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Abstract 

The shear viscosity coefficient of the quark-gluon plasma is calculated 

by considering the relaxation time approximation. Screening effects are 

taken into account by using an effective perturbation theory developed 

recently for the finite temperature QCD in the weak coupling limit. The 

result agrees with the one obtained from a variational approach to the 

Boltzmann equation, but is at variance to other results based on a Kubo­

type formula. 

1This work was supported in part by the Director, Office of Energy Research, Division of Nuclear 

Physics of the Office of High Energy and Nuclear Physics of the U. S. Department of Energy under 

Contracts No. DE-AC03-76F00098 and the Deutsche Forschungsgemeinschaft. 
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I. Introduction 

In this note, we investigate dissipative processes in a quark-gluon plasma (QGP) 

supposed to be formed in ultrarelativistic heavy ion collisions. Former results for the 

shear viscosity of the QGP are based on two different methods. In Ref. [1-4) the 

kinetic theory was used. Starting from the Boltzmann equation, the shear viscosity 

coefficient "' can be derived containing the transport cross section [5). In the high 

temperature limit, corresponding to the weak coupling limit,"' = cT3/[a; ln(1/as)] 

was found. By using the relaxation time approximation for a QGP with two quark 

flavors, the constant c was estimated to be 0.28 [1) or 0.57 [2), whereas a variational 

calculation gave c = 1.16 [4). 

For the second method the average value of the energy-momentum tensor is cal­

culated using a nonequilibrium statistical operator [6) and compared to the energy­

momentum tensor of viscous hydrodynamics (Navier-Stokes equation). This relates 

dissipative coefficients to equilibrium correlation functions of the energy-momentum 

tensor (Kubo formulas) in accordance with the dissipation-fluctuation theorem [7-11). 

In [11) ry~2.6 T 3 /as wa.s inferred. Though lattice calculations based on the Kubo for­

mula are able to find a value for "' near the phase transition, they are still very crude 

(0 :::; "' :::; 9.5 T 3 for T ~ Tc [12]). 

The physical process responsible for the viscosity to lowest order in the coupling 

constant g contains elastic scattering of the QGP quarks and gluons off each other 

via one gluon exchange. Since using a bare gluon propagator in the scattering ma­

trix element leads to an infrared singularity, screening effects of the QGP have to 

be included. Up to now, these screening effects have been taken into account only 

phenomenologically in calculations of transport coeffients [1,2,4). 

Braaten and Pisarski [13) have recently developed an effective perturbation theory 

in the weak coupling limit (g < < 1 ), which takes screening effects into account. It can 

be used to generate a systematic expansion in g, which gives gauge invariant results 

for physical quantities. In this way leading order interaction rates can be calculated 

correctly [14-17). Unfortunately, the interaction rate of particles with hard momenta 

(p = IPJ~T) still turns out to be infrared divergent, but the quadratic singularity 

.of naive perturbation theory is reduced to a logarithmic one [15-18). In contrast, 

quantities which are logarthmically divergent in naive perturbation theory (e.g., the 
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energy loss of a charged particle in a relativistic plasma [17-19]) are finite by using 

the effective perturbation theory [20]. 

Pethick et al. [21] observed that the viscosity coefficient is finite even in the 

absence of static magnetic screening due to dynamical screening. We will confirm 

their observation by showing that the viscosity coefficient belongs to the above class 

of quantities which are infrared finite after applying the effective perturbation theory. 

We will calculate the viscosity coefficient in the relaxation time approximation. For 

this purpose, we have to consider the mean free path of the quarks and gluons in 

the QGP [5], which is the inverse of the interaction rate. It is essential to treat 

the transport process correctly in this interaction rate by taking into account the 

dominance of large angle scattering for dissipation [5]. The transport interaction rate 

turns out to be infrared finite, using the effective perturbation theory, in contrast 

to the ordinary interaction rate. We will use the method proposed by Braaten and 

Yuan [20] for calculating the transport interaction rate. Keeping only the leading 

logarithm, our final result for the viscosity coefficient confirms the dependence on 

the coupling constant found by the kinetic theory [1-4]. Finally, we will discuss its 

extrapolation to realistic values of the coupling constant. 

II. Calculation of the Viscosity Coefficient 

We calculate the viscosity coefficient T/ by using the elementary kinetic theory 

[5] for a QGP of massless quarks and gluons. In this approximation, the viscosity 

coefficient of the QGP is given by the sum of a quark and a gluon contribution 

(ry = 'f/q + T/g) [2]: 
4 

n·"' -n·{p·).A· .,, - 15 t t " (1) 

where ni is the density of particles of type i in the QGP, (Pi) the average momentum 

of the particle and Ai = 1/fi its mean free path. The interaction rate ri can be 

calculated to lowest order in g from the imaginary part of the quark or gluon self 

energy. Let us consider first the quark self energy shown in Figure 1, where we have 

included screening effects by using the effective gluon propagator defined in the high 

temperature approximation [22]. According to the rules of the effective perturbation 

theory [13], it is sufficient to use this gluon propagator because the momentum of the 

quark is hard ( {pq) "'T). 
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The calculation of the self energy at finite temperature using the imaginary time 

formalism is straightforward [13]. In Ref. [18] it was shown that the main contribution 

to the interaction rate comes from the soft momentum transfer region i.e., w, q "' 

gT < < p ~ p' "' T in the weak coupling limit, where w is the energy and q = lql the 

magnitude of the momentum of the exchanged gluon. Neglecting the Pauli-blocking 

factor 1 - n(p') for the outgoing particle of momentum p', which is justified because 

of (p') ~ 3T in the QGP, we obtain [17,18] 

fq = Cpg2T {'X> dq q2jt dJ-Ljoo dw 8(w- p. ij) (p,(w, q) + (1- w: )Pt(w, q)) ' (2) 
271' Jo -1 -oo w q 

where Cp = 4/3 is the Casimir invariant, J-l = p · q and Pl,t are the discontinous 

parts of the spectral densities corresponding to the longitudinal and transverse parts 

of the effective gluon propagator. Inserting the expressions for Pl,t given in Ref. [23] 

into (2), we find that the contribution coming from the exchange of a longitudinal 

gluon is given by f~ = 0.732asT, while the transverse part of the interaction rate is 

logarithmically infrared divergent [17]. Using a magnetic gluon mass m~ag ~ 26a~T2 

[2], as infrared cutoff [15], we can fit the transverse part of the interaction rate by 

f~ ~ 0.13a8 T [log(2.44/as)]t.63
• Thus for as < 1, we find fq = f~ + f~ > 0.84a8 T. 

The gluon interaction rate is obtained from the quark interaction rate by replacing 

Cp by CA = 3 in accordance with the result found by Braaten [16]. Substituting 

these results for the interaction rates in (1) and using the energy densities of a non­

interacting gas of massless quarks of two flavors and gluons, nq (pq) = 6.9T4 and 

n9 (p9 ) = 5.3T\ we find 1J < 3.0T3fa 8 • This agrees with the result of the Kubo-type 

calculations [11]. 

It is well known [5], however, that the use of the interaction rate (2) is not a 

good approximation in the case of the viscosity, because large angle scattering is 

the most efficient mechanism for the dissipative momentum transfer. Therefore, the 

interaction rate should be multiplied by a factor sin2 0 under the integral in (2), 

where(} is the scattering angle in the center of mass system: sin2 
(} = 1- (p · p') 2• For 

small momentum transfer q < < p the scattering angle is small. Thus the transport 

interaction rate ftrans is much smaller than the regular rate f. Therefore, 1J estimated 

by using ftrans, is much larger than by using f. As a matter of fact, 1J is enlarged by 

an additional factor of 1/as as we will show in the following. For small momentum 

transfers we may use the approximation sin2 
(} ~ ( q2 fp2) [1- (p·q)2]. Substituting this 
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expression under the integral of (2), we see that the infrared behavior is improved 

due to the q2-factor in sin2 
(), but that hard momentum transfers also contribute 

now. Using the method of Ref. [20], we have to distinguish between soft and hard 

contributions to ftrans by introducing a separation scale gT << q* << T. Then the 

soft quark contribution reads 

soft Cpg
2
T iq• 3 j+q dw w

2 
( w

2 
) 

ftrans,q = 
2 2 dq q -(1 - 2) pe(w, q) + (1 - 2 )Pt(w, q) 

7rp 0 -q w q q 
(3) 

The gluon contribution is obtained again by replacing Cp by C A· Using the expression 

for the spectral functions given in Ref. [23), we obtain 

(4) 

where m 9 = 2gT /3 is the thermal gluon mass in the case of two flavors and Asoft = 

-1.379 was found from a numerical integration. 

The calculation of the hard contribution to the transport interaction rate is much 

more difficult. For this purpose, we have to consider the interaction rate caused by 

all tree level diagrams which contribute to the qq --+ qq, qg --+ qg and gg --+ gg 

processes [24). In the case of a heavy quark this calculation can be performed [18,19] 

assuming the energy of the massive quark to be much higher than the energy of the 

thermal quarks and gluons. For a massless quark we did not succeed in calculating 

the hard contribution. But from general considerations [20] we know that it has to 

be of the form r~::~s,q = B log(T I q*) 2 + Ahard, where B = (3Cpg2Tm;/47rp2
) is the 

factor in front of the logarithm in ( 4 ), and the constant A hard contains contributions 

from the scattering amplitudes beyond the leading logarithm and from the fact that 

the small momentum approximation for sin2 ()does not hold for q ~ T. Keeping only 

the logarithmic term; we obtain 

(5) 

Note that the transport interaction rate depends on the momentum in contrast to 

the ordinary one. Replacing the momentum p of the incident quark or gluon by its 

average value in the QGP yields for quarks ( (pq) = 3.2T) 

ftrans,q = 2.3 T a~ log (~J (6) 
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and for gluons ( (p9 ) = 2. 7T) 

ftrans,g = 6.9 T a~ log (~J . (7) 

Combining (6) and (7) with (1 ), the quark and gluon contributions to the viscosity 

coefficient are given by 
T3 

TJq = 0.82 2 1 ( I ) , as og 1 as 
(8) 

T3 
TJg = o. 20 2 1 ( I ) . as og 1 as 

(9) 

Therefore we end up with 

"' = 1.02 21 ( I ) . as og 1 as 
(10) 

The coefficient c = 1.02 is close to the one found by Baym et al. [4] (c = 1.16), where 

the effective gluon propagator was introduced adhoc in the scattering matrix element 

(Figure 2) in order to prevent infrared singularities. This procedure was justified in 

the case of the energy loss of a heavy fermion by comparing its result to the one 

obtained by using the effective perturbation theory for the imaginary part of the self 

energy of Figure 1 [18], but there is no proof for its validity in general. 

If we try to extrapolate our result to realistic values of the coupling constant e.g., 

as :::::: 0.2 corresponding to g :::::: 1.6 [25], we encounter serious problems. First of 

all, the leading logarithm approximation is no longer justified, because the constants 

behind the log(1las)-terin may be of the same order as the logarithmic term. These 

corrections can be obtained in principle by calculating Asoft and Ahard as described 

above. 

But even after including these terms, problems arise when these calculations are 

extrapolated to realistic values of a 5 • For example, in Ref. [19] an unphysical negative 

result for the energy loss was found if g exceeds a critical value of 1.1. The reason for 

this is the assumption of a separation scale gT < < q* < < T. Alternative methods 

avoiding this scale introduce a gauge dependent subset of diagrams and lead to results 

which are not consistent in the order of g [19]. 

However, it should be noted that there is a trend to larger values of the viscos­

ity coefficient [1 ,2,4], which indicates that a hyclrodynamical calculation, neglecting 
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dissipative effects, of the expansion phase of the QGP formed in an ultrarelativistic 

heavy ion collision is questio~able [2]. 

On the other hand, close to the phase transition the viscosity may be small [2] 

because according to lattice calculations the mean free path Ai may be reduced due 

to an increase of the screening length near the critical temperature [25]. 

III. Conclusions 

Taking into account the transport process (dominance of the large angle scatter­

ing) in the relaxation time approximation and including screening effects by using 

Braaten and Pisarski's effective perturbation theory of high temperature QCD (weak 

coupling limit) [13], we obtained an infrared finite result for the shear viscosity coeffi­

cient of the QGP, even in the absence of static magnetic screening. Keeping only the 

contribution of the leading logarithm, we found 'rJ "' T 3 J[a; log(1/ as)] in contrast to 

results obtained by considering the Kubo formula [11]. On the other hand, the depen­

dence on the coupling constant and temperature of our result agrees with estimates 

from kinetic theory [1,2,4). Furthermore, there is a quantitatively good agreement 

with the result of the variational approach to the Boltzmann equation, where an ef­

fective gluon propagator was introduced in the scattering amplitude [4]. Therefore, 

our result, which contains the sum of all contributions to the lowest order in g in a 

gauge invariant way [13], can be regarded as a justification of the screening procedure 

used in Ref. [4]. In addition, we conclude that the relaxation time ansatz is a reliable 

approximation for the transport coefficients of the QGP in the weak coupling limit. 

A naive extrapolation of these results to realistic values of the coupling constant is 

not possible, but there are indications that dissipative effects of the QGP are not 

negligible. 
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Figure Captions 

1. The quark self energy containing the effective gluon propagator. 

2. Elastic scattering of a quark in the QGP via the exchange of an effective gluon. 
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