Given 

a pane wjth one edge labelled, the rest of the labelling is uniquely determined. Therefore, for each 

of the four labellings of the first pane, the second pane's labelling is uniquely determined, hence 

there are no additionallabellings. Therefore L(P2) = 4. Now assume C = pn P. By the inductive 

hypothesis, L( pn) = 4. Since pn and P share a common edge, then the labelling of P is uniquely 

determined by the labelling of pn, therefore £(pn+l) = 4. 

The argument for edges is analogous. 0 

Rule 2 L(CE) = L(EC) = L(C) where C ::F 0. 

The argument here is similar to the previous rule. The edge E and the chain C share a common 

grid point, therefore the labelling of E is uniquely determined by the labelling on C so L( C E) = 

L(EC) = L(C). o 

By Rule 2, L(C1 PEn) = L(C1P) = L(C1 PE). The number of points in PC2 labelled by C1PEn 

is one, similarly for C1 PE. The number of labellings for PC2 given one point determined by the 

previous part of the chain is the same in either case. Therefore, L(CtP En PC2) = L(C1P EPC2). 

The proof for the second equation is similar. 0 

Rule 4 L((PE)n P) = 2n+2 for n ~ 0. 

We proceed by induction. The case of n = 0 is given by Rule 1. For n > 0, by the inductive 

hypothesis, L((PE)n-tp) = 2n+1. By Rule 2, L((PE)n) = L((PE)n-1(PE)) = L((PE)n-lp). 
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The last edge of the chain (PE)n determines the labelling of one point of the final pane P. Given 

one determined point on a pane, there are two different consistent labellings which may be chosen. 

Thus, for each labelling of (PE)n, there are two possible labellings of the final P which are consistent. 

Therefore, L( ( P E)n P) = 2L(( P E)n) = 2 · 2n+ 1 = 2n+2. D 

Rule one tells how many consistent labellings are possible on a string of strictly panes and 

a string of strictly edges. Rules two and three describe how to collapse a complicated chain into its 

simplest form of ( P E)n P. Rule four tells how to compute L( C) for the collapsed chain. 

For example, chain 3 above is represented as C = P P P P, so by rule one L( C) = 4. For 

a more complicated example, consider the chain C = EPPEEPPPEPE. By rule two, L(C) = 
L(PPEEPPPEP). By rule three, L(PPEEPPPEP) = L(PEPEP) = L((PE)2 P). Finally, by 

rule four, L(C) = 22+2 = 16. 

3.3.8 Automatic Generation of Chains 

Unfortunately, because of the required two-step boundary condition process, an entirely 

automatic boundary generation procedure is not available. However, generating by hand the some

times vast number of coefficients in the dependency coefficient matrix A can be tedious and prone 

to error. In order to create a computer-generated set of dependency coefficients, three issues must 

be resolved. First, the intersection points between r and the grid must be located. Second, for 

determining optimal dependencies, at each point -y(s) E r the vector r(s) where r(s) is orthogonal 

tor and tangent to and in the direction of the interior surface set I at -y(s) must be computed. A 

diagram of the relationship between r, r, E, and I is shown in Figure 3.17. 

Figure 3.17: Relationship between r, E, and I 

Finally, after the choices for optimal dependencies are made, the chains of conditions must 

be reconciled so that all chains are consistent. 

Finding the Intersection Points 

Finding the intersection points between r and the grid essentially distills into a local root

finding problem. Let -y(s) = (1'1(s),-y2(s),-y3(s)), then the function for which a root is to be found 
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is given by 

f(s) = (71(s) mod Ax)("Y2(s) mod Ay)(73 (s) mod Az). 

The best way to solve this problem is with a bisection algorithm. 

Instead of looking at individual grid points, label each cube of grid points by c;,j,lc where 

9iJ,Ic is the bottom left corner of the cube. Thus, the cube Ci,j,lc consists of the grid points 9i,j,/c, 

9i+1J,Ic• 9i,j+l,/c, 9i+1J+l,lc, 9i,j,/c+l, 9i+1J,Ic+l. 9i,j+l,lc+l, and 9i+l,j+l,lc+l· Denote by C(x) the 

function which takes a point in space and returns the cube coordinates which contain x and denote 

two distance functions by 

doo(c;,j,/c, Cl,m,n) = max(li -II, li- ml, lk- nl) 

d1(ci,j,/c, Cl,m,n) = li -II+ li- ml + lk- nl. 

Now, note that the "zeros" that are sought occur in an interval [s1 ,s2] when C("Y(s!)) # 
C(7(s2)). By using the method of bisection, this interval can be divided until the subinterval [t 1, t2] 

is found where d00 (C("Y(t!)),C("Y(t 2 ))) = 1. At this point either bisection can be continued to find 

the location of the zero, or a more sophisticated algorithm can be used such as accelerating the 

bisection process by using straight line approximations to 7, or Newton's method. Since Newton's 

method requires the computation of the derivative of "Y, it is suggested that bisection or accelerated 

bisection be used to cut down on the total input. Once the location t0 of the zero is found, then 

the type of intersection is determined by computing d1(C(to- e), C(to +e)). Here, e may be half of 

the distance between the final pair of straddling values oft which are computed during the bisection 

process. The type of intersection is given in Table 3.1. 

Value of d1 Intersection Type 
1 Pane 
2 Edge 
3 Zere?point 

Table 3.1: Values of d1 vs. intersection types 

One final issue must be addressed with regard to finding the intersection points. Because 

of round-off errors the root finding section might find an edge even though "Y( s) theoretically passes 

through a zero point. If this happens and the wrong endpoint is chosen to be dependent, then it is 

possible to get an overflow when computing the dependency coefficient. Because of this, a reduction 

procedure is employed which first reduces a pane to an edge if the intersection point 1(t0 ) is within 

e of an edge, and then further reduces an edge to a zero point if the intersection point is within e of 

an endpoint of the edge. For the boundaries used at the end of chapter 4, e was chosen to be 10-10 . 
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Approximation of T 

Recall that the vector T is the vector which essentially points in the direction of the interior 

set I orthogonal to r. Before describing how to compute an approximation for T it is important to 

understand how T will be used to determine grid dependencies. For now, assume that the vector 

r(s) is given. For a zero point, the vector T is not necessary because the dependency coefficient is 

determined automatically. The cases of an edge and a pane will be handled separately. 

For an edge E, let the endpoints of the edge be denoted by g1 and 92 . To determine the 

dependent end, treat 1(s) as a vector and orthogonally project the vector 1(s) + r(s) onto the line 

determined by E. Call the projection point f. An optimal dependent end satisfies the relation 

(f -1(s)) · (9& -1(s)) ~ 0. This construction is displayed in Figure 3.18. 

Figure 3.18: Edge dependency diagram 

For a pane P, let the endpoints be denoted by 91, 92, 93, and 94 as in Figure 3.19. In this 

Figure 3.19: Pane dependency diagram 

case, an optimal edge of P is to be chosen. Similar to the edge, project 1(s) + r(s) orthogonally 

onto the plane determined by P and call the projection vector f. Since 1(s) is inside P, then there 

is at> 0 such that 1(s) + t(f -1(s)) E oP. An optimal independent edge is one which contains the 

point 1(s) + t(f -1(s)). In the unlikely event that f = 1(s), then all edges are treated as optimal. 

The process of computing r( s) a priori is difficult because of the non-uniqueness property 



CHAPTER 3. COMPUTATION OF MINIMAL SURFACES 28 

of minimal surfaces for most boundaries. It was noted in Section 3.3.6 that boundary condition 

generation is a two step process. These two steps correspond to the two ways of approximating T. 

The first is used to generate the preliminary boundary conditions and the second is used to generate 

the corrected boundary conditions. 

Experimentation with several different prediction methods was performed. For surfaces 

that are extremal, the most success was achieved by approximating r(s):::::::: t -1(s) where tis the 

center of mass of r. For more complicated surfaces, since the local surface may be approximated by 

a plane, T may be crudely approximated by the acceleration vector r(s). 

In order to correct the boundary conditions, an approximation of the minimal surface must 

be available. Consider a pane which is part of the boundary. Given a function <) for which the 

minimal surface approximation isS= <J- 1(0), there are three places on the pane where the surface 

can be determined: 1(s) and the two points £, 11 E S n {)p (see Figure 3.20). Let n be normal to 

<1>>0 
gtr------~g2 

Sf"'\P- <1>>0 , 

<1>>0 
g3......_, ___ ......_--t-4g4 

<I><O r 

Figure 3.20: Diagram of S n {)P 

S n P in the direction of V<J. Since V<Jis :f; 0, then a natural orientation is induced upon S which 

makes it possible to locally distinguish between the sets I and E. In order to make the distinction, 

let (be orthogonal toP with ( · .Y(s) > 0. Then the interior point£ is the point nearest to± n x ( 

where the sign depends on the direction of the parameterization of 1(s) around the interior surface 

I. The optimal independent edge is the one which contains L, thus r(s) :::::::: L- 1(s). At the same 

time an optimal (external) dependent edge is found, the one containing the exterior point 11· The 

optimal independent and dependent edge may conflict, but that is resolved during the construction 

of the chains. 

For an edge, the correction algorithm is somewhat more complicated. The object is to 

choose the endpoint that is closer to the interior region I. In this case, let the edge be given by the 

segment 9192 and consider the four panes that have 9192 as an edge. The orientation induced for 

panes given above picks out two of those panes has having the exterior point 11 on 9192 as shown 

in Figure 3.21. For each of the two panes P1 and P2 calculate {i as follows. Each pane will now 

determine two points that are on the surface S, 1(s) on the edge 9192 and Li on one of the other 
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Figure 3.21: Panes intersecting an edge 
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edges. If ti is on the opposite edge, then e, is the orthogonal projection of ti- r( s) onto 9l92· If ti is 

not on the opposite edge, e, is the orthogonal projection of the point where the line through r(s) and 

ti intersects the line determined by the opposite edge of P,. The point 9i nearest to ( = (el + 6)/2 

is selected as the point nearest I. Thus, r(s) ~ 9i- r(s). 

Figure 3.22: Construction of {i 

Chain Consistency 

Finally, once r(s) is approximated for each chain link, the chains must be constructed so 

that they are consistent. To do this, the total number of possible combinations must be found 

using the properties of chains in Section 3.3.7. For each of the consistent labellings, a score is given 

according to how well the chain is labelled. A typical way to score a chain is to assign a value to 

each element of the chain according to the choice of dependent points versus the optimal. One such 

scoring system is shown in Table 3.2. 

Dependent points are ... Score 
Panes opposite optimal interior edge 0 

on optimal exterior edge 1 
(correction method only) 

on optimal interior edge 100 
anywhere else 5 

Edges optimal 0 
not optimal 3 

Table 3.2: Chain scoring table 

The chain labelling that achieves the lowest score is the one that is used. Chains that score 

greater than 99 should be cause for concern. When chains score greater than 99, it means either 

dependent points are straddling the surface which could lead to inaccuracies at the boundary, or a 

very long chain exists. Particularly in the first case, it is important to reconfigure the grid to avoid 

such chains whenever possible. 
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3.4 Reinitialization and the "Tentpole Phenomenon" 

Using curvature flow with boundary conditions. to anchor the surface to the boundary 

contour produces a very simple first attempt at an algorithm for computing minimal surfaces. This 

basic algorithm is shown again here. 

Algorithm 1 

Step 1. 
Step 2. 
Step 3. 

Move the surface according to curvature flow. 
Reattach the surface to the· boundary. 
Go to step 1. 

Unfortunately, algorithm 1 doesn't work because of inaccuracy at the boundary. To resolve 

the inaccuracy, some investigation into the theory of curvature flow is necessary. For mean curvature 

flow without boundaries using the level set representation, Evans and Spruck [7] proved that the 

level sets of the function ~ do not change distance relative to each other as time progresses. When 

boundaries are introduced, however, this is not true. Instead, a structure resembling a tent pole can 

appear as in Figure 3.23. 

----------

Figure 3.23: The tentpole phenomenon 

Unless the surfaceS= ~- 1 (0) is extended so that all the level sets near the boundary have 

zero mean curvature, the level sets on one side of S will collapse together onto the boundary, while 

on the other side they separate and flow away from the boundary. In the wake of the boundary, 

as the level sets flow downstream, eventually catastrophic round-off affects the computation of the 

curvature near the boundary and instability ensues. 

To avoid the tentpole phenomenon the surfaces are reinitialized. At regular intervals, the 

surface ~- 1 (0) is located and the signed distance from ~- 1 (0) to each point is computed. The 

formula for reinitialization can be expressed as 

~(x)- sign(~(.r))dist(x,~- 1 (0)) (3.2) 

The process of reinitialization effectively moves the nonzero level sets so that they are equally spaced 

as they would be for flow without boundary. The zero level set remains fixed. 

Adding reinitialization to algorithm 1 produces the final algorithm for computing minimal 

surfaces: 
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Algorithm 2 

Step 1. 
Step 2. 
Step 3. 
Step 4. 

Move by curvature flow 
Reattach the surface to the boundary 
Reini tialize cl> 
Go to step one. 

3.4.1 Reducing Computing Costs 
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Considered as separate pieces, the steps for computing minimal surfaces given abdve can 

be computationally expensive. In the simplest .case, one time step in curvature flow is an 0( n3 ) 

operation, reattaching the boundary is O(n), and reinitializing the surface is O(n6 ). To see that 

reinitialization is of order O(n6), note that it is an O(n3 ) operation to locate a level set on a grid, 

and an additional 0( n3 ) operation to compute the distance from a point on the surface to each point 

on the grid. Even for relatively small values of n, an 0( n6) order computation done every time step 

is for all practical purposes too costly. 

By combining the three steps and making one observation, the overall computing cost can 

be decreased dramatically. To begin, note that with the introduction of reinitialization, the values 

of cl> outside of a neighborhood of q;- 1 (0) are extraneous and have no effect on the motion of the set 

q;- 1(0). The only contribution of points outside the neighborhood is to hold a sign for the use of 

locating the zero level set. This observation leads to the conclusion that the only points that need 

to be reinitialized are those inside of the neighborhood of q;-1(0) that are used in computing the 

motion for q;- 1(0). 

Define the stencil of the surface to be those points. More specifically, a point g is in the 

interior of the stencil if it has a neighboring point g', for which cl>(g )cl>(g') ::; 0. A point g is in the 

stencil if there is a point g' in the interior of the stencil and for which d00 (g, g') $ 1. In other words, 

a point g is in the stencil if it is next to the surface, or is one of the 26 grid points surrounding a 

point next to the surface. A diagram of the 2-dimensional case is shown in Figure 3.24. 

• • • • I 0 0 0 0 
<1>-1(0) I -----------· 

• • • • • I 
0 I I __ 

• • • • • 
• = in stencil • • • • • 

------1 
0 0 I • • • • • • 

Figure 3.24: A 2-dimensional stencil diagram 

By restricting reinitialization to the stencil of the surface, then the computational cost of 

reinitialization drops from O(n6) to O(n3
). To see this reduction note that if restricted to the stencil, 
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the distance need only be computed for a fixed size neighborhood of each point, since only points 

near the surface are going to be reinitialized. Thus, the cost of reinitialization reduces to finding the 

surface and then computing for each point near the surface the distance to a fixed number of points 

(26) independent of n. Therefore, the total cost ofreinitialization decreases to O(n3 ). 

Furthermore, since the values of~ outside of the stencil are only sign holders, it is not 

necessary to move ~ outside of the stencil. Thus, during reinitialization, a list of the points in the 

stencil is created and passed to the curvature flow step. The curvature flow subroutine computes 

the curvature motion for all points in the interior of the stencil. This allows the curvature flow step 

cost to drop from 0( n3) for computing ~t everywhere, to 0( n2) for computing ~~ only within the 

stencil. 

One final side benefit is gained by restricting computation to the stencil. It now no longer 

matters what type of boundary conditions are used for the boundary of the grid. Since computation 

is only done within the stencil, only the intersection of the stencil with the grid boundary can 

influence the motion of~. However, perturbations introduced by the grid boundary are stopped 

entirely by the contour boundary before they can affect the interior portion I. Thus, it is equally 

acceptable to use one sided differences at the grid boundary or simply assume ~~ = 0 on the grid 

boundary. 

3.5 Initialization and Stopping Criterion 

Two important issues remain: how to start and how to end the algorithm. For initialization, 

the object is to find a function ~ : R3 -+ R such that the boundary contour r C ~- 1 (0) and that 

V~ :F 0 on the surface ~- 1 (0). If a minimal surface of a particular topological type is sought, then 

the initial surface should have the same topological type. If no solution exists of that topological 

type, the algorithm will search for a different solution. 

While several different initial surfaces are possible, in order to avoid the tentpole problem, 

a surface which has a small curvature on r is preferable. For example, if r consists of two rings as 

for the catenoid, then an initial surface of an infinite cylinder is better than an initial surface of a 

finite cylinder with disks on the ends. 

The stopping criterion for the algorithm is a test of whether steady state is achieved. The 

test can be inserted anywhere in the main loop, but the best place is to put it directly after step two, 

reattaching the boundary. At that point a simple chec~ of Loo(~n+213 ,~n+1+213) < i determines 

whether steady state is achieved. 

3.6 Stability and the Boundary 

During a computation, the surface must remain attached to the boundary. If the surface 

moves too far during one time step, separation from the boundary can occur, similar to a Courant 
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condition. Once separation from the boundary happens at any point, it often follows rapidly along 

the rest of the boundary until the surface pulls completely away. By reducing the time step so that 

the surface moves no more than one grid cell, this can be avoided. In the next chapter is a discussion 

of time step sizes necessary for stability. 

3.7 Summary 

. In this chapter, a new algorithm for computing minimal surfaces has been introduced. It 

is given again below with the basic equations listed. 

Algorithm 2 

Step 1. Move ~ with speed equal to the numerator of the local mean curvature. 
~n+l/3- ~n + .6-tK(~n) 

Step 2. Reattach~ to the boundary contour. 
~n+2/3 - A~n+l/3 

Step 3. Reinitialize. 
~n+l- sign{~n+2/3)dist( .• ~n+2/3-l{O)) 

Step 4. Go to step one. 
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Chapter 4 

Numerical Results 

The algorithm presented in the previous chapter was designed to meet the following goals: 

it should produce accurate results with at least linear convergence and it should be able to natu

rally change topology without special intervention by the user. The first goal will be addressed in 

Section 4.1, and the second in Section 4.2. 

4.1 Convergence 

From tests against known solutions, the convergence of the algorithm to the exact solution 

appears to be nearly linear. In Figure 4.1 is shown a sequence of grid refinements and the exact 

solution for the radius of Euler's catenoid solution with a = 0.4, b = 0.277259, and R = 0.5. Table 4.1 

shows the absolute error in the radius measured in the £ 1 , £ 2 , and L00 norms. 

Grid Size £1 L~ . £00 

9x17x17 8.64E- 02 1.63£-03 2.37£-02 
17 X 33 X 33 6.13£-02 4.27£-04 9.33£-03 
26 X 46 X 46 7.42£-02 3.34£-04 6.13£-03 

Table 4.1: Computed error table 

4.2 Changes in Topology 

Figures 4.4, 4.8, and 4.9 show how topological changes can occur. However, the topology 

can also be complex if a solution of that type exists as in Figure 4.16. 



CHAPTER 4. NUMERICAL RESULTS 

0.5 

0.415 

0.45 

0.425 

0.4 

~ 
\; 
\ 
\ 

-.- Exac:t solution 

-- Space step= 0.1 

--- Space step = 0.05 

---• Space step= 0.025 

',, 
'~ ,~ , ... ~" ,_~ 

''~ ,_;7 I 

' 
~' ,~ I ,-....... ..-"/ 

' -...::.-:....-;::.....- ,I ....... / 
.............. ,, 

0.375 +---lr---+-t--+-+---t--+-'-+"'-t--+-+---lr---+-t--+--1 
-0.3 -0.225 -0.15 .0.015 0 0.015 0.15 0.225 0.3 

X-axis 

Figure 4.1: Convergence of solutions under grid refinement. 

4.3 Computational Cost 

36 

As was noted last chapter, the computational cost of each time step is O(n3 ), where n 

is the number of grid points in each coordinate direction. Table 4.2 gives a comparison of the 

computational cost of the catenoid problem for various grid mesh sizes. A graph of this table shows 

Grid Size Total Grid Points CPU Seconds 
9x17x17 2,601 47.6 

17 X 33 X 33 18,513 233.7 
27 X 47 X 47 59,643 867.9 
29 X 51 X 51 75,429 1082.8 
31 X 57 X 57 100,719 1256.0 
35 X 63 X 63 138,915 1572.1 
41 X 73 X 73 218,489 3327.9 
49 X 87 X 87 370,881 5673.2 

Table 4.2: Computational cost for 50,000 iterations 

more clearly the linear relationship between the total number of grid points and the computational 

cost. 
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Figure 4.2: Graph of Computational Cost 

4.4 Graphics Rendering and Triangle Trimming 

In the next section a number of examples of minimal surfaces are displayed. In order to 

generate those figures, a set of triangles which approximate a level set were constructed. A triangle 

filter was then used to remove all triangles contained in the exterior set E. The remaining triangles 

were then rendered on a Stardent ST3000 computer. All computations were done within the Stardent 

graphics system shell called AVS (Application Visualization System). 

4.4.1 Marching Cubes 

In order to generate the level sets, a marching cubes (see [12]) type of algorithm was used. 

This is a standard method for rendering level ~ts of a function defined on a 3-dimensional grid. 

The general algorithm addresses many important graphics problems needed for a complete rendering 

package. In this section is a summary of only a part of that algorithm, the construction of triangles. 

This part of the marching cubes algorithm consists of a small loop with a large number of 

cases. A list of triangles is then constructed which forms an approximation to the surface 4>- 1(0). 

To illustrate, as was done in Section 3.3.8, represent the grid as a collection of cubes labelled by the 

index of a corner grid point. Each point g in the grid is assigned the value of 

{ 
1 if 4>(g) > 0 

f(g) = .-
0 otherwiSe. 

( 4.1) 
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Given an arbitrary cube Cij/c, label the vertices numbers v1-vs. Next, define the function 

8 

F(c;;~c) = L 2m-l f(vm) {4.2) 
m=l 

The main loop of the marching cubes algorithm searches for any cube Cijlc in the grid for which 

F(c;;~c) I 0 or 255. This indicates that ~- 1 {0) intersects that cube. 

For each intersection there are ~ different possible combinations of 1 's and O's correspond

ing the 256 values of the function F. By exploiting symmetry arguments, the 256 different cases can 

be reduced to 14. Each case will add up to four triangles to the triangle list. The triangle vertices 

are given in real coordinates and can then be projected onto the 2-dimensional surface of a monitor 

screen. 

4.4.2 Triangle Trimming Filter 

The results of this standard approach were not satisfactory. The problem is that the only 

portion of the surface ~- 1 (0) that is of interest is the interior set I, but the standard approach in the 

previous section displayed I U E. What is needed is a filter which will throw out the triangles which 

are contained in E. An algorithm suggested by William Johnston of Lawrence Berkeley Laboratory 

is to start on the outside boundary of the grid, then do a recursive search inward towards the 

boundary, throwing away triangles until the boundary is hit. 

For input this graphics module receives the values of~ on the grid, the space step of the 

grid, and also the real coordinates of a large number of points on the boundary contour r. The first 

step of the algorithm is to mark each of the grid cubes as either boundary or non-boundary. Then 

the main triangle search and destroy algorithm looks for a starting point by scanning the cubes on 

the outside edge of the grid until it finds one for which F I 0 or 255. At each starting point a 

recursive search algorithm is implemented as in algorithm 3. 

Algorithm 3 

Subroutine Search(i,j, k) 
If c;;1c is outside the grid then return 
If c;;1c is a boundary cell then return 
If F{c;;~c) = 0 or F(c;;~c) = 255 then return 
Remove all triangles in cell c;;~c 

Mark Cijlc as a boundary cell (to prevent an infinite loop) 
Call Search( i + 1, j, k) 
Call Search( i- 1, j, k) 
Call Search{i,j + 1,k) 
Call Search(i,j- 1, k) 
Call Search(i,j,k + 1) 
Call Search( i, j, k - 1) 
Return 
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This algorithm leaves all the triangles in the cubes containing the boundary unchanged, however, so 

the pictures displayed have fringes around the boundary. Further pursuit of the triangle trimming 

algorithm to clean off the fringes is beyond the scope of this paper. 

4.5 Examples of Computed Surfaces 

The following pages contain pictures of a number of minimal surfaces computed by this 

algorithm as well as some sample evolutions demonstrating changes of topology. 

In Figure 4.3, the computed solution of Euler's catenoid surface is shown. The rings are of 

radius 0.5 and positioned at z = ±0.277259. The radius at the center should be approximately 0.4. 

The mesh size is 27 X 47 x 47 with space step 0.025 in all directions. The initial surface consisted of 

a cylinder of radius 0.5. 

In Figure 4.4 is shown what happens if the initial surface is chosen to be a cylinder as in 

Figure 4.3, but the rings are too far apart for a catenoid solution to exist. In this case, the topology 

changes so that instead of a cylinder type surface, two disks are found as the solution. For this 

surface, the rings have radius 0.5 and are positioned at z = ±0.345, and the mesh size is 41 x 41 x 41 

with space step 0.05. 

In Figure 4.5, the computed solution of a catenoid type of surface with square ends is shown 

from different angles. The squares have side length 1.0 and are positioned at z = ±0.275. The mesh 

size is 41 x 41 x 41 with space step 0.05. The initial surface was a square tube of side length 1.0. 

In Figure 4.6, a cylinder type of surface is shown where the circles are parallel, but with 

offset centers. The circles are of radius 0.5 with the centers located at ±(0.2625, 0.0, 0.25) parallel 

to the yz-plane. The mesh has dimensions 25 x 45 x 67 with space step 0.025 in all directions. The 

initial surface was a cylinder with oval cross-section and principle radii 1/2 and 21/58. 

In Figure 4.7, the boundary consists of three circles with centers equally spaced on a base 

circle of radius 2/3 on the zy-plane. The circles each have radius 2/3. The mesh has dimensions 

41 x 41 X 41 with space step 0.05. The initial surface was three half-cylinders joined in the center. 

In Figure 4.8, the boundary consists of three circles with centers equally spaced on a base 

circle of radius 0.755 on the zy-plane. The circles each have radius 0.51. The mesh has dimensions 

41 x 51 x 25 with space step 0.05. The initial surface was three half-cylinders joined in the center. In 

this case the rings are too far apart to have a connected minimal surface, hence the surface breaks 

into three disks. 

In Figure 4.9, the boundary consists of six squares of side length 1/2, centered on the 

coordinate axes. On the z-axis the squares are located at ±0.375, on the y-axis at ±0. 775 and on 

the z-axis at ±1.275. The different distances were chosen to cause the surface to break at three 

different times. The mesh has dimensions 25 x 41 x 61 with uniform space step 0.05. The initial 

surface was the union of three cylinders with square cross section. 



CHAPTER 4. NUMERICAL RESULTS 40 

In Figure 4.10, the surface computed is known as Sherck's surface. The boundary consists 

of eight line segments of unit length. The mesh has dimensions 42 x 42 x 42 with space step 2/41 in all 

directions. The initial surface consisted of the two parallel half-planes {(z, y, z) : y = ±0.5, z :=; 0.5} 

and the strip {(z, y, z) : -0.5 :=; y :=; 0.5, z = 0.5}. 

In Figure 4.11, the boundary is formed by the edge of a twisted rectangle. The width of 

the rectangle is 1, and the flat ends have length 0.5. The center twisted portion has length 0.5 as 

well. the grid dimensions are 42 x 42 x 42 with space step 2/41. The initial surface was the twisted 

strip from which the boundary was derived extended out to the edge of the grid. 

In Figure 4.12, the boundary is an oval mapped onto the surface of a cylinder. The exact 

equation for the boundary curve is given by 

-r( 8) = (~cos( 8) + 
4
1
0

, sin (~sin( s)) , cos (~sin( s))) . 
The dimensions of the grid are 46 x 46 x 46 with space step 2/45. The initial surface was a cylinder 

of radius 1/2. 

In Figure 4.13, the boundary consists of two parallel "bowties" located at z = ±0.1375, 

rotated by 1rj6 with respect to each other. The bowties consist of two opposite quarter arcs of 

radius 1/2 along with the connecting diameter lines. The grid size is 25 x 49 x 49 with space step 

0.025. This surface demonstrates the ability of the algorithm to handle singularities in the boundary 

contour. Two more examples of contour singularities follow. 

In Figure 4.14, the boundary consists of a square of side length 1/2 on one end and two 

squares of diagonal length 1/2 rotated by 1r /4 and offset so that the corners touch on the z-axis. 

The two ends are located at z ~ ±0.1375. The mesh dimensions are 25 x 25 x 49 with space step 

0.025. 

In Figure 4.15, the boundary consists of a square of side length 1/2 on one end and a 

"pinwheel" of the same dimensions .. The two ends are parallel centered at z = ±0.1375. The grid 

dimensions are 25 x 45 x 45 with space step 0.025. 

In Figure 4.16, the boundary consists of three parallel squares. The outer two squares have 

side length 1 and the middle square has side length 2. The mesh dimensions are 25 x 47 x 47 with 

space step 0.025. This surface is very similar to the Meeks-Yao free minimal surface. Through the 

surface there are four holes, two through each of the smaller end squares. The initial surface had the 

same topology as the final shape. This example demonstrates that topologically complex surfaces 

are not always changed so long as a minimal surface of that type exists. 
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Figure 4.3: Euler's Catenoid Surface 
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Figure 4.4: Splitting Catenoid Evolution 



CHAPTER 4. NUMERICAL RESULTS 43 

Figure 4.5: Square Catenoid Surface 
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Figure 4.6: Offset Circles Surface 
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Figure 4.7: Three Circles Surface 
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Figure 4.8: Three Rings Splitting Evolution 
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Figure 4.9: Six Squares Splitting Evolution 
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Figure 4.10: Square Sherck Surface 
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Figure 4.11: Twisted Rectangular Strip Surface 
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Figure 4.12: Oval on a Cylinder Boundary Surface 
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Figure 4.13: Twisted Bowtie Surface 



CHAPTER 4. NUMERICAL RESULTS 52 

.• 

Figure 4.14: Square and Diamonds Surface 
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Figure 4.15: Square and Pinwheel Surface 



CHAPTER 4. NUMERICAL RESULTS 54 

• 

Figure 4.16: Square Meeks-Yao Surface 
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Chapter 5 

Limitations and Future Extensions 

In creating the new advantage of topological changes, certain desirable properties were 

sacrificed. At present, the new algorithm is not capable of studying minimal surfaces which have the 

boundary passing through an interior portion of the surface as in Figure 5.1. The obvious reason 

Figure 5.1: Surface with boundary passing through interior 

is because the artificial values created by the interpolatory boundary conditions interfere with the 

natural motion of the surface where the boundary passes through. A more careful look at the 

boundary conditions under these circumstances is the subject of future work. 

Also, the algorithm is not capable of handling triple points, for example, the catenoid with 

a disk in the center of Figure 1.5. Because of the level set formulation, it is not possible to have the 

sign of~ change across each surface (see Figure 5.2). The possibility of extending the algorithm in 

this case is under investigation. 

Several other extensions to the algorithm are also under investigation. One extension is in 

the direction of solving problems where a portion of the boundary is allowed to float freely within 

certain constraints, for example fixed arc length or derivative conditions. Another extension is for 

solving constant non-zero mean curvature surfaces. 
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Figure 5.2: Example of a triple point 
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