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ABSTRACT 

The analytic solutions of Boulton (1954) and Neuman (1972) for transient flow to a well in an 

unconfined aquifer are based on the assumption that the role of the unsaturated zone can be ade

quately accountedfor by restricting attention to the release of water from the zone through which 

the water table moves. Both researchers mathematically treat this released water as a time

dependent source term. The differences between the models of Boulton and Neuman are that the 

former neglects vertical components of flow in the aqUifer, but allows for an exponential process 

for the release of water as afunction of time, whereas the latter assumes instantaneous release 

from storage, but accounts for vertic{ll components of flow. Given this set of assumptions, we 

examine the applicability of these two methods using a general purpose numerical model through 

a process of verification extension and comparison. The issues addressed include: the role of 

well-bore storage in masking intermediate-time behavior, combined effects of exponential release 

as well as vertical flow, logic for vertical averaging of drawdowns, and the sensitivity of system 

response to the magnitude of specific yield. The issue of how good the assumptions of Boulton 

and Neuman are in the context of the general theory of unsaturated flow is addressed in part 2 of 

this two-part series of reports (Zhu and Narasimhan, 1991 J. 
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1.0 INTRODUCTION 

Transient analysis of radial flow of water to a well has interested groundwater hydrologists 

for more than half a century (Theis, 1935). Indeed Theis' classical paper applied an exponential 

integral solution to a water table aquifer rather than a confined aquifer, with which it was later 

associated. Because of the complexity of an unconfined system due to its interface with the unsa

turated zone and because of the difficulties inherent in solving the unsaturated flow problem 

analytically, attempts have been made by many researchers to simplify the problem with ideal

ized approximations of the effects of unsaturated wne and restrict the solution process to the 

saturated domain. The key feature that these idealizations must account for is the inflection fre

quently observed in the time-drawdown plot of unconfined aquifer pump tests. Two categories of 

idealizations have been used concerning the release of water from the zone through which the 

water table moves: (1) gradual release (Boulton, 1954) and (2) instantaneous release combined 

with time-dependent vertical movement of water within the aquifer (Neuman, 1972). These two 

widely used idealizations have been discussed by Neuman (1979). 

The purpose of this paper is to investigate the applicability of these idealizations, given that 

the underlying assumptions regarding the role of the unsaturated zone are valid. In part 2 of this 

two-part series of reports (Zhu and Narasimhan, 1991), we will examine the validity of the 

assumptions themselves in the general context of unsaturated flow theory. We restrict considera

tion to the analytical models of Theis-Wenzel (Theis, 1935), Boulton (1954; 1963), and Neuman 

(1972; 1974). We also limit ourselves to a fully penetrating well in an aquifer with single isotro

pic material. 

1.1 Background 

A characteristic feature of an unconfined aquifer test is the inflection observed in the time

drawdown curve at intermediate times. As seen from field data presented in Figure 1, three dis

tinct segments can be defined in the time-drawdown graph: an early-time portion coinciding with 

the Theis solution associated with the specific storage (Ss) of the aquifer representing the elastic 

component, an intermediate time portion characterized by a flattening of the curve resembling the 

response of a leaky aquifer, and a final portion that confonns to the Theis curve associated with 

the total storage (S + Sy), combining the effects of elastic storage and changes in saturation. 

As a first approximation, one may simplify the analysis by restricting consideration to the 

late-time behavior of the system and use the Theis equation to assess the total storage coefficient, 
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S + Sy. Indeed, in his classical paper, Theis (1935) analyzed Wenzel's (1933) data this way. In 

the present work we shall call the late time Theis curve associated with S + Sy the Theis-Wenzel 

curve. 

Neglecting vertical components of flow, assuming initial hydrostatic state, and ignoring 

temporal changes in aquifer thickness, b, the Theis-Wenzel governing equation is given by, 

[
a

2
s 1 as] 1 as Kr - + - - = -(S+S )-, forlarget , 

a~ r ar b y at 
(1) 

where Kr is hydraulic conductivity in the radial direction, s is the drawdown, r is the radial dis

tance from the axis of the pumping well, and t is time after the pumping started. 

In order to interpret the drawdown behaviors at intermediate times, two categories of 

simplified conceptual models have been proposed. Both these models seek to account for the 

quantity of water that is drained vertically from the unsaturated zone to compensate for the fluid 

withdrawn from the system. One model assumes that water is released from storage instantane

ously from the zone through which the water table moves, to be added to the top of the saturated 

zone and that a finite time is needed for the pressure transient effects of this addition to reach the 

bottom of the aquifer (Neuman, 1972; 1973; 1974; 1975). The other model assumes that water is 

released gradually from storage from the same zone according to an exponentially controlled 

delayed drainage mechanism (Boulton, 1954; 1963; 1970; Boulton and Pontin, 1971). This 

notion of "delayed yield" is not peculiar to unconfined aquifers. In any system (e.g., double

porosity system) with coexisting materials of strongly differing diffusivity, the low diffusivity 

components will cause time-lag effects (delayed yield) in the propagation of perturbations. 

Indeed, as pointed out by Neuman (1979), Boulton appears to have originally developed his idea 

for a double porosity system controlled by elastic storage and later extended it to unconfined 

aquifers. As a mathematically tractable approximation, Boulton suggested that the amount of 

water released from storage within an unconfined aquifer due to an increase in drawdown Lls dur

ing a time period from 't to 't + Ll't, consists of two components: (1) a volume of water instantane

ously released from elastic storage per unit horizontal area, and (2) a delayed yield per unit hor

izontal area from the unsaturated zone to the saturated zone which, at a later time, t, is equal to 

LlsClSye-a('-'t). Here, Sy is specific yield of the aquifer, and Cl is an empirical constant whose 

reciprocal is known as the delay index. Boulton expressed the governing equation involving 



-4-

delayed yield as follows (Boulton, 1954): 

t 

T [
a2s 1. as] =s as s f ~ -a(t-'t)d 

2 + ':I ':I +a y ':I e 't . ar r ur ut 0 u't 
(2) 

Although in the 1954 paper Boulton did not discuss mechanisms, in his 1963 paper he indi

cated that delayed yield comes from above the water table. Boulton numerically estimated his 

. analytical solution only for the case where the compressibilities of water and of the aquifer are 

negligible (Le., S8 ::: 0). 

Almost two decades later Neuman developed an analytical solution that could produce all 

the three segments of the time-drawdown curve without recourse to delayed yield (Neuman, 

1972; 1973; 1974; 1975). Neuman treated the unconfined aquifer as a compressible system and 

the water table as a moving material boundary, thus restricting attention to drainage of fluid only 

in the region over which the water table moves. Neuman showed that an inflection in the time

drawdown curve can also occur as a consequence of instantaneous drainage of water followed by 

a finite interval of time required for the drawdown perturbation to propagate from the top to the 

bottom of the aquifer. This effect would of course be influenced by effects of anisotropy. In this 

idealization, both S and Sy are constants. Later, Neuman (1974) extended his model to account 

for the effect of partial penetration on drawdowns. Based on the assumption of a fully penetrat

ing line source well, Neuman expressed the governing equations as follows (Neuman, 1972): 

The saturated wne: 

(3a) 

where Kr and Kz are hydraulic conductivities in the radial and the horizontal directions, and H is 

saturated thickness. 

Initial conditions: 

s(r, z, 0) = 0 , (3b) 

H(r,O)=b . (3c) 

Condition on the lateral boundary: 

s(oo, z, t) = 0 . (3d) 

.. 
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Condition on the impervious bottom of the aquifer: 

as az (r, 0, t) = 0 . (3e) 

Conditions on thefree surface: 

(3f) 

H(r, t) = b - s(r, H, t) , (3g) 

where Dr and nz are unit vectors in the radial and vertical directions, and I is vertical infiltration 

(recharge) rate at the water table. 

Condition in the well: 

H 

lim 2 7t Kr J r ~s dz = Q , 
r-+O 0 ur 

(3h) 

where Q is volumetric pumping rate. 

From an intuitive and qualitative view point, the Boulton idealization seems reasonable. 

Considering the complexity of unsaturated zone processes, the constant a parameter chosen by 

Boulton (as he extended his original concept) may be considered a preliminary approximation. 

Neuman (1979), however, takes a more focussed view of Boulton's model. He advances several 

arguments to show how a cannot be a constant either in space or in time. He therefore considers 

Boulton's model less physically sound than his own. Neuman does point out that in a model

fitting sense, either model can be used to obtain practically the same aquifer parameters except 

when conditions of partial penetration or anisotropy exist or when piezometer observations at 

specific locations within the aquifer are considered. It is worth noting that gradual desaturation of 

the zone through which the water table declines and gradual vertical propagation of pressure 

effects from the top to the bottom of the aquifer are two independent physical processes. In prin

ciple, both processes are likely to occur simultaneously within a dynamic unconfined aquifer. 

1.2 Methodology 

In the present study, we use a general purpose numerical model as a tool for verifying the 

three analytic solutions (Theis-Wenzel; Boulton; Neuman) and to investigate their applicability. 

The model chosen is TRUST (Narasimhan et al., 1978), an integral finite difference algorithm for 
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solving multidimensional saturated-unsaturated flow problems in defonnable media. To minim

ize spatial discretization errors in the present work, we used concepts of geometry-imbedding 

(Narasimhan, 1985) in discretizing the mesh in the radial direction. 

2.0 SOME COMPUTATIONAL CONSIDERATIONS 

2.1 Well-Bore Storage Effect 

The unconfined aquifer solutions by Theis (1935), Boulton (1954), Neuman (1972) and oth

ers are restricted to treating the well as a line source. However, it is known (van Everdingen and 

Hurst, 1949; Papadapulos and Cooper, 1967; Agarwal et al., 1970) that effects of well-bore 

storage may have pronounced influence on early and intennediate time-draw down behavior. 

The computational logic for simulating the well-bore is simply to treat the well as a discrete 

elemental volume with a capacitance, Me, well' defined by, 

M1 p1tr;~", 2 
Me well = -- = = P 1t rw , 

, 6", 6'1' 
(4) 

where M1w is the change in mass of water in the well, rw is the well radius and 6'1' is the change 

in water level. We manipulate the TRUST input in such a way that the capacitance of the well 

node equals p 1t r;. 

The well-bore storage constant, C, was defined by van Everdingen and Hurst (1949) as 

C = ~ [ capacitance of well ] 
2 capacitance of a cylinder of aquifer material of volume 1t r; b 

1 p1tr; 1 1 
=--=-

2 P 1t r; S5 b 2 S5 b 2 S 
(5) 

The well-bore storage constant in an unconfined aquifer decreases with time from its initial 

value ~ = (2Sr1 to its final value Cf = [2(Sy + S)r1
. The larger the C, the stronger the well-bore 

storage effect. Ranges of C of practical interests are provided in Agarwal et al. (1970). Note that 

C defined in this manner is independent of rw. For a given well-bore storage constant, it is known 

that the effect of well-bore storage on the confined aquifer drawdown history diminishes as the 

distance from the pumping well or the duration of pumping increases. 
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2.2 Boulton's Time Convolution Integral 

Consider a volume element I in a radial system which communicates with two other neigh

boring elements k and m. In the context of the integral finite difference method, the Boulton 

equation for element I is a statement of mass conservation which takes the fonn: 

(6) 

where U is the conductance between two adjoining elemental volumes, tl+l is the final time at the 

end of the current time step dtl' and dsl,l is the increase in drawdown over ~tl' The bar over s 

denotes time-averaged values and 0 1 represents a source tenn. 

We now examine how the integral on the right hand side may be computationally handled. 

The domain of integration is split into two parts: 0 to tl and tl to tl + ~tl' By assuming that the 

drawdown varies linearly with time during the interval ~t, the equation can be rearranged by 

moving the integral over the domain 0 to tl to the left hand side. Thus, 

[ 

I{.I· ] 
~s I S as} or = p v S _1._ + a. -.r. J -'- e-a(tl.l-or) d't 

1 s ~t b d't 
I I{ 

(7) 

In the numerical model, the capacitance tenn associated with time derivative on the right 

hand side of the equation is easily handled by using an effective fluid mass capacity Me, effective = 

pV1[Ss + Sy(1-e-a~I{)/b], which is a function of time. The convolution integral on the left hand 

side can be expressed in a discretized fonn by summing up the amounts of water remaining to be 

drained at tl due to the incremental drawdowns that occurred over all the previous time steps. Let 

lj denote the time at the beginning of an arbitrary time step and lj+l at the end. Assume that from lj 

to lj+l the water table in elemental volume 1 declines dsl,i due to pumping. Then the total mass of 

drainable water due to this increase in drawdown is dM1,i = P Al Sy dSl,i' By the Boulton assump

tion, this amount of water is not completely released over this time interval. Instead, the actual 

drainage during lj to lj+l is smaller and is given by: 
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(8) 

Hence, the mass of water remaining to be drained from dM1,i is 

(9) 

We now implement a computationally efficient procedure for explicitly evaluating the con

volution integral on the left hand side of (7) so as to treat it as a non-linear sink term. Note that 

physically this quantity represents the mass of water remaining to be drained from node 1 at the 

instant tl' Let us start with time step Lltl , spanning the interval t = 0 to t = Lltl . Let the incremen

tal drawdown during this time step be Llsl, I' Let DMl, I denote the mass of water remaining to be 

drained at the beginning of time step Lltl' that is, at the instant tl' Then, in view of (9), the mass of 

water remaining to be drained at the end of time step 1 (or equivalently at the beginning of time 

step 2) is, 

(10) 

We now need to evaluate the mass of water remaining to be drained at the beginning of time step 

3. Note that by the end of time step 2, a portion of the maSs of water given in (10) would have 

drained according to the exponential drainage process. Concurrently, a small amount of water 

will be added to the quantity in (to) due to the incremental drawdown Lls1 2 that is created during 

time step 2. Therefore, the mass of water remaining to be drained at the beginning of time step 3 

is given by: 

(11) 

The above equation provides a simple logic to update, at the end of each time step, the mass 

of water that is waiting to be drained from each elemental volume in the system according to the 

exponential decay process assumed by Boulton. Incorporating the logic contained in (11) into (7) 

yields the mass conservation statement for node I during that time step: 

= p V [s + ~ [1 _ e -a6ltl] Lls1
• I 

1 S b J Llt . (12) 
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2.3 Neuman's Idealization 

The main feature of the Neuman idealization is that water is instantaneously drained from 

storage and is added at the top of the saturated zone. This water will migrate downwards as well 

as radially on its way to the well bore. To numerically simulate this feature, we distinguish, in 

writing the mass conservation equation, between an elemental volume that does not include the 

water table and one that does. Thus, for the elemental volume that does not include the water 

table, we have, 

(13) 
m 

For volume elements that include water table we can write, 

(14) 

where Llb' is the height of the elemental volume. Thus one may define an effective specific 

storage coefficient of Ss + SylLlb' for these nodes. In the Neuman idealization, the saturated thick

ness of such an element, Llb' is approximated by its initial value, Llb. 

2.4 The Notion of Vertical Average 

2.4.1 Mathematically Averaged Drawdown 

The drawdown observed at a specific location within an unconfined aquifer is a function of 

radial distance, time after the start of pumping, and elevation from the base. Boulton treated 

drawdown to be independent of elevation, and assumed it to be only a function of rand t Neu

man, however, considered the existence of vertical flow components, and his general solution for 

the drawdown is expressed as s = s(r, z, t). Nontheless, Neuman also presents drawdowns aver

aged over the thickness of the aquifer so that s is treated as a function of r and t only. For this 

purpose Neuman defined the average drawdown as, 

b 

- 1 f smath(r, t) = b ~ s(r, z, t) dz (15) 
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And when multiplied by 41t K b/Q (15) takes a dimensionless fonn: 

1 

SO,math (J), to) = f So (J), zo, to) dzo . 
o 

(16) 

We call this a mathematical average and point out that this average is not physically meaningful 

because the integrand in (15) is not an additive quantity. In order that (15) be meaningful in a 

mass conservation sense, the integrand may be multiplied by base area and storage coefficient to 

yield mass of water released from storage. 

2.4.2 Physically Averaged Drawdown 

To be consistent with mass conservation, we may define an average drawdown on a physi

cal basis. Intuitively one can define a physical average on the basis of capacitance as, 

b 

Sy s(r, z = b, t) + J Ss s (r, z, t) dz 

~hy(r, t) = S + ~S 
y s 

(17) 

and 

SO,phy (J), to) = So (J), Zo = 1, to) + 0' SO,math (18) 

where 0'= SISy' 

A question may now be raised as to which of these average drawdowns a fully penetrating 

observation well will actually "see". Is it the mathematically averaged drawdown or the physi

cally averaged drawdown or some other average? It appears that previous workers have assumed 

implicitly that it is the mathematically averaged drawdown that the fully penetrating observation 

well will "see". However, the reasonableness of this choice is not self-evident. Further studies are 

needed before this assertion can be substantiated in a credible fashion. 
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3.0 MODEL VERIFICATION 

We use the phrase, "model verification," to denote the task of assuring internal mathemati

cal consistency of the numerical solution before using it to investigate the applicability of 

unconfined aquifer analysis approaches. A well-accepted philosophy for model verification is to 

match, using the numerical model, known analytical solutions of special problems of interest. 

3.1 Theis-Wenzel Solution 

Since the Theis-Wenzel solution differs from the well-known Theis solution only in that it 

has an effective storage coefficient of S + Sy instead of S, to verify one solution is equivalent to 

verifying the other. Narasimhan and Witherspoon (1976) showed that the TRUST algorithm 

reproduces the Theis solution (line-source solution) with acceptable accuracy. 

An important extension of the line-source solution is the incorporation of the well-bore 

storage effect Agarwal et al. (1970) developed analytical solutions giving consideration to 

well-bore storage effects in a well of finite diameter. Numerical results obtained for a well-bore 

storage constant of 100 are shown compared in Figure 2 with the analytical solution of Agarwal 

et al. (1970). It can be seen that the agreement is excellent. The volume elements (or nodes) 

were cylindrical shells, whose outer radii were twice the inner radii. We denote this to be a "fac-

tor 2" mesh. 

3.2 Boulton Solution 

The logic of treating delayed yield has been discussed in (8) through (12). In order to com

pare with Boulton's tabulated results (Boulton, 1963),0"= S/Sy is chosen to be 10-3. In the Boul

ton problem, as in the well-bore storage problem, the same factor 2 mesh was used in the 

verification exercise. Numerical results of dimensionless drawdowns for 13 = 10-2 and a. = 10-4, 

W-{), and 10-8 (corresponding to rIB = 1,0.1, and 0.01) are depicted in Figure 3. Agreement with 

the analytical solution can be considered very good. The slight differences noticed at early times 

are attributable to minor well-bore storage effects. 
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3.3 Neuman Solution 

The main features of the Neuman idealization are: instantaneous drainage, line source well, 

existence of vertical flow components and constant thickness of the saturated zone. The role of 

specific yield is modeled as a source term at the water table. 

For purposes of verifying the numerical model, a hypothetical case, as first suggested by 

Cooley (1971) and later used by Neuman (1972), was considered. The input parameters used are 

given in Table 1. 

Table 1. Input parameters for the Cooley problem· 

b rw (well radius) K S5 Sy (J Q 
(m) (m) (m/s) (m-I ) m3/sec 

18.14 0.128 7.073 x 10-4 1.969 X 10-3 0.23 0.155 1.5 x 10-3 

·Solutions are compared at r = 12.52 m, for which ~ = 0.477. 

Neuman's analytical solution was evaluated by a program, DELAY2 (Neuman, 1989). In 

order to conform to the analytical solution, the well was treated as a line source. As suggested by 

Narasimhan (1985), the line source well was simulated by locating the nodal point of the volume 

element representing the well at 0.60653 rw' where rw is the radius of the innermost node. A fac

tor 2 mesh, as shown in Figure 4 was used. Vertical flow was considered by discretization in the 

vertical direction. From bottom to top, the aquifer was discretized into seven 2 m-thick layers, 

two 1 m-thick layers, and one 2.14 m-thick layer. The 2.14 m thick uppermost layer was 

specified to have an effective specific storage coefficient of (Ss + S/2.14) in accordance with 

(14). The pumping rate was chosen such that the water table will not fall below this layer. Other 

layers of the aquifer were specified a constant specific storage coefficient of Ss. 

Results obtained with the numerical simulator TRUST are compared with those from 

DELA Y2 for point drawdowns at Zo = 0 and Zo = 0.855 (Figure 5a) and for mathematically aver

aged drawdowns of Neuman (Figure 5b). Note that at large times the effective storage coefficient 

is merely the sum of elastic storage coefficient (S) and specific yield (Sy)' and all drawdowns fall 

on the Theis-Wenzel curve associated with (S + Sy)' Good agreement between numerical and 

analytical results for both point solutions and mathematical average drawdowns verifies the inter

nal consistency of the TRUST code. 
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4.0 APPLICABILITY OF MODELS 

4.1 The Goal 

The unconfined aquifer hydraulics topic has been discussed in detail by Neuman (1979) and 

Gambolati (1976). The purpose of this study is to provide some additional insights by starting 

with the existing analytic solutions and going a little beyond, using a general purpose numerical 

model. Specifically, we address the following issues which are relevant to evaluating the applica

bility of the models of Boulton and Neuman: 

• How limiting is the line-source assumption? How much will the early time and inter
mediate time behaviors be masked by well-bore storage effects? 

• Are delayed drainage and vertical flow mutually exclusive? If they can occur simul
taneously, how will they influence pressure transient response? 

• What rationale should one use in vertically averaging drawdowns in an unconfined 
aquifer? 

• Because of the combined effects of well-bore storage and radial distance, how will the 
duration of the intennediate time behavior be abridged? 

• How sensitive is the unconfined aquifer pressure transient behavior to the magnitude of 
specific yield? 

4.2 The Boulton Model 

4.2.1 Well-bore Storage Effect 

The results of numerical simulations including well-bore storage effect in the Boulton 

model are presented in Figures 6a and 6b. Figure 6a pertains to observations at the well-bore (rw 

= 0.128 m) and Figure 6b pertains to a location somewhat further away at r = 0.2 m. The results 

clearly demonstrate that the well-bore storage effect on drawdowns close to the well is strong. 

Note that for an unconfined aquifer the well-bore storage parameter changes with time. The ini

tial value of well-bore storage constant is ~ = (2 Ss br1 and the final value Cf = [2 (Ss b + Sy)r1
. 

In this case Ci = 5000 and Cf = 5. 

In general, the drawdown versus time curve at early times will be dictated by the well-bore 

storage effect, while at later times the curve will converge to the Theis-Wenzel solution. Figures 

6a and 6b show that, in the presence of well-bore storage effect, the Boulton solution developed 

for the intennediate range of times is so severely masked that it is of little practical use. 
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4.2.2 Delayed Yield in Conjunction with Vertical Flow 

Although Boulton used the delayed yield concept and Neuman considered vertical flow 

components, it stands to reason that these two processes are not mutually exclusive and that they 

occur simultaneously in an unconfined aquifer. We therefore conduct a numerical experiment in 

which these two effects are combined. 

The combination of the Boulton delayed yield constant and vertical flow was realized by 

using a two-dimensional mesh (Figure 4). The following input parameters were used: a = 10-3,13 
= 1.56 X 10-4, and a = 10-4. The results, with and without the effect of vertical flow, are shown 

compared in Figure 7. 

It is seen that the vertical flow components increase drawdown noticeably during intermedi

ate times. For the particular set of parameters considered, consideration of vertical flow leads to 

larger drawdowns than those obtained with Boulton solution for tD > 102. Also, while the Boul

ton model suggests that the Theis-Wenzel solution can be used for tD ~ lOS, Figure 7 indicates 

that consideration of vertical flow delays it significantly. 

4.3 The Neuman Model 

In investigating the applicability of the Neuman idealization, we look into the effects of 

averaging process, the influence of radial distance on vertical flow components, effect of well

bore storage, and effect of decreasing saturated thickness. Sensitivity of solutions to the value of 

specific yield is also studied. 

4.3.1 Effect of Well-bore Storage on Pumping Well Drawdown 

The well-bore storage effect on drawdown observed in the pumping well is illustrated in 

Figures Sa and Sb for two values of a: a = 10-1 and a = 10-4. The well radius is chosen to be 

12.S em, a value reasonably typical of water wells and oil wells. 

At early times the drawdown curve for the well is characterized by a unit slope and deviates 

significantly from the Theis curve. At intermediate times the well drawdown curve approaches, 

but never coincides with the early Theis curve because of time-dependent storage coefficient. 

The curve converges to the Theis-Wenzel solution after the delayed yield ceases to influence the 

drawdowns and the unconfined aquifer behaves effectively like an aquifer with constant stora

tivity. Comparison of Figures Sa and Sb indicates that this meeting point is delayed when a is 
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decreased. That is, the smaller the specific storage, the longer the time over which the 

discrepancy between the well-bore storage solution and the line-source solution is noticeable. 

The effect of well-bore storage in unconfined aquifer response has generally been neglected 

in the groundwater literature. Our study suggests that this effect cannot be ignored in dealing 

with unconfined aquifers because it could significantly mask a large part of the intermediate time 

behavior predicted by the analytical solution, for example, up to to. w = 103 for (J = 10-1 and up to 

to. w = 5 x lOS for (J = 10--4. In a recent paper, Ramey et al. (1989) have stressed the importance of 

well-bore storage effects on unconfined aquifer flow (gravity-drained systems) based on data 

from petroleum reservoirs. 

4.3.2 Effects of Averaging Procedure 

The physically averaged and the mathematically averaged drawdowns defined in section 2.4 

are contrasted in Figure 9a for the case of (J = 10-1 and in Figure 9b for (J = 10-4. In both cases 

the well radius is arbitrarily set to be 10 mm to reasonably approximate a line source, the original 

saturated thickness is 15.651 m, the hydraulic conductivity is 3.6 x 10-4 mIs, the specific yield is 

0.23, and the pumping rate is 1.5 x 10-3 m3/s. The drawdowns at r = O.lb (J3 = 0.01) are 

presented. In Figure 9a the initial well-bore storage constant Ci is 21.7 and the final value Cf is 

1.98, and in Figure 9b Ci = 2.17 X 104 and Cf = 2.17. 

It is seen that the curve for the physically averaged case is markedly different from that for 

the mathematically averaged case. At early times the physically averaged drawdown deviates 

from the Theis solution associated with Ss' while at late times it converges to the Theis-Wenzel 

curve associated with (S + Sy). Comparing the numerical with the analytical results of physically 

averaged as well as mathematically averaged drawdowns, Figure 9a shows that when Ci is small 

(21.7) the well-bore effect is negligible, and that the numerical results agree very well with the 

analytical results. However, when ~ is increased to 2.17 x 104 in Figure 9b, the well-bore effect 

on the numerical results of mathematically averaged drawdown at early times becomes very 

strong, whereas the physically averaged drawdowns (at later times) are not affected. 

The remarkable difference between the mathematically averaged and the physically aver

aged drawdowns as displayed in Figures 9a and 9b raises an interesting question: Which averag

ing procedure will provide drawdowns agreeing with the drawdowns "seen" by an observation 

well? We suspect that the use of mathematical average is an arbitrary choice, perhaps motivated 

merely by computational simplicity. It seems that some justifiable logic is needed to choose 
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between different averaging procedures. 

4.3.3 The Role of Time-Dependent Saturated Thickness 

As pumping continues and the water table declines, the saturated thickness of the aquifer 

will diminish with time. In his analytical approach, Neuman (1972; 1974) ignored the effects 

arising due to the time dependence of saturated thickness. 

We investigated the reasonableness of this assumption by taking into account the change in 

the saturated thickness and the associated change in the conductances between elemental 

volumes. It is to be expected that this effect on drawdown will become more pronounced as 

drawdown increases in relation to the total saturated thickness due to increased pumping rate. For 

the same aquifer with CJ = 10-1, the drawdown of water level in the pumping well is plotted 

versus time in Figures lOa and lOb, respectively, for a pumping rate of 10-2 and 2.5 x 10-2 m3/s. 

It is seen that as the saturated thickness and the transmissivity decrease with increased 

pumping, the drawdown in the pumping well is increased. For the particular combination of 

parameters studied, when the pumping rate is 10-2 m3/s and the water table has only dropped by 

some 15% of the initial saturated thickness, the numerically evaluated drawdown does not devi

ate considerably from the analytical solution (Figure lOa). However, for the same well and the 

same aquifer, when the pumping rate is 2.5 times higher and the water table has dropped by 30% 

b, the effect becomes much stronger after tD;$> 1& and the discrepancy between the analytical 

and numerical results has increased to as much as 16%. 

4.3.4 Effect of Radial Distance on Point Drawdowns 

We have already seen that well-bore storage effects mask early time and intermediate time 

responses. Now since all solutions converge on to the Theis-Wenzel curve, it is clear that under 

field conditions in which strong well-bore storage effects will be the rule rather than an exception, 

the distinctive signatures in pressure transient response stemming from Neuman's solution will 

be limited to a restricted band or window in the time domain. We now proceed to gain some 

insights into the size of this time band. 

Shown in Figures lla, lIb and llc are the drawdown-time plots for three radial distances: 

(3 = 0.01, 0.16, and 0.64 (r = 0.03 b, 0.4 b, and 0.8 b). In each figure, well-bore solutions with 

change in saturated thickness taken into account are contrasted against line-source solutions 

based on the Neuman assumptions for two vertical locations: zD = 0 and 0.799. The following 
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parameters are used: 0' = 10-4, Sy = 0.23, Ss ",; 1.47 x 10-6 m-I, b = 15.651 m, K = 3.6 X 10-4 rn/s 

and Cr = 2.17. For the particular combination of parameters, it is found that the "time-window" 

extending from the time the well-bore storage solution joins the Neuman solution to the time at 

which the Neuman solution merges with the Theis-Wenzel solution, varies from about 1.8 log 

cycles forr = O.lb (/3 = 0.01) to 2Alog cycles for r= 0.8b (/3 = 0.64). 

4.35 Sensitivity to Specific Yield 

We now examine the effect of the magnitude of specific yield on the Neuman solution. In 

order to study the sensitivity of drawdown to the value of specific yield, for the same set of 

parameters we decreased the specific yield by a factor of 2 in one additional run. We also 

decreased the specific storage coefficient by the same factor so that 0' remains constant. The 

resultant drawdown-time plot is presented in Figure ltd for radial distance r = OAb (/3 = 0.16). 

Compared to Figure lIb it is seen that Neuman's line-source solution is not changed (because 0' 

is constant). whereas the well-bore solution is changed. This is because in the numerical solution 

the (final) well-bore storage constant is directly related to the specific yield as Cc = [2(Sy + S)r1 = 

[2Sil + O')rl. When the specific yield is decreased by a factor of 2 (Figure lId), the final well

bore storage constant is increased by a factor of2 to 4.34. the well-bore effect lasts longer than in 

Figure lIb. as also the time after which the Theis-Wenzel solution is valid. Thus, Figures lIb 

and lId clearly show that as the specific yield decreases, well-bore storage effect lasts longer and 

the Neuman solution is useful for analysis only over about 1.1 log cycles of time as opposed to 

2.0 log cycles for Sy = 0.23. Stated differently, it is clear from Figures Ila through lId that in 

the presence of well-bore storage the Neuman solution is of practical interest only over a finite 

"window" in the time domain. Table 2 summarizes the size of these windows for Figures Ila 

through lId. The width of this window noticeably decreases with decreasing the specific yield. 
\ 

4.4 Comparison of the Boulton Model and the Neuman Model 

The numerical results for the Boulton problem are shown compared with those of Neuman's 

mathematically averaged drawdowns for /3 = 0.01 and 2.56 in Figures 12a and 12b, respectively. 

Figure 12a shows the results for a = 10-4 and 10-6 (corresponding to rIB = I and 0.1), and Figure 

12b shows for a = 10-4 and 10-6 (rIB = 16 and 1.6). 0' is 0.001 in both figures. 

It is seen that Neuman's curve falls in an envelope bounded by Boulton's solution for a 

range of a values, which suggests that Neuman's solution can be matched to a particular case of 
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Table 2. Size of window in the time domain over which 
the Neuman solution is valid (0" = 10-4). 

Sy f3 L\tn (log cycles) 

0.23 0.01 1.8 

0.23 0.16 2.0 

0.23 0.64 2.4 

0.115 0.16 1.1 

Boulton's solutions. Indeed, Gambolati (1976) pointed out that the two analytical solutions can 

be reconciled by defining a as a function dependent in some complex way on r, b, KJKz, Sy, and 

t. However, it is necessary to recognize that making such direct comparison of the two solutions 

is merely a mathematical exercise lacking physical significance since one model is established by 

assuming instantaneous drainage and the other assuming delayed yield, which are treated as 

mutually exclusive. Furthermore, Figure 12a also indicates that at a given location (rib = con

stant), in order to let the Neuman solution agree with the Boulton solution, Kn = KJKr can be 

adjusted in the Neuman solution so that the required value of f3 = Kn(rlb)2 can be obtained. In 

other words, vertical anisotropy is a mathematical parameter available for adjustment in the Neu

man model, whether anisotropy physically exists or not. 

5.0 DISCUSSION 

Both Boulton and Neuman consider the zone through which the water table moves as the 

source of drained water. They however differ on the mechanism by which the drained water finds 

its way to the saturated zone. In this paper we address two issues related to the models of Boul

ton and Neuman: their practical utility and their physical realism. 

In practice, both models are capable of imitating the intermediate time behavior of draw

down data from unconfined aquifer tests but with the help of very different model parameters. In 

this sense, the advantage of the Neuman model over the Boulton model is that the former can 

account for effects of partial penetration as a well as anisotropy. 
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A serious limitation that is common to both models stems from the assumption of neglect

ing well-bore storage effects. Open wells with a fluctuating water level, which are typical of 

wells in unconfined aquifers, contribute to large well-bore storage effects on pressure transients. 

Simulations carried out as part of the present study involving parameters reasonably typical of 

unconfined aquifers suggest that all of the early-time effects and a significant porti~n of the inter

mediate time signatures of Boulton' solution and Neuman's solutions will be masked by well

bore storage effects. Specifically, it appears that when specific yield is large, the Neuman signa

tures may be discernible only over about 2 log cycles of time for relatively large values of 

specific yield. When specific yield is smaller, this time window may shrink to one log cycle of 

time or less. We also found well-bore storage effects to be important for partially penetrating 

wells. 

In order to simplify the mathematical solution, it is common practice to average drawdowns 

or potentials in the vertical direction. In heterogeneous media under transient conditions the task 

of averaging drawdowns or potentials must go hand in hand with the purpose for which the 

averaging is desired. The way Neuman has formulated the problem, the capacitance of the 

aquifer (Le.,' storativity) is a function of elevation. At the upper surface of the aquifer storativity 

includes the effects of specific yield, whereas Sy is zero elsewhere. In this sense the aquifer is 

heterogeneous. Presumably, one would vertically average drawdown in aquifer under the 

assumption that an observation well fully penetrating the well will in fact respond with the 

defined predicted average. The manner in which Neuman averages drawdown vertically in the 

aquifer ignores vertical variations in storativity and hence is not mass-conserving. Numerical 

experiments with a mass-conserving averaging scheme suggest a very different drawdown pat

tern. It is suggested that averaging of potentials in a transient heterogeneous system requires 

much additional study. 

Granting the assumption that consideration of the zone through which the water table 

moves is adequate to account for the effects of the unsaturated zone, the issue of physical realism 

of either model is not well-assured. Delayed yield and vertical flow are not mutually exclusive 

processes. They could indeed exist concurrently. It seems likely that effects of delayed yield 

could be parametrized with the help of anisotropy and vice versa. Consequently, it is perhaps 

more relevant to consider how either model could be practically used to analyze field problems in 

a model-fining sense and to use such parameters to make predictions with the self-same model 

than to consider the relative merits of the physical processes. 
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NOTATION 

A base area, m2 

b initial saturated thickness of aquifer, m 

B = 1f/(aSy) 

C well-bore storage constant 

~ initial well-bore storage constant of unconfined aquifer 

Cf final well-bore storage constant of unconfined aquifer 

H saturated thickness 

k absolute permeability, m2 

K hydraulic conductivity, mls 

Ko = KJKr dimensionless hydraulic conductivity 

Kr radial hydraulic conductivity, m/s 

Kz vertical hydraulic conductivity, mls 

Me fluid mass capacity or capacitance, kg/m 

n porosity 

Q volumetric pumping rate, m3/s 

r radial distance from center of pumping well, m 

r location of radial nodal point, m 

s drawdown of hydraulic head, m 

So = 4xKbs/Q, dimensionless drawdown 

s average drawdown, m 

smath mathematically averaged drawdown, m 

Sphy physically averaged drawdown, m 

sO,math dimensionless mathematically averaged drawdown, m 

SO,phy dimensionless physically averaged drawdown, m 

S = Ssb, storage coefficient 

Sr residual saturation, dimensionless 

Ss specific (or elastic) storage, m-1 

Sy = n (1 - Sr)' specific yield 

t time, s 

tD = Kt/(Ss~)' dimensionless time with respect to S 

1y = Kt/((Sylb)~), dimensionless time with respect to Sy 

~ = Kt/((Ss + Sylb)~), dimensionless time with respect to S + Sy 

T = K b, transmissivity or transmissibility, m2/s 
Uhn conductance of interface between I and m, kgJrn-s 

VI fluid volume of aquifer subregion 1, m3 

z vertical distance from bottom of aquifer, m . 
Zo = z/b, dimensionless vertical distance 

0: reciprocal of Boulton's delay index, S-1 

~ =Ko~1b2 
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'II pressure head, m 

p density of water, kg/m3 

0' = SISy 
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Fig. 10a. Neuman problem: Effects of decreasing saturated thickness. 
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Fig. 10b. Neuman problem: Effects of decreasing saturated thickness. 
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Fig. 110. Neuman problem: Effect of radial distance on point drawdown. 
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Fig. 11b. Neuman problem: Effect of radial distance on point drawdown. 
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Fig. 11c. Neuman problem: Effect of radial distance on point drawdown. 
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