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The construction of effective supergravity lagrangians for gaugino con
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INTRODUCTION 

Attempts to make the conm;ction between superstrings and observed 

particle physics must be able to account for the origin of supersymmetry (SUSY) · 

breaking. In this context, the SUSY mass gap, which recent I.EP data1 suggest 

lies at about a TeV, in turn governs the scale of electroweak symmetry breaking, 

namely the value of the lliggs vev : 

v = m 111
"" ~ !rev. 

J2"AIIlao 4 
(I) 

A popular candidate mechanism for SUSY breaking is 'gaugino condensation 

in a "hidden" (i.e., with only gravitational strength couplings to "observed" 

matter) SUSY Yang-Mills sector of the effective supergravity theory in four 

dimensions. According to this scenario, the asymptotically free and infrared 

enslaved SUSY Yang-Mills theory becomes confined at some scale Ac where 

gaugino condensation occurs: 

< X"A >~tid"' A:. (2) 

This gaugino condensate can trigger "local" SUSY breaking in the sense that 

the gravitino acquires a mass: m~ I- 0. This symmetry breaking should be 

communicated to the observable sector, via radiative corrections, in the form of 

a SUSY mass gap, i.e., "global" SUSY breaking. It is the task of the theory to 

predict the correct scale for the SUSY mass gap, in particular the fact that it is 

very small in comparison with the fundan~ental scale of the theory-namely, the 

string tension which is comparable to the square of the reduced Planck mass: 

Mp1 = (8~rG,...)-! ~ 1.8 >< 1018GeV. A possibly important ingredient in under

standing this hierarchy of scales is the fact that in many string compactifications 

the effective low energy theory possesses classical nonlinear symmetries2- 4 that 

help to suppress the communication of SUSY breaking from the hidden secl.or 

to the observahle scct.or. 

The point of view presented in this talk is based on work in collaboration 

with Pierre Oinctruy. A crucial feature of our approach is that we demand that 

the elft-'Clive theory have vanishing vacuum energy in the 11pproximation that 

we arc working in. The point is that whatever unknown mechanism one might 

npp<'nl to in order to suppress the cosmological constant can also affect the other 

'Ibis report has been reproduced directly frau the best available copy. 
J 



parameters of the theory. A different approach ha11 been considered hy other 

authors5- 7 • 

I will first describe the construction3•4 of the effective superpotential for 

gaugino condensation for a prototype effective supergravity theory from super

strings, following the Veneziano-Yankielowicz11 analysis of SUSY QCO and the 

generalization of their result by Taylor" to the supergravity case, in which the 

gauge coupling is determined by the vev of the dilaton. I will mention gener

alizations to more realistic models and comment on the phenomenology of the 

effective theory. I will then show how these results must be modified5•6 so a.<! 

to restore modular invariance or space-time duRlity, that is, invariance under 

inversion of the radius of compactification: R-+ n-•. This modification can be 

interpreted as a threshold correction 10 arising from the integration over heavy 

string modes.11 The resulting effective theory has an unbounded potential. I 

will show how this disaster can be averted by a reinterpretation., of the results, 

and brieOy comment on the prospects for phenomenology. 

Closely related talks were given at this conference by M. Cvetic, J.-P. 

Derendinger, J. Louis and T. Taylor. 

GAUGINO CONDENSATION IN SUPERGRAVITY 

In the Kahler covariant superfield formulation 13 of supergravity, the la

grangian takes the form 

C = Cs + Cpn« + CYM· (3) 

The first term 

Cs = -3 I Jletn + h.c. (4) 

is the generalized Einstein term. It contains the pure supergravity part 1\.'1 well 

as the (noncanonical, i.e., including derivative couplings) kinetic energy terms 

for the chiral supermultiplets. The second term: 

Cpnt =I JleteKIUl/1 W(41) + h.c., (5) 

contains the Yukawa couplings and the scalar potential, and the third term 

Cy, =~I Jleti(41)W;w: + h.c. (6) 

2 

is the Yang-MiiiR ln~r:~ngian. The cxpatmion of the above expressions in terms of 

component fieldR includes derivat.ivcR that. are covariant with re11pect to general 

coordinate, gauge and l<iihler tranRformations. A l<iihler transformation is a 

redefinition of the l<iihler potential 1<(41, ~) = 1\'{41, ~)f and of the superpo

tential W(41) = W(~)t by a holomorphic function F(41) = F(~)f of the chiral 

supermultiplets 41 = ( <p, X): 

f( -> T<' = T< + F + F, W-> W' = e-Fw. (7) 

Since this transformation changes eK/lW by a phase tlult cl\n be compensated by 

a pha..'IC trRnsforml\l.ion of the integrRtion variable 9, the theory defined above is 

cl1188ically invariant14•13 under l(ahler trRnsformations provided one transforms 

the superllelds 'Rand IV: by a compensating pha.!•e; for example the Yang-Mills 

superfield transforms as: 
w; _. e-ilmF/lw;. (8) 

This last tmnsfornml.ion, which implics a chiral rotation on the left-handed 

gaugino field ~t: 
~: _. e-ilmF/1 ~:. (9) 

is anomalous at the qtmntum level, a point that will be important in the discus

sion below. (Here a is a gRuge index and o is 1\ Dirac index.). 

The theory is completely 11pecified by the field content, the gauge group 

and the three functions T<, W and I of the chiral superfields. One can fix the 

"l<iihler gRuge" hy a specific choice of the function F. In particular, ch~ing 

F = In IV casts the lagmngian in a form 14 t.hat depends on only two functions 

of the chirRI superfields, I and g = f( +In IIVI1 . 

To construct an effective potential for gaugino condensat.ion we introduce 

a composit.e superfl('ltl operator111 U a.<• an int.erpolating field for Ute Yang-Mills 

composite operator: 

~w;w: ~ U = et<I1W(TI). (to) 

Here 11 = h + 911 ,f~ + · · · is an onlinnry chiral supermultiplet of zero l(i\ltler 

weight, t.hat r£'prC!<cnt~ the lighle!!t houml Rlate of the confined SUSY Yang

Mills sector, juRt M in low energy QCO the pion is an interpolating fidd for the 

3 
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composite quark operator: ij(l + i-y5)q ~ u + ii · r. Kahler invariance requires 

W(ll)--+ e-Ffii(II) (11) 

under (7). A key element in the identification (10) is the fact that the Yang

Mills chiral multiplet W0 has a differentJ(iihler weight 13
•3 •

6 from that of ordinary 

chiral multiples of weight zero. 

I will first consider a prototype15 supergravity model from superstrings, 

with just one modulus T and one matter generation. The functions J(, Wand 

f are given in terms of the superfields ~ = { ~·, S, T} by 

f=S, 

J( = -ln(S + S) - 3ln(T + T- 1~11), 1~11 = L ~'if, 
i 

W(~) = ct;k~;~;~k +c. 

{12a) 

(12b) 

(12c) 

The last term in the superpotential W parameterizes a possible additional source 

of nonperturbative SUSY breaking, for example, a nonvanishing (quantized) vev 

for the antisymmetric tensor field strength llum, of to-dimensional supergrav

ity: 

coc jdV1m"<lllmn>=27rnf:.O, l,m,n=4, ... ,9, 

HutN = VLBMN, L,M,N = 0, ... ,9,. (13) 

The gauge coupling constant at the GUT scale is determined by the vev 

of the dilaton field: s = s + enxf + .. ·, 

<Res>= g-1
, (14) 

and the scales of the theory are determined by the t•et• of the Kiihler potential: 

AauT = _I_ = (2g)l < eK/6 >Rj< (HesRet)-1 > (15) 
Mp, RMr, 

(assuming < 1~'11 > « <Ret > ). 

For c = 0, the supergravity theory deline<lahovc is classically invariant1 •3 

under the nonlinear Sf-(2, R.) ® U(l)n transformations: 

aT- ib 
T --+ T' = icT + d' 

e;p~; 
;t -- • ~· --+ ~ = ic1' + d 

4 

S-. S' = S, 

.............. ~_,_ ..... Q. ., 

ad-be= 1, a,b,c,d,/3 real, (16) 

where U(l)n, with parameter /3, is the usual R-symmetry of SUSY theories. 

Eq.( 16) effects a J(iihler transformation (7) with 

F = 3ln(icT +d)- 3i/3, (17) 

under which the full lagrangian is invariant provided the gaugino fields undergo 

the chiral transformation (9). In addition to the chiral anomaly associated with 

(9), the transformations (17) include an anomalous conformal transformation, 

namely a scaling of the effective cut-off AcuT, {15), of the theory: 

AcuT--+ e""FI3 AcuT, {18) 

For the theory defined above, the effective lagrangian for gaugino con

densation i11 given by9 •3 

c;!! = j tfeceK11 w(H,S) 

= j tfe£U2bo>.ln(H/p) + h.c. = j tfeceKI1 W(H)2bo>.ln(ll/l•) + h.c. 

= j tfeceK112bo>.e-3511
"" 113 + h.c., (19) 

where bo determines the /3-function for the confined Yang-Mills theory: 

.!!L = -~. 
8lnp 

and >. and I' are constants of order unity. The 11-superfield kinetic energy tt>rm 

is determined by the J(iihler potential3•4 : 

I<= -ln(S + S)- 3ln(T + t -1~12 -IIW). (20) 

Under a J(iihler transformation (7 ,II) with II --+ e-F/3 II, the lagrangian ( 19) 

undergoes the shift (T = t + 9nxf + · · ·) 

6£;!/ =-
2
; J rPecF(T)u + 1 •. c. 

~bo -= y-uctyJ(HeF(t)F'"'F,.., + lmF(t)F'"'F,,., + · · ·), (21) 

5 



which.correctly rep~oduces the known variat.ions under the trace and conformnl 

anomalies.8 

In addition to the exact classical SL(2, 'R) ® U(1}n symmetry there 1\re 

several approximate symmetries that are correctly embedded in the construcl.ion 

(19). In particular there is a nonanomalous16•
9 U(1}n symmetry, under which 

S-+ S +2~ip, that is exact up to other quantum corrections, for example, those 

from the (weakly coupled) observable sector. Other approximate symmetries · 

include4 (in .appropriate limits) both anomalous and nonanomalous conformal 

transformations :r -+ ~x, and the full isometry group of the J<iihler metriC. 

By writing (19) in the form 

c~ =I cPeEU(S + 
2
; ln(4Ug7(S)/ A~r(~)..\,.3 )) + h.c., (22) 

we obtain a direct physical interpretation. of the result. Solving the effective 

theory for the condensate vev yields: 

- .\~ 3 < ~~ >r.;d= 4 < U >= - 2 !I.e, 
g 

< H >= ho = ,.e-113, or (23) 

where I used (14}, (15} and the renormalization group relation !I.e= e -¢ !I.GUT· 

Then the factor 

1 [ 2~ 
2 

] < 2~ln(fl/l•) >= 92 l + + ln(4 < U > g2/A~r~l•3) 

1 [ 2~g
2

1 ( -1!1.3/!1.3 >] = g2 l + -3- n 4e e GUT (24} 

includes the one-loop Yang-Mills field wave function renormalization from t.he 

compactification scale to the condensation scale, up to finite corrections. The 

results (23} and (24), and in particular the fact.or g-2 in (23}, coincide4•6 precisely 

with the results of instanton calculations17 in SUSY Yang-Mills theories. 

It is straightforward to generalize the above formalism to the cnse of 

several gaugino condensates111•12 by the repl1lcement in (19} 

W(JI,S}-+ EWo{f10 ,S}, 
0 

6 

and to nmlt.i-(mmluli + g('nerat.ion) mmld~. For example, for orbifold comp

actification with t.hrce moduli and three matter g('nerations in the untwisted 

sector19
, one obtains the result (19) with the l<iihler potential (20) replaced 

by12 (here a is a generation index) 

K./1 = -ln(S+S)-31n (g[t, + t, -l~ ... l2)i -ITW) +twisted sector terms. 

PHENOMENOLOGY 

If we fix II at its ground state v1llue {23}, we obtain an effective theory 

for~;, S, 7'and tl1e observable-sector Yang-Mills fields that is defined by (12a, b) 

and the superpot.ential 

W(~) = e;;~~;~;~~ + c + i.e-35/1'-'o, • 2~, 3 -1 h ___ _..,, e , 
- 3 (25) 

which is preciRCiy the effective theory of obtained by Dine et al. 16 using argu

ments based on the nonanomlllous U( I )n 11ymmetry. As explained in Refs. 3,4, 
this truncation is exlld at the cla.'!sicallevel for the theory defined by (19), (20). 

In general one would have to include all tree diagrams with internalfl-lines, but 

these vani!!h at the ground state of the theory so defined. (Note that t.his holds 

only if there is a Rl.able minimum of the full theory.) 

The effect.ive theory defined by (25} has a J>O$itive Rerni-definit.e potential 

which vaniRh!'!l at the minimum_ If c = 0, the vacuum energy is minimized 

for h = 0 ( < IT >= 0) or < s >-+ oo (g = 0}, that is, comlen!!al.ion does 

not occur ami 11Uper11ymmetry remains unbroken. For c I 0 the effective the

ory has the following propert.ies at t.he cla.'l.'lical level'6 and at the one-loop20 

.level: the cosmological con~tant vani11hes, the gravitino ma..qs me can be non

vanishing, so t.hnt local superRymmetry i~ broken, in which case the vacuum is 

degenerate, and there is no manifestation of SUSY breaking in the observable 

sector. Nonrenormaliz1ltion theorem!! for supergravit.y, t.ogether with the clas.<~i

cal S L(2, 'R) ® l I( I )n 11ymm('try, indimte4 tlmt these result.s will pt"rsist to 1lll 

orders of the effect.ive theory defined by (25). 

lnclmling loop correction from the 11-sector, one find!l:l that ma.'ISes arf' 

generat.ed for t.hc gnugin011 of the oh~('rvahle sector thnt are of order 

rn(}mJ1!1.: 15 , 
lllg - ,. • • " < " X w- Mr, ':" 71 eV, 

7 
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for m~ < mu- Ac < l0-2 M 1•1, (26) 

where mu is the mass of the 11-supermultiplet. The factor (4~r)-4 appears in 

(26) because the effect arises first at two-loop order in the effective theory, the 

factor ffl() is th~ necessary signal of SUSY breaking, the factor m}, is the signal 

of the anomalous breaking of SU(2, R) ® U(1)R, and A~ is the effective cut-ofT. 

This last factor arises essentially for dimensional reasons: the couplings respon

sible for transmitting the knowledge of symmetry breaking to the observablt: 

sector are nonrenormalizable interactions with dimensionful coupling constants 

proportional to Mp1
2 • Gauge nonsinglet scalar masses masses are protected11 to 

one further loop order by the Heisenberg symmetry11 of the Kahler potential 

(126): 

.S~; =a;, eST= o,~;. .SK = 0. 

Note that the ground state equations give 

m., =< eK/lw >s:::~ >.p3A~ 
2eg•M~,· 

ee A 
JJAc- ( 2>..) AGUT, 

(27) 

(28) 

80 it is not possible to generate a hierarchy of more than a few orders of mag

nitude between m~ and AGUT if c is quantized as in ( 13). However this initial 

small hierarchy is enough to generate a viable gauge hierarchy if observable 

SUSY breaking is sufficiently suppressed, as in (26), relative to local SUSY 

breaking. For example, recent LEP data1 suggest Aaur- 1018GeV, g-2 "'2, 

80 for a hidden Es gauge group (~ = .56) we get Ac"' .6AGUT"' 3 x 10-3 Mn 

RESTORATION OF MODULAR INVARIANCE 

In the formalism presented above, the continuous classical symmetry 

SL(2, R) is broken by anomalies at the quantum level. However the discrete 

subgroup SL(2,Z) (a,b,c,d integers in (16)) of SL(2,R) is known23 to be an 

exact symmetry to all orders in string perturbation theory. This so-called "mod

ular invariance" is restored by adopting, instead of (19), the effective lagrangian8 

£;!,! = f Jl9fe1(/l2~).e-JS/lbo I/3Jn(//t}2('/')/Jt) + h.c., (29) 

where 
00 

'1(1') = e-•T/12 n (I _ e-lmwl') (30) 
rn=l 

8 

/ ... -..., ?-c: . . ...._ 

is the Dedekind 'I-function. This is the unique function of the chiral superfields 

that has the required analyticity and S L(2, Z) transformation properties8
• This 

additional contribution to the Yang-Mills wave function renormalization can be 

understood14 as arising from finite threshold corrections10•11 to the leading log 

approximation that arise from heavy string mode loops, and is closely related 

to the anomalous quantum correction due to the (nonrenormalizable) coupling 

of the l<ihler connection to the axial U(1)R current4•15•
14

• The result (29) has 

been generalized to the cases of several gaugino condensateslS,Jl and of several 

moduli.11 

The effective scalar potential5•8 for the theory defined by (29) is un

bounded from below. Specifically, the potential takes the form 

V = eK [~ IV;I1 + X(t,l) la:n, (31) 

where the function X(t,l) is negati,ve for Ret :S 1.9. Therefore the potential 

is unbounded in the direction < eK >oc Res-1 --+ oo (g --+ oo). On the other 

hand, the term I8W/8tl2 that drives the potential negative is proportional to 

~. i.e., is of two loop order. Since the construction (29) is based on one-loop 

results, this term is unreliable, and any effective theory that coincides with the 

one defined by (29) in order ~ is equally valid. 

We therefore reinterpret the previous results as follows. We define the 

effective theory for gaugino condensation by the lagrangian11 : 

£:!1 = f rfSfSU + h.c. = f JlSfSeK/l>.,e-35/lbo 113 + h.c., (32a) 

I<= -ln(S+S) 

-3ln(T + T -1~11 -llii1U- ~~f(S, S) ln(li~1(T)/It) + h.c.)). (32b) 

If we take /(S, S) = 2S-1 , then we can simply interpret the "new" chiral super

field II of (32) as related by the "old" II of (29) by a wave function renormal

izat.ion, i.e., 

[ 
2~ - ] llnew = llotd I+ 
35 

ln(e S/lbo1J,12(T)/Jt) + 0(~). (33) 

In ot.her words, t.he composite superfield Unew = eK/l >.e-35/lbo ll~.w is related to 

the olcl one hy a (ficltl dependent) renormalization. Note that without the 0(~) 

9 



corrections, (33) is just a holomorphic chimlfield redefinition that cannot. change 

the theory. The 0(~) terms in fact contain the nonholomorphic pieces implicit 

in the redefinition from (29) to (32). If instead we take /(S, S) = 4(S + S)- 1
, 

the form of the superpotential (32b) agrees with one-loop corrections26 to the 

Kiihler potential that would arise from the self-interactions of H via the tree 

superpotential defined by (32a). In either case the theory defined by (32) is 

identical to the one defined by (29) and (20) to first order in the loop expan

sion parameter bu. Specifically, the lagrangian (32) has the correct conformal 

anomaly in order bu, and the correct chiral anomaly to all orders, provided the 

(anomalous) transformation properties of the "renormalized" fields lln•w• w: • .., 
are defined in terms of the "old" fields with canonical transformation properties, 

via the appropriate functional relation, such as (33). 

At its classical level, the theory defined by (32) has once again a van

ishing cosmological constant and {for c =I 0) a degenerate vacuum with local 

SUSY breaking (m~ =I 0) possible, and again no SUSY breaking appears in the 
observable sector at the classical level of this effective theory. The vanishing of 

the cosmological constant is assured because the derivatives of the generalized 

Kiihler potential 0 = K +In jW11 satisfy the "no-scale" condilion11 

OaO,M"' = 3, (34) 

where Oo£ is some submatrix of the Kiihler metric (i;1 and Ma£ is its inverse: 

Oc~.Mo£ = 6:. (35) 

For example, for the I x I submalrix (i1r, (34) reduces to 

(i,(ir = 3(i,r, (36) 

which is a differential equation that can be integrated to give 

O(T,T, Z,Z) = -31n(/(T, Z, Z) + f(T, Z,Z) + g(Z, Z)), Z =IT. (37) 

For ann xn submalrix in (34), the vacuum is degenerate inn. complex directions, 

since there are only N - n complex vacuum conditions, where N is the total 
number of chiral supermultiplets. 

10 
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PHENOMENOLOGY REDUX 

Consider ctuit.e generally a superpotenlial of the form 

W = W{CJI') + EW0 (/(.,S) + c, (38) 
Q 

where I have allowed for the possibility of a nonperturbative source of SUSY 

breaking, such as ( 13), which also breaks modular invariance. Take as Kahler 

potential 

/( = -Jn(S + S)- 3Jn(1' + T- L B;j41'11
- L Bollfol1

), (39) 
i Q 

where B;, 8 0 are modular invariant, field dependent wave function normaliza

tion factors as in (32b). Solving the ground slate conditions gives < V >= 0, 
and gaugino condensation is possible for c = 0 if there is more than one 

condensate17•1s, provided11 that the /l-functions of the factor gauge gauge groups 

do not all have the same sign. (Alternatively, there could be a cancellation in the 

vacuum energy between gaugino condensates and the vev of a gauge nonsinglet 

scalar potential.18) However the ground state conditions for the various fields 
may be summed to give11 

< w >=< c(l + EP•I'P'I1 + EPalhol1
) >, (40) 

i Q 

where /l;, Po are related to the /l-functions appearing in B;, 8 0 , so the gravitino 
mass {28) vanishes if c = 0 and local SUSY breaking does not occur. 

Local SUSY breaking is again possihle for c =I 0 and, as for the effec
tive theory studied previously, the observable SUSY mass gap vanishes at the 

"classical" level of the effective theory. The analysis19 at the one loop level of 

this effective theory is considerably more complicated, and one can expect some 

qualitative differences from the model studied previously. Although degeneracy 

in the T-axion direct.ions is lifted at one loop, these directions remain nearly flat 
for large radii. Writing 

'l(T) = e-"l'/Jl{ I + 0(6(T))}, < 6(T) >:::::: (2 X w-3)<n•l> + 0(61), (41) 

the potential is flat in the T-axion direction in the limit of vanishing 6. In 

the same approximation CP-violat.ion is absent (in contrast to t.lae effective the

ory studied previously where it was set. to zero by hatul20). Since SL(2, 'R) is 

II 
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.... 
explicitly broken by the threshold corrections, i.e., by 11(T), one expects that 

observable SUSY breaking will be generat.ed at. the one-loop level of this effective 

theory. However, in the limit 6(T) --+ 0, there is a residual symmetry-namely 

the diagonal of U(l)n and the Peccei-Quinn U(l) subgroup (T--+ T + i-y) of 
SL(2, 'R)-that may help to suppress these effects. Note that LEP data1 sug
gest <ReT>....., 5 x loJ'for some "average" compactification radius. Finally tlte 

presence of the 17-function breaks the Heisenberg invariance (27) of the Kahler 
potential, which also served to protect gauge nonsinglet scalar masses_ However 

the more realistic case of three moduli (and three matter generations) has a 

higher degree of classical degeneracy, which can also play a role in suppressing 
these masses at the one loop level if the minimum docs not lie at the symmetric 

point where the radii < 1,. >are all equal. Finally, since the calculation" of the 
threshold corrections neglects any possible cp'-dependence, and since with the 
reinterpretation (32) there is no holomorphicity restriction, it is conceivable that 

the correct cp-dependence could restore an invariance similar to (27). (Recall that 
the radii of compadification, as determined by taking the 10-dimensional field 

theory limit of the untwisted sector are R,. =< 1,. - ~lcp,.l, >.) In conclusion, 
it is not implausible that a viable hierarchy my emerge in this effective theory, 

but further investigation is needed. 
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