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Abstract 

The properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were 

investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from 

complete active space self consistent field (CASSCF) calculations. A detailed development of the 

QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods 

is shown. The many-body aspect of electron correlation is introduced into the QMC importance 

sampling electron-electron correlation functions by using density dependent parameters, and are 

shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed 

analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the 

time-step. 

The D-QMC calculations determined the lithium cluster ionization potentials to be 

0.1982(14) [0.1981], 0.1895(9) [0.1874( 4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 

0.1613( 43) [0.1675( 110)]" Hartrees for lithium clusters n = 1 through 5, respectively; in good 

agreement with experimental results shown in the brackets. Also, the binding energies per 

atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)]. 0.0247(8) [0.0310(12)], 

0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium 

cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear 

attractors. The overall shape of the electronic charge density also bears a remarkable similarity 

with the anisotropic harmonic oscillator model shape for the given number of valence electrons. 
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Chapter 1 

Introduction 

The whole of science is nothing more than a refinement of everyday thinking 
Albert Einstein "Physics and Reality" 

Clusters are an assembly of atoms or molecules which are aggregated together. The 

inter-particle forces within clusters are relatively weak compared to covalent bonding. For exam­

ple, rare gas atoms in clusters are attracted to each other through the weak London or disper­

sion forces, and metal cluster atoms are held together by the delocalized nature of the valence 

electrons in a metallic bond. Clusters have been studied extensively both experimentally and 

theoretically in recent years. Some areas of interest are the origin of the existence of "magic" 

numbers, transition to bulk systems, dynamics and physical properties such as polarizability, 

ionization potentials, and binding energies. There are some fine reviews and journal volumes 

that extensively cover these aspects[55, 21, 78, 97, 113, 10]. 

Small alkali metal clusters are interesting systems because, on the one hand, their 

qualitative properties can be understood from simple models[36, 34, 112], but on the other hand, 

the fine structure can on~y be understood from detailed analysis. The smaller lithium clusters, 

the atom and dimer, have been the focus of many ab initio studies to much success. For example, 

spectroscopic constants[77] have been determined and agree with experiment. However, larger 

clusters have been calculated with mixed success[14, 100]. Either they obtain good ionization 

potentials or fairly good binding energies, but not both. The goal of this study is to use a method 

which has achieved consistently good results for smaller systems, such as atoms and dimers[103], 

and apply it. to lithium clusters. 

The first part describes the quantum Monte Carlo theory (QMC). The non-relativistic 

Schrodinger equation is transformed into a diffusion equation, which describes the average be­

havour of diffusing particles. In the QMC method, random walkers move about a large dimen­

sional space and the distribution of random walkers corresponds to the ground state solution 

1 



2 CHAPTER 1. INTRODUCTION 

of the Schrodinger equation. Importance sampling is introduced to help reduce the statistical 

uncertainty by guiding the random walk with simple computable functions referred to as trial 

wavefunctions. Forms of trial wavefunctions are discussed, with the introduction of density de­

pendent electron-electron correlation to account for the many-body electron correlation effects. 

Two QMC methods, variational QMC (V-QMC) and diffusion QMC (D-QMC), are elaborated. 

The Metropolis algorithm is discussed in connection with V-QMC. To satisfy Fermi statistics 

for the electrons, boundary conditions are introduced into D-QMC. The time-step bias of the 

D-QMC method is examined. 

The second part concerns itself with alkali metal clusters. first some simple models 

are discussed which yield "magic" numbers. One model is geometrical packing, the other is 

the anisotropic harmonic oscillator (AHO). The method for finding optimum lithium cluster 

geometries is explained for n = 1, ... , 5, where n is the number of lithium atoms in the cluster. 

The lithium cluster D-QMC total energies for the atom, its cation, and the dimer are compared 

with best estimates of non-relativistic total energies. The D-QMC lithium cluster ionization 

potentials and binding energies are compared to other ab initio results[14, 100] and experiment. 

The one-electron densities of Lin, for n = 2, ... 5, are compared to the AHO model. The one­

electron densities also exhibit local concentrations of electronic charge, not centered on the nuclei, 

for all clusters larger than the atom. The D-QMC computational time to obtain a given precision 

in the total energies for each of the clusters and cations is found to scale with a simple power 

law with respect to the number of electrons in the system. 

The first appendix shows an analytic derivation of the "short-time" Green's function, 

and describes the Monte Carlo realization of this Green's function. The second appendix discusses 

expectation values. The last appendix is the documentation of my QMC program. 

""' 
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Part I 

Quantum Monte Carlo Theory 
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Chapter 2 

Introduction to Monte Carlo 

Techniques 

And they said every one to his fellow, Come, and let us cast lots, that we may know 
for whose cause this evil is upon us. So they cast lots, and the lot fell upon Jonah. 

Jonah 1:7 

Monte Carlo is a term which is often used in physics to describe some numerical procedure or sim­

ulation. To the un-initiated it conjures up visions of high-rolling gamblers at some foreign casino 

winning or losing fortunes. For our purposes here it describes something more mundane. Simply 

... skillful aiming. Monte Carlo, or stochastic, methods use a certain amount of 'randomness' to 

evaluate integral equations. By repeating the 'experiment' a number of times you can arrive at 

a solution with an associated error. The root of the word, stochastic, comes from the Greek -

stockastikos- skillful at aiming, guessing[51]. Consequently the meaning: random, as in random 

processes, random variables. As in marksmanship there is a certain degree of randomness due to 

external influences on a speeding projectile as it hurls towards the target. However, with skillful 

aiming the marksman with a steady hand can more reliably get the ''hull's eye". 

Our purposes here are to develop accurate and precise stochastic methods to 'solve' 

the non-relativistic Schrodinger equation ... the governing equation of molecular systems. Col­

lectively, these methods will be called quantum Monte Carlo (QMC) methods. The following 

section will motivate why stochastic methods of evaluations may be preferable over the usual 

numerical procedures. 

5 



6 CHAPTER 2. INTRODUCTION TO MONTE CARLO TECHNIQUES 

2.1 Monte Carlo Evaluations 

Stochastic methods can be used to evaluate integral equations. Therefore, it is necessary 

to pose each problem in terms of an integral or integral equation. The reason is that differential 

equations require some sort of finite difference scheme to approximate the function derivatives 

numerically, a local property, to find a solution to the differential equation. Integral equations, 

on the other hand, require finding a global property, an integral. As we shall see, the integral 

can be sufficiently and accurately evaluated by a finite set of points, a measure 0 subset, of the 

volume of integration. A very useful property if the volume of integration is infinite or of high 

dimensionality. 

We illustrate this point with a simple hit-or-miss Monte Carlo example: the area of a 

circle or the stochastic evaluation of 1r (see Fig. 2.1). The integral is of the form: 

where f(x, y) is an indicator function such that 

f(x,y)={ 1 ifx
2

+.y
2

:$1 
0 otherwise 

(2.1) 

(2.2) 

The usual numerical approach is to partition the area of integration into a set of discrete points 

Figure 2.1: Hit-or-Miss estimation of 1r yields an approximate value of 3.128 for a run of 1000 

points. 

1 

y 

-1 
-1 X 1 

and evaluate the function at these lattice points. The ratio of the points that fall within the unit 

circle to all the points within the square will be 1r /4, which is the ratio of the area of the circle 

to the area of the encompassing square. Alternately, the Monte Carlo approach is to uniformly 

and randomly distribute points within the area of integration and likewise the ratio of the points 

that fall within the unit circle to all the points within the square also will be 7r/4. The first 
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approach is more accurate for some given n, the number of points, with an error, or uncertainty, 

decreasing by 1/n. The latter will have a statistical uncertainty which decreases by 1/vfn.[98) 

The advantages of a Monte Carlo approach over the lattice point method are that for 

high dimensional spaces the number of lattice points increases geometrically with the number of 

dimensions and to evaluate the integral all points must be sampled before accurate representation 

of the integral can be found and there is no a priori way to determine that a given partitioning 

will yield the integral with the desired precision. With a Monte Carlo approach you can scatter 

points randomly through the space, evaluate the mean and standard deviation, and stop when 

a desired precision has been reached. Techniques of importance sampling, with some a priori 

knowledge of the integrand, can reduce the overall number of points necessary by preferentially 

sampling the integral in regions ofmore 'importance'. 

A general numerical method to solve a partial differential equation is to break the space 

into discrete points and evaluate all partial derivatives via finite-difference. Then the solution 

is determined such that it meets the boundary conditions and satisfies the partial differential 

equation. The operational words here are "discrete points" imply the necessity of partitioning 

the space into a lattice of points. Since the largest molecular system addressed here is the lithium 

pentamer with a total of 15 electrons the coordinate space of the electronic wavefunction is 45 

dimensional. The wavefunction must be "well-behaved" and normalizable, implying for a bound 

state solution that the wavefunction has the boundary condition that the electronic wavefunction 

goes to zero at infinite distance from the Li nuclei. 

In general, differential equations can be transformed into integral equations via the 

Green's function formalism, hence we can speak of 'solving' a partial differential equation when, 

equivalently, we are evaluating an integral equation. Whether a differential equation or the 

equivalent integral equation is solved depends on the algorithm or numerical procedure used. 

2.2 Time Propagator and the Density Matrix 

We impose the Born-Oppenheimer approximation (fixed nuclear positions) and consider 

the non-relativistic time-dependent electronic Schrodinger equation in position representation, 

where, for N electrons, 

n = 

V' 

(- - - ) r1, r2, ... , rN 

(V' 1, V' 2, · · ·, V' N) 
N 

I: V'l 
i=l 

(2.3) 
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m is the electron mass, fi is the i-th electron position, V'; is the usual gradient operator acting 

on the coordinates of the i-th particle. The total potential V is a sum of Coulomb potentials for 

all the electrons and nuclei in the system 

{2.4) 

I will use Roman letter indices i,j, ... to refer to the electrons and Greek letter indices o:,{3, ... 

to represent the nuclei. By definition, H is the electronic Hamiltonian that represents the energy 

operator of the system. 

The formal solution to Eq. 2.3 exists and is given by[llO) 

(2.5) 

where the exponential factor is the time propagator. Another form of the time propagator can 

be found from the eigenfunctions and eigenvalues cpn and tn, of the Hamiltonian H to be 

eiHtfr. = :~::::ei£,.t/t.lcpn}{cpnl· (2.6) 
n 

In the QMC literature the time propagator is commonly referred to as the Green's function. This 

causes some confusion with other literature where the Green's function is generally identified as 

the response function to the time-independent Schrodinger equation[63, 12, 32), H'I/J = E'I/J. The 

operator form of the Green's function satisfies the following operator equation 

HG=El, 

where 1 is the identity operator. The formal solution for the Green's function is 

G= El 
H 

(2.7) 

(2.8) 

and in terms of eigenfunctions and eigenvalues of the Hamiltonian, the Green's function is 

(2.9) 

assuming that the set of eigenfunctions is complete such that 

(2.10) 
n 

Mathematically the use of the term "Green's function" for the time propagator is still correct, 

where solutions to the time-independent Schrooinger equation can be found from the Green's 

function. 

The statistical density matrix operator, p, describes the thermal occupation of states 

for a given inverse temperature {3 = k~ and is given by 

(2.11) 
n 

,, 
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where lcpn){t;:'n I is the state projection operator and Wn = e-Pe .. /Z is the Boltzmann distribu­

tion function and the partition function Z = En e-P£,.. The statistical density matrix can be 

rewritten in an operator form 

p ~ L e-Pc,.lcpn){l;'nl (2.12) 
n 

= 

1 -PH ze ' 
where the eigenfunctions form a complete set. Following the same reasoning, Trp = ~e-PH = 1, 

and the partition function Z = Tre-PH. Finally, the operator form of the Boltzmann distribution 

function is 

(2.13) 

The similarity between the time propagator operator and the statistical density matrix 

is apparent in that both are exponentials of the Hamiltonian operator and the link, {3 ~ it/h, 

between imaginary time and inverse temperature can be exploited[86]. The QMC method, by 

going into imaginary time, analytically continues the Schrodinger equation, where the imaginary 

time propagator becomes a real exponential analogous to the density matrix. 



Chapter 3 

Imaginary Time Schrodinger 

Equation 

It's as large as life and twice as natural 
Lewis Carroll - "Alice in Wonderland" 

The fundamental principles of QMC have been around since the 1940's when it has been at­

tributed to Fermi who originally transformed the time independent SchrOdinger equation into 

a diffusion equation by applying the inverse Laplace transform to relate energy E and 'imagi­

nary' time[90]. He also pointed out the property of 'relaxation' to the ground state as it will be 

discussed below. However, it wasn't until the advent of sophisticated electronic computational 

machines such as the Los Alamos MANIAC 1 that Monte Carlo solutions could profitably be 

used for finding the equation of state of a simple two dimensional system[89]. Now with im­

proved hardware and algorithms it is possible to evaluate total energies and properties for simple 

molecular systems. 

3.1 Random Flights 

The diffusion equation describes the macroscopic effect of particle diffusion, 

(3.1) 

where Dis the-'diffusion' constant, which for particle transport is related to the viscosity. Starting 

with the random flight problem as described by Chandrasekhar[31], first consider the "drunk­

ard's" walk in one dimension, where the particle either moves to the right or left one step. The 

description of the probability of displacement from the starting point after N steps is a binomial 

1 Mathematical Analyzer., Numerical-Integrator-And Computer, see Ref. (40) & (1] 

10 



3.2. QUANTUM MONTE CARLO METHOD 11 

distribution. In the limit of N --+ oo the binomial distribution approaches a Gaussian distribu­

tion. The general case of a particle undergoing random steps of arbitrary length at a rate of n 

steps per unit time can be found by using the Markov method of random flights. The probability 

that a particle suffers a net displacement lir in time tit is given by 

1 -141'! 2 

p(ti.r, tit) = 
312 

e 4D4f • 

41rDti.t 
(3.2) 

Considering now the probability distribution, t/J( r, t + tit), of the particle at some later time 

t + tit is located at position r in terms of the distribution at t is given by 

1/J(r,t+ti.t)= j t/J(r-ti.r,t)p(ti.r,ti.t)d(ti.r}. (3.3) 

After expanding in a Taylor series in terms of tit and lir, in the infinitesimal limit, the diffusion 

equation is recovered. Since the Brownian motion distribution function satisfies a differential 

equation that is analogous to the diffusion equation, a relation between the average step length 

and the diffusion constant can be found, which gives the Einstein relation[46, 47] 

D = (tiz)2 
2ti.t ' 

where liz is the average step length in one dimension and tit is the time step size. 

3.2 Quantum Monte Carlo Method 

(3.4} 

To exploit the similarity between the Schrodinger equation and the diffusion equation 

the time variable in the former must be analytically continued to imaginary time, T = ~. This 

yields the imaginary time Schrodinger equation[2, 4] from Eq. 2.3 

ot/J 2 ( - ) OT = D\1 t/J- V(R)- .Er t/J: -(H- ET)tP, (3.5) 

where D = :~ is the Einstein diffusion constant and ET is an arbitrary energy offset. The 

energy offset, or trial energy ET as it is called, is introduced for numerical reasons that will be 

apparent below. Atomic units will be used for the rest of work, where distances are measured in 

units of Bohrs (ao = m~
2

e> = 0.529A), energy will be in units of Hartrees (= :: = 27.2116 eV), 

and imaginary time has dimensions of inverse energy. Consequently, the fundamental constants 

in the Schrooinger equation have values h = e =me = 1. The diffusion constant in atomic units 

has the value of D = t. The formal solution to Eq. 3.5 is 

(3.6} 

which spectrally resolved in terms of eigenfunctions and eigenvalues is 

e-(H-ET)T = L:>-(c,.-ET)TI<pn}(<pnl· (3.7} 
n 
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However, it must be stressed that this imaginary time propagator advances a wavefunction for­

ward in imaginary time and hence, does not represent dynamic behavior of the system through 

phase space. The primary reason for making this transformation becomes evident from the 

imaginary time propagation of an arbitrary state 

(3.8) 
n 

with the long time behavior 

(3.9) 

assuming that n = 0 represents the lowest energy eigenfunction that is not orthogonal to 'Ill. 

Later it will be shown how this 'decay' to the ground state can be used to determine the ground 

state energy from the equilibrium distribution. The excited state energies can also be found from 

this transient behavior[35, 11]. 

The imaginary time propagator for Eq. 3.5 can be found by using the derivation of 

Appendix A, and setting F = 0 and a= t(V(R) + V(Ro))- ~ as a measure of the potential 

energy on the path of integration stepping from initial point Ro to final point R. This requires 

the assumption that for short time steps, equation A.1 is locally correct; even though globally 

it's not. Hence the imaginary time propagator is 

(3.10) 

where we use the familiar free-space imaginary time propagator defined from equation 3.5 with 

V(R)-ET=O 
Ul. 

- - ( 1 ) , -(.lt-.ltg)' 
po(RTIRoTo) = E>(T- To)e •v(r-ro) 

41rD(T- To) 
(3.11) 

The Monte Carlo realization of equation 3.5 is enumerated as follows: 

1. Choose a time step ( T - To) sufficiently small. 

2. Start with some initial distribution of points in n 3N space. 

3. Obtain a new set of points R from the initial points Ro such that R = Ro + x, where x is a 

Gaussian distributed random vector with mean of zero and variance equal to 6N D(T- To). 

4. Branch or weight each point R according to e-a(T-To), where 

1 ( - - ) a= 2 V(R) + V(Ro) - ET. (3.12) 

5. Adjust ET such that the branching ratio = 1. Go back to step 3. 
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The value of the growth energy Er is a measure of the ground state energy since it is adjusted 

such that the distribution population growth is constant. This can only occur if ET = c0 . 

However, since this is a stochastic process, there necessarily is some associated uncertainty to the 

value ET which can be reduced by sampling ET after each iteration or block of iterations and 

averaging. Finally this prescription is only correct for the given time step T - To and a series of 

evaluations of Er must be performed at differing time steps and extrapolated to (T- To)- 0 to 

obtain the exact energy. 



Chapter 4 

Importance Sampling 

A little knowledge that acts is worth infinitely more than much knowledge that is idle 
Kahul Gibran 

Rarely is it necessary to approach the solution of the Schrodinger equation without some prior 

knowledge of the system in question. We already know from the Lebesque square integrability 

of the wavefunction that the wavefunction should satisfy the boundary condition 

(4.1) 

for bound state problems. 

The QMC method can benefit from the results of previous ab initio calculations. This 

prior knowledge can be used advantageously to reduce the statistical uncertainty; hence, the 

computational time necessary to attain a given precision. The question is how to introduce this 

a priori knowledge. This can be accomplished through a method called "importance sampling". 

As its name implies ... just sample the regions in space where it is more important to do so, in 

other words, where the wavefunction is large as opposed to regions of small probability (i.e. 'Ill = 0 

are the nodes of the wavefunction or regions of zero probability). To this end we define the "trial 

wavefunction" tPT, which is some analytic function that has properties approximating the exact 

wavefunction. Generally the trial wavefunction will be some modified ab initio wavefunction, 

and should be 'easily' computable with respect to its value, gradient, and Laplacian. Instead of 

solving for 'Ill, we solve for f, which is called the "mixed distribution", where 

!(R, r) = 1/JT(R)w(R, r). (4.2) 

It is a fairly easy exercise to transform equation 3.5 into the imaginary time Schrodinger equation 

with importance sampling[28, 5, 25, 88] 

g.,, D"V2 f + D"V· (tfQ) + (EL-ET)f = 0 

diffusion drift branching 
(4.3) 

14 
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where we define the "quantum force" 

(4.4) 

and the "local energy" 

- H'I/JT(R) D ( - 1 -2) EL(R) = I - = --2 "\7. FQ + -2FQ + v. 
1/JT(R) 

(4.5) 

The local energy is a scalar energy field that is defined locally at each point in space, and likewise 

the quantum force is a curlless vector field which can be thought of as the negative gradient of 

a 'potential' field (i.e. -log ( 1/JT(R)
2

) ). This last property implies that FQ is a conservative 

field and that only the end-points are important when evaluating path integrals from some initial 

point Ro to some final point R. 

4.1 Ab Initio Wavefunctions 

First, we'll consider single determinant wavefunctions such as those obtained from the 

Hartree-Fock self consistent field (HFSCF) method. The HFSCF wavefunctioil is anN-particle 

function comprised of a Slater determinant of !-particle functions. 

{4.6) 

The Roothaan approximation[105, 106] is that each !-particle function, or molecular 

spin orbital (MSO), is a linear combination of atomic orbitals {LCAO or AO) multiplied by a 

spin function. The Roothaan procedure changes the Hartree-Fock equation into the Hartree­

Fock-Roothaan matrix equation, which is easier to solve for general molecular systems. The 

set of AOs is called a basis set and incompletely spans the MSO Hilbert space. Some common 

terminology concerning basis sets are single, double, triple "zeta" which refers to the number AOs 

with differing ( -s for each orbital type. Split valence indicates that core orbitals are represented 

by one , say, single zeta set of orbitals and the valence orbitals are represented by a different 

number of orbitals, perhaps double zeta. Even though all the AOs contribute to each MSO, in 

lithium the core orbitals are described primarily by the ls basis functions. By not having double 

zeta ls AOs one sacrifices ·some flexibility in obtaining good total energies by not adequately 

describing the core orbitals, but the practical experience is that the valence orbitals are more 
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important when considering molecular properties such as dipole moments, ionization potentials, 

dissociation energies. 

Generally I use the restricted Hartree-Fock (RHF) wavefunction, where for each MSO 

there is another that has the same spatial molecular orbital (MO) function except has opposite 

spin. If there is an even number of electrons with half of them spin up then it is a closed shell 

RHF, else it is an open shell RHF. Since the Hamiltonian has no magnetic terms and, therefore, 

is independent of spin we can relax the spin eigenfunction requirement of the wavefunction, 

such that expectation values of non-spin dependent observables will be the same. Therefore, a 

wavefunction which is a product of two Slater determinants, one for the spin up electrons and 

another for the spin down electrons, will serve adequately to obtain energy expectation values. 

Defining the MOs in terms of AOs 

4>~t(fi) = L L Cap .. t?p .. (Ti- ra) ' (4.7) 
a Po 

where each atomic orbital (AO) t?p .. is centered on the a-th nuclei and the index Pa labels the 

AO type (i.e. 1s,2s,2pz, ... ). 

The hierarchy can be continued by making each AO a contraction of Gaussian type 

orbitals (GTO), of which there are several different GTO basis sets such as Huzinaga's GT0[65], 

Dunning's contractions of Huzinaga's[43], Pople's 6-31G, etc.[61], and an almost endless list of 

variants. However, in our case we don't need the integration computational advantages of the 

GTO, so instead we use the elementary Slater type orbitals (STO) 

(4.8) 

where Yim is the spherical harmonics and R!T0 is defined as follows 

R!To(r) = {1/J; (2(rt-1 e-(r (4.9) 

where the (parameter may be different for each AO. The STOs are simpler than the hydrogenic 

orbitals since they don't contain radial nodes for n > 1, which correspond to higher excited state, 

and the form is the same for a given n regardless of azimuthal quantum number I. The orbitals 

that are actually used for ab initio calculations and for the QMC method are linear combinations 

of the orbitals in Eq. 4.8 for given n, I over differing magnetic quantum number m, such that the 

orbital is entirely real. See Table 4.1 for a list of the first few. 

Since the HFSCF wavefunction is a product of 1-particle functions that were determined 

in the 'average' field ofthe other particles, it is necessarily deficient in describing electron-electron 

correlation, where the dynamics of one electron depends on the state of the otlier electrons. The 

best that HFSCF can do is called the Hartree-Fock limit. The difference between the Hartree­

Fock limit and the exact non-relativistic energy is defined as the correlation energy, the energy 
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Table 4.1: Real Slater type orbitals through n = 3, with Zi,Zj = :z:,y,z and i 'I j. 

orbital STO orbital STO 

1s 1 (3/2e-Cr 
~ 3s #C/2r2e-Cr 

1r 

2s _1_,5/2re-Cr 
../3i 3pz; [:a;CI2:z:·re-Cr • (4.10) 

2pz; *'5/2zie-Cr 3dz;z; #(7/2z·z ·e-Cr • J 

3dz;2 j'l;CI2:z:.2e-Cr • 

due to electron-electron correlation. The goal of ab initio methods then is to recover as much 

of the correlation energy as possible. To this end the configuration interaction (CI) expansion is 

employed, which uses a sum of N-particle wavefunctions. 

The CI expansion[118] is a linear combination of determinantal wavefunctions from the 

HF MOs, obtained from solving the Roothaan equation. The number of MOs generated is equal 

to the number of AOs, hence the maximum number of N -particle Slater determinants generated 

is just the number of combinations of 2NMo objects taken Nat a time, ( 
2
N:o ) . Then the 

CI wavefunction is of the form 

14>} =co l~o} + cs IS} +CD ID} + CT IT}+ CQ IQ} + · · · , (4.11) 

where S, D, T, Q, ... represent the set of single, double, triple, quadruple, etc. excitations out 

of the Hartree-Fock determinant. If all possible excitations are taken then that wavefunction 

represents the 'exact' solution to the many-electron problem ... for that given basis set, and 

is called a full Cl. However, even for relatively small basis sets usually some truncation of the 

expansion must be made to accommodate computational ·limitations. These truncations then 

introduce problems such as the size consistency bias. For example if we do a doubly excited CI 

(DCI) on a dimer A+ B, where A and B are infinitely separated, this is clearly different from 

doing a DCI on monomer A and then on monomer B and adding the total energies. The latter 

case allows both A and B to be doubly excited which is excluded when A + B are considered 

together. Hence, the A + B total energy does not equal the total energy of A summed with the 

total energy of B. 

Another problem related to basis set expansions is the basis set superposition error. 

Since each AO contributes to each MO to some degree then, for example, do an HFSCF on 

dimer A + B and on monomers A and B. The larger basis set of A + B influences the quality 
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of the total energy. To obtain the dissociation energy the naive approach is to subtract the total 

energy of A+ B from the sum of total energies of A and B. However, in the latter case the total 

HFSCF energy of A was determined with a smaller basis set without the contribution of AOs 

centered on B, and likewise for B with respect to A. The proper way to overcome the basis set 

superposition bias is to compute the total energy of A in the presence of 'ghost' orbitals centered 

where B would be, and conversely for B with respect to A. The QMC method is unaffected by 

such questions since it will be shown later in chapter 6 that, except for the trial wavefunction 

nodes, the D-QMC energy is independent of basis set and wavefunction type. 

An alternate method based on CI is the multi-reference DCI (MRD-CI), where double 

excitations are allowed out of, not one, but several reference configurations to partially account for 

higher excitation terms. Another approach to limiting the CI expansion is to take a given subset 

of the Slater determinants, say, the single and double excitations out of the HF determinant, 

and then the N-particle coefficients and the MOs contained within the determinants are both 

optimized in a self consistent manner. This is called the multi-configuration self-consistent-field 

(MCSCF) method. If all excitations are allowed for a given subspace of the molecular orbitals 

and electrons then it is called a complete active space self-consistent-field (CASSCF). 

4.2 Correlation Functions 

Since the QMC trial wavefunction can be any arbitrary analytic function(103) such 

that the gradient and Laplacian can be easily computed, we can take advantage of this and 

introduce correlation functions that can partially account for the particle-particle correlation 

that is lost from SCF -type wavefunctions. A handy form is a product of the antisymmetric SCF 

wavefunction '110 and a symmetric form(23) 

( 4.12) 

where U = L;' ij Iii ( Tij) + Lia lia (ria) and the prime on the sum is a short hand way to indicate 

that the sum excludes i = j terms. The Fermi correlation, due to the Fermi statistics, is present 

from the antisymmetric SCF wavefunction. The functions fii(rii) and lia(ria) are, respectively, 

electron-electron and electron-nuclear correlation functions which will be defined later. We will 

also assume that the trial wavefunction and parts are real. 

The electron-electron correlation functions are generally 'repulsive' due to the mutual 

electron-electron Coulomb repulsion. The electrons tend to correlate their behavior such that 

they avoid each other, of which the SCF wavefunction fails to adequately describe since the 

'motion' or one-particle function of one electron was only considered in the average field of the 

other electrons. 
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The electron-nuclear correlation functions are included to give some added flexibility 

to the trial wavefunction such that the electron-nuclear cusp can be satisfied. We ascribe the 

following properties to the electron-nuclear correlation factor 

{4.13) 

In other words the linear term of the electron-nuclear correlation function between the i-th 

electron and the a-th nucleus is -Zaaia as the distance decreases to zero. 

4.2.1 Electron-Nuclear Cusp Condition 

The electron-nuclear cusp condition can be easily understood from the Schrodinger 

equation (2.3) by considering that the i-th electron is approaching 'too' close to the a-th nucleus 

(i.e. ria)· Then the electronic Hamiltonian can be naively approximated by 

{4.14) 

The Laplacian then will be V[ ~ ~ + ..1.... ~ . + · · ·. The -r1 term in the Laplacian and the orio• r, 0 ur, 0 ao 

potential will become infinitely large unless the two parts cancel each other out. Eliminating the 

-r1 cusp as ria - 0 leads to the following condition ... 
1 OtPT -Za ---=--, 

tPT Oria 2D 
{4.15) 

and if the wavefunction can be approximated to be constant except for the corresponding 

correlation factor, 

{4.16) 

Having the approximate electronic Hamiltonian acting on the approximate trial wavefunction 

requires with the provisions of Eq. 4.13 that aia = 2b to eliminate singularities in ria· However, 

the assumption that the determinantal part of the wavefunction is constant as ria - 0 is generally 

false and requires more careful examination if one wishes to satisfy the cusp condition. 

Satisfying the Cusp Condition on Average. 

The cusp condition can be satisfied on average by considering the average effect of the 

other electrons[58]. The one-particle density is defined as 

{4.17) 
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We shall assume that the other correlation functions can be neglected when considering 

the density near the a-th nuclei. 

(4.18) 

where Cis a constant representative of the effect of the other correlation functions, e2f;,.(r;,.) is 

due to the correlation function between the i-th electron and the n-th nucleus, and jJ is the the 

SCF one-particle density 

(4.19) 

nocc is the occupation number for each MO. (for SCF wavefunctions nocc = 0, 1, 2, and may be 

non-integer for CI wavefunctions.) 

Take the cusp equation 4.15 and multiply by 1/Jr and integrate over all the other electrons 

except for the i-th electron 

J 1/J 81/Jr dRN. -1 = Za J .,p2 dRN.-1 
T Oria (s) 2D T (s) 

(4.20) 

where dR{[)- 1 = dr1 ... dfi-1dfi+1 .. ·d~, then 

1 0 Za 
2 Oria p(ria) = 2Dp(ria) (4.21) 

with the approximate one-particle density of equation 4.18 as ria - 0 and determining the linear 

term of ha(ria) 

= I. ( 1 0 "( ) Za ) 1m • p ria +-
r;,.-+0 2p(ria) Oria 2D 

(4.22) 

In general the antisymmetric part of the trial wavefunction will partially satisfy the electron­

nuclear cusp condition. The value of aia will tend to be smaller with larger basis sets on each 

nuclei. 

Exact Electron-Nuclear Cusp Condition. 

The electron-nuclea,r cusp condition can be determined exactly for the trial wavefunction 

of equation 4.12 by using the properties of determinants: detAB = det A det B , and det(eB) = 
e Tr(B). We can combine the electron-nuclear part of the correlation functions with the single­

determinant part of the wavefunction. The electron-electron part doesn't contribute to the 

derivation and will be lumped together in coefficient C. Define the matrix elements B"i = 
eL:11 /; 11 6"i then 

0 

(4.23) 

0 
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The wavefunction can be rewritten as 

<P1 < r1 )eE~~ hll 

21 

( 4.24) 

From this we can see immediately that any operation concerning the i-th electron only affects 

the i-th row of the determinant. 

The cusp condition as given by equation 4.15 can be specified in another way which 

explicitly depends on the Hamiltonian 

(4.25) 

Using the LCAO description of the MOs of equation 4.7, The effect of this second cusp condition 

on an element of the i-th row of equation 4.24 can be found from straight-forward algebra 

li H A.(-)E'ill m ri01 iY'" ri e ~' = 
rio~o 

(4.26) 

[ -2D ~ c.,.U,.(••• = 0) + z. (2Da1.- !) ¢.('i = r.)J ,L,, 1·• , 

where the above equation follows from equation 4.13 and defining f 01p = fip(~ = T.:r). The 

prime refers to the first derivative to the argument of the AO, and if the AOs are STOs then the 

only contributions comes from 11~Ari01 = 0) = -st and 11;.(ri01 = 0) = %· 
A general solution to equation 4.25 is difficult to find except for special cases. A par­

ticular solution can be found by setting each element of the i-th row equal to zero, or in other 

words find conditions such that equation 4.26 can be made to vanish. This can be accomplished 

by using AOs of the type that 11~ .. = 0 , and setting ai 01 = 2b. 

Cuspless Orbitals 

One way to satisfy the vanishing-derivative condition is to use AOs that are a sum 

of GTOs, since each GTO has a quadratic argument in the exponential the first derivative 

necessarily vanishes. 

11 (r- 13 ) - ""'c e-"YA((r;~')2 
Pll I - L..J a 

a 

(4.27) 

To get a fairly good description of a STO usually req~ires a sum of at least 6 Gaussians noted 

as ST0-6G. For QMC this becomes too computationally intensive and generally only produces 
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adequate results for V-QMC, but gives excessive branching near the nuclei for D-QMC which in 

turn underestimates the total energy1 . 

A second method is to 'add' a ls STO such that the derivative vanishes. 

where the ls and 2s STO are given from Table 4.1. Since only one condition is given, namely the 

derivative at r = 0, then some flexibility exists in the choice for the other condition. Either the 

intercept !?0 or the range r 0 of the cusplessness may be chosen. (See Table 4.2.) In this study 

Table 4.2: Electron-nuclear cusp condition satisfied by addition of 'extra' ls STO to each ls and 

2s AOs found in the STO basis set. 

I condition 
II 

range= ro .L - ( _L) 5/2 .L 1 ( _L) 5/2 
ro a~o ro ../3 a,. 

intercept = t?o ~ - ( _Lr'2 .£!:.._ 1 ( _L) 5/2 
1-..;r"o(-372 a~o $"o ../3 a,. 

the range was specified for the cusplessness and the electron-nuclear correlation function range 

was set equivalently and the linear term was set to satisfy the electron-nuclear cusp condition. 

Another possibility is to construct special functions for the ls and 2s such that they 

have vanishing derivative at the origin and behave similarly to the STO away from the origin. 

For this purpose I have defined lc and 2c AOs 

_1_,3/2e-c(r+;$) 
Vi 
_1_,5/2 (r + ~) e-c(r+;$) . 
y'3;r r + c 

These have the advantage that computationally they are only moderately more complicated 

than the equivalent STO, whereas the technique of adding compensating ls STOs doubles the 

1 Excessive branching can be understood from observing the difference between STOs, t?f~TO ex e-(r, and 

GTOs, t?~TO ex e-er
2

• The Laplacian for each is 

V2t?f~TO = [e _ 2,.(] t?f~TO 
and 

= 
For the STO the Laplacian gets negatively large as r --+ oo, and hence the kinetic energy gets positively large 
thereby offsetting the increase of the potential energy, however, this is not the case for the GTO where the kinetic 
energy remains bounded. (see chapter 6- for furtlier details on "branchiiig".) 
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amount of computation done for each 1s and 2s which comprise the major orbital types for small 

molecules. 

4.2.2 Types of Correlation Functions 

Correlation functions can be of any arbitrary form, but it is expedient to choose simple 

forms for ease of evaluation; however, they should have certain properties[116). 

1. They satisfy the cusp condition to some degree, on average or exactly if possible. 

2. As the interparticle separation decreases the correlation functions should describe the cor­

rect behavior appropriate to the given pair of particles. (i.e. electron-electron correlation 

should be repulsive and maximally so in the limit of vanishing inter-electron distance.) 

3. The pseudo-force between the two given particles should vanish as the particles become 

infinitely separated. This corresponds to the correlation function approaching a constant 

as interparticle distance increases to infinity. 

The correlation functions most often used in QMC are listed in Table 4.3. A wide range 

of correlation functions have been used for the electron-electron correlation. Currently, only the 

PadC-Jastrow is used for the electron-nuclear correlation functions. 

Table 4.3: Common electron-electron correlation functions used in QMC with SCF wavefunctions. 

Linear cusp condition is satisfied by a (a1 for Q P-J). 

I description I notation form 

PadC-J astrow P-J exp ( 1~~r) 
quadratic Pade-Jastrow Q P-J ( 111r±aar

2 
) exp l+btr±b2r2 

Sun's double exponential[116] exp exp exp [-bexp ( -arfb)] 

quadratic double exponential Q exp exp exp [-bexp (-arfb- cr2)) 

Sun's 1 - exponential[116) (1-exp) 1- bexp(-a(1- b)r/b) 

quadratic 1 - exponential Q (1-exp) 1- bexp (-a(1- b)r/b- cr2) 
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4.2.3 Density Dependent Correlation 

A simple model is proposed to relate the electron density and the electron-electron 

correlation range. This relation manifests itself by modifying some of the electron-electron corre­

lation functions listed in Table 4.3 to use parameters which are not constant but are dependent 

on the one-electron density. 

In an earlier paper[116) a simple position-dependent form was proposed for the lithium 

dimer, such that the b parameter for the (1-exp) electron-electron correlation function was varied 

depending on the midpoint of the two electrons involved. Roughly speaking if the midpoint is 

near the bond center then the effective correlation range is shorter than if the two electrons are 

at some distance away from the molecule where they experience a stronger repulsive correlation. 

Density dependent correlation can be easily understood from the simple picture of the 

free electron gas of N electrons confined to a cubic box of length L. In momentum space (or 

wavenumber space), at zero temperature, the allowed electronic momentum states form a dense 

cubic lattice of points that fit within a Fermi sphere of radius kF, or the Fermi wavenumber. The 

lattice point separation is 2Tr I L. The Fermi wavenumber, kF, is easily found from N = 2 ( 2!7~~3 
to be 

kF = .V3Tr2n (4.28) 

where n = N I L3 is the electron number density. 

Figure 4.1: Fermi sphere of allowed non-interacting electron gas states in momentum space at 

T=O. 
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Due to the electronic many-body effect the electronic Coulomb interaction is screened 

by other electrons. A simple description of the electron gas response to electric fields is given by 

the Thomas-Fermi dielectric function in k space 

( 4.29) 

where 1/ks is the screening length which is given by 

2 61rne2 {f3 n 113 
k ----4 --s - filA:} - 7r ao (4.30) 

2m 

where a0 as the Bohr radius. Taking the Fourier transform of the Coulomb potential in momen­

tum space with the Thomas-Fermi dielectric function, leads to the screened Coulomb potential 

e 
V(r) = - exp( -ksr) . 

r 
(4.31) 

The screening term exp( -ksr) suggests that the electrons don't fully experience their mutual 

repulsion unless they are within the screening distance 1/ks, hence the range of correlation ro 

depends on the electronic density 

ro ex _!_ex n-1/ 6 

ks 
(4.32) 

However, in a molecule the electron density is non-uniform and can be given by the one-electron 

density as given by equation 4.19. Furthermore, since the one-electron density may be, and 

probably is, different at the locations of each electron, a measure of the screened electronic 

density can be given by the geometric mean of the one-electron density for each pair of electrons 

that the correlation function is being evaluated for. 

The ranges for the given correlation functions can be approximated from Figs. 4.2 

and 4.3. The range of the Pade-Jastrow is approximately given by r0 ex 1/b, and for the double 

exponential form is r0 ex b. The final forms used for bin the electron-electron correlation functions 

are given in Table 4.4, where parameter 1 is thrown in to guard against numerical overflows if, say, 

one of the electrons is a great distance away from the molecule, hence its one-electron density is 

vanishingly small. However, during parameter optimizations, 1 usually vanished and succeeding 

trials ran with no ill effect. 

An example of the effectiveness of density dependent correlation can be seen from a 

comparison of five trial wavefunctions for the lithium dimer and pentamer, each with identical 

antisymmetric parts, varying only the electron-electron correlation. 'V-QMC' refers to variational 

QMC which is a direct measure of how well the wavefunction approaches the exact ground state 

by how much the correlation energy is recovered. This will be explained later in Chapter 5. We 

seek a trial wavefunction that 'best' reproduces the exact ground state and provides the least 

statistical uncertainty. A trade-off must be made between the more computationally intensive 

forms and less precise simple forms[27]. Some of the efficiency of the density dependent form lies 
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Table 4.4: Functional forms for the correlation function b parameter corresponding to Table 4.3, 

such that the correlation function range becomes dependent on the one-electron density n( ri) for 

the i-th electron. In the correlation function notation n refers to density dependent correlation 

and the remainder corresponds to the notation of Tables 4.3. 

Notation b(n(ri), n(r;)) 

n-P-J P(n(ri) + 'Y)l/12(n(r;) + -y)l/12 

n-exp exp t!. 
( n( r; )+1' )'712( n( r; )+-y )1712 

in the fact that all the necessary information to construct the one-electron density already exists 

since the antisymmetric part of the wavefunction is a Slater determinant of spin molecular orbitals 

such that the one-electron density can be simply given by equation 4.19. The results shown 

in Table 4.5 indicate that correlations functions do increase the amount of correlation energy 

obtained and is consistent with previous results of Sun et.a/. [116]. The n-exp exp correlation 

function returns 2%- 3% less correlation energy than the more sophisticated correlation functions 

of Sun et.al.; however, this form contains only one free parameter as opposed to six, making 

parameter optimization particularly easy. 

In addition, we note that the density dependent form of the Pade-J astrow consistently 

performs worse than the globally constant form. This can be attributed to the assumption that 

the correlation range is inversely proportional to parameter b. For lithium the density dependent 

value of b is typically of order unity, which corresponds to the region of Fig. 4.2 where r 0 ex r-v 

such that v may not be sufficiently dose to unity as supposed. To make effective use of the 

density dependent Pade J astrow form may also require the optimization of v, thus eliminating 

some of the advantage of using a density dependent form in the first place. 
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Table 4.5: Electron-electron correlation functions are compared for a couple of systems, Li2 and 

Lis. The anti-symmetric part of the trial wavefunction is the same for each with a double 'zeta' 

HFSCF wavefunction. The lithium dimer internuclear separation is 5.05ao, and energies are in 

atomic units. The lithium pentamer geometry is the same as pictured in Fig. 8.1. The V-QMC 

energies are in Hartrees and %Ecorr is the percentage of correlation energy gained from inclusion 

of the electron-electron correlation function. In the list of correlation functions the n refers 

to density dependent correlation and the remainder corresponds to the notation of Tables 4.3 

and 4.4. 

0 b = 1.3 
bb = 2.0 
Cf3 = 3.0,"')' = 0. 
d{3 = 4.2,"')' = 0. 
eb = .250 
fb = .250 
g{3 = .250,"')' = 0. 
h[J = .220,"')' = 0. 

Correlation 

Function 

none 

P-J 

n-P-J 

exp exp 

n-exp exp 

Li2 

V-QMC 

-14.8716(16) 

4 -14.9321( 8) 

c -14.9126(14) 

e -14.9317( 8) 

g -14.9390( 8 

Lis 

%Ecorr V-QMC %Ecorr 

-0 -37.2037(23) 0 

49 b -37.3415(15 44 

33 d -37.2689(21 21 

49 J -37.3598(14 50 

55 h -37.3718(18) 54 
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Figure 4.2: The electron-electron Pacle Jastrow correlation function parameter bas a function of 

range ro. a= t, or t whether like or unlike spins respectively. All values are in atomic units. 
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Figure 4.3: The electron-electron double exponential correlation function parameter b as a func­

tion of range ro. a= :l-, or t whether like or unlike spins respectively. All values are in atomic 

units. 
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Chapter 5 

Variational QMC 
Our wisdom and deliberation for the most part follow the lead of chance 

Michel Eyquem de Montaigne 

The topic of trial wavefunctions has been quite expansive thus far in the previous chapter. 

However, the topi~ would be pointless unless there existed some way to objectively evaluate the 

relative merits of each class of wavefunctions. An appropriate measure can be found via the 

Rayleigh-Ritz variational principle 

(5.1) 

Therefore, the wavefunction tPT which yields the lowest value for the expectation value on the 

right then 'best' approximates the exact ground state and the equality only holds if the wave­

function tPT is the exact ground state for the Hamiltonian 1. The stochastic realization of the 

right-hand integral is most easily accomplished using sample-mean Monte Carlo methods[108] 

with importance sampling techniques, 

( I I ) J !li!z..J.2 dR N 
tPT H tPT = liJT '1-'T- ~ .!. L EL(Ro) 
(1/JTitPT) f,Pj.dR N i=l 

(5.2) 

where the points R, are distributed according to the probability distribution function (pdf) 1/;j.. 

The generation of sample points according to 1/;j. can be accomplished once a differential 

equation is found such that 1/;j. represents the solution. The most likely choice is to look at the 

imaginary time Schrodinger equation with importance sampling and see what modifications need 

to be made such that 1/;j. will be a solution. Equation 4.3, the partial differential equation for 

f (now-1/;j.) returns (EL- ET)f. Now by subtracting this term from the partial differential 

equation one then obtains the Fokker-Plank equation 

;Tf- D"V2 f + D"V. (f FQ) = 0, (5.3) 

1 Alternately, the statistical variance can be minimized such that the 'best' trial wavefunction would have the 
lowest statistical uncertainty, where the exact ground state would give a constant value for the local energy and, 
hence, zero variance (see [42] and [117]) 

30 
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where instead of the mixed distribution as given by Eq. 4.2 the homogenous solution is given 

by 

(5.4) 

Making the finite time approximation that the quantum force Fq is locally constant 

(see Appendix A), what follows is the discrete-time Langevin equation 

R = Ro + DtJ.TFq(Ro) + x, (5.5) 

which simulates the transition probability T(RTIRoTo) as given in Appendix A, where dT = 
T- To. However, due to the short-time approximation there still is a time-step bias, which 

prevents us from sampling from a distribution of points R; which are distributed according to 

pdf t/Jf.. The next section addresses this problem and shows how the short-time approximation 

of the imaginary time propagator can be circumvented. 

5.1 Metropolis Algorithm 

In an influential 1953 paper Nicholas Metropolis, et.a/.[89] proposed a novel technique 

for generating random variates from a conditional probability distribution function ( cpdf), where 

the probability distribution function (pdf) is known. Providing the known pdf represents the 

limiting density of the cpdf, i.e., satisfies a homogenous Fredholm equation of the second kind, 

!(X) = j G(XIXo)f(Xo) dXo , (5.6) 

where X,Xo E 'RN, the kernel G(XIXo) is the cpdf to sample from with respect to pdf f(X). 

Simply stated, Metropolis sampling is to: 

1. propose a move, 

2. either accept it or reject it. 

Necessary for the Metropolis algorithm is a transition probability T(XIXo) and an acceptance 

probability A(XIX0 ). The transistion probability has the property that moves from X0 will end 

somewhere in the space, 

j T(XIXo) dX = 1 . (5.7) 

The acceptance probability lies between 0 and 1 (and, of course, the rejection probability is given 

by 1- A(XIX0 )). The choice of A(XIXo) determines the cpdf. Even though any T(XIXo) can 

be used, the prudent choice for the transition probability is one that can best approximate the 

cpd[ 
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Suppose one has a distribution of points which will be labeled the n-th generation pdf 

In, then the n + 1-th generation pdf ln+l can be found with the Metropolis algorithm[66], 

ln+t(X) = j A(XIXo)T(XIXo)ln(Xo) dXo (5.8) 

+ ln(X) j [1- A(XIX)) T(XIX)dX. 

The first term on the right-hand side of the above equation is the accepted move, where some 

of the points of the n-th generation distribution are moved with respect to the transition proba­

bility T and form part of the n + 1-th generation. The second term on the right-hand side above 

are the points of the n-th generation which didn't move and now form the rest of the n + 1-th 

generation distribution. In the limit as n- oo, the limiting density is given by I= limn-oo In· 
The exact cpdf G(XIXo) embedded in the Metropolis algorithm of Eq. 5.8 can be expressed by 

G(XIXo) = A(XIXo)T(XIXo) + 6(X- Xo) j [ 1- A(XIXo)] T(XIXo)dX. (5.9) 

where 

Metropolis showed that the choice of 

A(XIXo) =min [1, q(XIXo)] , 

T(XoiX)I(X) 
q(XIXo) = T(XIXo)I(Xo) ' 

will generate a cpdf according to G(XIXo) and satisfies detailed balance, 

G(XIXo)I(Xo) = G(XoiX)I(X) , 

(5.10) 

(5.11) 

(5.12) 

or that transitions from Xo- X in the equilibrium distribution are as likely as from X- X0 . 

There are other choices that can be made for A(XIXo), but this one is efficient and physically 

intuitive. Assume for the moment that T(XIXo)I(Xo) corresponds to a Boltzmann distribution 

at some temperature T with a uniform density of states noted as X, then Metropolis sampling 

would correspond to a transition from one state X0 to another X, where if the new state has 

lower energy than the first state then it is accepted (A(XIXo) = 1), or else it is accepted with a 

probability (A(XIXo) < 1). When viewed in this fashion, and letting T- 0, the process is called 

simulated annealing[72, 125]. Some of the possible forms of the acceptance probability are 

shown in Table 5.1, which might be more efficient for some types of transition probabilities T than 

others. All produce results near the exact expectation value and commensurate uncertainties; 

however, this has not been tested for more extensive systems. If the second expression for the 

acceptance function of Table 5.1 is taken to the limit of large v 

lim 
1 

l/ = min[q(XIXo), 1] , 
v-oo (1 + q(XIXo)v) . v. 

(5.13) 

" 
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Table 5.1: Alternate Metropolis acceptance functions, A(q), that satisfy detailed balance A(q) = 
A(1fq)q, where the ratio q is given by equation 5.11. It can be shown the for any s(q), such 

that Iim9_ 00 q s(q) = c-1 and lim9-o s(q) = co , where 0 ~ s(q) ~ 1 and c-1 +co = 1; then 

an acceptable choice for A(q) is given by A(q) = qs(q) + s(1/q). V-QMC results are tabulated 

':f; for the ground state of the hydrogen atom with a trial wavefunction tPT(r) = e-Cr, where 

( = 1.1a01 and energies are in Hartrees. 

s(q) A(q) Energy 

1 _g_ -.494733 (233) 2(1+9) 1+9 

1 (1 + q-v)-1/v -.494942 (242) 0 

2(1+9")17" 

6(1- q) min[q,1] -.494977 (217) 

exact -.495 

then one can then retrieve the Metropolis' form of the acceptance function. This may be useful in 

theoretical considerations when the discontinuous Metropolis acceptance function of equation 5.10 

can lead to intractable integrals. 

From a careful examination of the Metropolis algorithm it becomes clear that the key 

requirement is that f(X) must be known analytically. The Metropolis algorithm can only be per­

formed in a variational calculation where f(X), by definition, is given by equation 5.4. Therefore, 

the Metropolis algorithm allows the evaluation of the Rayleigh-llitz variational integral without 

resorting to extrapolation to zero time step. Hence any arbitrary time step can be used, with the 

requirement that the acceptance ratio should have some reasonable value. As a typical example, 

the V-QMC results shown in Table 8.2 had a time step ofT = 0.100 and an acceptance ratio 

approximately 85%, because it was desirable to have the rejection ratio (15% in this case) to be 

less than the inverse of the number of electrons for the atom with the highest nuclear charge. 

For lithium clusters where the highest nuclear charge is Z = 3, this corresponded to a cut-off 

rejection of 33%. This contrasts with the general wisdom of adjusting the time step to obtain 

an acceptance ratio of 50%[8]. This generally allows all the electrons in the molecule to move 

reasonably often, and minimizes the chance that certain core electrons are 'frozen' and their 

moves are constantly- rejected. The electrons nearest to the nuclei generally have large quantum 
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forces, which are trying to move them towards the nuclei and, if the time step is large, through 

the nuclear center to a distance beyond. If the distance is large then the quantum force at the 

final point may be small, and the ratio q(RTIRoTo) or the acceptance A(RTIRoTo) will also be 

small. 

5.2 Variational QMC Algorithm 

Collecting all the pieces sections together, simulating a diffusion/drift equation (Ap­

pendix A) and Metropolis sampling, leads to the variational QMC (V-QMC) algorithm, where 

f = tPf· The notation (0)1 is understood to mean the expectation value of some quantity 0 

with respect to distribution f. The QMC algorithm is readily realized as follows: 

1. Choose a time step ( T - To) sufficiently small. 

2. Start with some initial distribution of points in n3N space. 

3. Obtain a new set of points R from the initial points R0 such that R = Ro+D( T- To)Fq(Ro)+ 

x, where X is a Gaussian distributed random vector with mean of zero and variance equal 

to 6N D(T- To). 

4. Accept or reject the move with probability 

(5.14) 

where 

(R- I o_ ) - T(RoToiRT)t/Jr(R) 2 

q T ~"'TO - - - - , 
T(RTIRoTo)t/Jr(Ro)2 

(5.15) 

and 

- - ( 1 )3N/2 -(lt-1to-D(r-ro)1"(1~o))2 
T(RTIRoTo)= 41rD(T-To) 0(T-To)e 4D(r ro) • (5.16) 

5. Increase the total for N, evaluate and sum EL(R) to the total I:;!1 WiEL(~), where the 

weighting factor Wi = 1 for a V-QMC evaluation. 

6. Go back to step(3), unless a sufficient number of points have been sampled. 

1 N - . (H) 
7. Return E = N I:i=l EL(Ri), as an estimate for fff;-

To obtain an estimate for the variance of the mean then call the above procedure a 'block' with 

Ej - E and maintain new sums L:f;~ock Ej and L:f;~ock EJ. After a sufficient number of blocks 

~: 
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have been computed then return the expectation value 

1 Nblock 

E=-N- I: Ej, 
block j:l 

and the standard deviation of the mean 

Nblock- 1 

35 

(5.17) 

(5.18) 

A diagrammatical representation of a random walk is given by Fig. 5.1, where a single con­

figuration or random walker is alternately propagated through 3N dimensional space by drifts 

(depicted with solid vectors) and diffusive steps (shown as dashed lines). 

In addition to generating a set of points i4 that are distributed according to pdf 1/lt, the 

algorithm also explicitly states how expectation values of the energy with respect to wavefunction 

1PT (see Eq. 5.2) and the variance of the energy can be determined. The energy and variance can 

be part of a feed-back loop that either changes the trial wavefunction or signals the end of the 

sampling. 

Other expectation values can be similarly evaluated to as precise an uncertainty as 

desired. There are two expectation values which are are evaluated in different ways, but are 

equivalent if the set of points i4 are distributed according to 1/lt. The expectation values are 

(5.19) 

(5.20) 

(5.21) 

and 

( 1/!T li2 I1PT) J 1/1~ p-t . P1PT dR (5.22) 

h
2 j (~~T r 1/lt dR (5.23) 

_ -h'( (v:; )') ·~ (5.24) 

where 1/!T is assumed to be real and normalized, {1PTI1PT) = 1, Since the momentum operator pis 

Hermitian then the expectation value of the local properties - ( ~Yfrr) 
2 

and v;~r are identical. 

The expectation values for either of the quantities should be identical within statistical uncer­

tainty if and only if the distribution has reached equilibrium with f :: 1/lt. However, as personal 

experience has shown for the lithium clusters calculations (see section 8.2), one in five randomly 
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distributed ensembles will not reach equilibrium under any circumstances. Typically when a re­

calcitrant ensemble of this type occurs the expectation value (("VtPT )2)t/Jf will be several orders 

of magnitude greater than -( tPT '\12"1/JT) t/1 2 • This can be understood by assuming that one of the 
T - -electrons is near a node of tPT or near a nuclear center. Then the initial quantum force FQ(Ro) 

is large, but the final quantum force FQ(R) may not be. This will cause the acceptance ratio 

to be quite low, since transitions from R back to R0 will be unlikely. To remedy such behavior 

either the time step can be reduced significantly or just try another ensemble until equilibrium 

can be established. 

Figure 5.1: A schematic representation of a variational QMC walk, where a random walker drifts 

(solid arrows) according to trial wavefunction tPT. then diffuses (dashed lines) with some root­

mean-square distance, and at each point Metropolis accept or reject the drift-diffuse move. The 

diagram shows 3 successful steps. 

\ 
\ 
\ 

5.3 Hydrogen Atom Test of V-QMC 

The hydrogen atom, the constant friend of the physicist, provides a simple, well studied, 

and analytically solvable atomic system that lends itself to verification of numerical procedures. 

The Hamiltonian for the hydrogen atom in atomic units is 

(5.25) 

where r is the radial distance from the nucleus to the electron. 

The exact ground state wavefunction is <po(T) = Jwe-r with energy eo= -.} Hartrees. 

We assume that the trial wavefunction has a similar form such as 

(5.26) 
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where the local energy field is found from the product of the reciprocal trial wavefunction with 

the operation of the Hamiltonian on the trial wavefunction (see Eq. 4.5) to be 

E ( ::"1 D~"2 2D( - 1 
L r, =- ., + , 

r 
(5.27) 

and the quantum force is given by twice the gradient of the logarithm of the trial wavefunction 

(see Eq. 4.4) to be 

(5.28) 

the unit vector r = ~ is in the radial direction away from the nucleus. The energy expectation 

value with respect to the 1/J} distribution is easily found to be 

(H)1/If = ((D( -1) . (5.29) 

The V-QMC test results are given in Fig. 5.2 and shows excellent agreement between numerical 

evaluations and the exact analytic result. 
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Figure 5.2: The hydrogen atom V-QMC test case with differing parameterized trial wavefunctions 

of the form t/JT ( r) = c:;; exp( -( r). The solid line is the exact analytic variational energy in 

atomic units [(((/2- 1) Hartree]. The blocks are the V-QMC results, all computed with a time 

step ( T- To) = 0.1 Hartree -l. 
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Chapter 6 

Diffusion QMC 

Probabilities direct the conduct of the wise man 
Cicero - "De Natura Deorum" 

6.1 Fermi Statistics 

Up to this point little has been said concerning spin statistics of the electrons for the 

non-relativistic electronic Hamiltonian. It is well known that for a fermion system the total 

wavefunction needs to be totally antisymmetric on the interchange of any two identical particles 

(i.e. the electrons). Previously, it has been shown in section 3.2 that solutions to the imaginary 

time Schrodinger equation 3.5 will asymptotically approach the lowest eigenstate of the same 

symmetry as the initial wavefunction. However, the ground state for an arbitrary Hamiltonian 

is the bosonic ground state since the fermion statistics are not inherent to the Hamiltonian but 

are an artifact of the imposition of auxiliary boundary conditions through the Pauli exclusion 

principle. 

The goal is to stochastically simulate solutions to the SchrOdinger equation by a finite 

set of points such that expectation values may be performed. Suppose the initial distribution of 

points, .fL, in the 3N dimensional space is closely, or exactly, distributed according to the square 

of the fermion ground state wavefunction. Clearly for any finite distribution of discrete points 

the distribution is given by 
N 

J(ii) = L 6(R- i4) ' (6.1) 
i=l 

and the spectral resolution of any finite sum of Dirac delta functions must necessarily yield an 

infinite expansion of all eigenfunctions. Hence, with any finite distribution of points there will 

always be a component of the bosonic ground state present and, with long enough imaginary time 

39 
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propagation, it will come to dominate. One way this dilemma can be eliminated is by imposing 

boundary conditions such that the nodes of the trial wavefunction represent the nodes of the 

solution, then by imposing the condition that the the trial wavefunction satisfies antisymmetry, 

the ground state solution will also satisfy antisymmetry and will be a linear combination of all 

the antisymmetric eigenfunctions 

!.po
1 = 2: Caf.Pa , 

{a} 

(6.2) 

where {a} represents the set of all antisymmetric eigenfunctions of the Hamiltonian. It is then 

desirable to find tPT such that its nodes are in some measure 'close' to that of the desired eigenstate 

such that its coefficient Co is nearly unity. 

6.1.1 Fixed-Node Boundary Conditions 

With this imposition of fermion boundary conditions (called the fixed-node approxima­

tion) it's clear to see that that only the energy expectation value of the antisymmetric ground 

state will be a strict upper bound. The excited state energy expectation values will underes­

timate the exact excited state energies. This can be understood from considering each of the 

different nodal regions, or each volume of 3N dimensional space encompassed by a 3N - 1 di­

mensional surface. Suppose each region is equally populated with random walkers, then let each 

random walker propagate forward in imaginary time with branching. As shown in Appendix A, 

branching favors those regions with lower average local energy EL. After a long enough time, due 

to repeated renormalization of the population, the only random walkers left are in the region of 

lowest average energy. Since the average of energy from all the regions is assumed to be relatively 

close to the exact energy, the energy expectation value computed will underestimate the excited 

state energy. This does not apply to the antisymmetric ground state since the only nodes of 

the trial wavefunction, and hence the approximate ground state solution, are due to the electron 

exchange and not to excited states. It is argued that each nodal region must be identical in vol­

ume since each can be mapped onto another by exchange. Furthermore, the energy expectation 

value is identical for each region since the local energy EL and the trial wavefunction tPT can also 

be mapped identically by exchange in each region. Therefore, the average energy expectation 

values of each nodal region will be the same hence the aggregate energy expectation value will 

be unbiased and will represent an upper bound to the antisymmetric ground state. 

The fixed-node D-QMC energy obtained will quadratically vary from the exact energy 

for 'small' nodal displacement[26]. This can most easily be seen from a simple example of two 

non-interacting spin t fermions both with spin up in a box of length 2a. We set the left and right 

boundaries at -a+ oa and a+ oa respectively thus offsetting the box by oa. All the one particle 

eigenfunctions will have nodes at the left and right boundaries. We take for the trial wavefunction 

·• 
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a Slater determinant of the following orbitals the first is exactly the n = 1 eigenstate with energy 

E 1 and the second is a 'close' approximation to the n = 2 eigenstate with energy E2 where the 

middle node is displaced by 6a, 

and 

1 (1r(z- 6a)) 
¢1(z) = ..;a cos 2a , 

-a+ 6a < z < 0 

0 < z <a+ 6a 

(6.3) 

(6.4) 

In each nodal region our choice of trial wavefunction also corresponds to an eigenfunction, hence 

our trial wavefunction is just the ground state wavefunction that a fixed-node D-QMC would re­

turn. After fairly lengthy evaluations the expectation value of the particles-in-a-box Hamiltonian 
2 

H = ~ can be found to be 
E2 

Etot = El + 1 - 62 ' (6.5) 

where 6 = 6afa. A Taylor expansion of (1- 62)- 1 = 1 + 62 +···explicitly shows that the fixed­

node D-QMC energy varies quadratically for small nodal displacement from the exact energy. 

The caveat is that for high dimensional spaces there's no guarantee that ab initio generated nodal 

surfaces will have the same topology as the exact nodal surface[74, 6, 19] and the question of 

small nodal displacement becomes vague. 

Nodal boundary conditions are imposed on the D-QMC walk by requiring random 

walkers that cross over a node to vanish[31]. This has the effect of depleting the number of 

random walkers in the neighborhood of the node, thus making the probability distribution become 

vanishingly small at the node. 

6.1.2 Released-Node Boundary Conditions 

An alternate to additional boundary conditions is to allow some sort of transient es­

timator that lets random walkers cross the nodes and negatively contribute to the expectation 

values. This method is called "released-node", where an initial configuration of random walkers 

is distributed close to the fermion ground state distribution, and as the distribution propagates 

forward in imaginary time, the symmetric part is projected out. 

The initial distribution will correspond to a wavefunction that is a sum of all eigenfunc­

tions of the Hamiltonian 

!fJ' = L c.I{J. + L Cai{Ja ' (6.6) 
{•} {a} 

where s 1s the set of symmetric eigenfunctions and a is the antisymmetric, and the fermion 

ground state coefficient Gao is assumed large. If this wavefunction is propagated in imaginary 
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time according to the operator form of the imaginary time propagator exp( -(H- ~ao)r), where 

the trial energy is set to the antisymmetric ground state energy, ~4o; then tp1 will approach 

(6.7) 

It has also been assumed that the symmetric and antisymmetric states will decay to the boson 

and fermion ground states, respectively. For long enough imaginary times the bosonic ground 

state will come to dominate and all traces of the fermionic nature will disappear. Therefore, the 

transient estimation can only allow the propagation of the initial wavefunction some fixed time 

or given number of steps[26, 29, 69). If an antisymmetric trial wavefunction, tPT, is projected 

onto the wavefunction then the symmetric part will not contribute, by symmetry, to either the 

overlap, (1/JTIIP') = C4 o, or the expectation value of the Hamiltonian, (tPT IHI tp') = Cao~aO· Thus 

the antisymmetric ground state energy can be determined from 

(6.8) 

where Ui = ±1 is negative if the random walker crossed an odd number of nodes and positive 

if the converse, and the points it are distributed according to ltPTIP'I· Since the distribution 

of points represents a probability distribution and by definition can not have negative values, 

the sign of tPT/{)1 is transferred to EL via Ui. The problem with transient estimators is that the 

variance grows with time and may become too large before the expectation value approaches the 

antisymmetric ground state energy. 

Alternate schemes to release the nodal boundary conditions rely on propagating a dual 

set of 'positive' and 'negative' random walkers. The random walkers may, somehow, interact by 

either cancelling each other out when sufficiently close[39) or by 'repelling' each other through a 

non-linear interaction in the Hamiltonian[20). 

6.2 Diffusion QMC Algorithm 

The diffusion QMC procedure is almost identical to the V-QMC algorithm of chapter 5, 

except for the inclusion of branching as given by the local energy exponential. In the imaginary 

time Schrodinger equation with importance sampling (Eq. 4.3) there is the "branching" term that, 

neglecting all other spatial derivative terms, yields a rate equation with the growth ~ e-(EL -ET )T. 

For (EL -ET) large and negative, the growth becomes large, while conversely, for (EL -ET) large 

and positive, there is rapid decay. In other words, the sign of the quantity EL - ~ represents 

a source or sink of diffusing particles respectively. 

As with the V-QMC method of chapter 5, the short time approximation is made for 

the imaginary time propagator, where the path of propagation is from Ro to R with a measure 
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of the branching EL- ET along the path of propagation given by setting a of Appendix A to 

(6.9) 

Some other definition could be employed, but the expediency of this choice will be outlined later 

when the time-step bias error is discussed. (see section 6.3). 

The D-QMC algorithm is identical to the V-QMC algorithm of page 34, except for the 

inclusion of an extra step between steps 4 and 5 which we shall label 4.5: 

4.5 Branch configuration by factor Wi = e-a(T-To); either by making m = [wi + u] cop1es, 

where u is a uniform random variate between 0 and 1 and [z] is the largest integer less 

than or equal to z (then Wi = 1 in the following step); or carrying along a weight factor Wi 

associated with the configuration. 

In this study the weighting factor Wi is simulated by creating m copies of the current 

random walker[103, 22] and can be shown that on average 

(6.10) 

A non-integer weight factor without branching can be used, which ties into the generalized 

Feynman-Kac formalism developed by Michel Caffarel, et.a/.[16, 17, 18, 19]. Even though both 

methods of biasing the random walk are equivalent there are advantages and disadvantages 

to each. The advantages of branching is that there are more walkers in the more important 

regions, those in the least important regions eventually die off. It is the branching that biases the 

distribution from tPf to the mixed distribution tPTI.f'o'. If branching is rare then longer runs are 

required to adequately sample from the mixed distribution. Carrying weights along overcomes 

the last problem, but may result in many random walkers with very small weights. These random 

walkers will use up computer resources, but not contribute much to the expectation value. 

Note that it is possible for Wi < 1 such that m can be zero. The random walker is said 

to be ''killed" and its random walk is terminated. This is no problem since an entire ensemble of 

random walkers is being tracked. On the other hand, if m > 1 then more than one copy of the 

random walker is made and this is referred to as the "birth" of additional walkers. If the trial 

energy ET is set to approximate the correct ground state energy, then on average the number 

of random walkers in the ensemble remains constant, which means that the number of deaths is 

approximately equivalent to the number of births. 

The Metropolis acceptance/rejection step 4 is not strictly necessary but generally im­

proves the time-step bias (see section 6.3) and guarantees that the D-QMC will return the exact 

energy when the exact wavefunction is used. The effect of including step 4, or not, is shown in 

the hydrogen atom time-step bias plots (Figs. 6.3 and 6.2). 
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A diagrammatic representation of a random walker in 3N dimensional space undergoing 

a D-QMC process is shown in Fig. 6.1; where, as before in the V-QMC case, the solid vectors 

represent the drift guided by the trial wavefunction, and the dashed lines depicts diffusive steps. 

However, after each Metropolis accepted step the branching term is computed and either one or 

more copies of the random walker is kept or the random walker is killed. 

Figure 6.1: A schematic representation of a diffusion QMC walk, where random walkers drift 

(solid arrows) according to trial wavefunction tPT, then diffuse (dashed lines) with some root­

mean-squared distance, and at each point Metropolis accept or reject the drift-diffuse move, then 

either branch or weight each point according to e-a(T-To) (branching is shown). The symbol x 

denotes a configuration that has 'died', and multiple copies are shown as multiple • points. The 

diagram shows 3 generations or successful steps. 

6.3 Time-Step Bias 

A time-step bias exists in the D-QMC algorithm[104, 107] due to the use of the short~ 

time approximation to the imaginary time propagator. The "time-step bias" is defined as the 

slope of energy expectation value as a function of time step. A motivation for the time-step bias 

can be found from the Trotter approximation[121, 52]. The imaginary time propagator for the 

imaginary time Schrodinger equation is given by 

(6.11) 

where the Hamiltonian H is the sum of two non-commuting operators T and V, the kinetic 

and potential energy operators respectively. The imaginary time propagator can be split into a 

product of two exponentials via the Campbell-Baker-Hausdorff formula, where the other terms 
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will be at least order r 2 

(6.12) 

Slightly different forms can result in accuracies greater than order r 2 [56, 57]. The realization 

of the above operator results in a process where diffusive steps are alternated with branching. 

Therefore, it is expected that for the short-time approximation that treats the diffusive step sep­

arately from the branching that some some sort of systematic bias is introduced. The magnitude 

of the time-step bias will be elaborated below. 

The equilibrium distribution for the exact imaginary time propagator satisfies the imag­

inary time SchrOd.inger equation (Eq. 4.3) which we shall rewrite as 

Lf(R,r) = o, (6.13) 

where Lis a parabolic partial differential operator, first order in imaginary time and second order 

in space, 
a 2 - -

L = ar - D\l + D\l · FQ + DFQ · \l + (EL - ET) 

The equilibrium distribution f(R, r) satisfies the integral equation, 

f(R, r) = j p(RriRoro)f(Ro, ro) dRo . 

(6.14) 

(6.15) 

However, since a short-time imaginary time propagator, which we label pv(RriRor0 ), is used a 

slightly different problem has also been solved. This new equilibrium distribution f 0 , which we 

shall call the short-time equilibrium distribution is generated from 

/
0 (R, T) = j pv(RTIRoTo)/0 (Ro, To) dRo , 

which will satisfy a different differential operator L 0 , where 

(6.16) 

(6.17) 

This differential operator L 0 can be found by having operator L act on the short-time distribution 

and subtract the extra terms. 

Lf0 (R, T) = j Lpv(RTIRoTo)/0 (Ro, To) dRo 

j [a:: -D\l2pv+D'l· (pvFQ) -(ET-EL)pv] / 0dRo 

V'(R)f0(R, T) . 

Finally the operator L 0 is found 

L 0 = L - V' ( R) ' 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

such that / 0 represents a homogeneous solution. The 'potential' V' can be estimated by actually 

performing this set of manipulations and will be shown in the following sections to produce a 

time-step bias which is at least first order with respect to time step. 



46 CHAPTER 6. DIFFUSION QMC 

6.3.1 Finite Time-Step Perturbation Potential 

By following the steps outlined in section 6.3 we will arrive at the form for the perturba­

tion potential V'(R), where this perturbation is obtained from the exact electronic Hamiltonian 

of Eq. 2.3. Therefore, this perturbed Hamiltonian represents what is actually 'solved' in a finite 

time-step D-QMC process, where moves aren't accepted or rejected via the Metropolis algorithm 

(Step 4 in the D-QMC algorithm of pages 34 and 43). The derivation is somewhat tedious 

and can be skipped over to the last of section 6.3.2, Eq. 6.39, which gives the final form of the 

perturbation potential in terms of the trial wavefunction. 

The derivation relies on Taylor expansions of the terms resulting in the integral of 

Eq. 6.19 around R and then regrouping terms with respect to ~i = (R- fio - Dr F); (set 

r0 = 0 for convenience). The necessity of this convoluted procedure is dictated by the need to 

analytically evaluate the resulting Gaussian integrals. The first step is to expand in a Taylor 

series and regroup the short-time distribution function 

(6.22) 

However, the drift F itself is also a function of the end points of the path (i.e. F = F(R, Ro)), 

and a decision has to be made on how to proceed. We therefore expand and regroup the second 

argument ofF, the initial point of the path, around the final end point 

(6.23) 

where we define ~p> = (R- Ro- DrF(R, R))i. We have expanded out all dependence on the 

starting point Ro and have simplified the integral in Eq.6.19. The difference between ~( 1 ) and 

~ does not occur until 0( r 312 ) terms, which is shown by 

(6.24) 

(6.25) 

where each Root-Mean-Square power of~ (1) in the Gaussian integraLcontributes an., order r 112 • 

Continuing with Eq. 6.22, gradients and Laplacians for the finite time-step mixed distri­

bution / 0 = tPTIPo' can be approximated in terms of the quantum force, where rp0 ' is the ground 
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state eigenfunction of the perturbed Hamiltonian, 

8d
0 

= .!. f.. + O;<po' :::::: f.. 
/ 0 2 ' <po' ' 

(6.26) 

(6.27) 

where we have just assumed that 1/JT is approximately equivalent to the ground state eigenfunc­

tion <po', and define 8; = :Ro;. 
By expanding and regrouping, the mixed distribution f 0 becomes 

Jo<R.o>:::::: foUl-> { 1- ~~i~~R (6.28) 

+ [~ L ~i~j(~Fi + 8;Fj)l -Dr L ff;F; J + · · ·} , 
ij R ; R 

where Rafter the vertical bar means that Ro is set toR after the partial derivative (if any) with 

respect to Ro is performed. Respective terms of the above equation are labeled j 0 , jl/2, and jl 
for corresponding orders of r, where j 0 = f 0(Ro), etc. This notation will be used in section 6.3.2 

to help delineate the various orders of r. 

At this time, to avoid being completely buried by algebra, it is convenient to fix a and 

F to a particular choice which will be shown later in section 6.3.2 to have no bias of order r 0 • 

1 [ - - ] a= 2 EL(R) + EL(Ro) - Er and (6.29) 

This choice of local energy measure a has pointwise behavior that cancels out to 0( r) in 

equation 6.19. Other choices for the quantum force will on average leave terms ex D"\l. Fq[93, 
94, 104]. The vectors Fq and F are the quantum forces evaluated at the points R and Ro 
respectively. 

Evaluating the terms within the Eq. 6.19 brackets, yields the exact expression 

After expanding and regrouping the above expression gives 

(6.31) 
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1 '"" A (1) A (1) A (1) A (1) 0.0 OF.-· --L....Ju.i L.l.j L.l." u., J " I I 

12T ijkl R 

(hl) 

+ ~ L .6.~ 1 ) .6.~1 ) (FtOjOk~ - OiFt8jFk \ + ~T V'2 ELl + ... 
ijt .R R1 

where the superscripts on the square brackets label the respective orders ofT with h0 , h112 , 

or h1 for the terms within the brackets. 

Lastly, the D-QMC imaginary time propagator (Eq. A.10) must be expanded and 

grouped around R. With the help of Eq. 6.23 it is found to be 

(
-.6.2) (-.6_(1)

2
) [ 1'"" (1) (1) - l 

Nexp 4DT = Nexp 4DT 1-2 i-'.6-i .6.j OjFi .R + ··· , (6.32) 

where N is the normalizing constant which includes the eaT factor, which adds only 0( T 312 ) 

terms when Taylor expanding from Ro toR. The terms of the Green's function also respectively 

denoted §0 , and g1 respectively referring to orders of T. Green's function or imaginary time 

propagator has no T 112 terms in this expansion. 

6.3.2 Evaluate Time-Step Errors 

Now that the ground work has been established in the previous section the respective 

orders ofT can be examined from suitable combinations of j, g, h and evaluating the Gaussian 

integrals. It is assumed in the following equations that Ro has been set toR after the Oi operator 

has been performed. Gaussian integrals will be denoted by {· · ·), where for some arbitrary 

function 0(.6. (1)) 

(6.33) 

over all 3N dimensional space. 

There is only one zero order term given by the combination } 0g0 h0 • The evaluation of 

this term with respect to Eq. 6.19 is 

(6.34) 

This shows that the 0(1) term vanishes and there is no systematic bias introduced by the 

D-QMC finite time-step approximation. The integrals can easily be done since all the terms 

have been appropriately expanded and grouped in terms of .6. (1), the integrals are now just 
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various moments of a Gaussian, where (1) = 1, (Ap> A)1
)) = 2Dr6;j, (Ap> A)1

) A~1 ) A~ 1 )) = 

4D2 r 2 [6;j6kl + 6;A:Djl + 6il6jk], and all odd powers of A(l) moments are equal to zero. This 

shows that, on average, all half-integer powers ofT terms cancel out! Therefore, extrapolations 

to zero time step need not consider polynomials in r 112 [103]. 

The next possible contribution to the perturbation potential are the 0( r) terms jlg0 h0+ 
jOglhO + jOiJOhl + jlf2gOh1/2. We will look at each term in the sum individually. The first term 

in the sum, jlg0 h0 , gives for the integral equation ofEq. 6.19 

( [.!. """'AP> A<1>8·8·J0
- Dr"""' ff.·8·f0

] [nv. f- .2._"""' A~ 1 > A<1>a.ff.-]) 2 ~ 1 J I J ~ I I 2T ~ 1 J I I 

~ I ~ 

(6.35) 

for the next term j 0 [J 1h0 gives 

(6.36) 

= 2D2rf0 E (a;fjr 
ij 

and for the third term j 0[J 0h1 gives 

(,
0 [Dr"""' f.·8·E - .!_ """'A~ 1 ) A(1)8·8·El 2L...,11L 4L...,1 J IJ oc 

i ij 

+ ~ ~ al'> al'> (F,a;a,f; - a;f,a;f.)] ) (6.37) 

= D 2
rf

0 
{ 2~ ~ (F;o;EL- 8[ EL) -~[alai~+ (o;Fi r- ff;o;oiff;]} 

I IJ 

finally for the last term jll2g0h112 gives 

(6.38)· 
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The sum of all the above terms gives the perturbation potential 

,- 2[1- 2 2-V(R)=D T 2DFq·V"EL-V" EL-Y" V"·Fq (6.39) 

- - 1 - -2 1 2 -2] -Fq. V"V" · Fq- "2Fq · V" Fq- 2V" Fq 

where the approximations to V" J0 and V"2 f 0 of Eqs. 6.26 and 6.27 have been used. 

This perturbation potential has been shown to be linear with respect to time step, and 

there is no systematic error introduced for the given choice of local energy and quantum force. 

It will, therefore, vanish in the limit as time-step approaches zero. However, it will be shown in 

the next section that, for certain choices of trial wavefunctions, the perturbation potential has 

terms which can not be easily corrected for. 

6.3.3 Time-Step Bias of the Hydrogen Atom 

The hydrogen atom is the only system simple enough to compare the computational 

and analytic time-step bias. Using a trial wavefunction of the form 

(3/2 
tPT(TJ = .fi e-(r (6.40) 

from section 5.3, it can be shown by algebraic manipulation that the time-step bias perturbation 

potential from Eq. 6.39 for the hydrogen atom is 

D2 r [( -12(- 4)7rc5(r) + 2((5(- 1) : 2] (6.41) 

This form is archetypical of all STO type trial wavefunctions, in that it contains a Dirac delta 

function at the nuclear center. Thus attempts to correct the effect of the perturbation potential 

by including the negative of it in the Hamiltonian will turn a K step random walk to a K 2 

step random walk. Because of the delta function, the random walk at each step will require the 

evaluation of the wavefunction at that position. This requires an auxiliary random walk to be 

performed to stochastically compute a value for the wavefunction[20]. 

Perturbation theory predicts the first-order perturbation energy for the ground state 

energy level to be -T 6(6 + 56), in atomic units, where c5 = ( - 1 (See Fig. 6.2). We see 

qualitatively good agreement with the numerical evaluation from a series of D-QMC runs, where 

the Metropolis acceptance/rejection step was disabled and the trial wavefunction ( was varied. 

Each run consists of a series of energy expectation values at time steps ranging from .01 to .2 

inverse Hartrees. For each run the best linear fit is made through each set of points and the slope 

determines the time-step bias. 

Another set of runs was performed with the Metropolis acceptance/rejection step en­

abled with the same set of time steps and ('s and the results are shown in Fig. 6.3. The time-step 
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bias is at least an order of magnitude less than for the previous case in Fig. 6.2. The time-step 

bias has also a parabolic behavior with respect to ( and peaks with a value of zero at ( ~ 1. 

This corresponds to the exact ground state eigenfunction, where ( = 1. 

6.3.4 Short-Time Approximation and Nodal Boundary Conditions 

With the short time approximation a random walker starts at some initial point Ro 
and then drifts and diffuses according to the short-time approximation of the imaginary time 

propagator to another point R. This represents one step. However, it is entirely possible that 

the path taken from point RotoR may have crossed a nodal boundary (see Fig. 6.4). As required 

by the imposition of the fixed-node constraint, all such random walkers must be terminated. The 

effect of not taking this into account is to effectively enlarge the nodal volume, such that the 

curvature of the wavefunction is diminished. In other words, this has the effect of decreasing the 

average kinetic energy and, hence, the total energy. 

Empirically, every STO basis set that I have tried has had a negative time-step bias, 

such that the energy expectation value approaches the zero time-step limit from 'below'. Any 

study that just uses a single time step, no matter how small, will under-estimate the extrapolated 

zero time-step limit and will apparently 'recover' more of the correlation energy than it should. 

There are ad hoc ways to account for the cross-recross bias by computing the probability 

of node crossing and terminating random walks accordingly[3]. This requires a detailed know ledge 

of nodal positions such that distances from nodes can be computed. Another way is to sample 

from the exact imaginary time propagator by either the Domain's Green's function Monte Carlo 

method (DGFMC)[67, 68, 70] or the improved Green's function Monte Carlo method (GFMC)[29, 

24]. 



52 CHAPTER 6. DIFFUSION QMC 

Figure 6.2: The hydrogen atom D-QMC test case with differing parameterized trial wavefunctions 

of the form th(r) = 7;-exp(-(r). The solid line is the best quadratic fit with respect to the 

time-step bias vs. ( data and is -.582(3)6- .846(29)62 in atomic units, where 6 = (- 1. 
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Figure 6.3: Another hydrogen atom D-QMC test case with Metropolis acceptance/rejection and 

differing parameterized trial wavefunctions of the form tPT ( r) = * exp( -( r). The solid line is 

the best quadratic fit with respect to the time-step bias vs. (data and is -.0004(2)-.0132(36)6-

.1810(323)62 in atomic units, where 6 = (- 1. 
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Figure 6.4: A schematic depiction of a random walker that may have, in a step, crossed and 

recrossed a node in violation the fixed-node boundary conditions. A step is shown in 3N dimen­

sional space with a vector from Ro to R. Only three of the many possible paths from Ro to R 
are shown, where one of the paths crosses and recrosses the nodal boundary. 
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Part II 

Alkali Metal Clusters 
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Chapter 7 

Cluster ''Magic'' Numbers 

Research is the process of going up blind alleys to see if they are blind 
Marston Bates 

In recent years there has been a profusion of theoretical and experimental work regarding atomic 

clusters. Many articles[21, 78, 97] and even whole journal volumes[113, 10] have been devoted 

to this topic. One of the most interesting properties that has been found is the appearance of 

"magic" numbers in the experimental mass spectra. This is to say that clusters with certain 

numbers of atoms or molecules have enhanced stability and will preferentially nucleate in su­

personic molecular beam experiments[114). This enhanced stability can be attributed to some 

degree to closed shell structures. For rare gas clusters the magic numbers correspond to geomet­

rical packing of hard spheres into icosahedral units. For ionic-bonded clusters the more stable 

configurations represent some compact subset of the bulk crystalline structure[109). For alkali 

metals, their magic numbers closely follow the shell filling of valence electrons in a bag model 

potential reflecting the delocalized nature of the valence electrons. 

7.1 Geometrical Packing 

Rare gas atoms are characterized as having filled electronic shells and as such are chemi­

cally inert and except for rare instances do not bond chemically. Typically the interaction between 

two rare gas atoms can be adequately described by a Vander Waals interaction that results from 

the electron-electron correlation effect. A simple and often used potential is the Lennard-Jones 

6-12 potential which models the long range inter-atomic attraction, due to the London or disper­

sion force, by providing the appropriate attractive interaction that for large distances scales as 

-1/ R6 , where R is the inter-atomic separation. There is also a strongly repulsive core, 1/ R 12 , to 

prevent the two rare gas atoms from interpenetrating each others' core. The rare gas atoms, as 

57 
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a result, act like solid spheres and try to maximize the number of nearest neighbors to increase 

the binding energy. Packing the rare gas atoms into icosahedral units provides an optimal hard 

sphere packing which yields "magic" numbers that closely match with experiment. These could 

be the Mackay icosahedra, which have a five-fold axis of rotation at each vertex. The number of 

atoms for the first few Mackay icosahedra are n = 1, 13, 55, 147, .... Substructure in the rare gas 

magic numbers occurs when 'caps' of atoms[49] are attached to stable structures. An example of 

this is given by Fig. 7 .1. The entire sequence of magic numbers for the first few rare gas clusters 

are n = 7, 13, 19, 23, 26, ... , which matches with numerical thermodynamic calculations[50] and 

with experiment(45, 49]. 

7.2 Shell Model 

Some of the earliest experimental evidence of alkali metal shell structure comes from 

the mass spectra of supersonic cluster beams[75, 76]. Major features in the mass spectra exist 

at numbers N = 2, 8, 20, 40, ... corresponding to predicted shell closings in spherical jellium 

models[9, 33, 34). The axially symmetric ellipsoidal Nilsson-Cleminger model provides some 

of the fine structure in the mass spectra by using a total-angular-momentum modified axially 

symmetric harmonic oscillator potential for the valence electrons[36, 37]. The assumption is that 

the alkali cluster properties are dictated primarily by the valence electrons and the effects of the 

cores can be smeared uniformly over a cluster-wide potential. 

A simpler model that can be used for small alkali metal clusters is the anisotropic 

harmonic oscillator potential for the valence electrons[112]. The one-electron Hamiltonian that 

each valence electron experiences in the alkali metal clusters is of the form: 

(7.1) 

where the index i refers to the i-th valence electron. The total Hamiltonian for the system is 

given by 

(7.2) 

where the valence electrons are weakly interacting and the orbitals are given by one-particle 

eigenfunctions of the separable Hamiltonian H;. Using the harmonic oscillator number basis the 

orbital energies are given by 

- - ( . 1) ( 1) (. 1) E(n,w)=hwr nr+2 +hwy ny+2 +hwz nz+2, (7.3) 

where ii = (nr, ny, nz) are the orbital quantum numbers. 

For a given positive energy the shape of the potential is an ellipsoid, which is para­

meterized by w = (wr,Wy,wz). Assuming that the cluster has constant volume with respect to 
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distortion, then the product WzWyWz = wg is a constant. If we define the deformation parameter Oz 

such that Wz = w0 (1+6z), and similarly for 611 and Oz, then the constant volume condition requires 

(1 + 6z)(1 + 611 )(1 + f>z) = 1 . (7.4) 

Assume that there are N weakly interacting fermions of spin t. then the occupation for 

any orbital is eN = 0, 1, or 2. The sum of the occupied orbital energies gives the total energy of 

the system 

with the constraint 

Etot = L C;t E( ii, l) , 
;s 

N=Lc;r. 
;s 

(7.5) 

(7.6) 

The total energy can be found by minimizing equation 7.5 subject to the constraints of 

equations 7.6 and 7.4 by the method of Lagrange multipliers The results are reported in Table 7.1. 

An immediate prediction of this model is that n = 8, should be a magic number due to the 'p' 

Table 7.1: Anisotropic harmonic oscillator for N weakly interacting spin t particles, where the 

orbital occupations are given by c;r(nznynz) and the total energy is given in units of hwo. The 

deformations Oz:, ... are related to the anisotropic frequencies by Wz = w0 (1 + Oz), .... Complete 

shells are denoted by [n], where n is the number of weakly interacting particles that fill the shell, 

and only used for N > n to reduce table space. 

N Occupation Deformation Energy 

f>z 6y Oz (hwo) 

1 1(000) 0.0000 0.0000 0.0000 1.5000 

2 2(000) 0.0000 0.0000 0.0000 3.0000 

3 [2] 1(100) -0.2886 0.1856 0.1856 5.3353 

4 [2] 2(100) -0.3700 0.2599 0.2599 7.5595 

5 [2] 2(100) 1(010) -0.2440 -0.0280 0.3608° 10.2061 

6 [2] 2(100) 2(010) -0.1566 -0.1566 0.4057 12.6515 

7 [2] 2(100) 2(010) 1(001) -0.0647 -0.0647 0.1431 15.4324 

8 [2] 2(100) 2(010) 2(001) 0.0000 0.0000 0.0000 18.0000 

9 [8] 1(200) -0.1638 0.0935 0.0935 21.3241 

10 [8] 2(200) -0.2602 0.1626 0.1626 24.4147 

°For N = 5 has the only significantly different deformation from the Nilsson-Clemenger model for small N, 
which predicts 6:r = 611 = -.140 and 6z = .352. 

shell closure, or-filling of the nz, n 11 , nz =~1 orbitals, which have similar nodal characteristics as 
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the atomic p orbitals. The characteristic of a complete shell is that the ellipsoid has spherical 

symmetry as observed for the n = 2, 8 cases, where all the deformations Or = 611 = Oz = 0. 

Therefore, we would expect the n = 8 alkali metal cluster to to have a high degree of symmetry. 

J .L. Martins, in his local spin density functional theory calculations for sodium[83, 82, 84), 

obtained an optimized D2d geometry for N as similar to that shown in Fig. 7.2. Using this 

same geometry (suitably scaled for lithium) I performed a minimum basis set SCF geometry 

optimization that ended in a Td symmetry 1 A1 state. Such optimized geometries for n = 8 has 

been published by Koutecky and workers[78, 14, 13). Referring to Fig. 7.3, one has a core offour 

inner lithiums forming a tetrahedron, the four outer lithiums sit interstitially with respect to 

the four faces of the tetrahedron and out from the faces. A higher degree of symmetry could be 

obtained if the lithium atoms form into a perfect cube with oh symmetry; however, if a model 

pair potential[95) is postulated then the TD symmetry geometry is preferable over that of the 

Oh symmetry. This can be understood from simple nearest neighbor bond counting. The Oh 

cube has 12 edges, whereas, the final geometry shown in Fig. 7.3 has 18 edges; therefore, the 

Td symmetry geometry will produce a larger binding energy, hence lower total energy if the pair 

potential is attractive. 
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Figure 7.1: Close icosahedral packing of spheres. The bottom group correspond to the n = 13 

Mackay icosahedron. The top group represents a 'cap' of 6 atoms that can be added to the 

bottom group to obtain a dense n = 19 packing. 
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Figure 7.2: The initial geometry for Li8 is shown for a minimum basis set SCF geometry opti­

mization. The figure is a scaled version of the LSDFT optimized geometry of J .L. Martins, et.al. 

with D2d symmetry. 
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Figure 7.3: The final geometries for Lis are shown for a minimum basis set SCF geometry 

optimization, which has Td symmetry. 



Chapter 8 

D-QMC Lithium Cluster Results 

The wise man turns chance into good fortune 
Thomas Fuller, M.D. 

This chapter details the necessary steps to obtain V-QMC and D-QMC determinations 

of the lithium cluster total energy. First, optimum geometries must be found for each cluster. 

Secondly, simple and effective trial wavefunctions are found to guide the QMC walks. For the 

D-QMC method, the zero time-step total energy expectation value is extrapolated from several 

total energy expectation values performed with differing time steps. For some of the smaller 

clusters the total energies are compared to the best estimated non-relativistic total energies. The 

difference between the neutral and cation D-QMC total energies are compared to experimental 

ionization potentials. The difference in energy of the clusters and an equivalent number of isolated 

atoms gives the binding energy, which is also compared to experiment. 

A section is devoted to the lithium cluster one-electron density. The general overall 

shape of the one-electron density bears remarkable resemblance to the anisotropic harmonic 

oscillator shape. Several one-electron density plots are shown. These plots show the existence of 

charge concentrations which are not located on a nuclear center. 

Some computational aspects of QMC are discussed. First, the complexity of the QMC 

method is discussed. Total computer time for each lithium cluster is given and the empirical 

computational time scaling is shown. The scaling is compared to other ab initio methods. sec­

ondly, the time-step bias for the lithium clusters are given. Finally, the results are summarized 

and some future work is proposed. 
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8.1 Geometry Optimization 

The lithium cluster geometries were found by using a CASSCF geometry optimization 

procedure, using a double zeta STO basis set from Clementi & Roetti[38] approximated by a 

contraction of 6 GTOs[62]. The exponential values are ( = 4.61679, 2.46167 for the 1s and 

( = 1.96299, .067198 for the 2s, 2p shell. The level of CI excitation was equivalent to the number 

of electrons to allow core-valence orbital interactions which are important in the case of lithium. 

The final geometries are shown in Fig. 8.1. 

Others have used various levels of theory to optimize geometries. The two that I will 

key on are from B.K. Rao, et.a/.[99] where Rao uses a ST0-6G minimum basis set at a DCI 

level of theory, and Boustani, et.a/.[14] who use an augmented minimum basis set for a SCF 

geometry optimization followed by a MRD-CI to uniformly scale the geometry and obtain a 

MRD-CI energy minimum. 

Table 8.1 shows a comparison of differing Li3 'obtuse' geometries i'n the literature, where 

'obtuse', in this case, is understood to mean that the apex angle of the isosceles triangular geome­

try is greater than 60°. We observe pretty good agreement between the differing methods, except 

for Boustani's which is largely influenced by the minimum basis set SCF geometry optimization. 

The MRD-CI scaling of Boustani only decreases the inter-nuclear distances by 2%, although it, 

strangely enough, produces remarkably good ionization potentials. 

Table 8.1: Comparison of lithium trimer geometries between differing methods for the 'obtuse' 

geometry (apex angle> 60°). Angles are in degrees and lengths are in units of a0 • The length b 

refers to the base of the isosceles triangle and a is the length of the side. 

Method angle a b 

Boust:ani, et.al. SCF /MRD-CI[14] 87.0 5.46 7.50 

Rao, et. al. D-CI[99] 75.0 5.07 6.17 

Rao, et.al. UHF[100] 75.8 5.41 6.65 

Rao, et.al. SD-CI[101] 75.2 5.07 6.18 

A.K. Ray, et.al. SD-CI[102] 72.2 5.33 6.28 

J .L. Martins, et. al. PP-LSD[85, 119] 71.6 5.26 6.15 

M.H. McAdon, et. al. GVB[87] 68.1 5.42 6.07 

Gerber, et.al. CEPA[53, 119] 70.1 5.25 6.03 

R.K. Owen, CASSCF 71.2 5.31 6.18 
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8.2 QMC Results 

After geometry optimization, a double-zeta restricted Hartree-Fock (RHF) wavefunc­

tion was used for the antisymmetric part of the QMC trial wavefunction. The electron-nuclear 

correlation cusp condition was satisfied on average with the correlation range set to 0.04ao, where 

the Pade-J astrow functional form is used for the electron-nuclear correlation function. The den­

sity dependent "exp exp" form of Tables 4.3 and 4.4 is used for electron-electron correlation. All 

correlation function parameters were found from V-QMC optimization. 

The V-QMC calculations used a time step T = 0.1 Hartree- 1 where each block was 

4.0 Hartree- 1 long. Each result was a statistical sum of 6 runs, where each run was 32 blocks 

long and was initialized with a pre-randomizing run of 8 blocks to reduce statistical correlation 

between blocks. Pre-randomizing runs are exactly the same as regular runs, but expectation 

values are not kept. The expectation values ( -(t/17- 1
\lt/JT ) 2 )t/J~ and ( t/17- 1\121/!T )t/J~ agreed within 

statistical uncertainty; therefore, the random walker distribution was sufficiently equilibrated for 

accurate expectation values with respect to the t/;j. distribution. The statistical addition of each 

run's variance-weighted energy results in the mean energy 

"" E· - L...,i;'t 
E=~, 

L..Ji;'f 
(8.1) 

where Ei is the energy for the i-th run and u} is its variance. The uncertainty of the mean energy 

UE is given by 
2 1 
uE=~· 

L...,i'U" . (8.2) 

The D-QMC calculations used time steps T = 0.05, 0.025, 0.010 with block lengths of 

2.0 Hartree - 1
, except for the lithium dimer which used additional time steps ofT = 0.005, 0.015, 0.020. 

The initial configuration of random walkers for the D-QMC calculation used the final equilibrium 

configurations from the V-QMC calculation. At each time step a set of three runs with lengths 

of 20 blocks were done and then statistically added together as described above for the V-QMC 

calculation. 

Prior to each set of three runs, a pre-randomizing run of 4 blocks was performed to let 

the distribution reach equilibrium at the given time step. The D-QMC zero time-step results 

were extrapolated from the least x2 linear fit to the data points. The QMC results, in addition 

to the RHF and CASSCF total energies, are shown in Table 8.2. 

8.2.1 Best Estimated Non-Relativistic Total Energies 

The best estimated non-relativistic total energies shown in the footnotes of Table 8.2 

have been determined from the following experimental and theoretical numbers. The neutral 
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and cation atomic energies were obtained from the lithium first, second, and third ionization 

potentials[92, 48], where the relativistic correction, Lamb shift, and center of mass have been 

accounted for[60, 122]. The estimated atomic total energy is -7.4781 Hartrees and the cation 

energy is -7.2800 Hartrees. The atomic total energy, obtained in this way, agrees almost exactly 

with other extensive theoretical calculations[71]. We note the excellent agreement of the D-QMC 

results, which match within statistical uncertainty. Similarly, the lithium dimer non-relativistic 

total energy, neglecting zero-point vibrational energy[64], is estimated to be -14.9941 Hartrees, 

which agrees with Ceperley's released-node GFMC total energies[29]. The D-QMC energy falls 

shy of the exact energy by 0.003 Hartree, but is sufficiently good to capture 98% of the correlation 

energy. 
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Figure 8.1: Lithium cluster geometries are obtained from a CASSCF geometry optimization with 
a "double zeta" basis set. The geometries are ordered left to right, top to bottom and correspond 
to the entries in Table 8.2, except the atomic case which is not shown. The 3 digit numbers are 
the internuclear distances in angstroms, and the 2 digit numbers are some angles of interest in 
degrees. All are planar except for the second Li4 . 

• 2.72 • 
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Table 8.2: Neutral and cationic total energies in Hartrees are tabulated for different ab initio 

methods. All geometries used were optimized at the CASSCF level. (see Fig. 8.1). 

Neutral Lithium Clusters 

N Symmetry State RHF CASSCF V-QMC4 D-QMC 

1 2S -7.4307 -7.4439 "-7.4655( 8 -7.4779(10) 

2 Dooh t:E+ g -14.8675 -14.8919 c -14.9409(11 -14.9912( 6 ) 

3 'obtuse' C2v 2B2 -22.2997 -22.3246 d -22.4043(15 -22.4900(23) 

3 'acute' C2v 2At -22.3016 -22.3269 e -22.4075(14 -22.4898(23) 

4 D2h tA g -29.7524 -29.7676 J -29.8900(16 -30.0101(27) 

4 C2v aB2 -29.7438 -29.7640 g -29.8794(14 -29.9968(26) 

5 C2v 
2 At -37.1988 -37.2324 h -37.3718(18) -37 .5160(31) 

Cationic Lithium Clusters 

N Symmetry State RHF CASSCF V-QMC D-QMC 

1 ts -7.2344 -7.2486 i -7.2666( 5) -7.2797(10) 

2 Dooh 2:E+ g -14.6996 -14.7364 j -14.7627(12) -14.8017( 6) 

3 'obtuse' C2v tAt -22.1613 -22.1829 1: -22.2633(11, -22.3370(25) 

3 'acute' C2v tAt -22.1616 -22.1831 I -22.2673(13) -22.3391(19) 

4 D2h 2B2u -29.6064 -29.6248 m -29.7393(16) -29.8437(25) 

4 C2v 
2At -29.5975 -29.6134 n -29.7249(19) -29.8319(27) 

5 C2v tAt -37.0451 -37.0779 0 -37.2151(16) -37 .3547(30) 

0 All QMC runs satisfied the electron-nuclear cusp condition on average with a Padb-Jastrow correlation function 
that had a range of 0.04ao (see Sect. 4.2.1). All QMC runs used the density dependent 'e:t:p e:t:p' electron-electron 
correlation function with"'( = 0 (see Tables 4.3 and 4.4). 

b[J = .260, best estimated total energy= -7.4781 (see section 8.2.1) 
c{3 = .240, best estimated total energy= -14.9941 (see section 8.2.1) 
d{3 = .230 
e{J = .230 
I {3 = .220 
9[3 = .200 
h[J = .220 
'{3 = .200, best estimated total energy= -7.2800 (see section 8.2.1) 
J{3 = .260 
"f3 = .2t0 
1{3 = .230_ 

m{3 = .230 
n{3 = .180 
0 {3 = .220 
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8.2.2 Ionization Potential 

The vertical ionization potential (IP) is defined as the difference in energy between the 

system's neutral ground state at the optimal geometry and the cation at the same geometry, and 

is defined as 

IP= E~-En, (8.3) 

where En and E't are respectively the total energy of the neutral and cationic cluster with n 

lithium atoms. An adiabatic ionization potential takes the difference of total energies with respect 

to a geometry optimized cationic ground state and a geometry optimized neutral ground state. 

In both definitions of the ionization potential the zero point vibrational energies are assumed to 

be comparable[96]. In this study we compute the vertical ionization potential and compare it to 

experimental values in the literature. The D-QMC results are given in Table 8.3 and Fig. 8.2 

shows the comparison of D-QMC with experiment, Rao's D-CI[99], and Boustani's SCF /MRD­

CI[14, 15] (denoted as MRD-CI+ on the plot), and the work function of the classical conducting 

drop(126, 91, 21]. The classical conducting drop work function is the amount of energy required 

to extract a single charge from a conducting sphere, and is given by the expression 

(8.4) 

where W1 = 5.39eV, W00 = 2.32eV, and n is the number of atoms in the lithium cluster. 

Note that there is perfect agreement for the lithium atom by definition. The Woo term is the 

work function value when the cluster has infinite radius, or in other words, when the charge is 

escaping from a plane surface. The classical conducting drop model describes the size effects on 

ionization due to the finite size of clusters. The results of Boustani and the D-QMC results agree 

very closely with experiment and the Rao results consistently underestimate the experimental 

ionization potential. 

The ionization pote~tials also exhibit an odd-even effect. Comparing to the neighboring 

clusters and ignoring finite size effects, the even-numbered clusters for lithium require more 

energy to ionize. The odd-numbered clusters, which are in a doublet spin state, will have a 

single unpaired electron in an orbital and will be relatively easy to ionize. This can be seen by 

considering just the 2s valence orbital. If two lithiums are brought together the two 2s atomic 

orbitals split their degeneracy and form a bonding and anti-bonding pair of molecular orbitals. 

However, for three they split to form three molecular orbitals with the middle one comparable 

in energy to the 2s atomic orbital energy. It should, therefore, take nearly the same energy to 

ionize the odd-numbered-clusters-as it is to ionize the atom. The even-numbered clusters will 

have a net lower energy and, therefore, require greater energy to ionize. However, as the cluster 

size increases the difference should decrease as the orbital spacing decreases (See Fig. 8.3). 

.• 
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Table 8.3: Lithium cluster Ionization Potentials comparing experimental results and D-QMC 

vertical Ionization Potentials tabulated from Table 8.2. Ionization Potentials are in Hartrees. 

0 See Ref. [71] 
"See Ref. (111] 
csee Ref. 127] 
dSee Ref. [128] 
esee Ref. (129] 

8.2.3 Binding Energy 

n 

1 

2 

3 

4 

5 

Ionization Potentials 

Exp D-QMC 

G 0.1981( 0 0.1982(14 

b 0.1874( 4 0.1895( 9 

e 0.1599( 73 ' 0.1530(34 

d 0.1724(110) 0.1664(37 

e 0.1675(110' 0.1613(43 

The binding energy (BE), also called the atomization energy, is the amount of energy 

required to infinitely separate the atoms and is defined as 

BE= nEt-En; (8.5) 

where En, as before, is the total energy of the n-th cluster. Generally the binding energy is a 

measure of the cluster stability and in the case of lithium is an increasing function. It is useful to 

define the binding energy per atom BE/n, which is a measure of the 'relative' stability. It might 

be energetically favorable for a cluster to break up into smaller clusters if the binding energy 

per atom decreases for larger clusters. The theoretical and experimental results (see Fig. 8.4) for 

small lithium clusters n = 2, 3, 4, 5 shows that BE fn is increasing, indicating that Lis is more 

stable with respect to the smaller clusters. 

The binding energy can also be considered a measure of when the cluster is large enough 

such that it exhibits properties of the bulk. For solids the atomization energy is equivalently called 

the "cohesive energy", the energy required per atom to form separated neutral atoms in their 

electronic ground state from the solid at 0 K and 1 atm. For metallic lithium, the cohesive 

energy is 0.060 Hartrees[73). This is approximately twice the binding energy of the lithium 

pentamer. Therefore, Lis may be more stable than the smaller clusters, but the larger clusters, 

and particularly the bulk form, represent more stable systems. 

The D-QMC binding energy per atom results are approximately 19% below the exper­

imental values. Better trial wavefunctions could reduce this discrepancy by a few percent. Even 
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if the best estimated non-relativistic total energies are used, the lithium dimer binding energy 

per atom would be .0189 Hartree, or 93% of experiment, in contrast to the D-QMC results which 

is 91% of the experimental results. 

Table 8.4: Lithium cluster atomization energies or binding energies, BE, and binding energy per 

atom, BEin, tabulated from Table 8.2. Binding Energies are in Hartrees. 

0 See Ref. (127] 
bSee Ref. (127] 
csee Ref. 128] 
dSee Ref. [129] 

n 

2 

3 

4 

5 

Binding Energies 

Experimental D-QMC 

BE BE In BE BE In 

0 0.0406(24) 0.0203(12) 0.0355(15) 0.0177( 8) 

" 0.0661(64) 0.0220(21) 0.0564(29) 0.0188(10) 

c 0.1240( 48) 0.0310(12) 0.0987(33) 0.0247( 8) 

d 0.1753( 40) 0.0351( 8) 0.1267(38) 0.0253( 8) 
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Figure 8.2: Lithium cluster vertical ionization potentials from D-QMC are compared to D-CI[99], 

SCF /MRD-CI[14] (noted as MRD-CI+ on plot), the classical conducting drop[126, 91, 21] and 

experiment (see Table 8.3 for references). 
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Figure 8.3: An odd-even effect is shown with respect to bonding of a half filled 2s orbital, where 

N is the number of atoms and the arrows represent electrons with up and down spins. In the 

case of 2 atoms the degeneracy of the 2s orbitals split to form the bonding and the anti-bonding 

orbitals, where the system will find it energetically favorable to fill the bonding orbital. The same 

happens for the larger clusters, where the width of the 'band' is governed by the overlap of the 

2s atomic orbitals. In the infinite limit the translational periodicity of the system determines the 

exact shape of the band and for such systems, as shown, would become metallic with a half filled 

conduction band where the zero temperature energy surface is given by the Fermi energy t:p. 
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Figure 8.4: Lithium cluster binding energies per atom from D-QMC are compared to D-CI[99], 

SCF/MRD-CI[14] (noted as MRD-CI+ on plot), and experiment (see Table 8.4 for references). 
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8.3 Lithium One-Electron Density 

The one-electron density is related to the probability of finding an electron in an in­

finitesimal volume drat some given position r. Since the location of the other electrons is not 

essential, they can be averaged over. This is accomplished by integrating the electronic wave­

function over all the coordinates except one. It doesn't matter which electronic coordinate is 

chosen since the probability density 11/I{R) 1
2 

is invariant under particle exchange. Hence, the 

one-electron density can be found from the expression 

p(TJ = N j I1P(R)I
2 

dr1 dr2 .. ·drN-1 

= L "" l¢.c(T)I
2 

' 

(8.6) 

(8.7) 

where N is the number of electrons,"' ranges over the molecular orbitals <P.c, and n.c = 0, 1, 2 is 

the occupation number of the ~~:-th MO in a HFSCF one-particle basis set. 

8.3.1 One-Electron Density and the Anisotropic Harmonic Oscillator 

The one-electron density is important for density-dependent electron-electron correla­

tion (see section 4.17); however, notice the smallest value contour line for the lithium dimer, 

Fig. 8.5, the contour surface describes a region that is nearly spherical, which corresponds to the 

predicted deformation of the anisotropic harmonic oscillator {AHO) shell model of section 7.2. 

Plots 8.5 through 8.12 are the one-electron density plots for the various optimized geometries. 

The contour lines are in units of number of electrons per angstrom cubed. Integrating the one­

electron density over all space gives the number of electrons N. The density contours near the 

nuclei are too dense and are not plotted. Overall, the one-electron densities range five orders of 

magnitudes with respect to the density confined within the 0.001 contour surface, which repre­

sents approximately 99.95% of the electronic charge. Measure the principal axes of the volume 

confined within the 0.001 contour surface, and if the ratio of the longest axis is taken to the 

shorter axes then a striking similarity can be observed between the one-electron density and the 

AHO deformation parameters (see Table 8.5). 

The lithium dimer one-electron density volume is approximately spherical as predicted 

by the AHO model. The other geometry optimized clusters exhibit this same close association 

with the AHO model, where the trimer and quadramer are approximately axially symmetric. 

The Nilsson-Clemenger model on the other hand, which is constrained to be axially symmetric, 

predicts different deformation parameters than the AHO model for N = 5; however, the lithium 

pentamer density volume deformation which shows definite asymmetry is in good agreement with 

respect to the AHO model. 

The range of the density volume is due to the valence electrons of the lithium_ cluster 
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and not to the core electrons, which are confined to regions near the nuclei. Since the bonding 

within the cluster is mediated by the valence electrons, the simple AHO shell model, which only 

considers the valence electrons as weakly interacting in a one-particle potential, should be effective 

in predicting some of the valence electron properties. The deformation of the one-electron density 

volume qualitatively agrees with this simple model. 

Table 8.5: The lithium cluster density volume (the volume contained within the 0.001A -
3 

contour 

surface) is compared to the anisotropic harmonic oscillator (AHO) model. The table lists the 

ratios of the longest principal axis length to the two shorter axes lengths. The lithium cluster 

ratios are obtained from the density plots as shown in Figs. 8.5 through 8.12. The AHO model 

volume ratios are found from the Table 7.1 deformation parameters 6z,611 ,6z, where the ratio is 

given by ttl~ , 6m is the minimum deformation parameter and 6; is one of the other two. The 

ratio pairs are arranged in increasing order. 

Deformations 

N AHO Cluster 

2 1.00,1.00 1.1, 1.1 

3 1.67,1.67 1.5, 1.6 

4 2.00,2.00 1.9, 1.9 

5 1.29,1.80 1.3, 2.0 

8.3.2 One-Electron Density and Nonnuclear Attractors 

Plot 8.5 shows an interesting phenomenon; midway between the two nuclei, there is a 

local maximum of the one-electron density. This corresponds to the build-up of electronic charge 

not associated with a nuclear center. This phenomenon is called a ''nonnuclear attractor", or also 

referred to as a "pseudoatom". The studies of R. Glaser, et.a/.[54], which compared various basis 

sets and methods, found the existence of nonnuclear at tractors for the lithium dimer regardless of 

method or basis set. He also formulated some general guidelines as to when nonnuclear at tractors 

would most likely occur. 

Nonnuclear attractors are found for the larger lithium clusters. For the 'obtuse' lithium 

trimer (see Fig. 8.6) the nonnuclear at tractor spans from the approximate bond centers of the two 

equal sides. However, for the 'acute' lithium trimer (see Fig. 8.7) there are two attractors, one 

is bond centered and the other resides more to the interior of triangle. The lithium quadramer 

(see Fig. 8.8) has two nonnuclear at tractors which are within- the two triangular-faces. At the 
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center of the geometry, between the two closest lithium nuclei, is also a region of decreased one­

electron density. This can also be observed in the D-QMC scatter plot (see Fig. 8.9), where the 

final random walker distribution for the given time step are projected onto the two dimensional 

plane that contains the lithium nuclei. The Li4 D-QMC scatter plot shows, other than the 

nuclear centers, two regions of greater electron concentrations and in between a diminished 

concentration. The lithium pentamer (see Fig. 8.12) has a total of three nonnuclear attractors, 

where two are similar to those of the quadramer and one is bond-centered like the dimer. As 

with the quadramer, the pentamer D-QMC scatter plot Fig. 8.13 shows a definite region in the 

center with few electrons. 
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Figure 8.5: Lithium dimer one-electron density in units of number of electrons per angstrom 

cubed. Linear distances are in bohr. 
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Figure 8.6: 'Obtuse' lithium trimer one-electron density in units of number of electrons per 

angstrom cubed. Linear distances are in bohr. 
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Figure 8.7: 'Acute' lithium trimer one-electron density in units of number of electrons per 

angstrom cubed. Linear distances are in bohr. 
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Figure 8.8: Planar lithium quadramer one-electron density in units of number of electrons per 

angstrom cubed. Linear distances are in bohr. 
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Figure 8.9: Planar lithium quadramer scatter plot of the T = 0.01 equilibrium distribution of 

D-QMC random walker positions, which have been projected onto the two dimensional plane 

that contains the lithium nuclei. This corresponds to the one-electron density integrated with 

respect to the axis normal to the plane. The small white circles are the nuclear positions . 
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Figure 8.10: Planar lithium quadramer one-electron density in units of number of electrons per 

angstrom cubed. Linear distances are in bohr. Two nuclei are on the z axis, and the other two 

are on the y axis. The contours lines are on a plane that cuts vertically and diagonally across the 

quadramer. The diameter of the spheres correspond to the lithium core diameter. The contour 

line increment is 0.002. 

-· 
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Figure 8.11: Triplet lithium quadramer one-electron density in units of number of electrons per 

angstrom cubed. Linear distances are in bohr. Two nuclei are located on the xz plane, and the 

other two are on the yz plane. The contours lines are on a pair of planes, one diagonally cuts 

across and the other horizontally slices through the quadramer. The diameter of the spheres 

correspond to the lithium core diameter. The contour line increment is 0.002. 

6.o 
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Figure 8.12: Planar lithium pentamer one-electron density in units of number of electrons per 

angstrom cubed. Linear distances are in bohr. 
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Figure 8.13: Planar lithium pentamer scatter plot of the r = 0.01 equilibrium distribution of 

D-QMC random walker positions, which have been projected onto the two dimensional plane 

that contains the lithium nuclei. This corresponds to the one-electron density integrated with 

respect to the axis normal to the plane. The small white circles are the nuclear positions . 

• 

• 
• 

• 

•• 

' 
• 

• • 
• 

• 

• 

• 

• 
• 

• 

• 
• 

• • • 

•• • 

• 

• • ••• • • • • • • 
• •• I • • • • • •• • • • • • • • • • • • • • • • • • ' ' • • . . . ... . . .. . . . . . . ... ·· .. :•. 

• • • • eJ' • I . . . . . . : . 
• • • .. •'•• • I • .. • • - • • • • • J,.. • 

• 

• 

• 

• - ,. # • • • • • • • • •• 

•••••• ·:a • ~ •• • ·.: , ••• ,........ •• . -.... . .. .,_ .. .. .. . . .. -... 
• el ~· I • •• I • • - I • • . , .. ··· . '· ............. . •.• • • • •• • I • • I ,.,. ., • . . . . (... . . ... . . ·. . . . .. . .. · . . . : , .. 

• •. I • ,• •• • • "'"• • • • • • • 

• • • 

• 

.. .. . .. . . . ·' .: . . . .. 
... ... I • •I ._. e• • d•.. • • • . . . . . .· ~ . . ·. . . . . '""".. .. . . . 

• 

• 

• . .. .. . ,, . . . . . . .. ...: :_ . 
••• • • : .,... 1.. • ...... ~ • """., .~.'"' •• ••• -s. .•) .. • • • • ,. .\ ~ 

, I • 

• • I .... •"' • ' • • • • • #\ .• • • •'" • . .. ... ,. . . ,. ····· .. ........ ._ ... ,. ·· .... ,.,. ... , ..... · • - . • • 
. . .. .· ... . .. , .. " ,. . ··," ,.,,~ ~.: .. ·. . . •• .. •••••• ., ;;'~ • • • • .. , •• l.• .... . ... . .. . .•. . .. , 

• • 

• 

t
.,.,.. ..,... , • . • • • . • • : . ._.,. . ... '.,.' ... 

I • • • • • • • . ~- , ........ ,.... ; .. . .... ··: .. . . , . 
..-, .... •• I •. • • • • • • • .. a • • . . ~ ,..,. . . . . . . .. . ... ... ···r' .... ,_ ... ,.,. ·• .... . .. , .. •• • • • • ·< • • 

• , • • I • • \ • • • • • • : •• • • :• :-.• 

• 

• • 

. , . . ,. . . .. - . 
, .... ··· :•. . ..... ··.:i·: 

• • • • • 
•• • 

• • 
• I 

• • • •• 
• 

• 
• • 

• 

• 

• 

• 
• 

• 



88 CHAPTER 8. D-QMC LITHIUM CLUSTER RESULTS 

8.4 QMC Computational Scaling 

The efficacy of any method depends on the size of the problems it can address. A 

computational method can be fantastic for small systems, but become hopelessly impossible for 

larger systems. One measure of the scalability of an ab initio method is the dependence of the 

CPU time on the number of electrons or some other parameter such as the number of AO basis 

functions. The limiting operation in Hartree-Fock is computing the various integrals over the 

basis functions. The number of integrals needed goes as N 4 , where N is the number of AOs. The 

configuration interaction method (CI), in addition to integral evaluations, requires reordering 

and sorting which scales by at least N 5[41]. Orbital symmetry can be used to cut down the 

number of integrals to be evaluated, but the scaling still applies. As explained in section 4.1, 

CI expansions of N-particle wavefunctions are truncated at some level due to computational 

limits. Reliable estimates of total energies for a system usually requires a set of calculations with 

increasing numbers of basis functions and higher levels of theory until 'convergence' to a stable 

value can be obtained[80]. Therefore, the combination produces a time scaling somewhat greater 

than N 5 • 

The complexity of the QMC method with importance sampling depends on evaluation 

of the trial wavefunction. The trial wavefunction requires the evaluation of a determinant, which 

scales as N 3 , where N is the number of MOs. The number ofMOs is proportional to the number 

of electrons. The total energy depends on the nodal surface and does not depend on the number 

of basis functions except to the degree the basis functions establish the nodal surface. There have 

been cases where larger basis sets have produced no better results than smaller basis sets[115]. 

Table 8.6 shows the 'raw' CPU times1 used to arrive at the present lithium cluster 

D-QMC results. However, Table 8.6 by itself does not provide an accurate scaling of the CPU 

time with the size of the problem addressed. The CPU times shown must be normalized with 

respect to the uncertainty to provide a basis for comparison. Statistically the uncertainty scales 

as 1/Vfi, where n is the n~mber of samples taken. Since the number of samples is directly 

related to the amount of computer time used, then the CPU time can be adjusted to reflect this. 

The normalized CPU time estimates how much time is required to obtain a given uncertainty. 

The uncertainty is considered "fixed" if it needs to be computed to a known uncertainty and 

"relative" if it's relative to the total energy. Fig. 8.14 shows the times of Table 8.6 normalized 

with respect to the uncertainties listed in Table 8.2. The times are adjusted such that the two 

electron case, the lithium atom cation, requires unit time. The lines are the best fits for the 

n ~ 4 data. The fixed uncertainty case shows that the CPU time scales as N 3.4, where N is the 

number of electrons. The best that can be done is N 3 . An earlier non-optimized version of the 

1 CPU = Computer Processor Unit, and CPU times represents a measure of actual computational time used 
and approximately measures the complexity of the calculation. 
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code that was used in a preliminary study had a fixed uncertainty time scaling that went as N 5
·
7

• 

The large difference can be attributed to the lack of optimization, the machine architecture and 

the use of slow computational algorithms. The relative uncertainty time scaling should be two 

orders of magnitude less than the fixed uncertainty case, since the lithium cluster total energy is 

approximately linear with respect to the number of atoms and, hence, the number of electrons. 

There is also a dependence on the nuclear charge Z [27, 59] that goes approximately 

as Z5·5 to Z6·5 • This comes from the necessity of using smaller time steps for the core electrons 

which are more tightly bound to the nucleus. In the case of lithium clusters, this is not an issue 

since the the nuclear charge remains the same. 

Table 8.6: CRAY-2 CPU times are shown for the lowest energy geometry optimized lithium 

clusters for the neutral and cationic species. The CPU times are measured in minutes. The first 

two columns refer to the number of atoms N and number of electrons in the cluster n. 

CRAY-2 CPU times 

N n V-QMC D-QMC 

1 2 1.7 4.5 

3 3.6 8.1 

2 5 10.2 203.5 

6 13.4 271.8 

3 8 27.3 58.0 

9 37.0 82.6 

4 11 60.9 146.3 

12 67.1 148.7 

5 14 109.6 268.0 

15 133.1 291.3 

total (min) 463.8 1482.8 

total (hours) 7.7 24.7 

8.5 Lithium Cluster Time-Step Bias 

This section shows the empirical lithium cluster time-step bias with respect to the 

number of electrons, where the time-step bias is defined as the slope of the energy expectation 

value as a function of time step. The time-step bias is approximately linear with respect to the 

number of electrons and the numerical values are shown in Table 8.7. 
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Figure 8.14: Normalized lithium cluster CPU times are plotted. For the ''fixed uncertainty" 

data, the CPU time is normalized such that a computer run of that length of time should return 

an energy expectation value with the given uncertainty. The ''relative uncertainty" is the same 

except the energy expectation value uncertainty is relative to the energy value. The times for 

each set of points are adjusted such that the lithium atom cation computational time is unity. 

The best fits shows that the "fixed uncertainty" CPU time scales as N 3 .4, where N is the number 

of electrons. The "relative uncertainty" CPU time scales as N1.6 • 

103 ~------------------------------------~ 

1 

• fixed uncertainty 

power= 3.42(09) 

• relative uncertainty 
power= 1.57(09) 

10 

Number of Electrons 
20 
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Table 8.7: The D-QMC time-step bias is shown for neutral and cationic lithium clusters, where 

time-step bias refers to the slope of the energy expectation value as a function of time-step. The 

units of the time-step bias are Hartree squared. See Table 8.2 the extrapolated total energies. 

Time-Step Bias 

N Neutral Cationic 

1 -0.2152(320) -0.1114(326) 

2 -0.4628(266) -0.4063(239) 

3 'obtuse' -0.8339(688) -0.4492(762 

3 'acute' -0.6453(742) -0.4940(623 

4 D2h -1.0696(820) -0.9746(787 

4 C2v -0.6731(816) -0.6618(901 

5 -1.1101(993) -1.0511(993) 

8.6 Conclusion and Future Work 

In this work I have introduced density dependent correlation that can partially account 

for the many-body effects of correlation on electron-electron pairs. A simple form of the electron­

electron correlation function, with density dependent parameters and only one free parameter 

to be optimized, can obtain 56% of the correlation energy in V-QMC calculations for lithium 

clusters from the dimer to the pentamer. Since the molecular orbitals are already needed for the 

trial wavefunction, the implementation of density dependence can be efficiently performed with 

little added computational overhead. 

Solutions to the exact electron-nuclear cusp condition are shown to lead to an intractable 

set of equations for the AO coefficients. A special case can be found if the AOs have vanishing 

slope as the electron-nuclear distance diminishes, then the electron-nuclear cusp condition can be 

satisfied by the electron-nuclear correlation function. Alternatively, the electron-nuclear correla­

tion function can satisfy the cusp condition on average, which gives adequate results for V-QMC 

and D-QMC lithium cluster energies. 

The Metropolis algorithm for V-QMC is shown to allow a wide variety of acceptance 

probabilities (see Table 5.1). Each of the acceptance probabilities were demonstrated to yield 

equivalent results for the hydrogen atom. The time-step bias, or expectation value of the total 

energy as a function of time step, for D-QMC is shown to have no constant or half-integer terms 

with respect to the time step. The first term is shown to be linear with respect to the time step. 

Exact zero time-step total energies can be obtained by extrapolating a set of D-QMC calculations 

to zero time-step. 

Total energies found by QMC represent a strict upper-bound to the ground state energy. 
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The ionization potential and the binding energy depend on differences of total energies and, 

therefore, a strict upper or lower bound does not exist for. them. Good agreement with experiment 

can be due to fortuitous cancellation of errors. However, the QMC method has demonstrated 

its merits for small molecular systems in yielding total energies that compare well with the 

atom and lithium dimer best estimated non-relativistic energies. The D-QMC calculation of 

total energies for small lithium dusters reproduces the available experimental results for the 

ionization potentials, and to a lesser degree the binding energies. It is dear though that the total 

energies, thus obtained, may be improved at greater cost by either using trial wavefunctions that 

more closely approximate the exact nodal surface or by using released-node techniques. 

The one-electron density of lithium clusters exhibit remarkable correspondence with the 

valence electron AHO. It was found that the one-electron contour volume agreed fairly dose to 

the AHO potential shape. Furthermore, the one-electron density also exhibited the phenomenon 

of nonnuclear attractors for all lithium clusters beyond the atom. 

The limiting factor in this lithium cluster study was not the D-QMC CPU time, but 

the geometry optimization. Geometries were obtained from a CASSCF procedure that limited 

the Cl excitation level to 15 electrons. These calculations required a large amount of disk space, 

such that Lis represented the practical available limit. The geometries found agree with other 

geometries found in the literature for alkali metal clusters[83, 99, 78]. The trimer geometry is 

'obtuse' since the apex angle is greater than 60°. The difference in energy between the 'obtuse' 

and 'acute' arrangement is found to be less than a milli-Hartree. The quadramer and pentamer 

are found to be planar in agreement with other work. 

Finally, the D-QMC CPU time was shown to scale as N 3 ·4 where N is the number of 

electrons in the system. This compares favorably with other ab initio methods that scale N 5 or 

greater. This lower scaling for D-QMC makes it useful for larger systems. 

In the future, further work remains to be done for QMC to provide alternative ways of 

obtaining potential energy surface (PES) gradients with respect to nuclear positions, for larger 

clusters and for improved geometries. Independently calculating the total energy for two slightly 

different geometries can not obtain meaningful finite difference gradients due to the inherent 

statistical uncertainty in both energies. PES gradients can be evaluated from the Helmann­

Feynman theorem or from analytic energy derivatives[79], but the variance in the expectation 

value can be infinite. Alternatively, a generalized correlated random walk scheme can be used 

to find PES gradients by using a non-Euclidean metric, yii, suitably parameterized such that 

each of the infinitesimally different geometries[120] can be sampled and the random walks can 

be appropriately weighted. This scheme will require the replacement of gradients and Laplacians 

with the equivalent covariant forms, for example 

(8.8) 
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where rfi is the Christoffel symbol. The task will be to find metric tensors gii that can infinites­

imally deform simple geometries, such as trimers, quadramers, etc., along the normal modes. 
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Appendix A 

Diffusion/Drift /Branching 

A.l Analytic Derivation of QMC Green's Function 

This Appendix forms the backbone to the various QMC methods in that the short-time 
Green's function for each particular method can be found by appropriately setting the given 
constants. The term "short-time" is understood to mean that for short enough time steps in 
imaginary time the fields F and a are slowly varying and that they can be approximated with 
constants on the path of propagation. There will regions where this is not so, but overall the 
short-time approximation provides an adequate beginning to obtain an approximate Green's 
function. Table A.l lists the typical definitions of the constants F and a for each of methods. 

Table A.l: Several definitions for the Green's function constants F and a for each of the various 
QMC methods. The spatial vectors Ro and R refer to the initial and final points of the integral 
path respectively. 

Method see 

QMC - no importance 0 t(V(R) + V(Ro))- ET section 3.2 
sampling 

V-QMC Fq(Ro) 0 chapter 5 

D-QMC Fq(Ro) t(EL(R) + EL(Ro))- ET chapter 6 

The Green's function is the general solution to the following parabolic partial differential 
equation, where n is the dimensionality of the space, R E 'R" is a vector in that space, 

LJ -IJT D"V2 I 
diffusion 

+ DF·"Vf + 
drift 

af = 0 
branching 

(A.l) 

where F and a are constants with respect to Rand T on the integral path, but may depend 
on the end points. The constant D = t is in atomic units. Parts of Eq. A.l are labeled with 
respect to their operational interpretation. The effects of the inclusion of each term are most 
easily understood from the resulting density matrix (Eq. A.lO). 
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The Green's function is defined from the solution of the following partial differential 
equation 

8G ~ ~ ~ 
--D'V2G + DF. 'VG + aG = c(R- Ro)c(T- To). OT 

(A.2) 

The solution to Eq. A.2 can be obtained by taking the Fourier transform with respect toR- Ro, 
and noting the following relationships 

c(ii- Ro) = j dK eiK·(R-Ro) 
{21r)n 

G(RTIRoTo) -
j dK . ~ ~ ~ ~ __ e•K·(R-Ro)g(K T _ 1i ) 

(21r)n ' 0 
(A.3) 

'V -+ iK, 

where K E 'R,n is a vector in the reciprocal space, Then the Green's function equation A.2 is 
reduced to a differential equation in time 

( ;T + ")'2) g = 0 ( T - To) {A.4) 

where 

1 2 = DK2 + iDF · K +a. (A.5) 

The next step is to take the Fourier transform with respect to T - To, which transforms 
the above equation to 

where the transformation relates the following quantities 

C(T- To) = 

g(K, T- To) 

a 
OT -+ 2W. 

(A.6) 

In the reciprocal space of R and T the differential equation becomes a purely algebraic 
one where the solution to g is simply 

-z 
g = 2. 

W -Z")' 
(A.7) 

The transform back to g(i<, T- To) results in a complex contour integration along the real w 
axis that encloses the upper half w-plane if T- To is positive or the lower half w-plane if T- To 
is negative, such that the exponential in either case then becomes vanishingly small. The pole of 
the integrand is at w = i")'2 with a residue = e-l'~(r-ro). The pole is enclosed only if T- To > 0. 
(The behavior if T- To = 0 is ill defined and the principle value can be taken resulting in half 
the residue.) Therefore, the transform back to T space yields 

(A.8) 
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where e is the Heaviside step function 

9(1) = { ~ 
t>O 
t=O 
t<O 

(A.9) 

The transform back to R space via equation A.3 is trivially done by completing the 
square in the argument with respect to K, thus introducing an exponential quadratic in R- Ro. 

Finally the resulting form of the Green's function, or density matrix, is 

_ _ ( 1 ) n/2 -(il-ilo-D(r-ro)l)2 

G(RTIRoTo) = e (T- To) e-a(T-To)e •b(r ro) . 
411'D(T- To) 

(A.10) 

The diffusion/drift/branching is evident from equation A.10 in that the branching gives 
the predictable exponential growth related to a, and the drift and diffusion by a Gaussian of 
R- Ro- D(T- To)F. 

A.2 Green's Function Stochastic Simulation 

The stochastic realization of the density matrix G(RTIRoTo) is made easier if the expo­
nential term in a is factored out such that 

(A.ll) 

The second term, T(RTIRoTo), represents a conditional, or a transition probability distribution 
function for transitions to R, T if initially at Ro, To and has the usual properties 

T(RTIRoTo) > 0 

j dR T(RTIRoTo) 1 . 

These relations just say that T(RTjRoTo) is positive semi-definite transition probability and 
starting at any given point always yields a transition somewhere else in space. The stochastic 
realization of this conditional probability distribution function is: 

1. Set time step !:iT= T- To. 

2. Start at given point Ro. 

3. Generate a Gaussian distributed vector x E 'R-n with mean < x >= 0 and variance 
< x2 >= 2Dn!:iT. 

4. Return the new point R distributed according to transition probability T(RTIRoTo), where 
R = Ro + D!:iTF +X· 

See figure A.1 for a diagrammatic description of the above process, where the light solid vector 
corresponds to a drift of D!:iTF and the dashed line represents a diffusive step of x, in the 
transitions from Ro to R. 

The exponential m = e-~Ta can either be used to 'branch', or copy, the new point 
according to the multiplicity m, or as a numerical weight carried along with the point, or a 
combination of both. Branching is necessarily an integer process and can be realized by creating 
[m + u] number of copies of the point, where u is a uniformly distributed random number on the 
interval [0, 1),and the truncation operator [a] returns the largest integer less than or equal to a. 



A.3. RENORMALIZATION 107 

Figure A.l: Quantum Monte Carlo algorithm: heavy vectors are n dimensional coordinate vectors 
for the initial and final points, the light vector is the importance sampling drift according to trial 
wavefunction tPT(R), the dashed line represents diffusion or Brownian motion with a given root­
mean-squared length. 

n-

Diffusion 
RM S = )~2n-D=Ll-:--r 

A.3 Renormalization 

Operationally, you have a collection of random walkers located at the set of points Rcn 
which are distributed in some fashion throughout the n dimensional space. Each random walker 
is propagated via the above stochastic algorithm to a new set of points fi;. Then mi copies of 
each point are made and this set of points becomes the initial set of points Roi for the next 
generation. This process can be repeated several times as necessary. 

Renormalization of the sample population is necessary at times due to the finite memory 
available in current computers and their storage devices. Because of the branching term, e-aA.,., 
in the density matrix (Eq. A.lO), it's either possible for the population to grow beyond the 
available array storage or to diminish to nothing depending whether the exponential argument 
is respectively positive or negative overall. In this implementation renormalization was done 
sparingly and only on demand when the population size threatened to overrun the available 
array storage or was close to vanishing. 



Appendix B 

Expectation Values 

This appendix is devoted to the various methods that can be employed to obtain ex­
pectation values from the QMC sampled population. All eigenfunctions shown in this appendix 
have the proviso that they are eigenfunctions of the Hamiltonian for a given set of boundary 
conditions (i.e. fixed-node). 

B.l Energy Expectation Values 

Exact Expectation values of the ground state energy from the D-QMC mixed distribu­
tion can be easily found by advantageously using the hermiticity of the Hamiltonian operator, 
H, and letting it act on the eigenstate directly, 

{<poiHit/IT) 
{<poltPT) = co (B.1) 

f <poHt/!T dR 
f <pot/IT dR 

(B.2) 

f ~~x <po tPT dR 
f <potPT dR 

(B.3) 

hence 

1 N 
co ~ - LEL(~) 

N i=l 

(B.4) 

where the points ~ are distributed according to the mixed distribution pdf f = <potPT· 

B.2 Expectation Values of Other Operators 

Expectation values of operators that don't commute with the Hamiltonian can be es­
pecially difficult. Generally, the ground state does not represent an eigenstate of the operator in 
question. To obtain exact expectation values for some operator 0, 

{O) = {<poiOI<po) 
""~- {cpol<po) ' 

108 
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requires finding some way to sample the square of the exact ground state. However, all that is 
easily available is the mixed distribution and the expectation value associated with it, 

(B.6) 

Since the ground state and trial function are not generally eigenfunctions of the operator 0, then 
the mixed expectation value is appreciably different from the exact expectation value. 

B.2.1 Approximate Expectation Values 

The following approximation to the exact expectation value for a non-commuting oper­
ator was due to Ceperley and Kalos[30]. Beginning with the assumption that the trial function 
1/JT is fairly 'close' to the exact eigenstate, then the difference 

16) = I~Po) - lt/Jr} , (B.7) 

can be considered 'small' and we can neglect terms to some given order of 6. Writing the 
variational and mixed-distribution expectation values to second order becomes 

and 

(O).p? = (<pol<po) -I [ (<poiOI<po)- 2(<poiOI6)- 2 (<polf~:~~~}ol6)] + 0(62
) . (B.9) 

By taking the following difference an approximate expectation value will differ from the exact to 
order 62 , 

(O)approx -

= 

2(0) 1 - {O)tt>? 

{<poiOI<po) + 0(62). 
{<pol<po) 

(B.lO) 

(B.ll) 

An advantage to this approximate expectation value is that both quantities are easily computable 
via QMC methods. Either two independent runs one a V-QMC and the other a D-QMC can be 
executed, or a 'weighted' D-QMC and 'un-weighted' V-QMC can be performed. The meaning 
of the last statement is that instead of using branching to bias the random walk, weights are 
propagated along with each random walker to produce the mixed-distribution[123]. The expec­
tation values can be computed with and without weights, thus producing a correlated random 
walk[124] The resulting D-QMC and V-QMC expectation values will have an uncertainty in the 
difference which is far less than the uncertainty in the expectation values. 

B.2.2 Exact Expectation Values by Future Walking 

We need not be content with approximate expectation values. There is a method to 
obtain the exact expectation value at the expense of simplicity. This can be done by the method 
of future walking[81, 7]. 

We want to sample from <p5 rather than f = 1/Jr<po so we 'correct' the distribution with 
some sort of weighting factor P(R) such that 

(B.12) 



110 APPENDIX B. EXPECTATION VALUES 

where constant C has yet to be determined. The operator 0 in the expectation value need not 
be a scalar operator in the representation chosen. As with the local energy a local scalar field can 

be constructed such that O(R) = Ot{ir(<jl)), which will not change the following derivation. The 
tPT R 

desired exact expectation value can be arrived at from the mixed distribution with this weight 
factor such that 

(0)'~'~ = j P(R)tpo(R)O(R)tpo(R)dR 

= I P(R)tpo(R)P(R)O(R)tiJT(R) dR 

I Ptpo(R)P(R)tiJT(R) dR 

where we have assumed that the wavefunctions are real. 
For the moment we consider 

which has the property 

(B.l3) 

(B.l4) 

(B.l5) 

(B.l6) 

and in the long-time limit approaches t{lr((!I))e-(to-Er)rtpo(R)tpo(Ro). Then it follows that 
tPT Ro 

(B.l7) 

The evaluation of the above integral of p can be realized by starting a single configuration at Ro 
and propagating forward in imaginary time some arbitrarily period of time, say T. The integral 
with respect to R then. represents the number, NT, of random walkers descended from this lone 
configuration at Ro. Return NT as an estimate for PT(Ro) where 

lim PT(R) = P(R) . 
T-oo 

(B.18) 

Before contributing to the sum for the expectation value of (O)<P~ keep track of 'how many 

configurations at some later time are descended from that point then weight the evaluation O(R) 
accordingly. 



Appendix C 

Program Documentation 

This appendix lists the documentation for the program q903cd. The program itself is 
not listed since it is approximately 250 pages/12000 lines long and can be obtained directly from 
the author. The program has been written in FORTRAH and is designed to be modular with respect 
to the trial wavefunction evaluation. The code is FORTRAH 77 compliant except for the use of 
IAHELISTs, which is fairly standard on most compilers. At the beginning of each subroutine a 
detailed explanation of the subroutine purpose and argument list is given, which will aid the 
interested hacker. 

The program has been vectorized for the CRAY architecture, but will run under the 
VAX/VMS operating system and be easily adapted to other environments by linking in a different 
SYS90CD file that contains the system dependent calls. 

Some of the input file specifications closely follow the input specifications of the ab initio 
quantum chemistry code called HOHDO of M. Dupuis, J.D. Watts, H.O. Villar, G.J .B. Hurst[44]. 
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INPUT SPECIFICATIONS FOR PROGRAM QMC90CD 

VECTORIZED V-QMC, FN-DQMC, RN-GFMC 
-- VERSION 9.03CD --

+----------------------+ 
I By Richard Kent Oven I 
+----------------------+ 

and B.L.Hammond, R.I.Barnett, S.Alexander, P.J.Reynolds, 
PROF. Wa. A. Lester,Jr. 

UIIVERSITY OF CALIFORNIA, BERKELEY 
and 

UWREHCE BERKELEY LABORATORY 
BERKELEY, CALIFORIA 94720 

THIS PROGRAM IS BASED 01 THE FIXED-lODE DIFFUSION QUAITUM MONTE 
CARLO ALGORITHM (SEE P. J. REYIOLDS, D. M. CEPERLEY, B. J. ALDER, AND 
W.A.LESTER, J.CHEM.PHYS. 77 (1982) 5593 AND 
THE RELEASED-lODE GREEN'S FUNCTION MONTE CARLO (D.M. CEPERLEY, 
B.J. ALDER, J.CHEM.PHYS. 81 (1984) 5833. 

DISCLAIMER: 
THE AUTHOR MAKES NO GUARANTEES AND/OR WARRANTIES EITHER 

EXPRESSED OR IMPLIED WITH RESPECT TO THIS CODE, DOCUMENTATION, 
OR THE RESULTS OBTAINED. THE USER OF THIS CODE, ETC. DOES SO 
AT HIS OWN RISK, AND THE AUTHOR IS IN NO VAY RESPONSIBLE FOR 
ANY DAMAGES WHICH MAY RESULT FROM PROPER DR IMPROPER USE. 

PROPRIETARY STATEMENT: 
THE DEVELOPMENT OF THIS PROGRAM AND ITS DOCUMENTATION ARE 

COPY-RIGHTED BUT ARE PUI" INTO THE GENERAL PUBLIC USE WITH SOME 
LIMITATIONS. THE USER MAY MAKE CHANGES TO THIS CODE AND 
DOCUMENTATION AS HE SEES FIT. HOWEVER, THE AUTHOR LIST SHOULD 
REMAIN INTACT AS IS. IF THE CODE IS CHANGED SIGNIFICANTLY THE 
PROGRAMMER MAY ADD HIS NAME AS A COAUTHOR FOLLOWING THE PRINCIPLE 
AUTHOR. ANY PAPERS THAT ARE PUBLISHED WITH RESULTS FROM THIS 
PROGRAM SHOULD ALSO ACKNOWLEDGE THE PRINCIPLE AUTHOR AND PROGRAM. 
ANY FURTHER DISTRIBUI"ION OF PROGRAM MUST INCLUDE THE ANNOTATED 
SOURCE CODE. 

DATA $BANNER 

One line title for f~st page of output 

EXJ.MPLE: 
$BANNER 

************* Li dimer DZ STO basis + EEJ + ENJ **************** 
$END 



.. 

DATA $BASIS 

Specification of geometry, basis set and E-H correlation parameters. 
Closely follows the HONDO style of input but has been freed 
of strict FORMAT rules and does not support symmetry generation of 
geoaetry. 

EXAMPLE: 
$BASIS 

Carbon Hydride -- double-zeta basis 
c 6. 0. 0. 0. 
CUSP 1S 7.969 
CUSP 1S 5.231 
CUSP 2S 1.820 
CUSP 2SP 1.168 

2P 2.726 

H 1. 1.6738 o. 0. 
1S 1.640 
1S 1.120 

$EHD 

EXAMPLE AHKOTA TED: 
Carbon Hydride -- double-zeta basis 
- BASIS TITLE 

12.0 119.0 

0.05 11.0 

H 1. 1.6738 0. 
- ATOM LABEL (A3) 

0. 0.05 11.0 
- LAMBDA 

• NUCLEAR CHARGE - NU 
- X - y - z 

CUSP 2SP 1.168 
- CUSP-less IF PRESENT 

- AD ORBITAL OR SHELL 
- ZETA FOR AD 

COMMENTS 

'First Card' 
'Second Card' 
'Third Card' 
'Third Card' 
'Third Card' 
'Third Card' 
'Third Card' 
'Blank Card' 
'Second Card' 
'Third Card' 
'Third Card' 
'Blank Card' 

I 'First Card' 

I 'Second Card' 

I 'Third Card' 

113 
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NAKELIST $CNTRL IPRINT,VECFLG,PUNFLG,STATOL,REETOL,RENTOL, 
--------------- PSITOL,DETOL,FQTOL 

IPRINT PRINT FLAGS (Default•O) (Combine by addition) 
0 Noraal liaited output 

1 

10 

100 

1 000 

10 000 

100 000 

Averages or Opt. Coefs. l Energies printed 
after each block 
Info, MO's, ERROR messages, 
Test results (unit7) printed 
Print timing statistics for routines 

Scale factors printed out 

Routine headers 

Debug Info (walk parameters) 

1 000 000 Punch configurations after each printed walk 
(see program PUNCOLL) 

10 000 000 

100 000 000 DON'T use orbital shells (use general AD's) 
(Good for comparison tests of AD's) 

1 000 000 000 RUN but DON'T 'WALK' 

I SCALE 

PUNFLG 

STATOL. 

REETOL 

RENTOL 

PSITOL 

FQTOL 

DETOL 

Scale MO's to prevent possible Over-/Underflows 
0 NO SCALING 
1 .•. SCALING (Default) 

Printing option for electronic configurations 
-1 DO NOT print PUN file (unit2) 
0 Standard PUN file (Default) 
1 Configs written to PUN file after EACH block 
2 Print density scatter plot data (unit7) 

Tolerance for basis functions in MO's (Default=1.E-6) 

Minimum allowed E-E distance in XXCHEK (Default=0.1) 

Minimum allowed E-N distance in XXCHEK (Default=0.1) 

Minimum allowed value of ABS(PsiT) in XXCHEK 
••• NOT IMPLEMENTED ••• 

Maximum allowed quantum force in llCHEK 
••• NOT IMPLEMENTED ••• 

Minimum allowed value of ratio of determinants 
••• NOT IMPLEMENTED ••• 

• 



0 

i:f 

IAMELIST $GUESS IGUESS,IFILL,ICHECK,EGUESS 

I GUESS 

IFILL 

I CHECK 

EGUESS 

RAJ 

Initial distribution of electronic configs 
-1 Generate RANDOMLY (Default) 
1 ••• Read fro• PUN file 

Fill enseable if IGUESS•1 
0 Go vith given number of configs froa PUN file 
1 ••• Copy configs as necessary (Default) 

Check ensemble if IGUESS=1 
0 DO lOT check ensemble (Default) 
1 •.• Check vith tolerances in $CITRL 

Initial guess Energy, OILY USED IF IGUESS•-1 and ETRIAL•O 

Initial random number (Default-D.) 
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NAKELIST $NOPT OPTTOL,OPTDKP,OPTFLG,OPTCND,OSTEP,OPTCI,OPTZETA 

Coefficient optiaization via V-QMC 
Only if RUNFLAG •> 10. Can do up to 16 different parameters 
by using 2-point auxiliary runs for each parameter 
and fitting a parabola to the energies. If the ain:ilrull 
falls vithin the end-points then the nev parameter is set to obtain 
that value for the next block. 

OPTTOL 

OPTDMP 

OPTFLG(20) 
1 
2 
3 

4 

Tolerance liait for changes in parameters 
before stopping optimization 
(Default • .005) 

Damping factor to reduce the parameter step 
size after each block 
(Default • .90) 

Vhat type of optimization for corresponding run 
E-E correlation parameters and E-N CHANGE 
CI coefficients 
Atomic orbital ZETA'S (can't use exact densities for 

density dependent correlation) 
E-N correlation parameters - LAMBDA, NU 

OPTCND(20) Conditions for optimization of corresponding run 
(if OPTFLG • 1) Select parameters for optimization 

1 E-N CRANGE 
10 E-E EECF(2) 

100 E-E EECF(3) 
1000 E-E EECF(4) 

10000 E-E EECF(O)•EECF(1) 
(if OPTFLG = 2) Select vhich of first 16 CI coefs to hold fixed 

EXAMPLE: OPTCND=000010 - hold the 2nd one fixed 
(if OPTFLG • 3) NO conditions 

(if OPTFLG • 4) NO conditions 

OSTEP(16,20) Maximum step size for LINK-LIST 

OPTCI(100) 
OPTZETA(100) 
OPTENC(100) 

If first one for each run is < 0 then all are assigned a 
value=abs(first)•corresponding parameter. 
(Default OSTEP(1,•) s -.20) 

Vhich of the CI coefs are linked 
, , · ZETA parameters ' ' 
' ' E-N LAMBDA ,NU parameters ' ' 

such that the linked parameters are varied identically 
it might be useful to do a short run first to 
get an idea hov the ZETA's, CI's, LAKBDA,NU's are noted. 
-OR- just make the first one negative and the 
program vill automatically make a LINK-LIST of 
ALL parameters that are the same (neglecting 
minus signs in the case of CI coefs). 

example: OPTCI=1,2,0,1,2,3,3,0,3 
- links 1st a 4th, 2nd l 5th, 6th l 7th l 9th, 

and the 3rd l 8th are free 

.. 

. .. 
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IAMELIST $PSIT EECF,EECFLG,ENCLFG,CRANGE,TFSCH,GTHETA,GRAT 

EECF(0:4) E-E correlation function (EECF) parameters 
Bote: AliAu LikeiUnlike spins only applies to single-det. vvfns 

EECFLG Flag for vhich fora of EECF to use 
(Default) 0 •.• PADE-JASTROV 

EECF(O)IEECF(1)•Al1Au•, EECF(2)•B 
A•r A •Typically for HFSCF 

----- - --- Al•.25 
B 

1 ••• PADE-JASTROV B=Oven•s Function of Density (n) 
EECF(O)IEECF(1)=Al1Au•, EECF(2)•B1, EECF(3)•C 

1/12 
vhere B=B1•((n(r )+C)•(n(r )+C)) 

i j 
2 • . . SUH-REYHOLDS EXP (EXP) 

EECF(O)IEECF(1)=AliAu•, EECF(2)=B, EECF(3)=C, 
2 

-A*r/B -C•r 

3 •.. SUH-REYHOLDS EXP(EXP) 
B=Oven•s Function of density (n) 
EECF(O)IEECF(1)=AliAu•, EECF(2)=B, EECF(3)=C, 

-A*r/B 

U•e 
B1 

vhere B=--------------------1/12 
((n(r )+C)•(n(r )+C)) 

i j 
ENCFLG FLAG FOR VHICH FORM OF ENCF TO USE 

1 PADE-JASTROV 
0 PADE-JASTROV deteraine parameters automatically 

only first tae then treat as constants 
(Default) -1 PADE-JASTROV determine parameters automatically 

then vary as necessary for optimization runs 

-lambda*r lambda 
-------- + --------

1+nu•r nu 

CRAHGE RAHGE OF E-H CUSP 
• 0. If not concerned vith CUSP condition. 
Typically >>1/KAX(Z) if solving for E-H CUSP. 

(Default) • .05 

TFSCH Thomas-Fermi screening term for Yukava potential 
(if = 0.0 (default) then just ordinary Coulomb pot.) 

V(r) = ---------------------
r 
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GTHETA 

APPENDIX C. PROGRAM DOCUMENTATION 

Initial Guiding Wavefuntion parameter for inclusion 
of the 'one-electron density' to eliminate nodes for 
the released-node GFMC guiding vavefunction. 
(aust be non-negative to be used) 

Psi • SQRT(Psi-2 + GTHETA•prod(n(r ))) 
G T i i 

GRJ.T Ratio of configurations such that they satisfy: 
Psi-2 < GTHETA•prod(n(r ))) 

T i i 
If GRJ.T < 0 then GTHETA is kept fixed. 
(default • .10) 

DATA $VEC 

M.D. vectors in standard HONDO FORMAT 
M.D.'s aust be listed in the same order as in $WFR 
coefficients aust be listed in the same order as in $BASIS 
P -Shells have the order Px,Py,Pz 
SP-Shells S,Px,Py,Pz 

EXAMPLE: 3 M.O's, 4 basis functions 

----- ORBITALS FROM -RHFOP- Li atoa Double Zeta Basis Set ----­
$VEC 
1 1 0.12257236E+OO 0.88630102E+OO 0.79684748E-02 0.49928299E-03 
2 1 0.21106103E-01 0.13532553E+OO 0.67402434E-01-0.10433066E+01 
3 1 0.59592940E+00-0.19932147E+01 0.22001088E+01-0.70091995E+OO 
$ERD 

... j\ 

.. 
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NAMELIST $VALl RUNFLG,NUKBLK,BLKTIM,TSTEP,RAN, 
-------------- IONORM,KONKAX,KONMIN,ETRIAL,NSEMBL,ETV,DX,NCROSS 

RUNFLG(20) 
0 
1 
2 
3 

10 

Run type (DefaultzO) 
Variational Monte Carlo 
Fixed-lode Diffusion Monte Carlo 
Released lode Green's function Monte Carlo 
Test Vavefunction by comparing analytic derivatives 
vith finite-difference derivatives. 
Variational Monte Carlo Optimization 

NUKBLK(20) Number of blocks in run (if <0 then run is performed, but 
no output is generated •.• good for pre-randomization runs.) 

BLKTIM(20) Tiae for one block (In A.U.) 

TSTEP(20) Tiae step (Average time step for GFMC) (In A.U.) 

KONORM Initial size and size ensemble vill be 
renormalized to (Default=100) 

KONMAX Maximum size before renormalization (Default=2•KONORM) 

KONMIN Minimum size before renormalization (Default=KONORM/4) 

ETRIAL Initial trial Energy (Default=NOHE) 
If no value supplied uses value in PUN file (IGUESS=1) 
OR uses internal guess (IGUESSc-1) SEE $GUESS 

ETV Trial Energy update veight (Default•O.S) 
ETRIAL • (1 - ETV)•ETRIAL + ETV•EGRVTH 

DX(20) Finite difference to use for each coordinate for 
vavefunction test (Default = 1.0E-4) 
IF DX < 0 THEN TEST SCALAR EVALUATIONS 

NCROSS Released-Node •aximum generations after node crossing 
(NCROSS > 1) 

KFNMAX GFMC Fixed-Node •aximum ensemble size before renormalization 
(default=3/2•KONORM) 

KFNMIN GFMC Fixed-Node •inimum ensemble size before renormalization 
(default=2/3•KONORM) 

119 



120 APPENDIX C. PROGRAM DOCUMENTATION 

DATA $WFI 

Specification of M.O. occupancy for Single- and Multi-Determinant PsiT 
M.O. •s MUST be listed in the same order as in $VEC 
possible values are: DOC - DOUBLY OCCUPIED 

.ALP - OlE ELECTRO! SPII UP 
BET - OlE ELECTRO! SPII DOW 
VAL - UIOCCUPIED MO 

EXAMPLE: 4 M.o.•s, 6 Electrons, Triplet state 
vhere the 2nd l 3rd M.D.'s are nearly degenerate 

$WFI 
0.950 DOC 
0.312 DOC 

$EID 

DOC ALP ALP 
.ALP DOC ALP 

Rote: The VVFI aust strictly conform to the notation used. 
QMC vill internally change the signs of the CI coefs 
since QMC uses a product of Slater determinants one for 
the up spins and one for the dovn spins. 
This is an artifact of the Fermi-Dirac statistics vhere 
the exchange of tvo operators in the 2nd quantization 
picture results in an overall change of signs of the 
vvfn. The above case vill have the effect: 

AB AB A A -> -AAAABB 

AB A AB A -> +AAAABB 

For a single-determinant (HFSCF) case you need not 
be concerned of the sign. 

The sua of the squared CI coefs should equal 1 
if not QMC vill tell you and renormalize thea. 
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FILES 

UNIT PURPOSE CTSS CRAY NAME 

--------------------------- ---------------
1 INPtTr PUNCH FILE inn: •aust exist 
2 OtrrPtTr PUNCH FILE out :a: 
5 MAil INPtrr FILE cntrl •aust exist 
6 MAD OtrrPtrr FILE qmcout 
7 OPnMIZAnON iopt 

16 OtrrPtTr TAU, ENERGY, UNCERT. idat •aust exist 

4 CRAY TEXT TO SERIAL CONVERSION tp04 •must exist 
OF FOROOS 

PROGRAM CONSIDERAnONS 

The prograa is broken up into several subsections as follows: 

Necessary Files: 
Q90MAIN .FOR - main program and driver 
Q90RDXX.FOR - configuration input/output routines 
Q90WALK.FOR -Monte Carlo driver routines 
Q90GFMC.FOR - Green's Function driver routines 
Q90WVFN.FOR - vavefunction evaluation routines 
Q90LINE.FOR - simple routines that can be inserted 'inline' 

by the compiler to save 'call' overhead 

Choose one of the folloving ••. or make your ovn: 
SYS90CD.VAX -VAX VMS system dependent routines 
SYS90CD.CRA - CTSS CRAY system dependent routines 
Q9030VL - CTSS LDR overlay file 

Compile: CFT77 i=q903cd,inline=q90line 
Link: LDR df-q903ovl 

If you make one of your ovn please send a documented copy to 
R.ILOven so that it can be included in later releases. 

Necessary for SYS90CD.VAX: 
RANF.FOR - VAX VMS specific sequential congruential 

General File for 
URAND.FOR 

QMC90CD.DOC 

pseudo-random number generator 

tailoring your ovn pseudo-random number generator: 
- machine independent sequential congruential 

pseudo-random number generator given by 
Forsythe, Malcolm, Moler "Computer Methods for 
Mathematical Computations" vhich can be 
tailored for your ovn system. 

- This file 

Q90MAKE.COM - VAX VMS DCL quasi-make/menu driver for the Q90 suite of 
program files. 

PROGRAM CONSIDERATIONS CONTINUED 

Mass array storage in COMMON'BLOCK /BIG/ can be reliably changed 
by globally changing the PARAMETER MOBIG, and M1BIG in each 
routine. They should be at least as large as NCOREO and NCORE1, 
vhich is printed out at the beginning of the program. 
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AUXILIARY PROGRAMS 

PUNCOLL.FOR - ANSI FORTRAH-77 program to collect append PUNCH files 
(produced vhen IPRIHT•0001000000) into a single PUN 
file. 

PUNXX.FOR - isolates each electron and outputs $QMCXX scatter 
plot data. 

CDADD.FOR - Statistically add UNIT16 data points. 

CDFIT.FOR - Deteraines best polynomial Least-Squares fit to 
collection of data points ..• generally useful for 
tiae step extrapolations of UNIT16 combined points. 

CDSCALE.FOR - Performs some simple math operations on data points. 

CDSPLIHE.FOR - Finds cubic spline of data points and gives a nev 
set of data points ••. interpolated from the original. 

CDPACK.COM - VAX VMS DCL front-end for the CD suite of programs. 

LIST.FOR -program prints out a nice listing of a FORTRAN program 
vith page numbers, file line numbers, subroutine line 
numbers vith subsection name at bottom of each page. 
prints out alphabetical table of contents at end. 

ORBPLOT.FOR -reads HONDO $BASIS data and produces a 1-electron 
density plot data. 

ORBGRF.FOR - reads 1-electron density plots, PUHXX $QMCXX scatter 
data, etc. and plots to screen or device. 
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