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Abstract 

The differential method is used to calculate the elastic moduli of a solid that con

tains a random distribution of spherical inclusions. Closed-form solutions are obtained 

for the two limiting cases of rigid inclusions and vacuous pores. These solutions obey 

the Hashin-Shtrikman bounds, and reduce to the correct values as the inclusion con

centration approaches 0 or 1. The predictions are compared with data from the litera

ture, and are shown to be very accurate over wide ranges of the inclusion concentra

tion. 

Submitted for publication to Mechanics of Materials 
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Introduction 

The problem of predicting the effective macroscopic elastic moduli of a micros

copically heterogeneous material is an important basic problem in mechanics, and has 

applications in fields such as composite materials, geophysics, and biomechanics. For 

the broad class of materials that consist of inclusions dispersed in a continuous matrix, 

the effective moduli depend on the moduli of the two components, the volumetric con

centration of the inclusions, as well as the shape and orientation of the inclusions. 

Among the many methods that have been proposed to estimate the effective moduli of 

such materials are the "self-consistent" scheme (Budiansky, 1965; Hill, 1965), the 

Mori-Tanaka (1973) method, and the "differential" scheme (McLaughlin, 1977; 

Norris, 1985). In this paper, the differential scheme is applied to materials consisting 

of isotropic spherical inclusions dispersed in an isotropic matrix. Closed-form solu

tions are found to the equations in the two limiting cases of rigid inclusions and vacu

ous pores, and the predictions are compared to data from the literature on various 

materials. 

The differential scheme can be motivated by considering the following ''thought 

experiment". Imagine the addition of a small concentration Br of inclusions to an ini

tially homogeneous matrix material. Since the concentration is dilute, the effect of 

stress-field interactions between inclusions is negligible, and we can calculate the new 

elastic moduli using, for example, the method of Eshelby (1957). We then mentally 

replace this composite material, whose moduli are M (Br), with a homogeneous 

material having the same moduli. Now imagine the funher addition of a small con

centration Br of inclusions, and calculate the new moduli M (2Br), etc. If we consider 

the limit as Br ~ 0, we arrive at differential equations that describe the evolution of 

the effective elastic moduli as functions of the inclusion concentration. Since the 

inclusions .are assumed to be randomly located in the matrix, the second set of inclu

sions will, for the most part, replace matrix material, but will also replace some of the 
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previously deposited inclusion material. Hence the total inclusion concentration will 

not simply be an additive function of the amount of inclusions added to the material. 

As shown by McLaughlin (1977), the total volumetric concentration of the inclusion 

phase is related to the parameter r by c = 1 - exp( -n. 

If the inclusions are spherical, and both components are isotropic, the two 

differential equations for the elastic moduli take the form (McLaughlin, 1977; Norris, 

1985) 

1 dK (3K +4G)(Ki -K) 
K dr = FK = (3Ki +4G)K 

(1) 

1 dG (15K +20G)(Gi -G) 
--- = Fc = ----------
G dr (6K + 12G)Gi +(9K +8G)G ' 

(2) 

where K and G are the bulk and shear moduli, and the subscript i denotes the inclu

sion phase. The initial conditions for these two equations are that the elastic moduli 

must be those of the matrix phase when the inclusion concentration is zero, i.e., 

K(O)=Km and G(O)=Gm. Although these differential equations are coupled and non-

linear, closed-form solutions can be obtained in the two important limiting cases of 

rigid inclusions and spherical pores. Furthermore, since the functions F K and F G are 

well-behaved, numerical solutions are readily obtainable in all cases. 

Rigid Inclusions 

In the limiting case of rigid inclusions, the elastic moduli Ki and Gi both 

approach infinity. Although this double limit may be approached along an infinite 

number of paths, in any case, (1) and (2) take on the forms 
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1 dK [ 4G] 3(1-v) 
K dr = FK = 1 + 3K = (1 +v) ' (3) 

1._ dG = F = [ 15K +20G] = 15(1-v) 
G dr G 6K + 12G 2(4-5v) . 

(4) 

Since the right-sides of (3) and (4) are positive, we easily find the (admittedly trivial) 

result that both of the elastic moduli increase as the inclusion concentration increases. 

In fact, we can show that the effective elastic moduli both increase beyond bound as 

the inclusion concentration approaches 100%. To see this, first note that F K is 

bounded below by 1, while Fa is bounded below by 15/8. (This second bound is 

found by examining Fa over the range O<GIK <312, which corresponds to the admis

sible range O<v< 112.) By the comparison theorem of ordinary differential equations 

(Corduneanu, 1971, p. 49), we see that K and G grow at least exponentially with r, 

and therefore approach infinity as r ~ oo. However, since the inclusion concentration 

c is related to r by c = 1 - e-r, we see that K ~ oo and G ~ oo as c ~ 1. Note also 

that since c = 1 is the only singular point of the system (3,4), the moduli will not 

become infinite at any value of c < 1. 

More information about the qualitative behavior of the solutions to (3) and (4) 

can be found by forming the differential equation for the Poisson ratio, v. By 

differentiating the relation v = (3K - 2G )1(6K + 2G ), we first find the general result that 

dv 
-= 
dr 

18 [a dK _ KdG] 
(6K +2G)2 dr dr · 

(5) 

Combining (5) with (3) and (4) leads to 

• 
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dv _ F _ 4(1-v)(l-2v)(l-5v) 
dr - v- (4-5v) (6) 

The only roots ofF v(V) that occur in the physically meaningful range are v=0.5 and 

v=0.2; these are stationary points of (6). Examination ofF y'(v) shows that v=0.5 is 

an unstable stationary point, while v = 0.2 is a stable stationary point, i.e., an attractor. 

A simple way to see this is to note that F v > 0 when 0 < v < 0.2, while F v < 0 when 

0.2 < v < 0.5. Hence rigid inclusions not only increase the elastic moduli, but do so in 

a manner that drives the Poisson ratio towards the value 0.2. The exception to this 

behavior occurs if the initial Poisson ratio is exactly equal to 0.5, in which case it will 

remain equal to 0.5, since dvtdr will equal 0. This is consistent with the effect of the 

addition of rigid particles into a fluid (which has G =0 and hence v=0.5); this causes 

an increase in K, but not in G , and so the Poisson ratio remains at 0.5. The behavior 

of v as a function of inclusion concentration will be examined in more detail after the 

solution to (3) and- (4) has been presented. 

The set of equations (3,4,6), of which only two are independent, could in princi-

pie be solved by first integrating (6) using partial fractions (Hashin, 1988), and then 

substituting the resulting v(c) expression into (3) or (4), which would then contain 

only two variables. However, the equations that would result for K or G would be 

very unwieldy, and would not be in a form for which partial fraction expansions could 

be used. Another approach is suggested by the resemblance of the system (3,4) to an 

autonomous dynamic system, with r playing a role analogous to "time". This anal-

ogy suggests dividing (3) by (4), and examining the behavior of the system in {K ,G} 

"phase space". The differential equation for the "trajectories" is then 

dK 2 K 4 -=--+-
dG 5G 5· 

(7) 
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Since the right side of (7) depends only on the ratio K /G, we can use the method of 

Liebnitz (Ince, 1956, p. 18), and define A.= K /G, in which case (7) takes the form 

dG 5dA. -= 
G 4-3A. 

(8) 

Integration of (8), and use of the initial conditions that specify that K =Km when 

G =Gm, leads to 

G [ (K IG)- (4/3) ]-S/3 
Gm = (Km!Gm)-(413) 

(9) 

This equation is easily solved for K as a function of G; one more integral is needed to 

relate the moduli to r. By dimensional reasoning, we know that the differential equa

tion for A.= K IG as a function of r will have a right ·side that depends only on A., and 

not on K or G individually; this suggests deriving and solving the equation for 

dA.Idr. Use of the quotient rule for derivatives leads to 

dA. 
-= 
dr 

(4- 3A.)(4+ 3A.) 
6(2+A.) 

(10) 

This equation can be integrated using partial fractions to yield, after some rearrange

ment of terms, 

- 2- [ A.-4/3 ]5/3[Am +4/3]1/3 
(1 c) - Am -4/3 A.+4/3 (11) 

• 
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The full solution to the equations is provided by (9) and (11); since (11) is actually a 

quintic equation for A., there is little hope of extracting an explicit solution. However, 

manipulation of (9) and (11), and use of the relationship v=(3K -2G)/(6K +2G), 

leads to the following more convenient expressions: 

(12) 

K 4 -=--
G 3 

(13) 

It is easy to verify that as c ~ 1, G/Gm ~oo (see (12)), and KIG ~4/3 (see 

(13)), which corresponds to a Poisson ratio of 0.2. For the special case where 

vm = 0.2, (13) shows that K IG = 4/3 for all values of c, and the bracketed term in 

(12) reduces to unity, so that when vm =0.2, 

K G 1 -=--=---
(1-c)2 

(14) 

Another interesting special case is that of a rubber-like material, for which Gm is finite 

but Km can be thought of as approaching infinity. For such a material, Vm =0.5, in 

which case (12) reduces to G!Gm =(1-c)-512, and (13) shows that the bulk modulus 

remains "infinite,, as would be expected. In general, as long as Vm is not too close 

to 0.5, three-figure accuracy can be achieved by inserting G /G m = (1- c t 2 into the 

right side of (12), solving for GIG m, and then inserting this value into (13) to solve 

forK /Km. 
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Since the solution attains such a simple form for the case v m = 0.2, it is con

venient to use this value to illustrate the different predictions of the various effective 

moduli theories. In fact, it so happens that for this particular initial condition, the 

predictions of the other effective moduli theories take on simple forms, as well. The 

self-consistent method (Hill, 1965) yields K /Km = G!Gm = (1-2c)-1, while the 

Hashin-Shtrikman (1961) lower bound on the moduli ratio is (l+c)/(1-c). The 

Mori-Tanaka method also predicts (1 + c )/(1- c) in this case. The various results are 

plotted in Fig. 1. Note that, as pointed out by Norris (1985), use of the differential 

method with r = c instead of r =-In( 1- c) would lead to effective normalized moduli 

of e2c, which would fall slightly below the Hashin-Shtrikman lower bound (see Zim

merman, 1984). McLaughlin (1977) in fact showed, without solving the differential 

equations, that if we identify r with -ln(1- c), the differential scheme obeys the 

Hashin-Shtrikman bounds, at least when the inclusions are spherical. 

It is also instructive to plot the Poisson ratio as a function of inclusion concentra

tion (Fig. 2). The Poisson ratio can be found from (12) and (13) using the relation 

v=(3K -2G)I(6K +20). As long as the initial Poisson ratio Vm is less than0.5, v -

approaches 0.2 as c ~1. The rate of this approach, however, decreases as vm ~0.5. 

The special case of v m = 0.5 can be realized in two physically different ways, each of 

which is accounted for by (12) and (13). One case, discussed above, is that of a 

"rubber-like" matrix for which Km ~ oo while Gm remains finite. The other case is 

that of a fluid-like matrix, for which Gm ~0 while Km remains finite. Both cases can 

be accounted for by first letting v m ~ 0.5 in (12), and solving for GIG m = (1- c )-512• 

Using this value for G /Gm, (13) can be rearranged to yield K /Km = (1- c )-1. These 

equations show that K will remain "infinite" for a rubber-like matrix, while G will 

increase, whereas G will remain zero for a fluid-like matrix, while K will increase. 

Note that the limiting behavior of the general solution (12) and (13) agrees with that 

found by Christensen (1990), who integrated (3) and (4) for the special case Vm =0.5. 

• 
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Spherical Pores 

Another important limiting case is that of vacuous pores, for which case the elas

tic moduli of the inclusion phase vanish. The governing differential equations for the 

effective moduli then take the form 

_!_ dK =F =-[1+ 3K] = -3(1-v) 
K dr K . 4G 2(1-2v) ' 

(15) 

..!_ dG = F = _ [ 15K + 20G] = - 15(1-v) . 
G dr G 9K +8G (7-5v) 

(16) 

Following the same reasoning as for the case of rigid inclusions, we see that since 

F K < -1 and F G < -5/3, both of the effective elastic moduli will approach 0 as the 

inclusion concentration (i.e., porosity) approaches 100%. The differential equation for 

the Poisson ratio, which is found by combining (5) with (15) and (16), is 

dv = F = 3(1 +v)(l-v)(l-5v) 
dr v 2(7-5v) 

(17) 

As was the case for rigid inclusions, the value v = 0.2 is a point of attraction for the 

the Poisson ratio. Unlike that case, however, the value v=0.5 is not a stationary point. 

Spherical pores will therefore decrease the elastic moduli of a material in such a way 

as to cause the Poisson ratio to approach 0.2, regardless of the value of v m. The self

consistent equations of Hill (1965) and Budiansky (1965) also predict this behavior for 

a material with spherical pores (see Rabier, 1989), except that the self-consistent 

theory predicts that the effective elastic moduli vanish and the effective Poisson ratio 

reaches 0.20 at a porosity of 50%, rather than 100%. 
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The equations (15) and (16) can be solved by again working with the differential 

equation for the trajectories, which in this case takes the form 

dK - (813 + 9)d 13 
K - 313(413-3) ' 

(18) 

where it has been found to be more convenient to work with 13 = 1/A. = G IK. Taking 

into account the proper boundary conditions, the solution to (18) is 

_£ = 13m [ 13-3/4 ]S/3 
Km 13 13m - 3/4 

(19) 

whiCh can also be written as 

(20) 

Substitution of (20) into (16) yields an uncoupled equation for G as a function of r: 

dinG 
dr = 

10(1 +Vm) + 5(1-5vm)(G/Gm)315 

5(1+Vm) + 2(1-5vm)(G/Gm)315 

Under the change of variable u = (G1Gm)315, (21) takes the form 

-5 du 10(1 +Vm)+5(1-5vm)u 

3u dr = 5(1 +vm)+2(1-5vm)u 

(21) 

(22) 
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Integration of (22) by partial fraction expansions yields (after the results are re

expressed in terms of GIG m) 

_g_ _ 
1

_ 2[2(1+v) + (1-5v)(G/Gm)3
'
5

]
113 

Gm - ( c) 3(1-v) · (23) 

This solution, given by (20) and (23), is equivalent to that given by Norris (1985), 

although in a different form. 

For the special case of vm =0.2, (20) shows that GIK=Gm/Km =3/4, while (23) 

shows that G/Gm = (1-c)2• For this initial condition, the self-consistent method 

predicts normalized moduli of 1-2c (Hill, 1965), while the Mori-Tanaka (1973) 

method and the Hashin-Shtrikman (1961) upper bound both give (1- c )/(1 +c). These 

results are plotted in Fig. 3. For other values of vm, it is not true that K/Km =G/Gm; 

however, the relative positions of the three curves are the same, in the sense that K 

(Mori-Tanaka) > K (Differential) > K (Self-consistent). In general, (20) and (23) can 

be solved to within 1% accuracy by replacing G/Gm with (1-c)2 on the right side of 

(23), and then evaluating (23) and (20) in turn. The Poisson ratio is plotted in Fig. 4 

as a function of the porosity, from the solution given by (20) and (23). The effect of 

spherical pores on the Poisson ratio is qualitatively similar to the effect of rigid spheri

cal inclusions (Fig. 2), with the exception that Vm =0.5 is no longer a special case. 

Note that since F v is a very slowly-varying function' of v (see (17)), the Poisson ratio 

is nearly a linear function of the porosity . 

Comparison with Experimental Data 

Although much can be said concerning the motivation behind each of the 

effective moduli theories, perhaps the best test of these methods is to compare their 

predictions with the results of carefully conducted experiments. One set of data that is 
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useful in this regard are the bulk modulus measurements of Walsh et al. ( 1965), who 

prepared sintered glasses of varying porosities under controlled conditions so as to 

create nearly spherical pores. Since the function F K is known to be very insensitive to 

slight deviations from sphericity (Zimmerman, 1985b ), it seems permissable to use this 

data to test the theoretical predictions for a body with spherical pores. Walsh et al. 

( 1965) extrapolated their data down to zero porosity to find an initial Poisson ratio of 

0.193. Using this value of vm in (20) and (23), as well as in the self-consistent and 

Mori-Tanaka expressions (see Christensen, 1990), we can compare the values predicted 

by these theories to the experimental data. The results plotted in Fig. 5 show that the 

data points generally fall between the predictions of the Mori-Tanaka and differential 

schemes, although somewhat closer to those of the latter. 

It would be convenient if data existed on the elastic moduli of a material filled 

with "rigid" spherical inclusions. Examination of (1) and (2) shows that the ratios 

K;!Km and G;!Gm would have to be on the order of 100 or so for the functions FK 

and F G to reduce to those given in (3) and (4) to within 1%. Furthermore, note that 

the right sides of (1) and (2) are proportional to the differences (K -Ki) and (G -Gi), 

and that these differences will decrease as the inclusion concentration increases. 

Hence, while the ''rigid filler'' limit is useful in that it provides a solvable limiting . 
case that can yield qualitative information, it cannot be used for 'typical composite 

materials for which Ki/Km and Gi/Gm are finite (i.e., about 10 or so, but usually not 

as large as 100). In this case it is necessary to resort to numerical solutions of (1) and 

(2) in order to facilitate comparisons with experimental data. In this regard, it is worth 

noting that it has often been suggested that measurements of the viscosity of a suspen

sion of rigid spheres in a Newtonian fluid be used to test the effective moduli theories 

(cf., Christensen, 1990), since this viscosity is mathematically analogous to that of the. 

shear modulus of an incompressible matrix loaded with rigid spheres. However, it 

must be remembered that the problem being attacked by the effective medium theories 
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corresponds to a dispersion that is isotropic and homogeneous on some macroscopic 

scale. When the viscosity of a suspension is measured in a Couette viscometer, the 

dispersed spheres tend to migrate away from the walls (Halow and Wills, 1970), creat

ing an inhomogeneous suspension. Similar concentration inhomogeneities occur in 

other types of viscometers (see Leal, 1980). Since the viscosity is determined by 

measuring the viscous drag exerted by the fluid on the wall of the viscometer, the 

value. so measured will not correspond to the average volume fraction of the overall 

suspension. Hence, comparisons of these measured viscosities with effective medium 

predictions will be problematic. 

A useful set of experimental data for a composite material with spherical fillers 

that are more rigid than the matrix, but not "infinitely" rigid, is that of Hasselman and 

Fulrath ( 1965) on a borosilicate glass containing spherical tungsten particles. The par

ticle size of the tungsten was approximately 30j.lm . (Although the differential scheme 

is somewhat easier to "justify" under the assumption that there is a hierarchy of parti

cle sizes (cf., Norris, 1985; Christensen, 1990), such an assumption is by no means 

necessary (Zimmerman, 1984 ). Furthermore, many potential applications of effective 

medium theories will be to composites with nearly "monodisperse" inclusion phases.) 

The elastic moduli of the matrix and inclusion phase for this data were 

Gm = 33.6GPa, Km = 44.3 GPa, Gi = 148.1 GPa, and Ki = 196.3 GPa. Fig. 6 shows 

the experimentally determined Young's moduli, for tungsten volume fractions of 0.1, 

0.2, 0.3, 0.4, and 0.5, compared with the predictions of the differential scheme, the 

self-consistent scheme, and the Mori-Tanaka method. In this case, the Mori-Tanaka 

predictions coincide with the Hashin-Shtrikman lower bound (see Benveniste, 1987). 

Again, the differential scheme fits the data very well. The Mori-Tanaka method is 

slightly less accurate, while the self-consistent method is the least accurate of these 

three methods. Note that since the functions F K and F 0 are well-behaved and 

slowly-varying, equations (1) and (2) are easily integrated if InK and lnG are used as 



- 14-

the dependent variables. 

Conclusions 

Closed-form solutions have been presented for the equations, obtained from the 

differential scheme, that describe the effective elastic moduli of materials containing 

spherical pores or rigid spherical inclusions. The predictions lie between those of the 

Mori-Tanaka method and the self-consistent method, although this may not always be 

true for other microstructures (cf., Christensen, 1990). In both of these cases, the Pois

son ratio approaches 0.2 as the inclusion phase concentration increases. For the gen

eral case in which the moduli of the inclusion phase is finite, the equations of the 

differential scheme are easily integrated numerically. The predictions of the 

differential scheme compare very well to experimental data from the literature on the 

bulk modulus of a sintered glass with spherical pores, and on a borosilicate glass con

taining spherical tungsten particles. The differential scheme also has the advantage of 

being easily applied to any microstructure for which the Eshelby (1957) energy expres

sions are available; for example, to materials containing penny-shaped cracks (Sal

ganik, 1973; Zimmerman, 1985a) or rigid-disk inclusions (Norris, 1990). 
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Fig. 1. Elastic moduli of a material containing rigid spherical inclusions, according to 

the self-consistent scheme, the Mori-Tanaka scheme, and the differential scheme. 

The Poisson ratio of the matrix phase is 0.20. 
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Fig. 2. Poisson ratio of a material containing rigid spherical inclusions, according to 

the differential scheme (equations (11) and (12)). The six curves are for Vm = 

0.0, 0.1, 0.2, 0.3, 0.4, and 0.49. 
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Fig. 3. Elastic moduli of a material containing spherical pores, according to the self

consistent scheme, the Mori-Tanaka scheme, and the differential scheme. The 

Poisson ratio of the matrix phase is 0.20. 
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Fig. 4. Poisson ratio of a material containing spherical pores, according to the 

differential scheme (equations (20) and (23)). The six curv~s are for Ym = 0.0, 

0.1' 0.2, 0.3, 0.4, 0.5. 
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Fig. 5. Bulk modulus of a sintered glass containing spherical pores, compared with 

the predictions of the three effective medium theories. The Poisson ratio of the 

matrix phase is 0.193; data are from Walsh et al. (1965). 
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Fig. 6. Young's modulus of a borosilicate glass containing spherical tungsten inclu

sions, compared with the predictions of the various theories. Data are from 

Hasselman and Fulrath ( 1965); elastic moduli of the two phases are listed in text. 
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