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ABSTRACT 

Many flow problems encountered in petroleum reservoir 
engineering are characterized by nonlinearities and are difficult 
to solve analytically. The concept of a relative mass flow rate. 
function is used to arrive at an integral equation formulation 
for some of these nonlinear flow problems. This formulation 
has some distinct advantages over existing methods of han
dling such nonlinear flow problems because of its generality 
and simplicity. 

The problems considered include two-phase fluid dis
placement including the effect of capillary pressure and isoth
ermal transient flow of gas. These problems can be described 
by nonlinear parabolic partial differential equations that have 
self-similar solutions. 

Exact semi-analytical solutions are obtained which can be 
easily evaluated using a rapidly-converging iteration process. 
A new understanding of the mechanism of the displacement of 
a non-wetting phase by a wetting phase has been developed 
that is dependent on a critical value of the dimensionless injec
tion rate constant. 

INTRODUCTION 

Many flow problems encountered in petroleum reservoir 
engineering are characterized by their nonlinearity and are 
difficult to treat analytically. These problems include the classi
cal problem of transient flow of gas (equivalent to the 
unconfined Dupuit flow of groundwater), the two-phase dis
placement problem including capillary pressure, flow of non
Newtonian fluids, flow through pressure-sensitive media, etc. 
These problems are described by parabolic partial differential 
equations in which the coefficient of hydraulic diffusivity is 
either pressure- or saturation-dependent. Only a few exact 
solutions to these problems have been obtained for the one
dimensional case. Exact solutions for transient flow of gas (or 

References and Illustrations at end of paper. 

unconfined flow of groundwater) were obtained by Bous
sinesq,1 Polubarinova-Kochina2 and Barenblau.3•4 Exact solu
tions for two-phase flow including capillary pressure were 
obtained by Rizhik, s Rizhik et a/., 6 Rakhimkulov and 
Shvidler, 7 Chen8- 10 and Yonsos and Fokas.11 Recently, 
McWhoner and Sunada, 12 McWhoner13 as well as Chen et 
a/., 14-

17 used an integral equation approach, which was first 
proposed by McWhoner18 and discussed by McWhoner19 and 
Chen, 20 to solve nonlinear hydrology problems of this type. In 
this paper, the integral equation formulation is summarized and 
applied to two nonlinear flow problems encountered in 
petroleum reservoir engineering. 

A GENERAL DESCRIPTION OF THE 
INTEGRAL EQUATION FORMULATION 

In petroleum reservoir engineering there exists a group of 
nonlinear flow problems that can be described by the following 
second order parabolic partial differential equation: 

22.. + ..2.... [v (p) 22..] = o (1) at ax ax 
where the coefficient of hydraulic diffusivity, D (p), is a func
tion of p. The initial and boundary conditions are 

p(x, 0) =Pi 

p(O,t) =Po 

p(oo,t) =Pi 

Using the Boltzmann transformation 

~-__!_ 
-a..fi 

(2) 

(3) 

(4) 

(5) 

where a is a parameter having the dimension of Ltfi. Equa
tion (1) can be transformed to an ordinary differential equation 
of second order 

(6) 
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The boundary conditions are: 

p(~=O) =Po 
p(~=-> =p; 

(7) 

(8) 

Equations (6)-(8) describe a self-similar problem that can be 
solved by means of the method proposed by Barenblatt3•4 for 
the case of p; = 0. We will demonstrate that it can be solved 
more easily, and for any p;, through an integral equation for
mulation that was first used by McWhorter.18 

Coming back to the basic equations, Darcy's 
equation of conservation of matter, we have: 

law and 

u =- .!.$2. 
J.1 ax 

~-.2.{Q& at - ax 

(9) 

(10) 

Let us introduce a relative mass flow rate function I (p ), 
defined by 

l(p) = pu (11) 

(pu}~ .. o 

where ulz = 
0 

can be expected to be inversely proportional to 

{i: 

~ 
B 

u --
=0- {i (12) 

where B is a constant to be determined. 

Using Eqs. (9}, (10) and (11}, a second order nonlinear 
ordinary differential equation for I (p) can be formulated in the 
~ space. It then is transformed to an integral equation which 
can be solved easily by a rapidly-converging iteration pro
cedure. During the transformation process, the unknown con
stant B is determined from the fundamental condition that 
dp ld~ '# 0 until an equilibrium state in the porous medium has 
been reached. With the constant B and the relative mass flow 
rate function I (p) known, the solution for p can be immedi
ately written in a form similar to the well known Buckley
Leverett solution for frontal displacement.21 

SOLUTION FOR TWO-PHASE DISPLACEMENT 
INCLUDING CAPILLARY PRESSURE 

One-dimensional flow of two immiscible and incompres
sible fluids through a linear horizontal porous medium is 
governed by the equation: 10 

as... a [ $T, + ax u,(t)lt (S,..) 

where 

k as,..] + -k,,....(S,..)I1 (S,..}pc '(S,..)-a- = 0 
J.lnw X 

It (S,..) = __ ....:____;__ 
J.lwkrnw(S,..} 

1+ 
J.lnwk,...(S,..} 

(13) 

(14) 

Equation (13) is a nonlinear, parabolic differential equation of 
second order, and no exact solution can be obtained for the 
general case. It is possible, however, to develop self-similar 
solutions under certain conditions, namely, for a semi-infinite 
length, a uniform initial saturation, and an injection rate 

inversely proportional to {i: 

u1(t} =AI{( (15) 

where A is a given constant. At first glance condition (15) may 
seem unrealistic, but in fact this provides a realistic model that 
is equivalent to a constant pressure boundary condition at the 
inlet. 16 Under these conditions, the following self-similar prob
lem can be obtained: 

d [ . dS,..] 
d~ k,,....(S,..)It (S,..)J'(S,..) d~ 

+ [t-Aolt '(S,..)] ~; = 0 (16) 

S,..(~ = 0) = s: (17) 

s ... c~~> = s,..; (18) 

where 

~= _!_ 
a{i 

(5) 

a= [ acosa ~r 
J.lnw $ 

(19) 

A (20) Ao=-
a$ 

J (S,..) is the Leverett J-function which is related to the capil
lary pressure,pc(S,..), by:22 

Pc(S,..) = acosa~ J (S,..) (21) 

s: is the maximum obtainable saturation of the wetting phase: 

s: = 1-S,,.... (22) 

and S,..; is the initial saturation of the wetting phase. When 
A= 0, the problem reduces to the problem of capillary imbibi
tion. 

Now we introduce a relative infiltration function, defined 
by 

u,.. 
I(S,..)=-

u,..o 
(23) 

where u,..0 is the infiltration rate of the wetting phase at the 
inlet that is a priori unknown and is expected to be inversely 
proportional to {i: 

B u...o = {i (24) 

where B is a constant to be determined. Substituting Eqs. (23) 
and (24) into the equation of conservation of matter 

au... as ... 
-+$- =0 (25) ax at 

we have 

as,.. B a1cs ... > 
$-+----=0 at {i ax 

or in dimensionless form 

(26) 

(27) 

where R is the ratio between the injection rate and the 

~. 

j 
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infiltration rate at the inlet 

A 
R=

B 
(28) 

Equation (27) yields a solution in the Buckley-Leverett form 

,. __ 2Ao df (Sw) 
... (29) 

R dSw 

provided/ (Sw) and R can be found. 

To determine f (Sw) and R, a boundary value problem for 
f (Sw) can be formulated as follows. Differentiating both sides 
of Eq. (29) with respect to Sw gives 

.!!.f._ _ 2Ao d 2f (Sw) 

dSw - R dS; 
(30) 

Combining Eqs. (23), (24) and the following expression for the 
infiltration rate of the wetting phase 10 

Uw = u,(t)ft (Sw) 

(31) 

gives 

A 
f(Sw) = B/t(Sw) 

k~ asw 
+ llnwB k,nw(Sw)ft (Sw)Pc '(S..,) ox (32) 

or in dimensionless form 

/(S..,) =R [t,(S..,) 

1 dS..,] + Ao k,nw(Sw)ft (Sw)J '(Sw) d~ (33) 

Substituting dCJdSw from Eq. (33) into Eq. (30) results in the 
following differential equation for f (Sw) 

d 2f (Sw) R2 k,nw(Sw)ft (Sw)J'(Sw) - -o 
2Ab /(Sw)-Rft(Sw) -

(34) 

From Eqs. (17) and (23) we have a boundary condition at the 
inlet 

(35) 

The second boundary condition can be determined from Eqs. 
(33) and (18) as 

(36) 

Equation (34) is a nonlinear second order ordinary 
differential equation and cannot be solved analytically. How
ever, it can be transformed into an integral equation which can 
be solved iteratively. A direct integration ofEq. (34) gives 

d/(S..,) R2 sf. k,nw(a.)f,(a.)J'(a.) -- = -- da.+C 1 (37) 
dS.., 2Ab s~ f (a.)- Rf, (a.) 

Integrating Eq. (37) once again provides an integral equation 

/(S..,) = ..B..:._Sj (Sw-a.)k,nw(a.)/,(a.)J'(a.) da. 
2Abs~ f(a.)-Rf,(a.) 

(38) 

where C 1 and C 2 are arbitrary constants of integration which 
can be determined from the boundary conditions as 

c, = 1 
• [R/,(Sw;)-1 

Sw;-Sw 

--- da. 
R2 sf,.. (Sw;- a.)k,nw(a.)/t (a.)J'(a.) l 

· 2Abs~ f(a.)-R/,(a.) 
(39) 

(40) 

Now we need to examine R, the ratio between injection 
and infiltration rates, because at this point, we know the value 
of A but not of B. For the special case when Ao = 0, there is no 
injection but there will be infiltration due to imbibition. There· 
fore, inasmuch as the total flow rate u, = 0, the infiltration rate 
of the wetting phase at the inlet must be equal to the 
counterflow rate of the non-wetting phase leaving the system. 
Obviously, in this case, R = 0. 

Rakhimkulov and Shvidler7 have investigated this same 
problem and have touched on a very interesting property of the 
flow behavior for this system. If the injection rate is sufficiently 
small, then at a location that is sufficiently behind the wetting· 
phase front, there will be a region of counterflow. This is illus· 
trated by the conceptual diagrams on Fig. 1. · 

Fig. 1A shows how the location of the front (Fig. 1B) is 
revealed by the saturation profile. Fig. 1 C illustrates how the 
flow rates vary behind the front. It should be noted that at the 
inlet, the infiltration rate of the wetting phase Uw reaches its 
maximum value Uwo. whereas the counterflow rate of the non· 
wetting phase u,.w reaches its maximum negative value u,wO· 
The algebraic sum Uwo + u,wo = u1 gives the rate of injection. 
This is illustrated on Fig. 1B at the inlet to the system. Note 
that the magnitude of the counterflow diminishes away from 
the inlet and vanishes at a neutral point marked N on Fig. 1 C. 
Beyond this neutral point, both wetting and non-wetting phases 
move in tha same direction, but Uw decreases and, for the par· 
ticular condition S..,; ~Siw• Uw must vanish at the front. Ahead 
of the front, only the non-wetting phase is flowing so as to 
satisfy the constraint u, = Uw + u,.w (Fig. 1 C). 

It is important to recognize that as the total flow rate u1 

decreases, the neutral point moves further and further from the 
inlet; and when u, = 0, the neutral point is at infinity, which 
means that counterflow exists everywhere. On the other hand, 
as u, increases above that shown on Fig. 1 C, the neutral point 
moves toward the inlet and the magnitude of counterflow 
decreases. We can anticipate that when the neutral point 
reaches the inlet and counterflow ceases, a critical value Aver 
is reached for which R = 1 and A0 = Bo. where Bo is the 
dimensionless infiltration rate constant defined by 

B 
Bo =- (41) 

a$ 

Figure 2 illustrates the variation of 8 0 with Ao and also 
the variation of Co with A0 , where Co. the dimensionless 
counterflow rate constant, is defined by · 

c 
Co=- (42) 

a$ 
Thus, we see from Fig. 2 that 

Ao=Bo+Co (43) 

3 

;p: 
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Therefore, R ranges from 0 to 1 as Ao increases from 0 to A ocr• 
and remains unity when Ao >A ocr· 

Thus, when Ao ~Aocr• R = 1, and Eq. (38) reduces to 

1 sf. (S..,-a)k,_(a)IJ(a)J'(a) d 
I(S..,) = 2Ab s: l(a.)-IJ(a)· a 

· s:-~s ... [ 
+ • 11 (S..,;) -1 

s..,-s..,; 

__ l_sJ <S..,;-a)k,-<a>IJ<a)J'<a.> da.] + 1 <44> 
2Ab s: l(a)-IJ(a.) 

In the case of Ao <A ocr• Eq, (38) contains an unknown param
eter, R, that can be determined using the condition that in this 

dS.., I case, dl; ~-o must be less than zero. Then from Eq. (29), 

di(S..,) I . de . f b ..t~~· eli --- • must equal zero m or r to sans y oun ...... 1 con -
dS.., s. 

tion (17), S..,.(l; = 0) = s:. On the other hand, from Eq. (37) 

d/(S..,) I - c 
dS.., Is:- 1 

Therefore, C 1 = 0, which results in an equation relating R to 
Ao when Ao <A ocr: 

Ao=R [ 2[RI1(Li)-1] 

]
~ 

sf'" (S..,; -a)k,nw(a)l1 (a)J'(a) 
X da 

s· l(a)-Rit(a.) . (45) 

The critical value Aocr can be determined from this equation 
when R = 1. Substitution of Eq. (45) into Eq. (38) yields an 
integral equation for I (S..,) when Ao < Aocr: 

I(S..,) = 1 
s· 

[1-R~" (S ·>]f. (S..,-a)k,_(a.)lt(a)J'(a.) d 
n "'' s. l(a)-Rft(a.) a. 
s· (46) 
j ..:..<S..::"'.:_i -_a...:.)k...:.,nw=-:..( a...::)l:...:t...:.< a....:.)J_'...:.( a...:..) da 

s'" I (a)- Rft (a) 

Both equations, Eqs. (44) and (46), can easily be solved using 
an iteration process, where the first guess can be taken as 
I (S..,) = (S.., -S..,;)/(S: -S..,;). 

From Eq. (29), the solution can now be expressed as: 

I;= JLsj k,,...,(S..,)ft(S..,)J'(S..,) dS.., 
Ao s: I(S..,)-Rit(S..,) 

when Ao <A ocr• and 

I;= ~;• + _1 sj k,nw(S..,)ft (S..,)J'(S..,) dS.., 
Aos: I(S..,)-It(S..,)-

when Ao ~Aoc,. where 

(47) 

(48) 

(49) 

It can be seen that when Ao SAocr• no saturated region 
will be generated in the porous medium, whereas when 
Ao >A ocr• a saturated region will develop as shown on Figs. 3 
and 4 (to be discussed below). 

However, there are some complications with the frac
tional flow function, It (S..,), and therefore, the solution 
obtained above has sEJme limitations. From Eq. (33), when 
R = 1 we have 

I (S..,)-It (S..,) ~ 0 (50) 

Then f'(S..,) must be less than 11 '(S..,) at S.., = s:. otherwise 
I (S..,) would be less than / 1 (S..,) in the neighborhood of s: 
and this would contradict Eq. (50). From Eq. (44) 

f'(S..,>k. .. s: = s -~s· [fi<S..,;)-1 
WI W 

1 sf'" (S..,;-a)k,,...,(a)ft(a)J'(a) ] 
-- da (51) 2A.b s: l(a)-11(a) 

and we see thatf'(S:) increases monotonically with increasing 
value of Ao. The function 1 1 (S:) i~creases from zero at 
Ao SAocr to a maximum value 

r<s:>l = • 1 
[1-11 <S..,;>] (52) 

max S..,-S..,; 

as Ao-+-. One should recall thatl1 '(S:) may be either greater 
than or equal to zero depending on the relative permeability for 

the non-wetting phase. If ft '(S:) <f'(S:>I , then the solu-
max 

tion obtained above for Ao >A ocr is valid only until the dimen
sionless injection rate constant Ao reaches a maximum value 
given by 

Ao.INJ)t = [ 1
• , • 

2[1-ft(S..,;)-(S..,-S..,;)/1 (S..,)] 

X da 
sf: (S..,i -a)k,_(a)l1 (a)J'(a) ] Y.. 

s'" l(a)-IJ(a) 
(53) 

In particular, for the case where 11 '(S:) = 0, then 
Ao.max = Aocr· This means that when l1 '(S:) = 0, and 
Ao > Aoc,. no solution can be obtained by the procdure given 
above. This limitation is quite important because many systems 
are characterized by It '(S:) = 0. 

It should be noted that the self-similar problem stated by 
Eqs. (16)-(18) was first formulated and studied by Rakhimku
lov and Shvidler7 in 1962, and the special case of imbibition 
was solved earlier by Rizh~ in 1960. For such nonlinear 
problems, Barenblatt3•4 has made the imponant finding that for 
the zero initial condition. the front of the disturbance must pro
pagate with a finite velocity. Based on this finding, these work
ers were only able to solve this particular problem semi
analytically for the particular cases where s..,j ssj..,. The fact 
that the front propagates with a finite velocity implies that their 

J 

\J 
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solutions, as well as the solution obtained here when S,.,; !f,S;,.,, 
also apply to a porous system of finite length as long as the 
front has not reached the end of the porous medium. However, 
the work of Rizhik5 and Rakhimkulov and Shvidler7 required 
a trial and error process, and numerical integration of the 
resulting ordinary differential equation is still required over 
most of the range of saturation. Recently McWhorter and 
Sunada12 have studied this problem using the integral equation 
approach but only for the cases of unidirectional displacement 
and imbibition. They envision a laboratory setup that uses a 
semipermeable membrane to achieve unidirectional displace
ment. This integral equation formulation has some distinct 
advantages over existing methods in its generality and simpli
city. Other existing self-similar solutions of two-phase flow 
including capillary pressure6• 8- 10 can also be effectively 
solved by this approach. 12. 19.20 

RESULTS FOR 
TWO-PHASE DISPLACEMENT 

The self-similar solution presented above was evaluated 
for certain hypotheticaJ parameters to illustrate the nature of 
two-phase displacement. The relative permeabilities and the J. 
function were taken as 

krw(Sw) = s! 
k,nw(S,.,) = 1-Sw 

1 
J(S,.,) = j;~ -1 

s,., 

(54) 

(55) 

(56) 

These parameters imply s: = 1 and S;w = 0, and that the frac
tional flow function of the system has a non-zero derivative 
with respect to saturation at the maximum obtainable satura
tion, i.e.,J1 '(S:) > 0. Calculations were carried out for various 
values of Ao (the dimensionless injection rate constant) and 
different values of S,.,; (the initial saturation). The viscosity 
ratio was basically taken as unity, but the influence of viscosity 
ratio on displacement was also examined. 

Figure 5 shows how the relative infiltration rate function 
f (Sw) varies with saturation. It can be seen that for the case of 
no injection where Ao = 0 and R = 0, the variation of f (S,.,) 
with S,., is furthest to the left. As Ao increases, the curve shifts 
to the right, and when Ao -+ oo, for this particular problem, the 
curve is simply the diagonal as shown on Fig. 5. The 
Buckley-Leverett fractional flow curve, [ 1 (S,.,), is included on 
this figure because the tangent to this curve, which is the well 
known Welge23 technique for determining the frontal satura
tion, is exactly the same as the diagonal shown for A0 -+-. 

The influence of the initial saturation Sw; on the relative 
infiltration function is shown on Fig. 6. Curves have been plot
ted for Ao = 0 and Ao =A ocr for S,.,; = 0.0, 0.2 and 0.4. The 
Buckley-Leverett fractional flow curve is also included 
because it is very useful in locating the starting point for any of 
these relative infiltration rate function curves. Examination of 
Eq. (37) reveals that for S,.,; > 0, the slope of the curves at 
Sw = Swi must be vertical, whereas when Swi = 0, the slope at 
S,., = Swi = 0 is finite. 

Saturation profiles for several values of Ao ranging from 
0 to 0.3 for Swi = S;w = 0 are shown on Fig. 3. It can be seen 
that a family of curves emanates from the point Sw = 1.0, !; = 0, 
which means that Sw = s: only at the entrance (x = 0), as long 

as Ao does not exceed Aocr· It is important to realize, how
ever, that the increase in area beneath each curve is not propor
tional to the increase in the magnitude of Ao until the critical 
value has been exceeded. As soon as Ao exceeds the critical 
value, a saturated region will develop that migrates into the 
porous medium as Ao continues to increase. For example, A ocr 
on Fig. 3 is 0.254 I, and the curve for Ao = 0.3 starts at 
!; = 0.09997 and ends at !; = 0.7772. Fig. 4 shows saturation 
profiles for a larger range of Ao up to 1.5at Swi = 0. In the case 
of Ao = 0.5, the curve starts at !; = 0.5710 and ends at 
!; = 1.1313. It can also be seen from Fig. 4 that the profile 
becomes steeper and steeper as A0 exceeds Aocr· The 
Buckley-Leverett profile, which does not consider capillary 
pressure, is also shown by the dashed vertical lines. At 
Ao-+-, the saturation profile will also be a vertical line that 
coincides with the Buckley-Leverett solution. 

The influence of initial saturation on the saturation 
profiles is shown on Fig. 7. It can be seen that the saturation 
profiles spread out over a greater range of !; as the initial 
saturation increases. Theory predicts that in the case where 
S,.,i > 0, the initial saturation can only be reached at !; = oo, 
whereas when Swi = 0, the saturation profile terminates at a 
finite location. This is in full agreement with the theoretical 
results of Barenblatt.3•4 However, as can be seen on Fig. 7, in 
practice distinct fronts can also be obser-Ved at finite locations 
for the case of S,.,j > Sj,.,. . 

The dependence of both the dimensionless imbibition rate 
constant Bo and the critical dimensionless injection rate con
stant Aocr on the initial saturation is illustrated on Fig. 8. It is 
seen that both curves are monotonic functions decreasing from 
their maximum values at S,.,i = 0 to zero at S,.,i = 1 and that the 
curves are roughly parallel over most of the range. Figure 9 
shows the important influence of the viscosity ratio, 
J..LD = J.L,,.,IJ.L,.,, on the imbibition rate parameter, 
B~ =o/[acos9o~f1 , and the critical injection rate parameter, 
Ac,l[acos9$\1k¢] . These two curves converge to one point at 
J..LD = 0 (see Chen et a/.,) 16 and deviate from each other more 
and more as the viscosity ratio increases. At J.Lo = 0, the critical 
injection rate parameter A ocr= 0, and two regions, one 
saturated and one unsaturated, develop immediately. This is in 
agreement with Philip's results.24 

ISOTHERMAL TRANSIENT FLOW OF GAS 

Let us now consider a semi-infinite horizontal porous 
medium which is initially saturated with gas at a uniform pres
sure p;. At time t = 0, gas is injected at the inlet, x = 0, at a con
stant pressure p = p 0 . This problem can be formulated as fol
lows: 

Elz. _ _L& 
ar - 2<PJ.L ax2 

The initial and boundary conditions are 

P (X, 0) =Pi 

p (O,t) =Po 

P (oo,t) =Pi 

(57) 

(58) 

(59) 

(60) 

The problem given by Eqs. (57)-(60) is a self-similar one. If 
we employ the Boltzmann transformation 

X 1;=
a..ft 

(61) 

5 
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where 

Equations (57)-(60) reduce to 

d 2pb ~ dpo _ 

d~2 + 2 d~ -
0 

p0(~=0) = 1 

Po(~-+oo) =Poi 

where Po is a dimensionless pressure defined by 

Po= ....lL 
Po 

(62) 

(63) 

(64) 

(65) 

(66) 

This problem has been semi-arialytica"lly ·solved by Baren
blatf.4 for a zero initial condition. We shall now solve this 
problem using the integral equation formulation for both zero 
and non-zero initial conditions. 

If we substitute the DJI"cy's law from Eq. (9) into the rela
tive mass flow rate function as defined by Eq. (10), we have 

f (p) = -.!. JL ..[( 22._ (67) 
1.1. Po uo ox 

or in dimensionless form: 

where 

f <Po> = _ 2po dpo 
uoo d~ 

P1uo 
u ---
00- al)lpo 

(68) 

(69) 

Substituting Eq. (11) into Eq. (10) and using an equation of 
state for gas given by 

we have 

Po p=-p 
Po 

IPPo 22._ + Pouo M.JI!l = O 
Po ot ..[( ox 

or in dimensionless form 

(70) 

(71) 

(72) 

Equation (72) immediately provides the solution to the self
similar problem in the form 

~ = 2uoo df <Po> (73) 
dpo 

iff <Po) and the unknown parameter uoo can be found. 

Differentiating both sides of Eq. (73) with respect to Po 
and then using Eq. (68) to eliminate the variable ~. a second 
order, nonlinear ordinary differential equation for f (p0 ) is 
obtained 

d 2f<Po) Po 
2 + 2 = 0 

dpo uoof <Po) 

Two boundary conditions can be specified as 

f(po=1)=1 

(74) 

(75) 

(76) 

Directly integrating Eq. (74) with respect to p0 gives 

df <Po) =-+7 _f!p_dpo + C 1 (77) 
dpo uoo 1 f <Po> 

Integrating once again~ we have 

1 Po <Po-a)a 
f(po)=--2-f /() da+C1<Po-l)+C2 (78) 

uoo 1 a 

The constants of integration, C 1 and C 2 • can be determined 
using boundary conditions (75) and (76) as 

1 1 J' <Poi -a)a 

[ 

Po· l C1 =-- 1-2 da 
1-Poi u00 1 f(a) 

(79) 

(80) 

The unknown constant u00 can be determined using the fact 
that the pressure gradient at the inlet must not be zero until the 
equilibrium state within the porous medium has been reached. 
This leads to a condition that 

df(po) 1 _ 
0 

dp0 !Po= 1 -
(81) 

Then, C 1 = 0, and from Eq. (79), uoo can be determined as 

_ [PJOI <Poi - a)a ]loS 
uoo -

1 
f (a) da (82) 

Now, the integral equation for f <Po) can be expressed as 

PJo <Po-a)a 
1 /(a) da 

f(po) = 1- (83) 
P01 (p ) J oi-aada 
1 /(a) 

and this can be solved iteratively using f <Po)= Po as the first 
guess. 

This solution has been evaluated for various values of 
dimensionless initial pressure, POi· The curves for the relative 
mass flow rate function f <Po) for different dimensionless ini
tial pressures are given on Fig. 10. We see that these curves 
have the similar form and physical meaning as the well known 
Buckley-Leverett fractional flow curves. Thus, the generalized 
Welge graphical technique proposed by Chen and Song25 can 
be used to determine the mass of gas between any two cross
sections with Poa and POb• respectively, on this figure. Namely, 
two tangents of the f (p0 ) curve may be drawn at two points, 
(f <Poa). Pob)l and (f <Pob). Pobl• and the intercept of the two 
tangents, Poab• indicates the average dimensionless pressure 
between these two cross-sections (see Fig. I 0). 

The dependence of dimensionless mass flow rate con
stant, u0o. on dimensionless initial pressure, POi• is shown on 
Fig. 11. This constant decreases monotonically from its max
imum value of uoo = 0.6229 at Poi = 0 to zero at Poi = 1. 
Dimensionless pressure profiles for different dimensionless ini
tial pressures are illusttated on Fig. 12. For comparison, the 
results of Barenblatt's exact solution4 for the case of POi= 0 
are also shown by solid circles. As expected the solution 

J 
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developed through the integral formulation is in excellent 
agreement with the results of Barenblatt. 

CONCLUSIONS 

Nonlinear flow problems are frequently encountered in 
petroleum reservoir engineering and are not easily solved by 
traditional mathematical methods. The nonlinearities are a 
result of the fact that the hydraulic diffusivity is not constant 
and is dependent on variables that are unknown and for which 
solutions are being sought. An integral equation formulation 
that was first developed in the field of hydrology has been 
applied to these problems. This new approach is dependent on 
casting the governing equation in terms of a relative mass flow 
rate function. The solution can be expressed in a form similar 
to that of Buckley-Leverett, with the relative flow rate function 
as the unknown to be determined. An integral equation for this 
function can be formulated and solved by iterative methods. 
This new approach has been applied to several types of one
dimensional problems involving two-phase displacement 
including the effects of capillary pressure and isothermal tran
sient flow of gas. 

A new understanding of the mechanism of the displace
ment of a non-wetting phase by a wetting phase has been 
developed that is dependent on a critical value of the dimen
sionless injection rate constant. When this constant is less than 
the critical value, a counterflow of the non-wetting phase 
exists; the maximum obtainable saturation of the wetting phase 
can only develop at the entrance to the system. On the other 
hand, when the injection rate constant is greater than this criti
cal value, no counterfipw exists, and the maximum obtainable 
saturation of the wetting phase will propagate into the system. 
An equation to evaluate this critical injection rate constant has 
been developed. 

The integral equation formulation has some distinct 
advantages over existing methods of handling such nonlinear 
flow problems because of its generality and simplicity. The 
problems of flow in pressure-sensitive media, flow of non
Newtonian fluids, and the problem of heat transfer with 
temperature-dependent heat conductivity as well as the non
linear problem of hydrodynamic dispersion in porous media 
can also be solved by means of this mathematical formulation. 

NOMENCLATURE 

a = parameter having the dimension of L T-112 defined by 
Eq. (19), or (62). 

A =injection rate constant [L T-1121 
B =infiltration rate constant [L T- 1121 
c1 =total compresibility of the system [L 2!F1 

C =counterflow rate constant [L T-1121; constant of inte-
gration 

D = hydraulic diffusivity [L 2 /T] 

f= relative mass flow rate function defined by Eq. (10) 

! 1 = fractional flow in Buckley-Leverett problem where 
the capillary pressure is neglected, defined by 
Eq. (14) 

J = dimensionless capillary pressure function 

k = absolute permeability [L 21 

k, =relative permeability 

p =pressure [F !L 21 
Pc =capillary pressure [F !L 21 
R = ratio between the injection rate and the infiltration 

rate 

S = saturation 

Siw = irreducible saturation of wetting phase 

S,nw = residual saturation of non-wetting phase 

Swi = initial saturation of wetting phase 

s: = maximum obtainable saturation of wetting phase 

t =time [T] 

u = flow rate [LIT] 

x =distance [L1 
a = dummy variable of integration 

8 = contact angle 

ll =viscosity [F-T !L 21 
~=similarity variable 

p =density [M /L 3 ] 

a= interfacial tension [F IL) 

cp = porosity 

Subscripts 

cr =critical value 

D = dimensionless 

i =initial condition 

nw = non-wetting phase 

t =total 

w = wetting phase 

0 = conditions at the inlet, x = 0 
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