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Introduction

The sintering proceﬁﬁ for lead zirconate titinate ceram-

ics is omne of the most complex encountered in the cefgmic ma-—
terial area. First, the syste;.shovs en unusually wide range
“of intrinsic‘noﬁpstoichiometry at high tgmperaturés. Secondly,
"the volatile nature of PbO makss high temperature processing
difficult. Lestly, small amounts of igpurities canvcause |
drastic changes iﬁ'tha ferroeleétric cr riezoelectric proper-
ties, This_discuséion will concentrate on the.siﬁtering of a-
few selected PZT composifions vwvhich include the basic PZIT.
compound and various dopants. We will concentrate on éonven-
tional sintering practice and not include hot pressing.

Above the Curie temperature and below the liguidous tem-
parature lead fitinate aﬁd lead zirconate form a complete
s0lid solution with the cubic perovskite (CaTiOB) structure.
Upon liquid formation the system decomposes into 2 crystalline.
phases and a lead rich liquid(l); therafore, ths incongruent
nature of melting makes the system a pseudo-binary.

” The structure of PZT can bs visualized by face center
cubic packing oxygen ions end replacing the corner ions with

lead ions of +2 charge and filling the central octrshedral
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hole with either +4 zirconium or titanium ioms, The 12-fold
coordinated hole occupied by the lead 2+ ion has an ionic
radius of oxygen, 1.40A. The best value for the ionic radius
of Pb2* is 1.208. Therefore, some lattice disfortion is
introduced by the lead ion filling the hole, Similarly tﬁe

o
central octrahedral hole is too large for Ti4+, 0.6054, and

o]
4+ o.72%.(2)

close to the size of the Zr
The interstitial sites in the structure; 12 octrahedral

holes on the cube edges and 8 tetrahedral holes at the (1/4

1/4, 1/4) positions, are unlxkely to be filled, because éach

(3)

has both positive and negatlve ion nezghbors

"High Temperat insi =5

PbZr0, and solid solu-

At high tempsratures the PbTiO,, 3

- tion mixtures shov a wide solid solution region. Fig. l_shovs

the three compnnent phase equlllbrlum dlagram for the Pb0 -~

ZrO - T102 at 1100°. The solid solution region is a result
(4)

of recent work, Fig. 2 gives the Pb0 activity'as h func-~

tion of reciprocal temperature for PleOB' PbZrO3 and Pb(T1o 5

Zr 5)0 at the limits of the solid solution reglon. The vapor

pressure of PbO above ligquid or crystalllne PbO at the specific

temperature was taken as the standard state.” If a Pb(Zro 5

’

10 5)03 green ceramic was heated to & given temperature in a

sealed container contsining a mixture of PbZr0, and Zr0, to

provide a RbO aitmosphere, the sample would equilibrate with the.

atmosphere and develop an intrimsic vacancy conceniration of

both Pb and O vacancies to give . a composition ?bl A} ATi

-X pbx
)o v o
57 73-x o,

Therefore, the composition of a packing powder around a

PZT can control the intrimsic defect structure,
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" PZT can be doped vith various ions to form vacancie;boﬁ‘
the Pb or O site. The affect of an individual ion will depend
or its chargs and ionic size. The defect produced Qiil have

a strong influence on tha piezo and ferroelectric properties

through its interaction with the ferroelectric doﬁains. Bi3+

>+ on the T14

43

and L33+ on the.Pb2+'=ita and Nb site can produce

2+ L 3+ 3+

Pb vacancies, or Al on the T1 sxts can produce

oxygen vacancies, Vhan an element is addad ahova the solublllty
limit or is iﬁsoluhle, secondary phases will be produced. The
‘distribution of the secondary phasa can have & strong influeace

on the slectrical properties, especially if i£ is present as a .

llqu1d f;lm at high temperatures which enconpssses all grain

_'boupdar;e;.' A simple model is shown in Fig. 3. 510 whzch is

insoluble in PZT because of the ionic size of sit (0.42A)
behaves in this fashion and causes applied electric fields to

have high potential drops across the low dielectric constant

grain boundary phase. This causes an indicated increase in Ec

for the ceramlc, bacauss the potential gradient across the

ferroelectric phase is reduced. (3)

Sln}g;iﬁg»ﬁ&nﬂigﬁ

A1203 and 5102 ere tvo impurities which can be-introduced
into PZT either in mixing the primary raw materlals or grind-
ing the calcined composition in alumina jars with alumina
pebbles. iherefofq, one of thgvfir;t studiea€6) should be to

identify their affact on Sintering. A PZT. composition of 0.6

- Ti and 0.4 Zr prepared f:om'high purity chemicals and mixed or

milled in organic materials bhad rarious parcentagea of eithsr
A).(N03)3 or colloidal 5i0, added. Samples were prepared and

fired under a conirolled PbO‘#tmosphare for 1 1/2 hours at
-55- | |
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1210 C. As can be seen in Fig. 4 both asdditives lead {0 in-

creased densification when their addition exceeds a mimimum

amount.

A further study of the sintering of PZT jincluded the:usg

(5) pilt 5+

of dopants and Si0, and Al,0, additives. and b~ ',

273
both dopants which should faver Pb vacancy productioz, were

3

used, Bi * and Nb5+ vere added at 0.02 atomic percent,-vhere;

es, alumina and silica vere added as 0.4 vweight percent add-

itions. All samples were presintered at 800 C fp;:oné hoﬁf,tq'
rémb#e organic m#terials end increase the green strength. 'Ihe .;
specimens were fired in a packingbpowder df the sam§ cbﬁﬁositibnb

of the samples 'Pb(Tio."n ‘z;o.”)oj

the} vas on the high PHO -
activity.sidé of the solid solutien. The firing geonétry is .-
shown in Fig. 5. .The specimens were fired in one ;tansphere;.
oxygen. . The furnsce was raised to 1200°¢ at 300 °C/'h1'_va.nd held *
for the required time. The initial density vas determined o
»aftervzovminutés gt'izoo‘t and is shown in Fig. 6.l As showﬁ in .
the figure, Si0, additions increase the initial denmsity in the
undoped and doped samples; vhereas, alumina additions &escréase

the initial density. On holding the sample at tamperéture_the

density increase for samples with no alumina or silice additives

vas linear with 't.ime:l/2

1/3

. Vhen either alumina or silica were

relation was observed. The sinterimg behaviour
5

present a time
.

is shown in Fig, 7, 8, and 9. With no dopants, Bi3+,.or-Nb +_dopaﬁtsy

aﬁdvno silica or alumina a solid state diffusion process was
apparently followed. VWhen A13'+ or Si4+ vere'present a liquié
ph#se sintering was encountered as.shotn by the t1/3 dependgnée.
» Alumina addition§ ﬁarkedly reduﬁed ferroelectric behabiour,
as shown in Pig. 10, 'Nb5+ developed squgré loops . and coﬁld

compensate for A13+.

-56-
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dopants

Silica additions increased Ec witkout chgngingvthe sat—_
uraticn pdlarization sigpificantelfi(?ig.ll);» Nbsfxand BiB*’,.
both lead vacancy generators, were interchangeable in their
ection. |
Aluminum and niobium were self comﬁensating in ferro-
electrlc propertles as shown in Fig. 10 and also in sintering
and as grain growth inhibitors as shown in Fig. 12, (3) ‘Both
Alumina_and niobium increased‘grain boundgry dfagband>impedeil

grain boundary mobility. When.bofh Qeré p£esent,th¢ir dction’
v#s'decreised due to association of A13+and NbS+ td form
defect pairs without O’Qf‘Pb’chargéd vacdencies.

Thé-fate detefﬁining spéciés in sintering undopéd high 
purity:fZT vas determined to bé the oxygen vacancy from jhe'daﬁa
sﬁown:in fig.»lB. o | | o

.Fig. 14 compares the gr#in size compensated depsifiéation ,
rate for Nb, Al, Nb + Al, and undoped material. »Uﬁdoped mat—‘l» C -
e:ial:has the highest'depsificatipn rate while the miied doping . -
of eéual atomic percents gf Nb and Al give pearly the same |
densification rate at an ;quivalent grain size. Nb and Al dopiﬁgi
alone give lower densification.rateé butvléﬁd-to & higher density.

through control of grain growth and subsequent reduction of the

diffgsion path length (Fig. 12). The nonlinear densification

_raies foi Al and Nb doped materials may be due to a change

in the densification mechanism from volume diffusion to graln
boundary diffusion. c "’    ' s R
Surzmary

Sintering of YZT requires that the impurities, dopants,
and atmosphere be car94ully controlled to produce materials
viﬁh the deéired feiréelectric'or piezoelectric‘prdpertiés;’
Lattice defects whether intrinsic or extrinsic play an im-

-57-

ar

4 ot vy i it )

g R e

Tk




pbrtant role on sintering and electrical
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