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Numerical Study of Stokes Flows with Suspended Particles 

by 

Yu Tau 

Abstract 

We solve the Stokes equations in three space dimensions in the region outside a 

collection of spheres, with and without an outer boundary. The method of solution is the 

reflection method, in which one iteratively solves the problem outside each single sphere. 

The idea is to reduce the problem of finding a Stokes flow past a number of particles to a 

series of problems of finding a Stokes flow past one single particle. Our method can also be 

used to find the motion of sedimenting spheres. 

We demonstrate numerically the convergence of the method for all sphere config

urations in the case of unbounded domains. We use the method to find periodic solutions 

of the problem of three sedimenting spheres in a Stokes fluid. Long time periodic solutions 

are obtained when the initial positions of the spheres are symmetric and modulated long 

time scale periodic solutions are obtained when the initial positions are asymmetric. 

We further develop a fast numerical algorithm for the solution of steady Stokes 

equations in a bounded domain in both two and three dimensions. The method is second 

order accurate and has an operation count of order O(N log N) where N is the number of 

grid points in the domain. We then use this algorithm to extend the method of reflections 

to bounded domains. The. convergence of the method in this case is studied for various 

spheres configurations. The method is used to evaluate the effective viscosity of fluid with 

suspended spheres in a shear flow. 
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Introduction 

Low Reynolds number flow of fluids with suspended particles has been of great 

interest to both engineers and scientists for a long time. Its applications can be found in a 

very broad range of problems from polymer dynamics in chemical engineering to blood flow 

in biology. Because of the complicated boundary conditions required to satisfy the no-slip 

condition on the surfaces of particles, it is generally not possible to obtain exact solutions 

of these problems, so some approximations have to be used. 

One of the first and simplest is the point force approximation ( [7]- [8], [29], [39], 

[6], [5], and[38]). In this method each particle is replaced by a point force and the no slip 

condition on the particles surface is satisfied only in some average sense. Since point forces 

radiate with equal intensity in all directions the angular dependence of the disturbances on 

one particle's surface produced by the other particles cannot be taken into account. Recently 

the collocation method was developed ( [16], [17] and [21]) in which the solution to Stokes 

equations is expanded in the appropriate eigenfunctions and the boundary conditions are 

satisfied at some collocation points. Brady, Bossis and coworkers also developed a very 

cost-efficient technique they called the Stokesian dynamics ([3], [13], [4]). A brief review 

and comparison of the two methods can be found in the paper by Weinbaum, Ganatos and 

Yan ( [41]). Other methods include boundary integral method ( [42], [17] and [40] ). 

In this thesis we present a numerical study of Stokes flow with suspended particles 

by the method of reflections. The method of reflections presented here was introduced by 

Smoluchowsi ([31]) in 1911 and has been used to study the Stokes flow with suspended 

particles by many people ( see, e.g. (31], [32], [9], [25), [19) and [22]). This method is 

a iterative method. It depends on the linearity of the Stokes equations and reduces the 

problem to a series solutions of Stokes flows outside a single particle. There exists no 

rigorous proof that the method converges. In a recent paper by Luke [27], it is proven that 
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in a bounded domain the method converges in the energy dissipation norm, assume that the 

flow ooutside a single particle in a bounded region is known. However the solution of Stokes 

equations outside a single particle in a bounded domain is itself far from trivial and in 

addition the proof breaks down for an unbounded domain. We use numerical computations 

to study the convergence of the method of reflections in an unbounded domain and extend 

the method to a bounded domain by treating the boundary of the domain in a manner 

analygous to the treatment of the particles. In all our computations we assume the particles 

are spheres. 

In chapter 1, the solution of Stokes equations outside a single sphere in an un

bounded domain is obtained using the method of harmonic expansions, for any given veloc

ity condition on the surface of the sphere. The expansion is then truncated for numerical 

computation. A Gaussian quadrature formula is used in the numerical integration of the 

coefficients of the expansion. The accuracy of the solution is studied via comparison with 

some simple known exact solutions. 

In chapter 2 we present the method of reflections based on the solution outside 

a single sphere we obtained in chapter 1. We study numerically the convergence of the 

method for flows pass a number of fixed spheres. We test the method on closely packed 

sphere configurations. In all these cases our numerical computations show the method is 

convergent. This has convinced us that the method is convergent in unbounded domains. 

Next we modify the method to solve problems in which the forces and torques on the 

spheres are given and apply the method to find the periodic solutions of the problem of three 

sedimenting spheres. Long time periodic solutions are obtained when the initial positions of 

the spheres are symmetric, and the results agree well with previous work done by Caflisch 

et al. [10]. Modulated periodic solutions on a long time scale are also obtained when the 

initial positions are asymmetric. All these calculations demonstrate the convergence of the 

method. 

In chapter 3 a fast numerical technique for finding solutions of the steady-state 

Stokes equations without particles in both two and three dimensional domains is presented. 

We implement the method on a special staggered grid for a rectangular (cubic) domain, and 

obtain a solution in an order of O(N log N) operations for both two and three dimensional 

cases, where N is the number of grid points in the domain. The main idea is to derive 

from the Stokes equations an equation for the pressure p, Ap = b, where the matrix A is 

semi-positive definite and very well conditioned on the orthogonal complement of its null 



3 

space. 

In chapter 4 we combine the methods described in chapter 2 and 3 to extend the 

method of reflections to a bounded domain. The convergence of the method in this case is 

studied for different sphere configurations. We then apply the method to the evaluation of 

effective viscosity of particle suspension in a shear flow. Our numerical results show good 

agreement with Einstein's formula [14] when the particle volume fraction is small. 

Finally chapter 5 contains the discusssion and conclusions suggested by our nu

merical results. The silarity and difference of our method and the collocation technique of 

Ganatos et al. [15] will also be discussed. 



4 

Acknowledgements 

I would like to thank my thesis advisor, Alexandre Chorin, for his encouragement 

and advice. It has been a pleasure and a privilege to be his student. 

I would like to thank Ole Hald for his careful reading of the draft, and Philip 

Marcus for serving as the outside reader. 

I would also like the thank late Mr. K. C. Wong and K. C. Wong Educational 

Foundation for providing me the loan which made it possible for me to come to the United 

State to pursue my Ph.D degree. 

I am grateful to my wife Bo Yu, for her love and support during the five years of 

my graduate study. 

.... 



Chapter 1 

Stokes Flow Outside a .Single 

Sphere 

1.1 Introduction 

5 

In this chapter we develop a numerical solution of Stokes equations outside a 

single sphere in an unbounded domain. The solution will form the basis for the method of 

reflections in chapter 2 for treating Stokes flow with more than one sphere. 

1.2 General Solutions 

We want to solve the following problem: 

\7. il = 0. 

with boundary conditions on the surface of the sphere given by 

and 

U(r=oo,O,cf>) = 0. 

( 1.1) 

(1.2) 

(1.3) 

(1.4) 
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Using spherical coordinates, the general solution of Eq. (1) and (2) is given by Lamb [26] 

and by Happel and Brenner [19], 

i1 = ~ [ _ n+3 2 
nf.:oo V X (rxn) + V~n + 2J.L(n + 1)(2n + 3) r Vpn 

n - ] 
- J.L(n + 1)(2n + 3) rpn, 

(1.5) 

+oo 

where Xn, ~n and Pn are solid spherical harmonics, and p = L Pn is the pressure. 
n=-oo 

Since we require f1ir=oo= 0, we must have 

Pn = ~n = Xn = 0 for n 2:: 1 

so that 

U
- ~ [ _ n-2 2 = ~ V X (rX-(n+l)) + V~-(n+I)- 2Jln(2n _ 1 ) r VP-(n+I) 

n + 1 _ ] 
+ Jln(2n- 1) TP-(n+I) . (1.6) 

Now we describe a general method for obtaining harmonic functions P-(n+I)• ~-(n+I) 

and X-(n+I) that satisfy the boundary condition (1.3), we follow the outline given by Happel 

and Brenner [19]. 

For the radial component of velocity, since it is always true that 

for any Xn, we find 

(1. 7) 

By virtue of Euler's theorem for homogeneous polynomials, 

(1.8) 

where hn is any solid spherical harmonics of order n, we may simplify Eq. ( 1. 7) to, 

~[ n+1 n+1 ] 
Ur = ~ 2J.L(2n- 1) rp_(n+I)- -r-~ -(n+l) . (1.9) 

.. 
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Differentiation of Eq. (1.9) with respect to r and again applying Euler's theorem 

gives 
our_~[n(n+1) (n+l)(n+2)4> ] 

r or - ~ 2Jl(2n- 1) TP-(n+l) + r -(n+l) . (1.10) 

In addition to these relationships we can also obtain, by taking the curl of Eq. (1.6) 

and dot product with vector r, 
00 

r. v X f1 = L n(n + 1)X-(n+l)· (1.11) 
n=l 

Thus, at the surface of the sphere we obtain 

(1.12) 

[
OUr] ~ ( n(n+ 1)a (n+ l)(n+2) ) 

r Or a=~ 2JL(2n- 1)[p-(n+I))a + a [4>-(n+l))a ' (1.13) 

00 

[r· v X u]a = L n(n + 1)[X-(n+l)]a, (1.14) 
n=l 

where the subscript a denotes evaluation of the function at r =a. 

If V = V(B,cj>) denotes the value of the velocity field on the sphere surface, that 

is, 

then it may be shown that 

V = [u]a 

r -[ur]a = - · V, 
r 

[ 
our] -r- =-rV·V, 
or a 

[r · V X u]a = r · V X V, 

(1.15) 

(1.16) 

( 1.17) 

where V is the usual three-dimensional nabla operator. The second of these relationships 

depends upon the validity of the continuity equation V · f1 = 0 whereas the remaining two 

equations are true for an arbitrary vector function fl. Because of the properties of solid 

spherical harmonics, we have 

(1.18) 
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with two similar identities for Xn and ~n· Introduction of these relations into Eqs. (1.12) 

- (1.14) gives us 

~. V = E [ 2JL(2n;: -1) (~) -(n+I) P-(n+l) 

n + 1 (a)-(n+1) l 
--- - ~-(n+I) ' a r 

-r\7 · V ~[n(n+l)a (a)-(n+l) 
~ 2JL(2n- 1) -:;: P-(n+l) 

(n + 1)(n + 2) (a) -(n+l) l 
+ - ~-(n+l) ' a r 

= [ ( )-(n+l) l f.\7 X il =:; n(n+ 1) ; X-(n+l) . 

(1.19) 

(1.20) 

(1.21) 

r - - -Since - · V, -r\7 · V and f · \7 X V are all functions of (0, ¢) only, we can expand 
r 

them in terms of surface spherical harmonics as 

Thus we have 

- = 
r - """ - · V = L....t Xn, 
r n=l 

= 
-r\7 · V = L Yn, 

n=l 

= 
r. \7 X v = L Zn. 

n=l 

E [ 2JL(2:a- 1) (;) -(n+I) P-(n+l) 

n + 1 (a) -(n+I) l 
--- - ~-(n+I) ' a r 

= ~ [ n(n + 1)a (a)-(n+1) 
~ 2JL(2n- 1) -:;: P-(n+l) 

(n+1)(n+2) (a)-(n+l) l 
+ - ~-(n+l) ' a r 

(1.22) 

(1.23) 
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E Zn = E [n(n + 1) (;) -(n+l) X-(n+l)]· (1.24) 

Equating term-by-term under the summation sign, and solving the three resultant 

equations for the harmonic functions P-(n+l)' c})-(n+l) and X-(n+l)' we obtain 

J1(2n- 1) 1 (a)n+l 
P-(n+l) = n + 1 a -;: [(n + 2)Xn + Yn], (1.25) 

1 (a) n+l 
c})-(n+l) = 2(n + 1)a -;: (nXn + Yn), (1.26) 

1 (a) n+l 
X-(n+1) = n(n + 1) -;: Zn· . (1.27) 

In our computation each Xn, Yn and Zn are expressed in terms of the associated 

Legendre functions and the sin, cos functions as 

n 

Xn(Yn,Zn) = L P,:n(cosO)(A:cosm¢+B:sinm¢). 
m=O 

If we express li in the spherical coordinates as 

and keep in mind that V is a function of 0 and ¢ only, we find 

r -
- · V = Vr(O,¢), 
r 

(1.28) 

- [ 1 8 . 1 8Vq,] - rV' · V =- 2Vr + -.-- (smO Ve) + -.---
smO 80 smO 8¢ 

(1.29) 

and 

- T"7 v- 1 8 ( . 0 T T ) 1 8Ve 
T • v X = --- SID v ¢ - ----. 

~n080 ~nO 8¢ 
(1.30) 

Now we expand each term in those equations in terms of associated Legendre 

functions and sin,cos functions to obtain 

oo n 

Vr = L L P,:n(cos O)(Ax: cos m¢ + Bx: sin m¢), 
n=l m=O 

1 8 oo n 
sinO 

80 
(sinOVe) = L L P,:n(cos O)(AY1~ cos m¢ + BYl: sin m¢), 

n=1 m=O 
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sinO a: = E foP;:" (cos B)( AY2: cos m¢ + BY2: sin m¢ ), 

1 8 = n 
sinO 

80 
(sinBV.p) = L L P;:"(cosB)(AZ1: cos m¢ + BZ1: sin m¢), 

n=l m=O 

1 810 00 n 
sinO 0; = :; foP;:" (cos 0)( AZ2: cos m¢ + B z2: sin m¢ ). 

Finally, we have the expressions for Xn, Yn and Zn as 

n 

Xn = L P;:"(cosB)(AX:;'cosm¢+BX:;'sinm¢), 
m=O 

n 

Yn = L P;:"(cosB)(AYnmcosm¢+ BYnmsinm¢), 
m=O 

n 

Zn = L P;:"(cosB)(AZ;;' cos m¢ + BZ;;' sin m¢), 
m=O 

where 

BYm =- (2BXm + BY1m + BY2m) n n n n ' 

AZ:;' = AZ1: - AZ2:, 

1.3 Force and Torque on the Sphere 

10 

(1.31) 

( 1.32) 

(1.33) 

( 1.34) 

( 1.35) 

(1.36) 

(1.37) 

Once the velocity field has been found, the force and torque (about the sphere 

center) exerted on the sphere by the fluid can be calculated. Let II be the stress tensor, 

then 

F = fs firdS, 

To = is r X ITrdS. 

It can be shown that (see, e.g., [26] and [19]) 

- r r (au u) P llr=;·IT=-;p+p or--;_ +-;_V'(r·u). 
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Using Eq. (1.6), we obtain the formula 

00 

llr = It: L [-(n + 2)V X (Tx-(n+l))- 2(n + 2)Vq,_(n+l) 
n=l 

n2
- 1 2 2n2 + 1 :... ]. 

+ 2pn(2n- 1) r VP-(n+l)- 2pn(2n- I) TP-(n+I) · (1.38) 

Substitution of Eq. (1.38) into the surface integrals for f and To, with the help 

of following identities for arbitrary solid spherical harmonic functions H 

_ { 
4

7l"TV(r3H-2) is r'H_(n+l)dS = 0 3 
for n = 1 

for all other n 

and 

eventually gives us 

is V H -(n+I)dS = 0 for all n ~ 1, 

is v X ( rH -(n+l) )dS = 0 for all n, 

F = -47rV(r3p_2) 

To = -81rpV(r3x-2) 

or, in term of coefficients AX: etc. , we have 

and 

Fx = -2pa(3AX{ + AYl ), 

F11 = -2pa(3BX{ + BYl ), 

Fz = -2pa(3AXP + AY1°) 

Tf> = -4pa2 BZ{, 

T0 = -4pa2 Azr. 

(1.39) 

(1.40) 
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1.4 Calculation of the Coefficients AX, BX etc. 

Now we proceed to describe the numerical calculations of all the coefficients. It is 

well known (see, e.g., [23] ) that we can express the coefficients as 

where 

n = c~ VrP::"( cos 0) sinOdOd¢, 
[ 

AXm ] la211"la1!" [ cosm¢ ] 
BX;:" o o sinm¢ 

[ 
AY1m] 
BY1; 

= c~ r1!" r .1 
O 

8
8
0 

(sinO V9 ) P:;" (cos 0) [ c~sm¢ l sinOdOd¢ 
lo Jo sm smm¢ 

la211"lr. dPm [ cosm¢ l 
-c~ Ve d(}n . sinBdBd¢, 

o o smm¢ 

[ 
AY2~ l 
BY2~ l

2r.l1!" 1 8V: [ cosm¢ l c~ --:--
0 

a: P:;"( cos B) . sinBdBd¢ 
o o sm '+' sm m¢ 

l
2r.lr. [ sinm¢] me~ V,pP:;" dOd¢, 

o o - cosm¢ 

[ 
AZl~ l 
BZ1~ 12r.lr. 1 8 [ cosm¢ l c~ --:--

0 80 
( sin9 V,p) P:;"( cos B) . sinBdBd¢ 

o o sm smm¢ 

la2r.lr. dPm [ cosm¢ l 
-c~ V,p dOn . sinBdBd¢, 

o o smm¢ 

[ 
AZ2~] 
BZ2~ 

= l 2r.l1r 1 8V9 [ cosm¢ l c~ --:--
0 8.-~.. P:;"( cos 0) . sinBdBd¢ 

o o sm '+' smm¢ 

l z,..l'!r [ sinm¢] me~ VeP:;" dOd¢, 
o o - cosm¢ 

m (2n+l)(n-m)! c = ..:__ _ ____.:...;___.,..-.:... m=O 

m ;e 0 n 27rbm(n+m)! 

(1.41) 

(1.42) 

(1.43) 

(1.44) 

(1.45) 

The surface integral is calculated numerically by using Gaussian quadrature for

mulas [36]. We divide the surface integrals in Eqs. (1.41) - (1.45) into two categories, those 

... 



that have the form 
r2?r r 

h = Jo Jo f(O,¢)sin0d0d<P 

and those have the form 

h = fo2
7r fo?r J(O,¢)d0d¢. 

Each can be approximated by Gaussian quadrature formula as 

M 2M 

!1 = L L J(Ol, l/Yj)Cl D} 
i:::l j:::l 

and 
M2M 

h = L L !( Ol, tPi )Cf DJ, 
i:::l j:::l 

where 

o; = 0.511"(1 + x;), 

in which x;, Yi are roots of appropriate Legendre polynomials, and the Cf, DJ, 
Cl, DJ are the corresponding quadrature weights (see e.g. [36]). 

1.5 Numerical Solutions and Examples 
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(1.46) 

(1A7) 

To evaluate the velocity numerically, the infinite series of the right hand side of 

Eq. (1.6) has to be truncated after finite number of terms, say N. Thus we obtain 

(1.48) 

For computational purpose, we substitute Eqs. (1.25) - (1.27) and Eqs. (1.31) 

- (1.33) into Eq. (1.48) to obtain 

u 

(1.49) 



v = 

w = 

where 

x = r sin 8 cos 4> 

y = r sin 8 sin 4> 

z = r cos 8 

are Cartesian coordinates, 

and form= 0, ... ,n 

for m = n + 1, ... , 2n 

1 n + 1 
s = --:---"'7 
n n(2n- 1) 

2 n- 2 
s = --:-----:-

n 2n(2n- 1) 

Am= 1 Azm 
n n(n + 1) n 

B: = 2(n ~ 1) (nAX: + AYnm) 

em= (2n- 1) ((n + 2)AXm + AYm) 
n n+ 1 n n 

yynm = rn~l P;:( cos 0) cosm¢ 

Am- 1 Bzm-n 
n - n(n + 1) n 

Bm - 1 (nBxm-n + BYm-n) 
n - 2(n + 1) n n 

em = (2n - 1) ((n + 2)Bxm-n + BYm-n) 
n n+1 n n 

yynm = r:+l p;:-n(cos 8) siJ\m- n)¢. 

14 

(1.50) 

(1.51) 

.. 
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As a numerical example, we take a = 1 and 

In this case the exact solution is known to be ( see [22] ) 

il = (u,v, w), 

u -- 1 +- -- B 1-- - C-A ( x
2

) 1 ( 3x2) z 
2 r 2 r r 2 r3 

+- - + 1-- -+3 -3D (zx 2
) 3E ( 5x

2
) z F (z

2
- y

2
) 1 

2 r5 r2 r5 r2 r3 

_ G ( 1 _ 13x
2 + 5z

2 + 75z
2
x

2
) _!_ 

10 r 2 r 4 r 3 

( 
5x2 + 5z2 35z2x 2) 1 

+3H 1- 2 + 4 5• r r r 
(1.52) 

v -- - +3B - +- - -15E-+3F-A (xy) (xy) 3D (xyz) xyz xy 
2 r 3 r 5 2 r 5 r 7 r 5 

+- 13- - - - 15H 1- - -G ( 75z
2

) xy ( 7z
2

) xy 
10 r 2 r 5 r 2 r 7 ' 

(1 .. 53) 

w -- - +3B - +C-+- -- -3E 1-- -A (zx) (zx) x 3D (z2 x) ( 5z
2

) x 
2 r 3 r 5 r 2 r 5 r 2 r 5 

-3F- + - 23 - - - - 15H 3 - - -zx G ( 75z
2

) xz ( 7z
2

) zx 
r 5 10 r 2 r 5 r2 r 7 ' 

(1.54) 

where 

A = % (a - ~~) , B = ~ (a - ~~) , C = - ( n - ~~) , 
3 1 1 7 1 

D = -5~' E = -6~' F = -g"Y' G = 12 -y, H = 24 1 ' 

To see how good the approximation (1.48) is and how the accuracy varies with 

different choice of parameters, we make a number of numerical computations. For our first 

calculation, we want to check how the accuracy of approximation (1.48) changes with the 

increase of N while the number of points used in the Gaussian quadrature formulas is fixed, 

i.e., M is fixed. Table 1.1 shows the result of this calculation. The error is measured by 

the maximum absolute value of the difference between the exact solution and the numerical 
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Table 1.1: Accuracy of the approximation for different N 

N 1 2 3 4 
e(u) 0.4469 0.1414 7.919x 10 ·J 8.557 x10 -,j 

e(v) 0.1907 7.275x 10 -~ 3.861 X 10 -:5 5.536x10 ·J 

e(w) 0.4080 0.1716 5.425x1o-3 5.388 x 1 o-;j 

Table 1.2: Accuracy of the approximation for different M 

M 2 3 4 5 7 
e(u) 0.7671 0.1708 2.548x 10 -:z 7.919 X 10 -J 2.114x 10 ·4 

e(v) 0.8514 0.1035 1.935x 10 ·"/. 3.861x10 ·J 1.238x 10 ·4 

e(w) 0.6594 0.1753 1.939x1o-~ 5.425x 10 ·J 1.126x 10-4 

solution on the surface of a certain distance away from the center of the sphere. We chose 

M = 5, the distance d = l.5a = 1.5 and 0 = a = f3 = 1 = 1. 

From the results, we see that the accuracy increase rapidly with N except for 

N = 4. The reason for this is that the exact solution of this particular problem only 

contains terms up to N = 3. 

Next we look at how the accuracy changes with the increase of M. Table 1.2 

displays the results of this computation with N = 3 and other pa.rameters remain the same. 

We can obtain reasonable approximation with M = 4. 

Finally table 1.3 shows how the approximation varies with the distance away from 

the center of the sphere. The parameters are chosen as N = 3, M = 5, and others remain 

unchanged. The conclusion is that our approximation is very accurate when d becomes 

large compared to the radius a. 

Table 1.3: Accuracy of the approximation for different d 

d 1 1.2 1.5 2 5 
e(u) 4.847x 10 ·"/. 2.113x10 ·"/. 7.919x10 ·J 3.341x10 -,j 2.894x10 ·4 

e(v) 1.383x1o-~ 5.857x 10-,j 3.861x1o-;j 1.950 x w-;j 1.336x10-4 

e(w) 1.297 X 10 "2 6.454x10 -,j 5.425x 10 -,j 2.985x 10 -,j 2.184x10"4 
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Chapter 2 

Interactions between Two or 

More Spheres 

2.1 Introduction 

In this chapter we shall consider the interactions between a number of rigid spheres 

moving slowly in an unbounded viscous fluid. We assume the motion outside the spheres 

is governed by the quasi-static Stokes equations, and the velocity, [ji, angular velocity, ni, 

and the position, Xi, i = 1, ... , N, of each sphere are given. Then we have the following 

equations, 

v. i1 = 0, 

and boundary conditions 

(2.1) 

(2.2) 

(2.3) 

Because of the complicated boundary conditions, it is in general not possible to 

find the exact solution of Eq. (2.1)- (2.3). The only exact solutions known so far are those 

for the slow motion of two spheres (see, for instance, [34] and [18]). Therefore much effort 

has been made to find good approximate solutions. Some of the approximations being long 

used are point-force approximation ([7], [8], [29], [39], [6] , [5] and [38]) and the method 

of reflections ([31], [32), [9), [25) and [19]). More recently, the collocation technique was 
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developed ( [16], [17), [15), and [21]). In the point-force approximation, each sphere is 

replaced by a point force and the no slip condition on the sphere surface is satisfied only 

in some average sense. Since point forces radiate with equal intensity in all directions the 

angular dependence of the disturbances on the sphere surface by the others cannot be taken 

into account. The collocation technique requires that the no slip condition be satisfied at 

some discrete points on the surface, but the method generally requires some symmetry of 

the flow under consideration, and the selection of the points at which the no slip condition 

is to be satisfied could be very subtle. The method of reflections is an iterative method. It 

satisfies the no slip condition on each sphere surface one by one. The rate of convergence of 

this method depend strongly on the ratio of sphere spacing to the sphere diameter. When 

the ratio is close to one, the convergence can be very slow. 

2.2 The Method of Reflections 

Assume we haven spheres B;, i = 1, ... , n, at the positions x;, with given velocities 

U; and angular velocities n;. We want to find a Stokes flow that satisfies the no slip boundary 

condition on the surface of each sphere. We have 

J.L\lzu = \lp, } 

\l. i1 = 0. 
X ERn- B, B = UB; 

Uj = U; + (x- x;) X n; X E 8B;, i = 1, ... 'n. (2.4) 

Since the equations and boundary conditions are linear, we can write the solution 

as 

i1 = u(l) + u(2) + f1{3) + ... (2.5) 

with each term separately satisfies the equations of motion and vanishes at infinity. Again, 

because of linearity, each term i](i) can be divided into sum of a finite terms as 

(2.6) 

The method of reflections is to successively satisfy the no slip boundary conditions on the 

surface of each sphere. We proceed as follows: first pick one of n spheres, say B1 , use the 

method we described in Chapter 1 to find fli1
) such that 
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(2.7) 

then find t4I) so that 

(2.8) 

and i£ii) such that 

n-1 

·~I) = Un + (x- Xn) X fin- 2::: ~1 ) on 8Bn· (2.9) 
j=1 

This completes one step of reflection. Step two starts with finding ai2 ) such that 

on 8B1, (2.10) 

So at step k for sphere i, we find ~k) such that 

k-1 i-1 

~k) = U; + (x- x;) x fi;- 2::: u(i)- 2::: ufkl on 8Bj. (2.11) 
j=l l=I 

This procedure is continued until the no slip conditions on the surfaces of all the 

spheres are satisfied to the approximation desired. For later references, we call the velocity 

field ~k) the reflection of sphere i at step k. As pointed out in (19), there exists no rigorous 

proof that this procedure converges to the right solution. In a recent paper [27), it has 

been proven that for a bounded domain the method converges in the energy dissipation 

norm. In the proof each velocity field ~k) always satisfies the given velocity condition on 

the boundary of the domain. The proof breaks down for an unbounded domain. However, 

a heuristic convergence argument can be given as follows: assume we have n spheres of 

radius a, and characteristic distance between them d, and assume at step k the boundary 

conditions on the surface of each sphere are satisfied within order U. To satisfy the condition 

on sphere number one will generate a velocity field of order U~ on the surfaces of the other 

spheres, which is less than U. When we try to satisfy the no slip condition for other spheres, 

we will generate a velocity field which is of order U ~ on the surface of sphere one. Thus 

the no slip condition of sphere one is satisfied within an order of U ~, that is we gain an 

order of accuracy of the boundary condition. 
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2.3 Force and Torque on a Sphere 

Once the velocity field is computed to the degree of approximation desired, the 

force 11 and torque n exerted on each sphere by the fluid is obtained by summing the 

contributions of the individual fields. Since a closed surface integral of a function with 

no singularities in the interior of the surface is always zero, a velocity field which has no 

singularities in the interior of a sphere can produce neither a resultant force nor torque on 

the sphere. Thus contribution to the force and torque on a sphere is made only by those 

velocity fields generated to satisfy the boundary conditions on its own surface, hence 

(2.12) 

(2.13) 

where f?) and I:(j) are force and torque generated by velocity field ~k), respectively. Using 

the notation in chapter 1, we find 

Fi,x = -2pa L(3AXU + AY//) = -2JW L c::t' (2.14) 
k k 

Fi,y = -2pa L(3Bxt:t + BYl~ik) = -2pa L c;;t, (2.15) 
k k 

Fi,z = -2pa L(3AX~f + AYl~/) = -2pa L c~:t (2.16) 
k k 

and 

Ti,x = -4pa2 L AZ{;t = -4pa2 L A~:7, (2.17) 
k k 

Ti,y = -4pa
2 'L.BZU = -4pa2 'LA~:7, (2.18) 

k k 

Ti,z = -4pa2 L AZ~;; = -4pa2 L A~:7. (2.19) 
k k 

2.4 Some Numerical Examples 

Now we apply the method just developed to some simple problems. The quantities 

we calculate are the coefficients A~, B: and C;;" in Eqs. ( 49) - (51) in chapter 1 for each 

velocity field aki) in Eqs. (2.5) and (2.6). When all the coefficients A~, B: and C;;" for 

the latest velocity field u(i) are smaller in absolute value than some predefined tolerance £, 

then the computation stops and we say that the method converged in i steps. Once the 

• 
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Table 2.1: Resistance coefficients of two equal spheres 

M k f1 f2 (fl+f2)/2 exact 
5 29 0.65025779 0.63964662 0.6449522 
7 32 0.64704579 0.64294489 0.6449953 0.64500 
9 32 0.64501947 0.64497012 0.6449948 

Table 2.2: Convergent rate for different number of spheres 

coefficients are computed, we can easily obtain the final velocity field using Eqs. ( 49) -

(51) in chapter 1 and Eqs. (2.5) and (2.6), and the force and torque on each sphere using 

Eqs. (2.14)- (2.19). 

First we look at a two sphere problem where the two spheres are fixed in an 

otherwise uniform flow along the line of centers (see Fig. 2.1). In this special case the exact 

solution to the problem can be obtained using bipolar coordinates system (see [34] ). In 

table 2.1 we compare the resistance coefficient for each sphere obtained using our numerical 

method with those of the exact solution in the case where the two spheres are at their 

closest position (which is the worst situation for our method). The resistance coefficient is 

defined as the ratio of the force exerted on the sphere by the fluid to the force when there 

is only one sphere, namely 

!= F 
67rJ.LaU 

where a is the radius of the spheres and U is the speed of the uniform flow. In our compu-

tation we have chosen N in Eq. ( 48) in chapter 1 to be 3 and f = 5 X 10-5 , k in table 2.1 

is the number of steps needed for the method to converge. As we can see the results of our 

method are very accurate when the integrals in the evaluation of coefficients are calculated 

accurately. 

Next we look at the convergence of the :i:nethod. In table 2.2 we list the number of 

steps it takes for the method to converge for different numbers of spheres all lined up along 

a line through their centers (see Fig. 2.2 ). 

We can see that when the number of spheres is greater than 4, the number of steps 
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does not change very much. From that we can conclude that the rate of convergence of the 

method is only determined by the spacing of a very small number of neighboring spheres. 

In the next few examples, we consider some of the most closely packed sphere 

configurations for this problem. In all our computations we use a tolerance £ = 1 X 10-5. 

In figure 2.3 we have 4 spheres fixed in a otherwise uniform flow. The method achieves 

convergence in 30 steps. We also achieve convergence for a 8 sphere configuration with two 

layers of 4 spheres as in figure 2.3, one on top of the other, in 37 steps. In figure 2.4 we have 

a total of 27 spheres with 3 layers of 9 sphere configuration. Again the method converges 

in just 45 steps. In our last example we look at the problem where 13 spheres packed 

together with one in the middle such that the centers of other 12 spheres form a regular 

dodecahedron. In is shown in a recent paper by W. Hsiang [24) that this configuration 

will achieve the optimal upper bound of local density for sphere packing. We obtain the 

convergence for the method of reflections for this case in 262 steps. Those computational 

results suggest that the method of reflections is convergent for all sphere configurations in 

an unbounded domain. 

2.5 Method of Reflections Applied to Sedimentation 

So far we only used the method of reflections to solve problems when the motion 

of spheres is given. It is also possible to use the method to solve problems where the force 

and torque on each sphere are given instead. Assume we are given force F[J() and torque 

T{'0 on each sphere. To simplify our notation, we define 

and 

where n is the number of spheres in consideration, and u,, n,, m, and J, are the velocity, 

angular velocity, mass and inertial moment fo each sphere, respectively. 

It is shown in [19) that 
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F=RU 

where the resistance matrix R is independent of U. R is also symmetric, as can be shown 

from the reciprocal theorem, and positive definite, due to the dissipative nature of the 

system [13] . 

If we let the spheres move in the following way, 

dU 
mdt = -F00 + RU (2.20) 

I 

u(t=o> = uo 

where m = {m,J}, then since R is positive definite, and if F 00 = RU00 for some U 00
, we 

have 

for any initial U 0 • 

lim U = U 00 

(t-oo) 

To solve this problem using the method of reflections, we solve Eq. (2.20) numer

ically by the Euler's method, 

(2.21) 

Start with the initial condition U 0 = 0. The matrix R is calculated using the method of 

reflections implicitly, i.e. given aU we Use the method to find an F = RU. 

For computational purposes, we need to scale Eq. (2.21) so that our choice of bt 

can be independent of radii of the spheres. To do that, we decompose the matrix R in the 

following block form 

and 

then Eq. (2.20) becomes 

u = (V,n)t, 

m ~ = -F00 + 11 (RFvV + RFnn), 

J~~ = -T00 + 11 (RrvV + RrnS1) · 

(2.22) 

(2.23) 
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Now let [M], [L] and [t] be the units of mass, length and time, respectively, Then 

the units of other quantities are, if we let each variable with a square bracket represents its 

corresponding unit, 
[L] 1 [M] 

[V] = Tt]' n = [tj' [It] = [t][L]' 

[F] = [M][L] [T] = [M][Lf_ 
[t]2 ' [t]2 

By dimensional analysis, we find 

[F] = (JL][RFv][V] 

so 

which gives 

[RFv] = [L]. 

If we consider a as the characteristic radius of the spheres, we obtain 

RFv = O(a). 

Similarly, we can obtain 

and 

\Ve define the following nondimensional variables, 

F l- F 
- ' mg 

T~-_r_ 
- pUoa2' 

I RFv 
RFv = --, 

a 

ul- !!_ 
- Uo' 

nl- na 
- Uo' 

Rl _ RTv 
TV- a2 ' 

1 tap 
t =

m 

where U0 = mg . Using the relation J = ~ma2 Eqs. (2.22) and (2.23) become 
6prra 5 

dnl 5 ( I I I I) 
dtl = 2 -T+ RTvV + RTnn . 

As a simple example, we look at the problem where we have three equal sized 

spheres falling down under gravity in a same vertical plane. We want to find the velocities 
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and angular velocities of the spheres when the steady state is achieved. We assume at the 

steady state three spheres lie on the vertices of a right angled triangle (see fig. 2.5) at points 

(0,0,0), (-1,0,0) and (0,1,0). The direction of gravity is taken as the x axis. The parameters 

are chosen as 

a= 0.1, 11- = 1, ht' = 0.1 

The results are shown in table 2.3. 

Table 2.3: End velocity of three falling spheres 

sphere 1 2 3 
Ux 0.320554 0.287839 0.320161 
Uy -0.000101 0.011333 0.013526 
Uz 0.0 0.0 0.0 
Wx 0.0 0.0 0.0 
Wy 0.0 0.0 0.0 
Wz -0.038818 0.056213 -0.014889 

Next we consider the sedimentation of three equal spheres which are originally 

located in a same horizontal plane. It is proven in [10] that if enough symmetry is imposed 

initially, the relative motion of the three spheres is periodic in time. We would like to 

reproduce the solution by using the method of reflections. In this sedimentation problem, 

the spheres are assumed to move according to the velocity generated by the gravity and the 

forces induced by other spheres, i.e. 

dxi = V·(x) 
dt ' 

(2.24) 

where Vi (and ni) is such that the force (and torque) on each sphere is zero. 

We use the following scheme to solve Eq. (2.24): 

(2.25) 

(2.26) 

We first present the results for symmetric configurations. We calculate the relative 

positions of the spheres y = x2 - Xt, z = x 3 - XI· Initially the sphere centers are located 

at points XI= (O,O,O),x2 = (0,1,1),x3 = (0,1,-1) (see fig. 2.6 ). The results of our 

computation are shown in figure 2.7 and 2.8 and table 2.4. 
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Table 2.4: Half period of sedimentation of three spheres, time step bt = 0.1 

We can see that our results are in good agreement with those in (10) except for 

a = 0.65 . Now we look at the asymmetric initial configuration where the sphere are 

centered at (0,0,0),(0,0.5,1),(0,1.5,-1) (see fig. 2.9). 

A nearly periodic solution is obtained for a short time scale, as in good agreement 

with the results in (10] (see fig. 2.10). If we keep our computation for a long time, a modu

lated periodic solution in a long time scale begins to appear, as is displayed in figure 2.11 

- 2.13. This result suggests that for the sedimentation of three spheres, the relative motion 

will be always periodic as long as they stay close together. 
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Chapter 3 

Numerical Solution of the Steady 

Stokes Equations 

3.1 Introduction 

In this chapter, we describe a fast numerical technique for finding solutions of 

the steady-state Stokes equations in both two and three dimensional domains. When we 

combine this technique with the method of reflections for an unbounded domain described 

in chapter 2, we will have in chapter 4 a method for finding Stokes flows in bounded domains 

in chapter 4. 

For simplicity, we describe the problem in the two dimensional case. The Stokes 

equations have the following form: 

(3.1) 

V ·U= 0 (3.2) 

where u = ( u, v) is the velocity field, p is the pressure, f = Ux, /y) is the body force and 

J.L is the viscosity of the fluid. Let n be a rectangular domain. We assume the following 

boundary condition on u: 

u(x,y) = ub(x,y), (x, y) E an. (3.3) 

Ub must satisfy 



f ub · ndS = 0, 
lan 
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(3.4) 

where n is the outer unit normal to an. It is well known that we need not prescribe the 

boundary condition on p. 

Much of the work done before using primitive varialbes on this problem begins 

with replacing Eqs. (3.1) and (3.2) by the system 

-J.L~U + Vp = f 

~p = v .f 

and then trying to solve the Laplace equation for p. The lack of boundary condition on 

p causes some difficulty. Much work has been done to determine the correct boundary 

condition for p (see, e.g., discussion in [3.5) ). Work using the original system (3.1) and (3.2) 

has also been done, but it still requires some additional conditions for p near the boundary 

([20], [35]). 

Chorin ([11]) proposed a projection method for the more general Navier-Stokes 

equations that determines p without any artificial conditions on p. The method is based on 

the use of the equation V · u = 0 instead of ~p = V · f to find p. Here we present a method 

based on the evaluation of p for the Stokes equations that requires no artificial conditions 

on p either. The idea is to use consistent finite difference operators to discretize Eqs. (1) 

and (2). It will be shown later in this section that the resulting system of equations is semi

definite if the difference operators satisfy a discrete analogue of the condition (u, Vp) = 

-(V ·U, p) ( note that this condition only holds true when the boundary condition on the 

velocity is zero or periodic; see [12] for the discrete form of this condition ). We eliminate 

u to form an equation Ap = b which uniquely determines p (up to a constant, of course). 

Since it is computationally inefficient to express u in terms of p explicitly, we shall only 

have to evaluate Ap, i.e. given a p, we can find Ap, where A is not written out ( as in the 

iterative implementation of Chorin's projection method ([11]) ). It turns out that for some 

properly chosen operators the matrix A is semi-positive definite and very well conditioned 

on the orthogonal complement of its null space, i.e. the condition number is close to 1 and 

bounded independently of the mesh size, so we can use the conjugate-gradient method to 

get the solution for p. Similar ideas were used by Maday and Patera ([28]) with a spectral 

element approach. 

·• 



29 

Assume the domain n is covered by some uniform grid of mesh size h. Following 

the notations of Anderson (1989), we approximate Eqs. (3.1) and (3.2) by finite difference 

equations, 

(3.5) 

D~u + D~v = 0, (3.6) 

where t::..h is an approximation to the Laplacian, V~ and v; to the derivatives in the gradient 

operator, D~ and n; to the derivatives in the divergence operator. Notice that near the 

boundary t::..hu and D~u + D~v contain velocity values on the boundary which are known. 

If we move those known terms to the right hand side of equations, we can rewrite Eqs. (3.5} 

and (3.6) as 

(3.7) 

(3.8) 

where 

and 

In other words, the operators with tilde's differ from the original operators only near the 

boundary, and they are the parts of the operators t::..h, D~, D~ that operate only on 

unknown values of the velocity. We will show how to calculate them once t::..h, n;, and 

n; are defined in section (3.2) (see also [1] ). 

Put Eqs. (3.7) and (3.8) in block matrix form. We have 

-J.L~h 0 vh 
X 

0 -J.L~h vh 
y v = (3.9) 

-h 
Dx 

-h 
DY 0 p 
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Consider the quadratic form 

-JLb..h 0 vh 
:z: u 

(u,v,p) 0 -JLb..h vh y v 

-h 
D:z: 

-h 
Dy 0 p 

It is positive semi-definite provided 

(3.10) 

and 

(3.11) 

Conditions (3.11) are satisfied for most reasonable difference approximations to 

the Laplacian while condition (3.10) is just a discrete analogue of the condition (u, Vp) = 
-(V'·u,p). 

and 

We can formally eliminate u and v in Eq. (9) to form a equation for pas follows: 

From Eq. (3.7) we obtain 

v = 2.{t:..h"1 v;p- b..h" 1 (/y + gy(ub))} 
JL 

Substitution of these expressions into Eq. (8) gives 

or simply 

Ap = pt + p2 (3.12) 

.• 
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where 

(3.13} 

1 - h- -1 - h - -1 
F = Dx~h Ux + 9x(ub)) + Dy~h (/11 + g11 (ub)) 

F 2 = ph( Ub) 

If we can solve Eq. (3.12) for p, then we can use Eq. (3.7) to obtain solutions for 

u and v. 

Of course we do not have to find .&h1 explicitly, but rather given a p ( and Ub ), 

we can solve Eq. (3.7) for u and v then use Eq. (3.8) to form Ap. It turns out that for 

some properly chosen operators ~h, D~, n;, V'~ and v; the matrix A is semi-positive 

definite, so we can use the conjugate-gradient method to solve Eq. (3.12). 
- -h -h h h Recall that ~h' Dx, DY are different from ~h, Dx, Dy only near the boundary, 

so if we choose 

(3.14) 

which is just a discrete analogue of the definition of Laplacian, then we will have 

on all grid points except those near the boundary. By looking at the structure of matrix 

A in (3.13), it is reasonable to believe that A is close to the identity matrix, and that the 

conjugate-gradient method will converge in a few steps. We shall see that this is indeed the 

case by numerical examples. 

3.2 Discretization of the Domain and Choice of Dh, "Vh, D.h 

We now implement the method for a special case of a staggered grid. Assume 

n is a unit square. Let h = ljn. Define meshes (see Fig. 3.1) 

u = {(ih,(j +~)h) 1 i = o, ... ,n;j = o, ... ,n- 1} 

V = {((i + ~ )h,jh) I i = 0, ... , n- 1;j = 0, ... , n} 
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P = {((i + ~)h,(j +~)h) I i,j = O, ... ,n -1} 

U0 = u- unan vo = v- vnan 

and define u on U, von V and p on P. 

The operators are defined as follows: 

D';: U-+ P by (Dhu)·+l ·+1 = (u.+ 1 ·+1- U· ·+l) I h 
X l 2 ,J 2 l ,J 2 t,J 2 

v~ll': p-+ V 0 by (V'yhp). ·+1 = (pi+l J·+l- Pi+l J._l) I h 
I,J 2 2' 2 2' 

1 
2 

and we define ~huon Uo, ~h von V0 by the standard five point approximation to Laplacian 

except near the boundary where we use a first order approximation, for instance, we put 

at j = 1 . Similarly for j = n and 
02 ~. With those choices of the operators, it can be ox 

checked that relation (3.14) is satisfied on all grid points except those near the boundary. 

Now the operators Dh etc. are defined. We can obtain the corresponding fJh as 

follows: if D';u doesn't involve ub, put iJ';u 

D';u to get iJ';u. For instance 

D';u; if it does, just put all Ub = 0 in 

If we define the inner product on U0 , V 0 and P by 

n-1 n 

( </>, 1/J )uo = 2: L <l>i,j-! 1/JiJ- t 
i=1 j=1 

n n-1 

(¢,1/J)vo = L L <1>&-t.it/Ji-!,i 
i=1 j=1 
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and 

then it is easy to check that 

Moreover, since 

5 -1 -1 0 -1 

-1 4 -1 -1 0 -1 

-1 0 -1 -1 5 

we have by Gersch gorin's theorem 

and 

Thus the matrix in Eq. (9) is indeed semi-positive definite and our numerical experiment 

indicates that the matrix A is also semi-positive definite. 

With the discretization and the choice of operators made here, Eq. (3.12) has a 

non-trivial null space which is a constant pressure field. For the equation to have a solution 

the right hand side must be orthogonal to the null space. In this case, this condition turns 

out to be 

"'(Pl.+ pz.) = 0 L...- t,J t,J 
t,J 



It can be verified that it is always true that 

L:Fi~i = 0 
i,j 
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The second part of the sum, L:i,j Fi~i' is just a midpoint rule approximation-to the condition 

fan Ub • ndS = 0 ( see [1] ). 

The above description can be naturally extended to the three dimensional case 

and all the conclusions remain true. 

3.3 Solution of the Equations 

In this section, we specify the routines we used in our numerical examples. 

The goal is to solve Eq. (3.7) for u quickly with a given p. In the two dimensional case 

there is a fast solver for this equation, namely, the subroutine BLKTRI from the NCAR 

set of routines FISHPACK. In the three dimensional case, however, there is no fast solver 

available. We can apply the fast fourier transform (FFT) technique to reduce the problem 

to a two dimensional problem ( see, e.g., (37] ). For instance, consider the equation for u, 

The grid is defined by x = (i- 1)h, y = (j- 0.5)h, z = (k- 0.5)h . We use FFT in the 

x-direction to reduce the problem to (n-1) two dimensional systems on the staggered grid 

y = (j- 0.5)h, z = (k- 0.5)h. Since u is specified on the boundary, only sine functions 

are needed in the FFT. For the resulting two dimensional systems, we use the subroutine 

HSTCRT from the NCAR set of routines FISHPACK. 

To solve equation Ap = b, we use the standard conjugate-gradient method. Since 

there is a non-trivial null space, care must be taken to eliminate components in the null 

space. Let c denote the null vector of the matrix (which is a constant vector in this case) 

and ( ·, ·) the inner product on p defined in section (3.2). The conjugate-gradient method 

algorithm is as follows: 

p0 initial guess 

Fork = 0, 1, 2, .. · 

k k ( rk' c) 
r = r - ---c 

(c,c) 
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k ~ 1 

The computational work in each iteration step of the conjugate-gradient method is 

done mostly to form Ap, everything else is just some vector products which requires labor of 

order O(N) (where N is the number of points in the domain). The formation of Ap requires 

solutions to two Laplace equations in the two dimensional case or three Laplace equations in 

the three dimensional case where in both cases the cost is O(N log N). Our solution to the 

steady Stokes equations thus requires work of order 2M N log N or 3M N log N where M is 

the number of iterations in the conjugate-gradient method. We will see from our numerical 

examples that M is very small even for very large N in the three dimensional case. 

We first give an example in the two dimensional case. As a test problem, we take 

f = (3cos(x)sin(y),-sin(x)cos(y)), J.L = 1, Ub = cos(x)sin(y), Vb = -sin(x)cos(y) and 

n = { x, yiO ~ x ~ 21r, 0 ~ y ~ 1r }. In this case the exact solution is known to be 

u = cos(x)sin(y), v = -sin(x)cos(y), 

~: = cos(x)sin(y), ~~ = sin(x)cos(y). 

In table 3.1 we display the results of the calculation. We use the residual r of 

the pressure equation (3.12) as our computation criterion, i.e., the iteration stops when 

max(ri,j) is less than 1x1Q-7 . We should mention that by our construction this residual is 

exactly the divergence of the velocity field, i.e., we have 
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Table 3.1: Numerical results in 2-D case 

Grid size 20x10 40x20 80x40 160x80 
Iterations 8 10 10 11 

L 00 norm of r 9.50x 10 -IS 8.84x10 -~ 7.71 X 10 ·IS 9.06x10 -8 

e(u) 1.21x10 -;j 2.92x10 "4 7.23x10 -:. 1.80x10 -:. 
e(v) 5.06x1o-4 1.17x10 ·4 2.87x10 -:> 7.13x10 -o 

e(px) 2.07x10 -~ 5.68x10 _, 1.48x 10 ·3 3.77x 10 -4 

e(py) 1.49x10 -~ 4.58x 10 -;j 1.26x10 _, 3.30x10 -4 

We denote by e(u),e(v),e(px) and e(py) the errors of u,v,px and py, i.e., the absolute value 

of the differences between the exact solutions and our numerical solutions, respectively. All 

the errors are measured in the L00 norm. 

For the case of three dimensions, we choose the test problem to be: 

ub = sin( x) cos(y) cos(2z) 

vb = cos( x) sin(y) cos(2z) 

Wb =- cos(x)cos(y)sin(2z} 

f = {0, 0,-18 cos(x) cos(y) sin{2z)) 

J.L = 1, and n = {x,y,z!O ~X~ rr,O ~ y ~ 71",0 ~ z ~ 7r/2}. 

\Ve also have the exact solution as: 

u = sin( x) cos(y) cos(2z) 

v = cos( x) sin(y) cos(2z) 

w = - cos(x) cos(y) sin(2z) 

p = 6cos(x)cos(y)cos(2z). 

Table 3.2 shows our numerical results for this problem. 

We can see from the numerical results that we achieved second order accuracy for 

the velocity in both cases despite the fact that we used a first order approximation for the 

Laplacian operator near the boundary. The calculation for the pressure is less accurate, 

which is expected. The number of iterations grows very slightly as the mesh size increases 

.. 
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Table 3.2: Numerical results in 3-D case 

Grid size 20x20x10 40x40x20 80x80x40 160x 160x80 
Iterations 13 16 18 19 

L 00 norm of r 9.82X10 -~1 L48x 10 -s 5.18x10 -~~ 8.47x10 -s 

e(u) 9.47x10 ·<~ 2.66x10 ·J 7.07x 10 -4 L83x10 -4 

e(v) 9.47x w-;j 2.66x10 ·<~ 7.07x10 -4 1.83x10 -4 

e(w) L02x 10 -~ 2.64x10-<~ 6.66x 10 -4 L67x10 -4 

e(px) 0.105 5.54x10 -~ 2.81 x 1o-~ L41x10 -~ 

e(py) 0.105 5.54x10 ·~ 3.72x10 ·~ L41x10 ·~ 

e(pz) 0.202 0.100 6.71x10 -~ 2.52 X 10 -~ 

both in the two and three dimensional cases. There is no substantial increase of the number 

of iterations from two dimensions to three dimensions. This makes our method particularly 

suitable for three dimensional calculations. 

One should note that for the conjugate-gradient method to converge in a few 

iterations, it is very important that relation (3.14) in section (3.2) be satisfied, i.e. the 

gradient and divergence operators should combine to form the discrete Laplacian used in 

the discretization of ~hu. To show the importance of this, we make another calculation 

with a different discretization of the domain and different choices of the operators. We take 

the same test problem in two dimensions. This time the two components of the velocity 

are defined on the same set of grid points defined by x, y = ih, i = 0, ... , n. The pressure p 

is defined on the same grid as before. The operators are defined as: 

h 1 
(Dyv)i+~.i+~ = 2h [(vi+I,i+l- Vi+I,j) + (vi,j+I- Vi,j)] 

h 1 
(V' xP)i,i = 2h [(pi+~.i+~- Pi-t,i+~) + (Pi+t.i-t - Pi-~,i-t)J 

(V'~p)i,j = 2~ [(Pi+t.i+t - Pi+t.i-t) + (Pi-!,i+t - Pi-t.i-t)J 

and flh by the standard five point approximation to Laplacian. These definitions sat

isfy (3.10) (see [33] ) and (3.11) but not (3.14). 

Table 3.3 shows the results of this calculation. We see that it requires about four 

times the iterations needed for the previous one. 
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Table 3.3: Iterations needed for a different discretization 

Grid size 20x10 40x20 80x40 160x80 
Iterations 31 45 48 49 

L00 norm of r 7.98x10 ·IS 9.49x 10 ·IS 9.12x10 ·IS 9.25x 10 -IS 

3.4 Other Boundary Conditions 

The method can be easily applied to problems with other boundary conditions 

such as periodic or Neumann boundary conditions or any combination of those, as long as 

the boundary conditions are properly prescribed so that the given Stokes problem has a 

unique solution and the Poisson equation (3.7) can be solved with the prescribed boundary 

condition on the velocity u. We look in some detail to a 2 dimensional problem with a 

periodic condition in the x direction and a Dirichlet condition in y. First we claim that 

periodic condition alone does not determine the solution uniquely. This can be easily shown 

by the example where we have zero velocity boundary condition in y. Any parabolic flow 

in x direction will satisfy the Stokes equation and the given boundary conditions. But if we 

specify the pressure difference in x direction then the solution is uniquely determined. One 

also has to be careful that it is the pressure gradient that is periodic, instead of pressure 

itself. We can show however that the pressure is periodic except for an additive constant. 

Assume L is the length of domain in x direction, then for any x we have 

p(x + L) = 
{x+L {)p 

J x {)x dx + p( x) 

{L {)p 
= lo fJxdx+p(x) 

= A+p(x) (3.15) 

where the constant A should be given for the problem to have a unique solution. 

We discretize the domain as we did before for the Dirichlet boundary condition. 

Since now the velocity at the x boundary in unknown, we also need to establish Eq. (3.5) 

at the boundary, say fori= n (see 3.1 ). This will require us to evaluate (V~p)n .+1 . By 
,J 2 

Eq. (3.15), we define 

h 
(Pl. J·+l. +A- Pn_! ,-+!) 

2' 2 2 t 2 = 
h 
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Table 3.4: Numerical results in 3-D case for periodic conditions 

Grid size 20x20x 10 40x40x20 80x80x40 160x 160x80 
Iterations 8 8 2 2 

L00 norm of r 1.68x10 -ts 1.16x10 -ts 3.45x10 ·l:l 9.41 X 10 ·l:l 

e(u) 2.24x10-:z 5.62x10-3 1.38x10-3 3.45x1o-4 

e(v) 2.21x 10 ·:l 5.52x10 .;:s 1.38x10-;:s 3.45x10 ·4 

e(w) 6.72x 10 ·:l 1.70x10 ·:l 4.20x 10-;:s 1.05x10 .;:s 

e(px) 7.60x1o-:z 2.30x1o-:z 5.93x 10-3 1.54x10 ·3 

e(py) 7.03x10 ·:l 2.16x 10 -:l 5.93x10 -;:! 1.54x 10 -;:s 

e(pz) 0.131 3.32x10 ·:l 8.15x10 -J 2.04 X 10 .;:s 

= 

As for the velocity components, whenever Un+l,- is needed, it is replaced by u1,., and similarly 

for v. Those are the only changes that have to be made to accommodate the periodic 

boundary condition. 

For later use in chapter 4, we choose a 3 dimensional problem as our numerical 

example. We use the same problem as we did before for Dirichlet boundary condition, but 

this time the boundary conditions in x and y directions are assumed to be periodic, and 

the z boundary condition remains of Dirichlet type. The domain n is chosen as 

n = {x,y,ziO ~X~ 211',0 ~ y ~ 211',0 ~ z ~ 11'}. 

In this case the pressure is also periodic, so the constant A is zero for both x and y directions, 

The results of this computation are displayed in table 3.4. 

From the results we see that in this case fewer iteration steps is needed for the 

method to converge and the solution is more accurate (remember that the domain is twice 

as large as that in section 3.3 ). We achieve second order accuracy for the pressure gradient 

as well as the velocity. We also notice that for grid size 80 x 80 x 40 and 160 x 160 x 80, 

the method only need 2 steps to converge. In both cases, the residuals go down to about 

order of 1 after one iteration, then the residuals go down all the way to about 10-12 , which 

is close to our machine accuracy, after the second iteration. This means that in those cases 

the matrix A is very close to the identity matrix. 

In summary, we have presented a fast numerical technique for solving the steady

state Stokes equations which requires no artificial conditions for the pressure near the bound-
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ary. Our numerical experiments show that the method is of second order accuracy for the 

velocity. The key idea of the method is to use some consistent difference operators to ap

proximate the Stokes equations and then derive a equation Ap = b for the pressure such that 

the matrix A is semi-positive definite and very well conditioned on the orthogonal comple

ment of its null space. Therefore it is very efficient to use the standard conjugate-gradient 

method to solve the pressure equation. We implemented our method on a staggered grid 

for rectangular ( cu hie) domains and showed that the conjugate-gradient method converged 

in a very few iterations even for a very large number of grid points in the three dimensional 

case. The reason we chose a staggered grid is because it is the simplest way to define the 

gradient and divergence operators so that they combine to form the usual 5 point Laplacian. 

Thus it becomes easy to solve the Poisson equation for a given p. Other discretization will 

also work as long as relation (3.14) in section (3.2) is satisfied and the resulting Poisson 

equation is easy to solve. The method can also be extended to other boundary conditions 

very easily since the boundary conditions come in only in the solutions of the Poisson equa

tion. Finally, the method is certainly applicable to more general domains as long as we can 

solve the Laplace equation on those domains. 
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Chapter 4 

Stokes Flows in Bounded Domains 

and Evaluation of Effective 

Viscosity 

4.1 Introduction 

In this chapter, we apply the method of reflections to problems with bounded 
-

domains by treating the boundary of the domain in a similar way we treated the sphere, in 

the sense that when the given boundary condition is not satisfied, we just find a velocity 

field inside the domain to satisfy the given condition, ignore the existence of spheres inside. 

Assume we have a box C with fluid and spheres B1 , B2, ... , Bn inside the box at positions 

Xi, i = 1, ... , n. We are given the boundary conditions on the boundary of the box, 

and the motions of spheres, 

Using the method described in chapter 3, we find a velocity field ~ in C that satisfies the 

given boundary condition, as if there were no spheres inside. Then we can use the method 

of reflections to do one step of iteration through all the spheres as if we had an unbounded 

domain in the following way: 
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We first find flk
1 

such that 

-1 ,.,() + u- + C - - ) ,n UB1 = -Uc l X - Xt X a 1 on oB1 

so 

on oBI· Then we find u12 so that 

and u1n such that 

n-1 
-1 ,.,o u- + ( - - ) i\ """ -1 UBn = -Uc + n X- Xn X Hn- L- UBJ 

j=1 

This will generate a velocity field 

We take 

as our new velocity field. Of course generally 

so the boundary condition for the box is no longer satisfied. We then find another uh in C 

such that 

~1 I ,.,o I uc ac = -uB ac 

and set 

-I ,.,0 + -1 ,..,0 + ,..,0 + -I U = U Uc :: Uc U B Uc. 

We then have 

Thus we complete one step of iteration. If the iteration converges, it is obvious that the 

limit velocity field will satisfy the no slip condition on the surfaces of all the spheres and 

the given condition on the boundary of the box. When the characteristic distance from the 
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Table 4.1: Convergent rate for a sphere fixed in a box 

Radius a 0.05 0.1 0.2 0.3 0.35 0.4 0.45 
N 7 11 24 63 109 208 411 

max(U£), x10 -a 5.031 4.746 9.325 8.436 8.222 9.615 9.790 

spheres to the boundary of the box is large compared to the radii of the spheres, experience 

shows that this procedure will converge. As we will see later from the numerical examples 

we will have the convergence in many cases where the distance is not large. Unlike the 

situation in the unbounded domain, here we will not have the convergence for all the sphere 

configurations inside the box. One possible reason it is different here is that the Stokes flow 

inside a box is of the same order of magnitude as the given boundary value, whereas the 

Stokes flow outside a single sphere decays as ~ where r is the distance from the point in 
r 

consideration to the center of the sphere and a is the radius of the sphere. 

4.2 Numerical examples 

To see how the method converges in a bounded domain, we consider a number of 

sphere configurations inside a box. In all the examples, the box is defined by 

C = {x,y,zl 0 ~ x ~ 2,0 ~ y,z ~ 1}. 

We assume there is a uniform flow through the box so the boundary conditions are given 

by 

ulec = 1, vlec = wlec = 0. 

All the spheres are assumed to be fixed inside the box. 

As a first example, we fix one sphere in the middle of the box. We vary the radius 

of the sphere to see how the convergence rate changes. In our computation, the iteration is 

stopped if U; ~ E = 10-4 • The results are displayed in table 4.1 and the velocity field at 

z = 0.5 is shown in figure 4.1 for radius a = 0.2. 

From the results we can see that when the radius of the sphere is less than 0.35 

the method converges in a reasonable number of steps. When the radius is greater than 0.4 

the method does not converge very well, but in that case the sphere is very large compared 

to the size of the box. We also ran the program for a = 0.5 in which case the sphere touches 
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Table 4.2: Convergent rate for two spheres fixed in a box 

Radius a 0.05 0.1 0.2 0.3 0.35 0.4 0.45 
N 7 12 32 92 167 326 645 

max( uB ),x 10 -a 6.295 8.099 8.375 9.194 8.803 9.615 9.906 

the box boundaries in two directions. In this case the velocity field U8 still gets smaller 

each step but very slowly. The method diverges for a = 0.5 when the length of the box in 

x direction is 1.25. 

Next we look at some multi-sphere configurations inside the box. \Ve first put two 

spheres of same size in the box at points x1 = (0.5,0.5,0.5),x2 = (1.5,0.5,0.5). We change 

the radius of the sphere to see how the convergence of the method changes. Results of the 

calculation are shown in table 4.2 and the velocity field at z = 0.5 is shown in figure 4.2 for 

radius a = 0.2. We can see that when the radius is less than or equal to 0.1 the convergence 

rate is about the same as the case with one sphere. This means in those cases the interaction 

between the boundary and the spheres dominates the convergence rate. When the radius 

of the spheres is greater than or equal to 0.2 the interaction between the two spheres also 

come into effect. 

Finally we apply the method to configurations with more than two spheres. Fig

ure 4.3 shows the velocity field at z = 0.5 for three spheres of radius a = 0.15 located at 

XI= (0.5,0.3,0.5),x2 = (1.5,0.3,0.5) and X3 = (0.5,0.7,0.5). The convergence is this case 

is obtained in 29 steps. When the radius a = 0.2 the steps needed is 52. Figure 4.4 and 

4.5 shows the velocity field at z = 0.5 for five and seven spheres of radius a = 0.15 lo

cated at x1 = (0.5,0.3,0.5),x2 = (1.5,0.3,0.5),x3 = (l.0,0.3,0.5),x4 = (0.75,0.7,0.5),.Xs = 
(1.25,0.7,0.5) and is= (0.25,0.7,0.5),x7 = (1.75,0.7,0.5). 46 and 61 steps are needed in 

those cases, respectively. 

4.3 Application to the Evaluation of Effective Viscosity 

In this section we apply the method of reflections to the calculation of effective 

viscosity of a dilute suspension of rigid spheres in a shear flow. In particle suspensions 

when the volume fraction of the particles is small the suspension can be considered as a 

homogeneous fluid on a macroscopic scale. The viscosity ofthat homogeneous fluid is called 
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the effective viscosity of the suspension. The earliest work on this was done by Einstein [14) 

where the following Einstein's formula for the viscosity of a dilute suspension with spherical 

particles was obtained: 

£ = 1 + 2.5¢ 
J.Lo . 

where J.L is the viscosity of the suspension, J.Lo the viscosity of the original fluid and c/> the 

volume fraction of particles. Later work on this subject has been done by many people (see, 

e.g., [19), [2),[30), (13] and [40]) Here we try to use the method of reflections to evaluate 

the effective viscosity of a monola.yered suspension of spheres in the x - y directions and 

a shear flow condition in z direction. Since the method of reflections cannot deal with 

problems with infinitely many spheres we first approximate the problem by a model with 

one sphere suspended in the middle of a unit square box (see Fig. 4.6) and impose periodic 

boundary conditions in the x - y directions when we solve for the velocity field iic. This 

model basically neglect the interaction between the spheres. Later on we will put two or 

more spheres in the box to take into account some of the interactions between spheres. 

In the problem of suspensions, it is assumed that the spheres are suspended in the 

fluid in such a way that the force and torque on each sphere are zero. This can be achieved 

in the same way as discussed in chapter 2. In our computation, the boundary conditions 

are given as the follows, 

Uz=0.5 = (+1,0,0), Uz=-0.5 = (-1,0,0). 

Let F and Fo be the total shear force on the top and bottom plates ( z = 0.5 and z = -0.5) 

with spheres and without spheres, respectively. We define the effective viscosity to be the 

ratio ofF and Fo, i.e. 
J.L F 

J.Lo = Fo • 

There are some other definitions ([19] and [2]). The one we use here is easy to compute 

numerically. In our computation we fix the size of the box and vary the size of the sphere 

to change the volume fraction. The result C\f our computation is displayed in figure 4.7. 

The solid line is the Einstein's formula and the dots are our numerical results. We can see 
/ 

that only when the volume fractions are very small do our results agree well with Einstein's 

formula. When the volume fraction is large our results are larger than the results from 

Einstein's formula. This trend was also noticed in some other numerical computations and 

experimental results (see, e.g., [40]) only that here it occured too early. l'he reason for this 

is that we neglected the interaction between the spheres. 
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Next we put two spheres in the box (see Fig. 4.8) to take into account some of the 

interaction between spheres. The spheres are located at positions x1 = (0.5, 0.25,0.5), x2 = 
(0.5, 0. 75, 0.5 ). The results of this computation is shown in figure 4.9. As we can see this 

time our numerical results agree very well with the Einstein's formula up to volume fraction 

¢ = 0.1. 



47 

Chapter 5 

Discussion and Conclusion 

We have presented a numerical study of Stokes flow with suspended spheres by the 

method of reflections. The method is based on the solution of the Stokes equations outside 

a single sphere and the linearity of the Stokes equations. We used a harmonic expansion 

to find the Stokes flow outside a single sphere. We constructed a iterative scheme to find 

the Stokes flow outside a number of spheres in an unbounded domain when the motions of 

spheres are given by reducing the problem to a series of solutions of Stokes equations outside 

a single sphere. Our numerical experiments suggested that the method is convergent for all 

sphere configurations in this case. We then extended the method to problems where the 

forces and torques on the spheres are given and applied the method to find the periodic 

solution of three sedimenting spheres. Our results agree very well with previous work done 

by Caflisch et al. [10] when the initial positions of the spheres are symmetric and show 

some interesting long time scale periodicity of the solution when the initial positions are 

asymmetric. 

The version of the method of reflections we presented here is similar to the colloca

tion technique of Ganatos et al. [15] in that the velocity field outside the spheres is expressed 

as a sum of a series of truncated harmonic expansions about the center of each sphere, and 

then numerical computations are used to determine the coefficients of the expansions. The 

difference is here we establish the linear system of equations for the coefficients of the expan

sions (which is done implicitly) by requiring that if we use the final resulting velocity field 

on the surface of each sphere to generate another truncated harmonic expansion around the 

center of that sphere, using the method of chapter 1, all the coefficients will be zero, instead 

of requiring the velocity to be zero at some discrete points on the surface of each sphere, 
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as done in the collocation method. The iterative procedure of the method of reflections 

can be seen as an iterative method to solve the resulting linear system of equations for the 

coefficients. Our method is thus comparable to the collocation technique in terms of accu

racy, with the advantage of avoiding the oscillation of the velocity field in some cases of the 

collocation method. The cost is a bit more expensive since the linear system in our method 

is more expensive to establish, and the iterative procedure to solve the linear system could 

be more expensive also. 

In an effort to extend the method to bounded domains, we developed a fast numer

ical algorithm for finding solutions of steady Stokes equations. The algorithm is based on 

the observation that when the finite difference operators approximating the divergence and 

gradient operators in the Stokes equations are chosen properly we can derive a linear system 

of equations for the pressure p which is semi-positive definite and very well conditioned on 

the orthogonal complement of its null space. The system can be easily solved using the 

conjugate-gradient method. With this algorithm, we extended the method of reflections to 

problems in a bounded domain by finding a reflection to satisfy the boundary condition on 

the boundary of the domain. Unlike the case of unbounded domains, the method diverges 

in this case for some sphere configurations. One way to overcome this problem is to require 

each reflection of spheres always satisfy the given boundary condition of the domain, as was 

done in the proof of Luke [27]. Unfortunately to find that reflection is not trivial. There is 

no known exact solution or easy way of numerical computation. 

We applied the method of reflections in bounded domains to the evaluation of 

effective viscosity of sphere suspension in a shear flow. Our results showed good agreement 

with the Einstein's formula when the sphere volume fraction is small. 

Our numerical results lead us to several conclusions about the method of reflec-

tions. 

First and most importantly our numerical experiments suggested that the method 

is convergent for all sphere configurations in an unbounded domain. The distances between 

the spheres have much more effect on the rate of convergence than the number of spheres. 

The convergence of the method is slow when the spheres are very close to each other. The 

reason behind this is that when spheres are very close to each other, the effect of lubrication 

will dominate the interaction between the spheres and a lot of iterations will be needed to 

adequately represent this effect in the method of reflections. Thus the method is best used 

when the spheres are not very closed to each other. Otherwise it is better to use some 
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method that will explicitly take into account the lubrication effect ( see, e.g., [13]). 

Secondly, in the case of bounded domains the method converges slower than in 

unbounded domains because of the presence of the boundary of the domain. The method 

diverges for some sphere configurations but in most cases it does converge. The good 

agreement of our result for the effective viscosity with the Einstein formula shows that the 

method can yield good results for certain kinds of problems, for example problem in solving 

suspension. The largest sphere volume fraction in evaluating the effective viscosity using 

two spheres is achieved when the radius of the spheres a = 0.25. In that case the spheres 

are touching each other and touching the boundary of the domain in one direction. Our 

calculation gives a reasonable result even in this situation, showing that the method can be 

used even when the spheres are very close to each other and close to the boundary of the 

domain. 

Finally the convergence of the method in unbounded domains depends on the fact 

that the Stokes flow outside a single sphere decays as ~. This is true for particles of any 
r 

shape, so for non-shperical particles if we can find the velocity field outside a single particle 

in some way then the same reflection procedure can be applied to obtain the velocity field 

outside a collection of such particles. The method should be applicable to other problems 

with a similar property, like finding the electro-magnetic field outside a number of particles 

(spheres). 
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Figure 2.5: Three spheres falling down under gravity 
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Figure 2.9: Asymmetric initial position 
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Figure 4 . .1: Velocity field of seven spheres in a box 
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Figure 4.R: Shear flow suspension with two sphere 
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