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HEXAGONAL PHASE IN TENSILE LPCVD POLY-Si FILM 

Polycrystalline silicon (poly-Si) films have found many applications in integrated circuits, 1 

and in actuators and sensors.2 Important considerations in the processing of these devices 

are structural stability and repeatable mechanical properties of the films. The texture and 

stress state of the films d~pend strongly on the microstructures and morphology of the 

films. Tensile films, which are preferred to compressive films in devices whose lateral 

dimensions of clamped structures are not to be restricted by compressive buckling,3 are 

characterized by equiaxial grain morphology, while compressive films are characterized by 

columnar grain growth during deposition.4 

A diamond hexagonal (d.h.) Si structure with lattice parameters of a= 3.8A and c = 6.28A 

was first reported in 1963.5 More recently, transformation from the diamond cubic (d.c.) Si 

to the hexagonal phase has been observed in Si under hydrostatic pressure at temperatures 

between 350 c and 700 c,6.7 in heavily ion-implanted silicon,8 and in as-grown, implanted, 

and annealed CVD Si thin films,9 in addition to the known high pressure Si phases. 

Pseudopotential calculation showed that the d.h. Si is not a thermodynamically stable phase, 

and that the structural energy of the d.c. Si is only slightly lower than that of the d.h. Si 

under atmospheric pressure)O The experimental reports seemed to indicate that the 

transformation resulted from a stress~induced mechanism. It has been shown that the 

transformation is related to stress relief when twins in f.c.c. or d. c. materials intersect, 11 and 

that the d.c. to d.h. transformation may be induced by uniaxial compressive and/or tensile 

stresses. 8 We have, however, observed the d.h. phase in as-grown LPCVD tensile poly-Si 

films. In this paper, we report the microstructures of, and the presence of the d.h. phase, 

determined from the extra rings in the cross-sectional electron diffraction pattern, in 

LPCVD silicon films. 
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The deposition, and the structural, texture, and stress properties, of the poly-Si films have 

been reported elsewhere.5.12 Undoped poly-Si films of thickness 0.5 to 3.5 J.lm were 

prepared from pure silane in a front-injection LPCVD reactor. The film in this study is 

from a zone transition prepared at temperature near 620 C, in which the wafers closest to 

the has inlet were tensile with equiaxial grains and the last wafers were compressive with ·· 

columnar grains. Samples for cross-sectional TEM were prepared by mechanical thinning 

and ion milling in a cold stage,l3 and were examined in a Philips EM 301 operating at 100 

kV, or in a JEOL JEM 200CX operating at 200 kV. 

Figure 1 is a HRTEM bright-field image of the film, which shows the Si substrate, the 0.1 

J.Lm thick silicon oxide layer, and the tensile poly-Si film. LPCVD Si films grown near 

crystallization temperature initially form an amorphous solid that subsequently crystallizes 

during the deposition,l4-15 resulting in the equiaxial grains. Amorphous LPCVD silicon 

films are known to have compressive stress.l6 . The transformation from the amorphous 

state to the crystalline state during deposition results in a volume contraction and hence 

induces the tensile state in the film. Twins and faulted regions have been observed in the 

films and at the Si I oxide interface. Figure 2 shows a grain which nucleated near or at the 

interface. Twin planes are as indicated (T) in the figure. The narrow strip of atomic planes 

between the arrows has structure different from that of the surrounding [ 11 0] silicon, and 

shows a stacking sequence ABAB. .. similar to that of hexagonal structure, although first

order twin of the d.c. lattice resulting from shear stress can also results in the same stacking, 

and formation of twins are more energetically favorable than transformation to the 

hexagonal phase. 8 It is possible that the twins cross each other and produce a d.h. phase at 

the intersection, or a twin nucleates inside another. twin to produce a long and narrow d.h. 

region,? in such a hlghly faulted material. However, a larger area of these planes observed is 

needed for confirmation of it being the d.h. phase, since a few or isolated planes as such can 

be of faulted d.c. structure. I? 
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The presence of the hexagonal phase in the LPCVD tensile poly-Si film is determined from 

the extra rings in the electron diffraction pattern taken from a large cross-sectional area. 

The dominant d.c. Si rings, and the extra rings corresponding to the d.h. phase are shown in 

the figure 3. The most visible hexagonal rings are about the { 111 } d.c. ring, denoted by 

{ 111 +} and { 111-}, similar to peaks in x-ray diffraction and rings in electron diffraction 

patterns reported,9 and near the {31l}d.c. ring, or {311+). Rings around {331}d.c .• 

however, were not seen probably because of the low intensity of the rings. The inset on the 

left shows an enlarged section of the { 111 } d.c. ring showing the { 111 +} and { 111-} rings. 

Measurements from the { 111-} ring, or correspondingly { 100} d.h .• and other hexagonal 

rings yield the values for a and c close to those reported within a few perce11t. The 

mechanism for the presence of the d.h. phase in LPCVD tensile Si films, however, is still 

not understood. It could be one of the mentioned transformation mechanisms from the d. c. 

structure, or it could nucleate from the amorphous state during deposition. Further studies 

are needed to understand fully this phenomenom.18 
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FIG. 1.--HRTEM bright field image of a as-grown LPCVD tensile poly-Si film. 
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FIG. 2.--Tensile poly-Si at the Si I oxide interface, showing twins and highly faulted region. 
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FIG. 3.--Electron diffraction pattern of cross-sectional sample, showing the d.c. Si and the extra rings corresponding 
to the d.h. phase. The inset on the left shows an enlarged section of the d.c. { 111 } ring with the extra d.h. rings. 
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