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Abstract 

The impact of the nuclear equation of state on the properties of rotating 
neutron stars from two different sources, (1) stable rotation at the general rel­
ativistic Kepler period and (2) rotation at the gravitational radiation-reaction 
driven instablity mode, is analyzed. For this pupose mo-dels of rotating neu­
tron stars are constructed in the framework of Einstein's theory of general 
relativity by applying a refined version of Hartle's perturbative stellar struc­
ture equations. The investigation is based on a representative collection of a 
total of seventeen nuclear equations of state, covering both non-relativistic as 
well as relativistic ones. 
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IMPACT OF THE NUCLEAR EQUATION OF 
STATE ON MODELS OF ROTATING 

NEUTRON STARS 

1 Introduction 

The number of observed pulsars has increased rapidly since the discovery of the 
Cambridge Pulsar CP1919 in 1967 [1]. The sources of such objects have been inter­
preted aa rapidly rotating, highly magnetized neutron stars [2]. To date about 500 
pulsars are known [3], and the fastest of them have rotational periods in the mil­
lisecond range. Table 1 summarizes the observed properties of a selected sample of 
millisecond pulsars. It is well known that neutron star masses impose a constraint 
on theories of nuclear matter. Similarly fast rotation can be expected to impose 
constraints [4], perhaps even more detailed. Against this background we perform 
a systematic investigation of the influence of rotation on the properties of neutron 
stars. The application of Einstein's equations to rotating fluid spheres is known to 
be a complicated and cumbersome task (see, for example, [6, 7]).Simplifications in 
the treatment however arise if a perturbative solution of Einstein's equations is de-

Table 1: Sample of millisecond pulsars ( cf. [5, 3]). The rotation period and its 
derivative are denoted by P and dP / dt, respectively. 

Name Featuresf p dPjdt Companion Orbital 
mass 

1516+02B g,b 7.9 - t 
1953+29 f,b 6.133 0.3 0.2-0.4 

0021 - 72C g,nb 5.8 
1516+02A g,nb 5.5 
1855+09 f,b 5.436 0.2 0.3-0.4 

0021 - 72E g,b 4.04 
1821 - 24 g,nb 3.1 16.2 
1937+21 f,nb 1.6 1.1 
1957 +20 f,b 1.6 1.1 

f "g" and "f" refer to respectively globular-cluster pulsars and 
pulsars in the field (i.e. not in a cluster); b = binary pulsar, 
nb = non-binary pulsar. 

: The symbol "-" indicates a measurement that has not yet 
been made. 
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period 
[days] 

117 

12.3 
~2 

0.38 



veloped that is based on a perturbation of the line element from that of a static star. 
This has been demonstrated by Hartle [8] (referred to in the following as Hartle's 
method). It provides an elegant alternative tool to the exact numerical solution of 
Einstein's equations, which is more transparent and easier to apply. Though being 
perturbative, Hartle's method has recently been shown (9] to be applicable to the 
construction of models of rotating neutron stars down to rotational periods P ::::::: 0.5 
msec, a value which is by far smaller than the smallest yet observed pulsar period. 
We apply this method for the construction of general relativistic, rotating neutron 
star models. 

2 Rotating Neutron Stars in General Relativity 

Neutron stars are objects of highly compressed matter so that the geometry of 
space-time is changed considerably from flat space. Thus for the construction of 
realistic stellar models of neutron stars one has to resort to Einstein's theory of 
general relativity. Therein the Einstein curvature tensor QJJII is coupled to the energy­
momentum density tensor '411 (E,P(E)) of matter [10] 

(1) 

T~e quantities f. and P(E) denote respectively energy density and pressure (i.e. the 
equation of state, see Table 2 for the equations of state of this work) of the star's 
matter, and are derivable from the matter Lagrangian Lm [4] 

for each matter field x . (2) 

The Lagrangian C.m is in the case of neutron star matter a complicated function 
of various baryon (p, n,E±·0 ,A,3°·- .~++,+,o.-), meson (u,w,1f,{?), and lepton (e-, J.C) 

fields [11, 12, 13]. Equations of state of neutron matter have been derived by various 
authors. In this· work we study a collection of seventeen representative models which 
will be introduced in Sect. 4. 

In the following Hartle's stellar structure equations are outlined very briefly. 
Details are given in Ref. [8]. We begin with the perturbed line element, 

ds 2 = - e 2 ll(r)dt2 + e 2 ,P(r) ( d</>- w dt) 2 + e 2 1J.(r) dfJ 2 + e2>.(r)dr 2 + 0 ( n3 ) • (3) 

Here, w( r) is the angular velocity of the local inertial frame, which depends on the 
radial coordinate r. It is proportional to the star's rotational velocity n (dragging of 
the local inertial frame). The frequency n is a constant throughout the star's fluid 
(assumption of uniform rotation). It is convenient to define the angular velocity of 
the fluid relative to the local inertial frame, w = n- w, in terms of which the fluid 
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·J 

inside the star moves. The metric functions in the disturbed line element of Eq. (3) 
have the form [8, 14, 15] 

e2 v(r,O) - ea(r) [1 + 2 (h0(r,n) + h2(r,n) P2(cos0))], (4) 
e2 ,P(r,O) - r2 sin20 [1 + 2 (v2(r,n)- h2(r,!1)) P2(cosO)], (5) 
e21J.(r,O) - r2 [1 + 2 (v2(r,n)- h2(r,!1)) P2(cosO)], (6) 

e2 .\(r,O) - e 1 +-2A(r) ( 2 mo(r,!1)+m2(r,!1) P2(cos0)) 
r 1- T(r) . 

(7) 

and are independent of time and azimuthal angle </J, expressing respectively station­
ary rotation and axial symmetry about the axis of rotation. The functions hz, mz, 
(l = 0,2) and v2 of Eqs. (4)-(7) stand for the monopole and quadrupole pertur­
bation functions, the quantity P2 is the second order Legendre poly:Q,omial, and 
T(r) = 2m(r)/r. In the non-rotating (spherical) limit, the perturbation functions 
vanish identically and Eq. (3) reduces to the Schwarzschild line element [10, 16]. 

The (excess) rotational frequency w( r) is the solution of the differential equation 

d (r4 j(r) dw(r)) + 4r3 dj(r) w(r) = 0' 
dr · · dr dr 

(8) 

where 

j(r) = e-~(r) )1- T(r). (9) 

The set of coupled monopole (l = 0) equations can be integrated once w( r) is 
known from Eq. (8). The monopole mass and pressure perturbation functions, m0 

and p0 , respectively, are given as the solutions of [8, 14], 

and 

dm0 2 dt. ( ) 1 .2 4 (dw)
2 

81r 4 .2 f.+ P _2 
-;£;" = 47r r dP f. + P . Po + 12 J r dr + 3 r J 1 - T w 

dpo 
dr 

1 + 81r r 2 P (f. + P) r 
- r2 (1- T)2 . mo - 47r 1 - T . Po 

1 r
3
j2 (dw) 

2 
1 d (r2j2w2) +--- - +--

12 1 - T dr 3 dr 1 - T · 

(10) 

(11) 

The quadr,uple equations ( l = 2) determine the shape of the rotating star. They 
are given as the solutions of 

dv2 = _ 
2 

diP 
dr dr . h2 + (12) 

3 



dr 
d~ 2 (d~) -1 

] - {- 2 - + -- - [21r ( € + P) - m } · h2 
~ 1-T ~ ~ 

2 (d~-)-
1 

r 2 ( 1 - T) dr . v2 

1 [ d~ 1 (d~)-
1

1 3 .2 (dw) 2 

+ 6 r dr - 2 r (1- T) dr r J dr (13) 

1 a~ 1 (a~) -1 a·2 

3 [r dr + 2 r (1 - T) dr ] (r w)
2 ~r · 

Equations (10) - (13) explicitly show the dependence of the stellar model on the 
equation of state , P( €). Next we introduce the redshift of photons emitted at the 
star's pole. It follows from the expression [17] 

1 ' (14) 

and can be calculated once the perturbation functions h0 and h2 at the star's pole 
are known (cf. Eq. (4)). 

3 Stable Neutron Star Rotation 

3.1 Kepler Frequency 

No simple stability criteria are known for rotating star configurations in general 
relativity. An absolute upper limit on neutron star rotation is set by the Kepler fre­
quency, nK, above which centrifuge overwhelms gravity at the equator of a rotating 
star. In terms of the metric functions of Eqs. ( 4) and (5), the Kepler frequency is 
given as the solutiqn n of [17] 

n - [ e"(w)-,P(O) V(n) + w(n)] eq ' (15) 

V(n) = [ w(n)' e"'(n)-v(n) + 
21P(n)' 

v(n)' ( w(n)' .P(n)-v(n))2] (16) 
1P(n)' + 21P(n)' e eq . 

The subscipt "eq" refers to evaluation of Eqs. (15) and (16) at the star's equator. 
The quantity V denotes the orbital velocity measured by an observer with zero 
angular momentum in the ¢>-direction. Primes denote derivatives with respect to 
the radial coordinate. 

3.2 Gravitational Radiation Reaction-Driven Instability 

Besides the absolute upper limit on rotation set by the Kepler frequency, there is an­
other instability that sets in at a lower rotational frequency, and which therefore sets 
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a more stringent limit [18]. It originates from counter-rotating surface vibrational 
modes, which at sufficiently high rotational star frequencies are dragged forward. 
In this case, gravitational radiation which inevitably accompanies the aspherical 
transport of matter does not damp the modes, but rather drives them [19, 20]. 
Viscosity plays the important role of damping such gravitational-wave radiation­
reaction instabilities at a sufficiently reduced rotational frequency such that the 
viscous damping rate and power in gravity waves are comparable [21]. The instabil­
ity modes are taken to have the dependence exp[iwm(n)t + im¢>- tfrm(n)], where 
wm is the frequency of the surface mode which depends on the angular velocity n of 
the star,¢> denotes the azimuthal angle, and Tm is the time scale for the mode which 
determines its growth or damping. The rotation frequency n at which it changes 
sign is the critical frequency for the particular mode, m ( =2,3,4, ... ). It is conve­
niently expressed as the frequency, n~, that solves [18] (v refers to the viscosity 
dependence, see below) 

where 

2m(m-1) M 
2m+ 1 R3 

(17) 

(18) 

is the frequency of the vibrational mode in a non-rotating star. The time scales for 
gravitational radiation reaction [22], r 9 ,m, and for viscous damping time [23], Tv,m, 

are given respectively by 

Tg,m 
2 (m- 1) [(2m+ 1)!!]2 
3 (m+1)(m+2) ( 

2m+ 1 )m (Ji)m+l R 
2m(m-1) M ' 

(19) 

R2 1 
(2m + 1) ( m - 1) ;; · 

(20) 

The shear viscosity is denoted by v. It depends on the temperature, T, of the star 
(v(T) oc T-2

). It is small in very hot (T ::::: 1010 K) and therefore young stars and 
larger in cold ones. A characteristic feature of the above equations (17) - (20) is 
that n~ merely depends on radius and mass (Rand kl) of the spherical star model. 

The functions &m and i'm contain information about the pulsation of the rotating 
star models and are difficult to determine [18, 24]. A reasonable first step is to 
replace them by their corresponding Maclaurin spheroid functions am and /m [18, 
24]. We therefore take am(nm) and lm(nm) as calculated in Refs. [25, 26] for the 
oscillations of rapidly rotating inhomogeneous Newtonian stellar models (polytropic 
index n=1), and Ref. [18] for uniform-density Maclaurin spheroids (i.e. n=O), 
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respectively. Managan has shown that n~ depends much more strongly on the 
equation of state and the mass of the neutron star model (through wm(O) and r 9 ,m, 
see Eqs. (18) and (19)) than on the polytropic index assumed in calculating am 

[27]. 

4 Collection of Equations of State 

A sample of a total of seventeen nuclear equations of state is used for the construc­
tion of models of rotating neutron stars. These are summarized in Table 2. The 
equations of state are divided into two categories: (1) non-relativisitic potential 
model equations of state , and (2) relativistic equations of state which are deter­
mined in the framwork of relativistic nuclear field theory. An inherent feature of 
the latter is that they do not violate causality, i.e., c6 jc = JoPjof. < 1 (c8 denotes 
the velocity of sound), which is not the case for the potential models. Among the 
latter only the WFF(UV 14 + TNI) equation of state does not violate causality. The 
BJ(I) and Pan( C) equations of state violate causality at~ 23 times the energy den­
sity of normal nuclear matter, not much above the central density of the limiting 
star of the seqeuence. The equations of state FP(V 14 + TNI), WFF(AV14 + UVII), 
and WFF(UV 14 + UVII) do so at considerably smaller densities of ~ 6 - 7 times 
normal nuclear matter density, which is less than the central densities encountered 
in the limiting-mass neutron star models constructed from them. The four equa­
tions of state of our collection denoted G~2~M1 , G~6~M2 , G~f~1 , and G~f~2 have only 
recently been calculated [28] for electrically charge neutral neutron star matter in 
generalized (3 equilibrium from the derivative coupling Lagrangian of Zimanyi and 
Moszkowski [29]. Those labeled DCM1 correspond to the Lagrangian of Zimanyi 
and Moszkowski, while those labeled DCM2 correspond to the "hybrid" coupling 
introduced in [28]. The possibility of a phase transition of the dense core to quark 
matter is taken into account in equations of state G~f~1 and G~f~2 • A bag con­
stant of B 114 = 180 MeV has been used. It should be noted that not all equations 
of state of our collection account for neutron matter in generalized (3 equilibrium 
(namely entries "13" through "16" in Table 2). These models of the nuclear equation 
of state treat neutron star matter as being composed of only neutrons ( "14" ), or 
neutrons and protons in equilibrium with electrons and muons ( "13", "15", "16" ), 
which is however not the true ground-state of neutron star matter predicted by 
theory [30, 31, 32]. 
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5 Results and Discussion 

The general relativistic Kepler periods PK (= 27r/f!K), beyond which mass shedding 
at the star's equator sets in, are graphically depicted in Fig. 1 for a representative 
sample of equations of state labeled according to Table 2. Pandharipande's equation 
of state (label 17) leads, for M ~ 0. 7 M0 , to rotating star models which possess the 
smallest periods by far. The second smallest periods are obtained from equation 
of state WFF(AV14 + UVII). We find that the relativistic equations of state lead 
in general to larger rotational periods than the non-relativistic equations of state 
[9]. In particular the upper limit on the Kepler period is set by the relativistic 
HV (label 2) equation of state. The periods obtained from all other equations of 
state of Table 2 lie between curves "2" and "16". The hatched rectangle in Fig. 
1 covers both the approximate range of neutron star masses as determined from 
observations ( cf. [38]), as well as observed rotational periods (P ?: 1.6 msec, see 
Table 1 ). One clearly sees that all pulsar periods so far observed are larger than 
the absolute limiting Kepler values. On the other hand, equation of state "16" of 
Fig. 1 demonstrates that periods smaller than 0.60-0.75 msec (depending on the 
star's mass) are incompatible with those of our representative collection of nuclear 
equations of state. (Equation of state "17" is not considered for reasons which are 
given below. Here and in the following it may serve to demonstrate the impact of 
an extremely soft equation of state on the properties of neutron stars.) If periods 
below this range were detected it would give a clear hint that the confined hadronic 
phase of nucleons and nuclei is only metastable [39]. The plausible ground-state in 
that event is the deconfined phase of (3-flavor) strange-quark-matter. 

The rotational masses of sequences of neutron stars rotating at their Kepler pe­
riods are shown in Fig. 2. In general, rotation stabilizes the star model against 
gravitational collapse at masses that are typically ~ 15 - 20% above the non­
rotating mass limit [17, 35]. The central energy density obtained from Pan(C) 
for the limiting-mass model (the locations are shown by tick marks in Fig. 2) is 
t:c::::::: 21t:o, a value which lies slightly below the one at which causality is violated for 
this equation of state (Sect. 4 ). It is questionable whether the construction of the 
equation of state to such high densities is valid in the framework of a theory that 
is based on nucleons interacting through potentials. The star models constructed 
from the remaining set of equations of state have central energy densities in the 
range 7 ,!S t:c/ t:o ,!S 11. The largest rotational mass is obtained from equation of 
state A~EA + HFV (label 11 ), which is caused by their rather stiff behavior at larger 
nuclear densities [35]. The importance of the stiffness of the nuclear equation of 
state to obtain large enough neutron star masses is a known fact from the literature 
[4, 35, 40]. This finding is confirmed by the equations of state of Fig. 2 for which 
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the stiffness increases from bottom to top. 
Figure 3 shows the rotational neutron star masses at their Kepler periods of 

sequences up to their limiting masses (indicated by dots), plotted as a function of 
polar redshift. Gamma-ray bursters are suspected, but not known, to be neutron 
stars. If interpreted as such, the measured gamma-ray burst pair annihilation lines 
give tentative evidence to support a neutron star redshift range of 0.2- 0.5, with 
the highest concentration in the range 0.25-0.35 [41]. The former range, combined 
with observed neutron star masses, is exhibited by the hatched rectangle in Fig. 3. 

Figure 4 shows the limiting rotational neutron star periods PJ: (i.e. the solution 
of Eq. (17)) set by the gravitational radiation-reaction instability discussed in Sect. 
3.2. Considered are old (and therefore cold) neutron stars of temperature T = 106 

K. For such stars we find that the m = 2 mode is largest and thus is exited first. It 
therefore sets the limit on stable rotation for neutron stars of such temperatures. As 
in the case of rotation at the Kepler period, the Pan( C) equation of state leads again 
to the smallest periods obtained from all equations of state of our collection. For 
the above stated problems inherent in this equation of state, equations of state "16" 
establishes a more realistic limit on the rotational periods that neutron stars can 
have before instability against gravitational radiation-reaction sets in: according to 

. this equation of state stable neutron star rotation is restricted to periods P 2:: PJ: ::::::: 
0.8-0.9 msec (depending on mass). This is shown by means of the hatched area of 
Fig. 4, which roughly covers the range of stable neutron star periods and observed 
masses. One sees that the observation of pulsar periods smaller than the above 
given limit would be in contradiction to this analysis of the gravitational radiation­
reaction driven instability ( cf. discussion of Fig. 1 ). We note that the 1.6 msec 
period of the two fastest yet observed pulsars are compatible with Fig. 4 as long as 
gravitational masses larger than ::::::: 1M0 are assumed. 
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Label 

1 
2 
3 

4 

5 
6 
7 

8 

9 

10 
11 

12 
13 

14 

15 

ct 

Table 2: Equations of state (EOS) of this work 

EOS Description f Reference 

Relativistic field theoretical equations of state 
G3oo H, I< =300 Glendenning 1989 (33] 
HV H, I< =285 Glendenning 1985 [32, 12] 

G~f;:2 Q, I< =265, Glendenning, Weber, 

GDCM2 
265 

Gioo 
G11" . 

200 

A~~nn + HV 

GDCM1 
225 

GDCM1 
8180 

HFV 

B 114 = 180 and Moszkowski 1991 [28] 
H, I< =265 · Glendenning,Weber, 

H, 1r, I< =300 
H, 1r, I< =200 

H,I< =186 

H,I<=225 

Q, I<=225, 
B 114 = 180 
H,~,I<=376 

H,~,I<=115 

and Moszkowsi 1991 [28] 
Glendenning 1989 [33] 
Glendenning 1986 [34] 
Weber, Glendenning, 
and Weigel 1990 [35] 
Glendenning, Weber, 

and Moszkowski 1991 [28] 
Glendenning, Weber, 

and Moszkowski 1991 [28] 
Weber and Weigel 1989 [12] 

Weber, Glendenning, 
and Weigel 1990 [35] 

Non-relativistic potential model equations of state 
BJ(I) H, ~, Bethe and Johnson 1974 [31] 

WFF(UV 14 + TNI) NP, J( =261 Wiringa, Fiks, 

N,J\=240 

WFF(UV14 +UVII) NP,I<=202 

and Fabrocini 1988 (36] 
Friedman and 

Pandharipande 1981 [13] 
Wiringa, Fiks, 

and Fabrocini 1988 [36] 
16 WFF(AV14+UVII) NP,l\=209 Wiringa, Fiks, 

and Fabrocini 1988 (36] 
17 Bt Pan( C) H, ~, J( =60 Pandharipande 1971 [30] 
f The following abbreviations are used: N = pure neutron; NP = n, p, 

leptons; 1r = pion condensation; H = composed of n, p, hyperons, lep­
tons; ~ = ~1232-resonance; Q = quark hybrid composition; I< = in­
compressibility in MeV; B 114 = bag constant in MeV. 

t Notation of Friedman, lpser, and Parker [17, 37]. 
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Figure 1: Kepler period as a func­
tion of rotational neutron star mass. 
The labeling of the curves is ex­
plained in Table 2. 
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Figure 3: Rotational neutron star 
mass versus polar redshift. The dots 
refer to the limiting-mass star mod­
els. 
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Figure 2: Rotational neutron star 
mass as a function of central energy 
density €c (in units of normal nuclear 
matter density, t:o). 
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Figure 4: Rotational periods P!: 
at which instability against gravita­
tional radiation-reaction sets in ver­
sus neutron star mass. The periods 
refer to old neutron stars of temper­
ature T = 106 K. 
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