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ABSTRACT 

Consequences of C invariance,· isospin invar-

iance and unitary symmetry for limiting distributions 

are derived. The same symmetries are used to isolate 

the nonscaling contributions. Many of the predictions 

are susceptible to direct experimental test. The rela-

tions based on unitary symmetry are expected to be 

violated and thus furnish extensive challenges to 

symmetry breaking models. The relations based on 

isospin and C are expected to be exact (asymptotically) 

at high energies. 
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I. INTRODUCTION 

The optical theorem for two-body scattering (Fig. la) enables 

one to understand many features of total cross sections, even without 

a detailed knowledge of how they are built up by multiparticle states. 

A corresponding optical theorem for three-body scattering is related to 

the cross section for the production of a single particle of definite 

momentum, along with anything else--what has been called inclusive 

production (see Figs. lb). This application of the three-body 

optical1 theorem is not straightforward, involving both crossing 

symmetry and careful analytic continuation. Still, the result is a 

conceptual and theoretical simplification similar to the one achieved 

through the two-body optical theorem. 

Many general features of single particle inclusive production 

experiments can be understood in terms of the three-body forward 

scattering amplitude. From this point of view, Mueller
2 

was able to 

show that the existence of limiting distributions in those parts of 

phase space referred to as the fragmentation and pionization regions 

is a general consequence of the dominance of pomeron exchange. These 

results, which will be described in Sec. II, had been established much 

earlier in the co~text of the multi peripheral model. 3 These would also 

4 
appear to be satisfied in dual resonance models, although the 

representation of the pomeron in such models is unsettled. 

Charge conjugation and isospin invariance provide useful rela-

tions among two-body total cross sections. Furthermore, these invar-

iances allow one to eliminate or isolate crossed channel amplitudes 

with certain quantum numbers, by selecting appropriate linear combina-

tions of reactions. This is particularly useful when a Regge descrip-
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tion is being employed. It is the purpose of this paper to extend such 

considerations to single particle inclusive production cross sections. 5 

We shall also consider some consequences of su
3 

symmetry. 

The outline of the paper is as follows: In Sec. II, we briefly 

review previous results for inclusive reactions in order to establish 

notation and to put our discussion into context. Those familiar with 

this standard discussion may pass immediately to Sec. III, in which the 

consequences of charge conjugation (C) invariance and G-parity are 

discussed. In Sec. IV, further consequences of isospin invariance are 

presented. We take up unitary symmetry in Sec. V. In Sec. VI we 

discuss the simplifications one can expect for the pionization limit. 

Finally, we conclude in Sec. VII with a summary of results and sugges-

tions for further work. 

II. DEFINITIONS AND KINEMATICS 

Since spin is unimportant for the discussion of internal 

symmetries, we will suppress all spin indices. Consider the inclusive 

process a + b -+ c + x, for fixed momenta 

cross section for the production of particle 

be written as 

E dcr 
c d3p 

c 

where 2 2 2 A(x, y, z) = x + y + z - 2xy - 2yz 

The differential 

c with momentum will 

(1) 

is the usual triangular 

function. The Lorentz invariant m, which is related by the optical 

theorem is a discontinuity of the three-body scattering amplitude, is 

a function of three kinematical invariants which we choose to be 
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s t u 

In the center of mass frame, we parameterize momenta as 

Consider a high-energy limit in which s _. oo, for fixed 
l 

positive x = 2pll/(sf'. This limit, which we denote 

p.l and fixed 

(a:clb) is 

called the fragmentation of particle a into particle c, since in 

the rest frame of a, the momentum of c · f. · t 6 remalns lnl .e. Of course 

in the center of mass, particle c carries away a finite fraction, 

. 2 x, of the center of mass energy. It follows from Mueller's analysls 

that in this limit (see Fig. 2) 

s 
cxj(O) (2) 

where the sum extends over all Regge pole which couple to the crossed 

channel amplitude bb _, (ac)(ac). In invariant terms, the limit 

corresponds to s -;.oo, for fixed t and for a fixed x ~ -u/s. The 

leading term, corresponding to pomeron exchange, implies that 

(E jaTab)(dajd3p ) tends to a finite limit (assuming a nonvanishing 
c c 

pomeron coupling) which is independent of particle b, if the pomeron •' 

factorizes as indicated. Thus, at sufficiently high energies, one 

k f th f tatl. on (a ·.c) wl· thout reference may meaningfully spea o e ragmen 

to particle b. Obviously, one could similarly discuss the 
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fragmentation (a/c:b) by interchanging the roles of particle a and 

b in the preceding discussion. 

Next consider a different high-energy limit in which s ..... oo 
l 

for fixed p.l and for X = 2p II I ( s )2 ..... 0. This corresponds to the 

production in the center of mass of a particle which carries away a 

vanishingly small fraction of the center of mass energy. This limit, 

denoted (a/c/b) is called the pionization of particle c.7 In 

invariant terms the limits corresponds to jtj_.oo, /u/->oo for 

fixed tu/s = Pj_
2 

+ mc
2 

+ r9'[E/(s)~]. From Mueller's analysis2 (see 

Fig. 3), we find 

where, by factorization, f ij 
c depends only on particle 

the double pome~on coupling does not vanish, 

(3) 

c. Thus, if 

tends 

to a finite limit independent of both particles a and b. Thus one 

may speak of the pionization, (jcj), independently of any reference to 

8 the beam or target. 

The pomeron is presently one of the most mysterious features 

of the strong interactions. For one thing, it seems to conserve 

s-channel helicity, which is not a natural property for an exchange 

mechanism. Secondly, there is the possiblity that the Pomeranchuk 

theorem may be violated. This would mean that the pomeron does not 

contribute solely to the C = + crossed channel amplitude. Moreover, 

the pomeron is almost certainly not a Regge pole. This belief has 

been reinforced by the preliminary data9 from the CERN Intersecting 

Storage Rings (ISR) showing that the pp elastic differential cross-

section does not shrink. In the following we shall assume that at high 
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energies the dominant cross-channel amplitude has C even and I = 0 

quantum numbers. Although we shall call this dominant contribution the 

pomeron, we shall assume neither that it is a pole nor that it 

factorizes. 

Similarly, because of our uncertainty about whether a purely 

Regge pole description is adequate, we prefer not to ao/'ume that the 

parametrization given above for the asymptotic expansion is necessarily 

correct. It is, however, useful to keep this description in mind. 

III. CHARGE CONJUGATION AND G-PARITY 

In the following, C will denote charge conjugation; I, 
-irri2 

isospin; G = e c, G-parity. As discussed above, we may think of 

the fragmentation (a:c/b) as a particular discontinuity of the 

bac ->bac scattering amplitude. Amplitudes even or odd under C in 

the crossed channel, bb ..... ac( ac)' are obtained by forming 

(a:c/b) ± (a:c/b) or equivalently, (a:c/b) ± (a:c/b)o Similarly, 

eigenstates of G-parity are obtained by forming (a:c/b) ± (Ga:Gc/b). 

Denoting the four eigenamplitudes in the crossed channel by /rJGC one 

finds 

4 

11? ++ 

~+

rrv]_+ 

'Pl-- . 

1 1 1 l 

1 -1 1 -1 

1 1 -1 -1 

1 -1 -1 1 

Y'\(a:c) 

f\')(Ga:Gc) 

"Mcc;a:Gc) 

• (4) 

(Since the particle b is unchanged throughout these manipulations the 

b dependence has been suppressed. We have not ·assumed anything about 

factorization.) Inversely, we have the relations 



If ((! dominates the other amplitudes as s -> oo, all four . ++ 

fragmentations are asymptotically equal. This leads, for example, to 

the asymptotical equalities 

(n - :K-) (n+:K+) ( - 0 ( + ~ n :K ) rr :K ) 

(K - :K-) (K+:K+) (Ko:Ko) of\~) 
(6) 

(n -; T)) (n 
+ 

; T)) 

(K+:t\) (K - :J\) 

-

This description is quite independent of any Regge assumptions; 

we have done no more than isolate various crossed channel amplitudes. 

If, however, the expansion in Eq. (2) is used, the dominant trajec~ 

tories contributing to each amplitude are ?'rJ++:P,P' .• f'; 'frJ+- :p; 

.'Yrf-+:A2 ; ~--=w,¢. Thus if Regge poles suffice to describe the 

exchanges we have 

71! , __ 

Note that these relations must be satisfied at each value of P__L 

and f t . f _j(p,l,x) must satisfy these relations(. x, i.e., the unc 1ons ~ 
ac 

For a = n-t and c n± the negative G-parity exchanges are absent, 

so one can isolate p + P' + f' and p. Explicit~ the invariant 

amplitudes Y'Yf for (n+:n-IP) and (n-:n+IP) are asymptotically 

equal, and at finite s their difference is due solely to p exchange. 

Data10 exist for (n+:rr-IP) at 7 GeV/c and for (n-:n+IP) 24.8 GeV/c. 

Although they are very nearly the same, the clear difference between 

the two suggest the presence of the P' and/or the p secondary. 

This example illustrates one important use of the relations presented 

above. Even though data may exist on a reaction at only one energy, 

one can use data obtained on other reactions related by C or G to 

determine the importance of secondary trajectories. 

... 
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IV. ISOSPIN RELATIONS FOR LIMITING DISTRIBUTIONS 

So far we have assumed that the dominant amplitude, which we 

loosely refer to as the pomeron, has C = + and G = +. Let us now 

assume that the pomeron is an isosinglet. Suppose, for a moment, that 

_, it were a Regge pole as illustrated in Fig. 2. Then it is clear that 

there will be relations among the limiting distributions (a:cjb) for 

different members of the same isospin multiplets, relations which are 

perfectly analogous to the decomposition of the ac elastic scattering 

amplitude. Applying the Wigner-Eckart theorem, we find for the domin-

ant contribution to the fragmentation the decomposition 

((II ji I . ,I I )) 2 ~I z a za c zc '· ( (8) 

where the ~I are reduced matrix elements. The total isospin I 

in the ac channel takes on clearer significance in the triple-

reggeon limit where the fragmentation may be thought of as a sum of 

t-channel Regge exchanges (Fig. 4). Now we drop the assumption that 

the pomeron is a Regge pole; clearly the decomposition holds whenever 

the dominant amplitude in the bb --> (a c) ( ac) channel is an 

0 0 l t ll lSOSlng e .• 

Just as in two-body scattering,isospin invariance greatly 

reduces the number of independent reactions. For example, the six 

fragmentations (N:rrjb) are described by only two independent ampli-.. 
tudes, and satisfy the relations (again suppressing the dependence on 

b) 

0 
(p :rr ) 

0 (n ::;r ) 

-10-

l + -
2[(p:rr ) + (p:rr )] 

(9) 

(Analogous formulae hold for the fragmentation of any isodoublet into 

any isotriplEt.) These relations depend only on isosinglet, C = + 

dominance and should be rigorously true as s ->oo. Since they are valid 

at each value of p.J. and x, it follows ~ fortiori that the mean 

number of neutral pions produced in NN collisions (at sufficiently 
12 

high energies) is half the total number of charged pions produced. 

Thus models of the strong interactions differentiate only between the 

distributions of rr + and of 
- 13 

rr . Interchanging the roles of the 

pion and nucleon, we have (rr-:p) = (rr+:n) and (rr+:p) = (,,-:n). 

Similarly, the fragmentation (rr:L:) satisfy 

(rr 
+ :2:-) (rr-:2:+) 

' 

( ,,+ :L: +) (rr-:2:-) 

+ 0 - 0) (rr :2: ) (rr :2: . 

(Because of their experimental inaccessibility, we have omitted 

relations involving the fragmentation of neutral pions.) Other simple 

relations are (K+:A) 
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v. su
3 

RELATIONS FOR LIMITING DISTRIBUTIONS 

The invariances discussed so far are good symmetries, and the 

relations pres'ented in Sec. IV, if not exact, are expected to be 

violated only slightly. Unitary symmetry is certainly not exact and, 

in spite of efforts over the past decade, no satisfactory theory of 

symmetry breaking yet exists. Consequently the primary use of su
3 

symmetry has been the pattern it predicts for particle classification. 

Nevertheless, when combined with a certain amount of lore concerning 

hOI•. to COmpare predictions with data, SU
3 

quantitative guide to resonance widths. 14 

has provided a semi-

In addition, the predictions 

for the relations between Regge residues [e.g., Y(pnn) = 2Y(pKK)] 

15 have been moderately successful. It has proved essential to use 

reduced resonances widths and reduced Regge residues in order to obtain 

reasonable agreement with the predictions of su
3 

invariance. The 

kinematical correction factor associated with the angular momentum 

barrier is sensitive to both the spins of the particles involved and 

their masses. Consequently, the direct application of su3 invariance 

to scattering amplitudes, such as in meson-baryon scattering, involving 

many partial waves or several Regge poles,has had limited success. 

In addition, an obvious but severe experimental handicap is the con-

straint that only nucleons may be used as targets. 

In this section, we would like to extend the asymptotic 

predictions for limiting distributions to a theory having su3 

symmetry. A common hypothesis, which we shall also make, is that the 

pomeron is purely a unitary singlet. This is aesthetically appealing 

since a universal diffraction mechanism ought to have purely vacuum 

quantum numbers. Exper,imentally16 
it appears that the n p and K-p 

cross-sections are not asymptotically equal, differing by about 15%· 

-12-

It is natural to assume that this difference is due to the same 

symmetry breaking which makes a pion different from a kaon rather than 

some intrinsic contamination of the pomeron. 

Consider the fragmentation of an octet into an octet, such as 

pseudoscalar mesons (P) into baryons (B). Assuming that the pomeron 

is a unitary singlet leads to an expression
17 

analogous to Eq. (8), 

obtained from isospin invariance, 

Jr't(a:clb) 

8 

-v c 

This is precisely the same as the decomposition of meson-meson or 

meson-baryon total cross-sections. However, because we do not require 

meson or hyperon targets, many more reactions are accessible experimen-

tally for the fragmentation processes than for the scattering processes. 

In general, the non diagonal terms, !'rJ 8 8 and 7'YJ 8 8 occur· 
a s s a 

Without loss of generality, we may assume /?78 8 = ~8 8 •
18 

a s s a 

Thus there are seven invariant amplitudes corresponding to 1, 8s' 8a' 

10, * 10 and 8 8 . s a 
The results for (P:B), (B:B), (B:P), (P:B) etc. are easily 

obtained from one another mutatis mutandis. We present the details of 

the (P:B) case. The 64 reactions are reduced to 26 independent ones 

by isospin invariance. The decomposition of the 26 fragmentations is 

presented in Table I. There are thus 19 independent relations which 

we choose as follows: 

' 
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(n - :p) (K- :I:+) (K+ :=?) 

(rr + 
:p) (K- :30) (K+:I:+) 

(n- :I:+) (K -:p) (K+ :3-) 

(rr - :I:-) (K 
- :=:-) (K+ :p) 

(rr - :3-) (K - :I:-) (K+ :n) (11) 

( J1 + :=:-) (K - :n) ( + -K :I: ) 

(:rr+:A) 

Of course using C and isospin invariance, the relations given 

above can be cast in a variety of equivalent forms. With the e:;;:ception 

of the last four equations involving TJ fragmentation, we have chosen 

forms which should be testable experimentally. An insufficient number 

of fragmentation reactions have been measured so far to enable a compar

ison with the predictions above. Recently, however, data19 became 

available on (K+:J\/p) and (K+:A/p) at 12.7 GeV/c. By C invariance, 

'( 
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the latter reaction equals (K-:A/p) . If this reaction is dominated 

by pomeron exchange at this energy (as it well might be since both the 

initial channel and missing mass are exotic) and if a Pomeranchuk-like 

theorem holds so that (K- :AiP) = (K- :i\/p) asymptotically, then we may 

interpret (K+:A/p) at 12.7 GeV/c as the value of (K-:A/p) at infi

nite energy. In the su
3 

limit, the fragmentations (K+:t./p) and 

(K+:A/p) differ only because ~10 10 t ~o* lO* and 5n8 8 fo 0 
' ' ''/ a s 

Noting that the (K+:A/p) data differ from (K+:A/p) data, we conclude 

either that secondaries are still important at these energies in the 

reaction (K+:A/p) or, what seems more likely, that inversion of the 

14 baryon octet (R invariance) is a bad symmetry. 

Let us turn now to the case of a pseudoscalar fragmenting into 

a pseudoscalar, (P:P). Assuming the pomeron is C even, one can show 

that 7J? 8 8 = 0 and /r;.,'/10 10 7f10*,lo* • Thus there are only five 
s a ' 

su3 invariant amplitudes for (P:P) and the general expression, 

Eq. (10), reduces to 

c. ) I 
8 [.!)' 

tr} (a,c /b) 7lf:r,[l)' . (12) 

-v v [l,)',v c 

Of the 64 reactions for (P:P), only 16 are independent after 

taking into account C invariance and isospin invariance. It follows 

immediately from Eq. (12), that (a:c) = (c:a) or, using c invariance 

again, (a:c) = (c:a). Useful examples of this relation are 

invariant amplitudes, there must be seven relations among the twelve 

remaining fragmentations. They may be chosen to be 



3(n-:~J) 

(1J 

-15-

+ 0 
(K :n ) 

( + +) + - + 0 n :n + (n :n ) - (n :n ) • (13) 

The last relation is written for completeness only. The others are 

experimentally accessible. Notice that it is unnecessary to observe 

- 0 
(K :n ) since by isospin and c, 

- 0 (K :n ) ( o- 1[-+ --] K1 :n ) = 2 (K :n ) + (K :n ) 

By similar manipulations, these relations can be-written in a variety 

of other forms. 

The fragmentation of an octet of pseudoscalars (P) into a 

degenerate nonet of vector mesons (V) can also easily be treated. 

We will summarize the results. After isospin and C invariance are 

invoked, there are 19 independent fragmentations and seven su3 
invariant amplitudes. Of the 12 relations thereby implied among the 

reactions, eight may be chosen which do not involve the su3 singlet 

and the member of the octet These eight are 

perfectly analogous to the P ~ P case: 

-16-

+ +) (K :p (n+:K*+) 

+ -) (K :p (n-:K*+) 

( - *0) K :K (K-:p+) 

(K-:K*-) (n-:p-) 

(K-:p-) (K-:K*o) 

(K-:K*+) (n-:p+) 

3(1J:K*+) + 0) 2(n :p + (K+:po) 

3(1J:p+) 
+ 0 + 0 

4 (K :p ) - (n :p ) (14) 

Using isospin invariance in conjunction with these relations, one can 

generate other experimentally testable predictions, such as 

- 0) 2(K :p = 

As for the four relations involving ~ and w8 , even if we assume 

that the only effect of su3 breaking is the determination of the mixing 

angle between them, we find no prediction which seems even remotely 

testable. 

VI. PIONIZATION 

Since all of the preceding equations are expressed at fixed pl. 

and fixed x > 0, we are free to consider their limit as x tends to 

zero. As discussed in Sec. II, we expect the exchanges in the a a 

channel to determine the behavior of the fragmentations (a:clb) as 

x ~ 0. As illustrated in Fig. 3 and seen in Eq. (3), in a Regge pole 

model the leading contribution to the pionization (alclb) comes from 

• 



• 
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double pomeron exchange. consequently if the pomeron is a 

isosinglet, fcpp involves the coupling of the cc state to an 

isosinglet, which implies that each charge state of particle c 

with equal strength. 

couples 

As we have done previously, the hypotheses may be weakened 

somewhat by dropping the assumption that the exchange mechanisms are 

Regge poles. One may instead write the pionization distribution 

(alclb) as a sum of amplitudes labelled by the quantum numbers' of the 

aa and bb channels. Th · th t th d · . en assumlng a. e omlnant amplitude has 

purely vacuum quantum numbers in these channels yields the result that 

cc must couple to a C = + isosinglet. We feel it is important to 

make this observation; quite generally, the success or failure of the. 

predictions of this paper is neither a confirmation nor a refutation 

of the Regge pole model. 

As noted already by Mueller, one immediate consequence of this 

analysis is that the pionization distributions for the three-charge 

states of the pion must be equal. It follows that their mean multi-

plicities in the pionization limit are equal. I R n a egge pole model, 

the mean multiplicity of c at high energies can be written2 as 

(n ) 
c Ac tn s + Be , where coefficient 

by the pionization distribution. 13, 20 

A c of tn s is determined 

Similarly in the pionization limit, the production of protons 

and neutrons must be equal. Invariance under C requires that these 

equal the antinucleon production. This equality may furnish a useful 

test of whether protonization has been achieved at the CERN ISR. 

Assuming the pomeron to be a unitary singlet and assuming 

exact su3 symmetry leads to the prediction that in the pionization 

-18-

region, the production of all the pseudoscalar mesons be equal. Sim-

ilarly, in the baryonization domain, all members of the baryon octet 

should be produced with identical distributions. 

A primitive model for su3 breaking in the pionization region 

can be obtained by assuming the pomeron has a small part which trans-

forms as the eighth member of an octet, that this the dominant symmetry 

breaking mechanism, and working only to first order in the symmetry 

breaking. This is precisely analogous to the usual mass-splitting 

calculation and gives relations which may be read directly from the 

Gell-Mann-Okubo relations. For any two incident particles a and b 

one finds 

[(INI) + (1:=:1)] 
! 

l 
I 

+ 3(IAI)j 2 ~l(lzl) 

~ [ (In I) 

, 
( IK I) + 3 ( I TJ I) j 

where Z denotes any one member of the Z isomul tiplet and so forth. 21 

VII. CONCLUSION 

Isospin invariance is well established for strong interactions. 

The Pomeranchuk theorem, on the other hand, is not beyond question 

experimentally, so it is not clear that the pomeron can be regarded as 

purely a C = + isosinglet. One would like to use data on limiting 

fragmentations as further tests of this theorem. Unfortunately, the 

asymptotic equality Jr/(a:clb) = f't/(a:~.;lb) has not been established 

starting from assumptions about the three-body scattering amplitude 

analogous to those made in the proof of the Pomeranchuk theorem for 

two-body scattering. If it were proved, then the asymptotic equalities 
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(p :p) could 

be used to supplement the data on total cross sections. 

If the assumptions made in Sees. II, IV, and VI that the pomeron 

has C = +, I = 0 is correct, then the r.elations given there, based on 

isospin invariarice, are to be used rather than to be tested. We have 

illustrated, for example, how one can use data on different but related 

reactions to test for the presence of secondaries. We should not forget, 

however, that Mueller's analysis, summarized in Sec. II, is still some

what speculative, since our understanding of the analyticity and 

singularity structure of the three-body scattering amplitude is rather 

meager. Thus one might regard the experimental verification of these 

relations as a confirmation that certain crossed channel amplitudes 

dominate.asymptotically. 

On the other hand, where su
3 

invariance is concerned, the 

question is not whether the relations will be satisfied, but rather 

by how much, and in what fashion will they be broken. Since the 

predictions given above are for the asymptotic fragmentation distri

butions as functions of x and p~ , there is potentially a great 

wealth of information on symmetry breaking. The ratio, say, of 

(rr- :rr +) to (K- :K+), predicted to be 1 in an su
3 

invariant world, will 

probably depend on both x and p~ • This demands a dynamical theory 

of symmetry breaking. Can one define "reduced" fragmentations which 

'ivill bring observations more nearly in line with theory? 

Inclusive reactions provide a plethora of symmetry relations 

which can be tested experimentally. On the one hand there are 

relations which ought to be exact asymptotically if our understanding 

of these processes is correct. On the other hand there are relations 

-20-

which one expects to be violated by symmetry breaking. Data are rapidly 

being accumulated on a wide variety of inclusive processes. Guided by 

the symmetry relations discussed herein, these experiments should 

provide both a test of our basic understanding and a challenge to 

various symmetry breaking models. 
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FIGURE CAPTIONS 

Fig. 1 (a). The two-body total cross section as a discontinuity of 

the two-body forward amplitude. 

(b). The one particle inclusive cross section as a discontinu-

ity of the three-body forward amplitude. 

Fig. 2. A representation of the fragmentation (a:c/b) as a sum 

over Regge poles j. 

Fig. 3. A representation of the pionization (a/c/b) as a sum 

over Regge poles i and j. 

Fig. 4. The limiting fragmentation (a:c/b) in the triple reggeon 

region. Regge poles (R, R') of isospin I couple to 

the pomeron (P). 

(a) 

a~a 
b~b 

(b) 
a 

b 

c 
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