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ABSTRACT 

The nonlinear Schrodinger equation, descriptive of an 

intense Langmuir wave near critical density, is solved for the 

steady state of reflection from a linear unperturbed density 

profile. 

Recent studies1 of the behavior of nonlinear electron plasma 

waves have shown that the "nonlinear Schrodinger equation", with suit-

able modifications when necessary, can describe the mutual effect of 

density perturbations and amplitude modulations. The terms used to des-

cribe the phenomena vary: solitons, oscillating two-stream instability, 

.modulational instability, self-trapping, four-wave interacti6n; but 

the fundamental physics is the same. 

Since one characteristic of a soliton is its density depression, 

allowing propagation through a slightly overdense plasma, the question 

arises as to its behavior in a density gradient. In this paper, we pre­

sent a particularly simple solution of the nonlinear Schrodinger equa-

tion in a one-dimensional density gradient, showing that the density 

depression associated with the wave penetrates into the overdense region 

a distance proportional to the wave energy density. 
-iw t 

0 In the field of the Langmuir wave Re E(x,t)e , the oscilla-

tion-center of an electron experiences an effective low-frequency 

ponderomotive potential energy 
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In (low-frequency) theJ:ma,l equilibrium, the electron density is 
t 

n (x,t) = n0 exp(-s (-e~ + w )], where ~ is the low-frequency e e · e 

potential. For the special case of a stationary density profile, the 

ion density may also be taken as a Boltzmann distribution: 

ni(x) = n0 exp( -Bi(e~ + wi)], where wi is a pseudopotential 

responsible for the unperturbed (we = 0) density profile. If the 

densities vary little over a Debye length, we may equate n.(x) = n (x), 
1 e 

and solve for e~(x) = (B We- B.w. )(B + B. )-1
, finally obtaining e 1 1 e 1 

for the common density 

( 1) 

where T is the unperturbed 

profile. 

The nonlinear equation for the (stationary) Langmuir amplitude 

E(x) is most expeditiously obtained from the linear dispersion 

relation 

2 .2 3 k2v 2 (2) w = wp + , e 

2 2 (using ( 1 )) , k2 = -d2/dx2, by setting w = WO' wp = 4'1Til(x)e /m 

and treating (2) as an operator on E( X). Then (2) becomes 

2 d2E 2 Jv .- + w0 E( X) = 
e dx2 [ 2 ] 21 12 2 4nn0(x)e /m E(x) exp(-e E /4mewO T) 

(J) 

We choose a linear unperturb~d profile: n0(x) = n0(1 + x/1), with 

w0
2 ~ 4'11lloe2/m, so that x = 0 is the critical surface. If the 

exponent is small (as discussed below),it can be expanded to first 

2 2 2 order. Setting .A0 = ·Jv e /w0 , we then obtain 

I 

»") 
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"A0
2d2E/dx2 

= ( (x/L) 2 2 2 ] (e lEI /4 mewO T) E ( 4) 

To make all three terms of the same order, we choose dimensionless 

variables of order unity: 

F - E/EO ( 5) 

where _ ,2/3 11/3 xo 11.0 , 

(6) 

Equation (4) then reads 

(7) 

with F ass~ed real, and the boundary condition F(+oo) ~ 0. With 

the change of variables (5), the exponent in Eq. (3) is (A.0/L)2/3 F2 • 

Thus the assumption >..0 << L, which is necessary for quasi-neutrality, 

as well as for the use of (2) as an operator equation, assures us 

that the exponent is indeed small for F of order unity. 

The family of solutions of (7) is shown in Fig •. l. ·The small 

amplitude limit ( IF I << 1) is the .Airy function,· as seen from ( 7) 

and the Figure. As the amplitude increases( from one solution to 

another), the ponderomotive force depresses the density, allowing 

penetration of the wave into the overdense region of the unperturbed 

profile. Th~ depth of penetration can be characterized by the last 

inflection point: ~ = F2
, or in dimensional terms: x = ( IEI 2/16nn0T)L. 

The density n(x) = n0(1 + (~- F2 )(A.0/L)213J is shown in 

Fig. 2 for the family of solutions of Eq. ( 7). Similar density 

depressions have been observed in simulation of resonance absorption 
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of obliquely incident electromagnetic radiation2' 3, in laboratory 

experiments4, and in cold-plasma two-species analytic theory5. 

While the discussion here referred to a Langmuir wave, the 

same analysis applies to a normally incident electromagnetic wave, 

with the new definition AO = c/w0 . 
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FIGURE CAPTIONS 

Fig. 1. The family of solutions of Eq. (7), representing a standing 

wave, i.e., an incident wave and its reflection from the 

self-consistent density profile. . 
Fig. 2. The family of density profiles, perturbed by the ponderomotive • 

force of the radiation reflected from it. I . . 
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