
LBL-30695
UC-405

Lawrence Berkeley ·Laboratory
UNIVERSITY OF CALIFORNIA

Engineering Division

Reverse Engineering Tools for Software:
A Small Study

E.H. Harvey, Jr.

October 1990

Prepared for the U.S. Department of Energy under Contract Number DE-AC03· 76SF00098

--~,

I ---
I-+.C1
0 1-'-t"'"
'i 'i 0

0 >
~~z

......
:(Ill C1
I'D c+O
I'D I'D '"0
x-rn><:
[ll ---
t:Jj
......
0..
lO .
tn
lSI r!
r t:Jj

.... r
trC1 I
'i 0 w
ID'O lSI
'i"< ()"'

"< lD . l\) tn

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain conect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

• \J

L)

Reverse Engineering Tools for Software
A Small Study

Everett H. Harvey, Jr.

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

October 1990

LBL-30695

This work was supported by the Director, Office of Energy Research, of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

l.,J

Reverse Engineering Tools for Software
A Small Study
Everett H. Harvey, Jr.

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720
October, 1990

This work was supported by the Director, Office of Energy Research
of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098

1 Intoduction

Reverse engineering would ideally reconstruct the design information from ex­
isting software. It would ideally populate a forward engineering system that
would allow future developments to be done with a higher level tool. By con­
trast, reverse engineering is done often at LBL by a collection of manual means,
such as reading the source codes and talking to experts in those codes, along
with some disjointed tools to aid in this process.

The following discussion provides some information about the various tools
in use at LBL. Most of this information comes from my personal work at LBL,
mostly for the Physics Division TPC experiment. This is only a small study.
Much more work could and needs to be done in this area. In order to keep the
scope limited I will try to stay away from detailed issues such as what type of
methodology or technology is best. I know that there are many arguments in
favor of the newest and latest technology, just as there are arguments for doing
things in the old tried and true methods.

Before starting with a survey of reverse engineering tools let me make a
pitch for code-management. The TPC project uses Digital's CMS to track code
changes and keep code libraries in groups accessible areas. The audit trail of
code changes is sometimes useful, but what is essential is a well thought out
plan for code-management. For large software projects this can not be over­
emphasized.

A more recent TPC effort has been put into software build management
using Digital's MMS. This means describing the dependencies of the various
sources on the various targets or products. At the simplest level this can be
thought of as what FORTRAN files get compiled and inserted into what object
libraries. In reality it is much more complex. More will be said about this later.

The rest of this report considers:

• Some of the outstanding issues or concerns

• What forward engineering needs

1

• Where do we go from here

• High level vendor packages

• Tool survey

2 Issues in Software (Re}Engineering

The existing code base is huge. For instance, the TPC (Time Projection Cham­
ber) experiment as an example. The analysis code is developed and maintained
on the LBL VAX cluster. It consists of 160 object libraries composed of about
6,600 source code files. The development costs of this code is estimated in the
mid-eight figures: $50-million or more. The TPC was started over 10 years ago,
prior to more modern software tools and practices.

The actual software supporting this experiment is much larger. Not counted
are the various utility libraries such as graphics, fitting, and other utilities. The
physics utilities are software that is used by various physics projects other than
the TPC. Also not counted are the various on-line data taking software kept on
SLAC computers.

Other projects, in and out of physics, have similar large code bases. Doc­
umentation is often poor. Most of the expertise resides in the heads of the
creators. Learning curves are long for new users.

3 Forward Engineering Needs

An ideal forward engineering package, CASE, should be able to generate all
the needed sources codes from the design. The design should be done in some
high level, "picture-using" method. Many products are available to support the
various methodologies. Other than the need to support real-time systems there
appears to be no outstanding technical reason to chose one methodology over
the other.

Without a good way to reverse engineer, changes made at the source code
level will not be reflected in the design. Without a way of making changes at
the design level being reflected in the code there will almost always be changes
made directly to the source code. For now, debugging tools at the source code
level are available, but not at the design level. When debugging, there is great
pressure to make changes right-away to the source code.

All forward engineering packages use a database to hold information about
the design. This database is often called .or includes a data dictionary. The
data dictionary describes every object in the design. Objects may be a symbol,
connection, couple, or a text block. These objects describe the parts of the
pictures or diagrams that describe the design. Facilities are available for man­
aging the data dictionary and for producing reports about the various objects

2

\j

in the database. Usually an analysis system is included that checks the design
for consistency following the rules for the type of diagrams and methodology
(notation scheme) used.

Pictures (or charts) maybe nested. Objects on the upper-level picture may
be composite. This object may then be "exploded" to reveal its own internal
design picture. Travel between different levels of pictures both hides and reveals
different details.

It follows then that reverse engineering should create a database and would
allow viewing at different levels. There also is the need for more sweeping
viewpoints, such as "show me everyplace where this global variable is used."
The type of database technology required is a topic of discussion in the software
engineering community. Studying what forward engineering CASE tools need is
a good way of determining what information to gather and how to organize and
present it. However, old software may not conform to a particular approach
of software development, so a compromise may be needed. Ideally one may
populate a CASE environment from existing source codes.

All of the concerns about introducing forward engineering and the many
studies that indicate the need for training and management support then apply
to reverse engineering processes as well. The appeal of reverse engineering is
in reduction of the software maintenance effort and the possibility of software
re-use in new developments.

4 Where Do We Go from Here?

Due to the huge existing code base we need to find a way to reverse engineer.
The ideal would be to do a complete design recovery, but that may not be
practical. What we can do is identify the parts and their relationships. Maybe
we can abstract these to a higher level.

Clearly we need to manage the pieces by using change control and library
management procedures. Vve need to manage the build process so that we
know that we have a complete buildable set of source codes and have not lost
any critical parts. Testing procedures would complete the confidence in this
process.

How can we do this? \Ve must develop the necessary integration of existing
tools. At the same time we must be looking out for better tools. Of course the
ideal is to buy tools that are well supported and that are commonly accepted
so that the expertise in their use is not limited. Some tools may always be
optimized for a particular operating system.

One of the steps along the way is to find out what types of tools exist.
Another important step is to find out what types of tools the user community
is using and what types of new tools they are willing to accept. Tools have
learning curves and users need to be convinced that the effort in learning them
is worthwhile. In the absence of a clear direction with organized training, the

3

best that can be done is to introduce effective tools with a small learning curve.
Before giving a survey of some of the small tools, let me mention the more

integrated approaches available from various vendors.

5 High Level Vendor Packages

These packages are not cheap, but provide lots of functionality. In particular the
vendor does a lot of work towards integrating the tools. This integration effort
is big. However, then the choice of tools is sometimes limited to the vendors
choice.

I surveyed some products available from vendors and scheduled presentations
by two vendors.

A) INTERCASE- InterCASE provides a workbench for developers and soft­
ware maintainers in the complex task of re-engineering existing applications by
taking existing source codes and deriving specifications and design information
from it. Output generators maybe be used to populate CASE (forward software
engineering systems), data dictionaries, or to directly produce "InterPortable"
source codes. The purpose of InterCASE is to fully automate the reverse engi­
neering process and allow the developer to apply intelligence in a form analogous
to expert rules.

InterCASE does not provide forward engineering tools except in collabora­
tion with CASE vendors.

B) SuperCASE- Advanced Technology International, Inc. sells SuperCASE.
SuperCASE includes a Fortran reverse engineering capability (Source Code In­
put) to translate existing code into a modern design environment. SuperCASE
can reduce the maintenance task by using its abilities to generate code tem­
plates, automatically validate code and data structures and create much of the
design documentation. SuperCASE runs on VMS platforms and their con­
figuration management can operate in conjunction with DEC/CMS as well
as other external tools. The vendor supports C as well as FORTRAN, but
only has the source-code-input reverse engineering for FORTRAN. In addition
XL/superCASE bridges Index Technology's EXCELERATOR for preliminary
design and analysis. EXCELERATOR was used on the Ten Meter Telescope
project at LBL.

Arrangements were made for a 30-day evaluation of SuperCASE at LBL. By
actually looking at and working with such a package we can get a better idea of
what this type of technology is like and what it can do for us. The software was
installed on the CSA cluster to allow access by many people, and for easy access
to the tPC program codes. A one-day training course was given by the vendor
which only two people attended. During the evaluation period I imported some
large monte-carlo codes. The procedures in general worked well. The procedures
provide a complete framework for managing the software. I was very impressed
with the careful thought in and completeness of this framework. The interface

4

,_.

'I
0

consists of editors to manipulate the design information, editors to maintain the
source codes, utilities to check the design, and report generators to report the
design and coding information in printed form. The design information is kept
in embedded structured-comments along with the source codes. This approach
seems to be an approach being taken by many companies, including Digital
Equipment Corporation.

I presented some of the report generation and user interface to physicists
working with the TPC software. The major difficulty found in presenting the
capabilities to others are the same difficulties in presenting forward engineering
case tools. The major objections are that it does not conform to our current
way of doing things, it is too expensive, and it gets in the way (is too confining).
When an attractive feature is perceived it is thought of as something we could
develop locally. Additionally there is fear of being too different from what is
done elsewhere and the fear of being locked into a proprietary package. These
issues all need to be addressed in order to move forward into any new software
engineering environment.

C) Some other CASE vendors that purport to have Analysis/Design tools,
Code Generation, and Reverse Engineering are:

• Heartland Systems (Lawrence, Kansas)

• Scandura Intelligent Systems (Narberth, PA)

• Software Products and Services (New York)

• Syscon Corp (San Diego)

There are other vendors that purport to have both code generation and
reverse engineering too. The specifics of what they offer requires contact with
the vendors. If LBL decides to commit to a one of these packages some more
research as to what else is available would be prudent.

6 Tool Survey

A non-exhaustive survey of existing reverse engineering tools:
This survey includes many user developed or public domain tools. A few

vendor provided tools are listed, notably those from Digital Equipment Corpo­
ration.

** Dis-assemblers - There are dis-assemblers available for many systems.
There is a disassembler from DECUS for VAX/VMS and PDP-11 computers.
Sometimes one does not have the source codes available and this is a real brute­
force reverse engineering approach. I will not say more about these, except that
without a good code management system you will most likely need these.

** MAKE - this is a general term. MAKE is a UNIX version of VAX/VMS
MMS. MAKE or MMS is a method of describing the software build process.

5

Several vendors provide a MAKE facility and some include a description file
generator. POLYMAKE from POLYTRON products has such a feature. In ad­
dition one vendor, ImagePro, has ProTools/MMS which claims to make Ml\1S
dependency files for any/all VAX/VMS languages by analyzing source and ob­
ject files and object and sharable image files. I have not actually seen this
product. There supposedly is a DECUS MMS dependency file generator too.
If there is a make description file for the software system, much can be learned
from it. If there is not a make description file and no way to automatically gen­
erate one, then creating such a description file is no small reverse engineering
job itself.

** AUTOMMS- This is a tool written in VAX TPU by Jack Eastman at
LBL. Its purpose is to scan source code libraries and produce the MMS de­
pendency description for the software build process. So far it has been used
to start automating the process of keeping the object libraries up-to-date with
the associated source code libraries. However, it shows some promise as are­
verse engineering tool as it also gathers information about how libraries are
inter-related. Effort has been put into automating the need to derive the build
dependences when ever the source code libraries are updated. There is a "TPU"
from a third party for UNIX and MS-DOS. AUTOMMS for UNIX and MS-DOS
might be able to run under that except that file name wildcarding is not cur­
rently supported by the third party TPU and is used by A UTOMMS. A work
around would be needed.

** CMS - A code management facility from Digital for VAX/VMS. This
is really a source-code/change-control management system. I mention it again
because for the TPC we have automated part of the software build process with
it. Whenever a source code module is modified an action-on- update procedure
is invoked. AUTOMMS is used to create necessary new MMS description files
and to cause an update of the IRiS source code indexes. It appears to be very
important to integrate the tools so that steps are automatic and do not depend
upon user interaction. This automatic-ness is very important. Additionally we
have forced source code updating to go through CMS.

** FOR_.STRUCT- the vendor is Cobalt Blue ofSan Jose. This is a structur­
ing utility to transform spaghetti FORTRAN-IV and FORTRAN-77 into fully
structured code. The converted FORTRAN code is often much more readable
and easier to maintain. Included is a FORTRAN-90 preprocessor. It may also be
used to produce strictly standard FORTRAN-77 for use with any FORTRAN-
77 compiler for portability. It is available for VMS, UNIX, and MS-DOS. This
does more than the various pretty-printers and statement number re-labelers
that are available from various sources.

** FLINT- This is available on one of the CSA VMS computers. The vendor
is Information Processing Techniques and the product is described as a source
level code analyzer for fortran programming. As a reverse engineering tool it can
produce various reports on symbols and arguments used as well as a call-tree.
The reports require quite a lot of manual study to find problems such as routines

6

,.
' .

'i

..

called with the wrong arguments. The call-tree is particularly useful when you
want to find out what is the main routine(s) in a particular library. This main
routine is often obscured by many subroutines. Supposedly by linking many
libraries together one may be able to look at more complex systems. However,
the call-trees for single libraries already are somewhat overwhelming.

**SEARCH- this is a DCL command provided in VAX/VMS that allows
searching files for a text string. The main use is to search sets of source codes
for a given string such as a variable name. UNIX has GREP, MS/DOS has
FIND. An advantage is that all such strings are found, even those in comment
lines.

** IRiS - This was originally developed with students as a text indexing
facility to allow document searching. The later students have worked on im­
proving it and some use for searching source code files is in progress. It is
somewhat like the DCL SEARCH verb in that all strings are located. However,
rather than search each time each file is completely indexed so that a query for
a variable does not have to look at each file, but rather just tells you which files
have that word in it. Word combinations allow you to find files that contain
at least one occurance of each word. The ability to pop into your favorite text
editor gives you the ability to look at (potentially modify) these files. Some
effort is going into keeping the IRiS indexes of the source codes up-to-date via
the CMS action-on-update procedure.

** INDEX- FORTRAN Cross Referencer and Flow Chart Generator, by
Michael LeVine, NWC, China Lake, CA. This is from DECUS written in assem­
bly language for VAX/VMS. It can flow chart the internal logical of a subroutine.
It also produces indexes that may be accumulated into a super- index of variable
storage location, variable type, and usage in calls. A "who calls who" (call-tree)
and a "who is called by who" entry point cross reference can be generated with
optional graphical output. This has not been used very much. Maybe it should
be looked at more. A major disadvantage is it is for FORTRAN only and just
for VAX/VMS.

** SCA - This is Digital's Source Code Analyzer. It works in conjunc­
tion with the Digital compilers and the Language Sensitive Editor (LSE). Like
FLINT it can produce a call-tree. It can also check argument passing. Other
powerful features are only available through the LSE interface. With LSE one
can do various queries of the libraries that have been placed into SCA. It is a
powerful system with the only draw backs being the need to use the specified
editor and complex commands. Both FLINT and SCA ignore comment lines in
their analysis.

** SDE- from ME:MOREX-TELEX through DECUS. THis is a software
development environment built around CMS and MMS. It appears that they
are also starting to include SCA as well. It is a very well laid out management
structure and is well documented. While it really falls in the management rather
than reverse engineering area, it is a good example of the type of integration
of vendor tools that is needed. It is particulal'ly suited to development of on-

7

going projects and separation into different project areas. Trying to change the
TPC management structure into this is a large effort, pointing up the need for
good structure choices early. The motivation I had to investigate such a change
was to gain all the various management utilities that SDE had rather than to
develop our own. (\Ve are rolling our own.)

** VAXSET- This is a package from Digital for VAX/VMS and consists of
CMS, MMS, SCA, LSE, PCA, and DEC/Test Manager. All but the last two
have been mentioned before. I mention this as the pricing has changed recently
and more users may consider it. To be useful a complete software management
structure must be laid into place so that users have a ready-made environment,
like the MEMOREX-TELEX SDE. Of course, this is limited to VAX/VMS.

8

i

'i.l

-~ ·"'~·

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

~ -l._ ..

