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Electromagnetic instability of the ion-focused regime 

David H. Whittum(a) 

Lawrence Berkeley Laboratory, 

University of California, Berkeley, California 94720 

(Received ) 

A relativistic electron beam propagating through a wide plasma 

channel in the ion-focused regime exhibits an electromagnetic 

instability coupled to the "betatron" motion, with peak growth rate 

near a resonant angular frequency m-2 r2 mp, where r is the Lorentz 

factor for the beam, and m p is the angular frequency of transverse 

oscillations. An eikonal formalism is derived and applied to compute 

the dispersion relation and to follow instability growth through 

saturation. The effect of detuning spread on gain IS examined. 

Analytic scaling laws are compared to the results of numerical 

simulation for a practical example corresponding to a high-gain 

microwave amplifier. Constraints due to competing instabilities and 

scattering are noted and the extension to short wavelengths is 

discussed. 

PACS: 42.55.Tb, 52.40Mj, 41.80Ee. 



I. INTRODUCTION 

The "ion-focused" regime! (IFR) of transport for relativistic 

electrons beams in plasmas has been described in detail by 

Buchanan,2 as the limit in which an intense beam, propagating 

through a radially finite plasma channel, less dense than the beam 

core ("underdense"), expels all free plasma electrons to large radii. 

For typical applications of the IFR,3,4 the plasma channel is 

intentionally made na rrow, with a width of order the equilibrium 

beam radius so that focussing of beam electrons is nonlinear and 

instabilities which routinely arise in transport may be damped. In 

this work the opposite limit is considered, where the plasma channel 

is wide, and focussing IS approximately linear. It will be shown that 

under certain conditions, an electromagnetic instability results, so 

that a wave propagating with the beam and resonant with the 

transverse betatron motion may be amplified. 

This instability has been proposed as the basis for a novel 

II free-elec tron II laser,5 ,6,7 and in this work issues alluded to 

previously will be considered in detail. In Sec. II, an eikonal 

formalism IS derived describing instability growth through 

saturation. The dispersion relation is calculated. In Sec. III, the cold­

beam dispersion relation IS studied, and finite temperature 

("detuning spread") effects are assessed. In Sec. IV the scaling laws 

of Sec. III are compared to the results of numerical simulation for a 

practical numerical example, corresponding to a high-gain microwave 

amplifier. Deleterious plasma effects are noted. In Sec. V conclusions 

are offered and some problems for future work are discussed. 
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II. EIKONAL FORMALISM 

A. Approximations 

In a typical ion-focusing experiment,' the beamline is backfilled 

with a working gas such as benzene or diethlyaniline and a plasma 

channel is created along the center of the beamline by an excimer 

laser pulse.8 We consider propagation of a relativistic electron beam 

through such a channel in the limit np<nb, where nb is beam density, 

n p is the plasma electron density. It is assumed that the laser­

produced charge per unit length is less than that of the beam, so that 

all free plasma electrons are expelled to the beam-pipe, by the beam 

head as it propagates down the beamline, in the axial (+ z) direction, 

as depicted in Fig. 1. The very massive ions are left fixed and focus 

the remainder of the beam. It is assumed that the beam pulse length 

T is short compared to the time for ions to neutralize the beam, i.e., 

miT«1 where mi is the ion-plasma frequency, m,-2=4nnpe2Imj, with mj 

the ion mass and e the ion charge. In addition, the more rapid "slosh" 

motion of ions near the beam will be neglected. This motion occurs 

on a time scale 2 nlms, where ms2=4 nnbe2lmi. It is also assumed that 

self-fields perturb beam electron motion negligibly and this imposes 

the Budker condition! on the plasma density, np> > nbly2, where y is 

the Lorentz factor for the beam. 

With these approximations, the transverse motion of a beam 

electron is governed by the Hamiltonian, 

2 2 

H P JC P Y 1 k 2 (2 2) J.=-2--+ 2 +4 p x +y p z pz (1) 
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corresponding to a relativistic, 2-D, simple harmonic oscillator. Here x 

and yare the transverse coordinates, with p x,· and p y the 

corresponding momenta. We adopt the convention that momenta are 

normalized by me and energies by me2 , where e is the speed of light, 

and m is the electron mass. The axial momentum is p z and is a 

constant of the motion. The quantity kp = mp/ e, with mp the plasma 

frequency, mp2=4niZpe2/m. Beam electrons oscillate transversely at 

the "betatron frequency" mp",mp/(2pz)112. 

B. Perturbed Particle Equations 

Next consider the effect of an externally supplied 

electromagnetic wave, linearly polarized in the y-direction, 

propagating with the beam as depicted in Fig. 2. The vector potential 

may be expressed in terms of dimensionless amplitude and phase, A 

and qJ, as 

me2 
• AY=-e-Asln(,), 

,= k z Z - mt + qJ. 

(2) 

(3) 

The angular frequency is m and the axial wavenumber is k z• The 

eikonal Aexp(i qJ) is assumed to vary slowly in t on the m-1 scale, and 

in z on the kz -1 scale, and to vary negligibly transversely within the 

beam. 

The single-particle Hamiltonian IS, 
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2 2 
1 Px Py 1 2( 2 2) Py • H=p +--+-+-',,-+-k X +y +-Aszn(C) 

, % 2 P% 2 P% 2 P% 4 P P% 
(4) 

where A «1 is assumed. The quantities p x, py, and p z are the 

canonical momenta in x, y, and z, respectively, 

p x = rf3x ' (5) 
e 

P y = rf3y - --2 A y , 
(6) me 

e 
P % = rf3, - --2 A I , 

(7) me 

r= {I - ~ - p; - jf,} 
-11 2 

(8) 

and p z> > p x,' Py, is assumed. The particle velocity components 

normalized by e are f3x, f3y, and f3z. The axial vector potential Az arises 

'from the axial beam current, and results in a fractional correction to 

p z of order vip z«I, where v=I110 is Budker's parameter, 1 with 

lo=me 3Ie-17kA, and I the beam current. This small term will be 

neglected for now and discussed further in Sec. III in connection 

with "detuning spread". 

The equations of motion derived from the Hamiltonian of Eq. 

(4) describe an electron drifting in z, subject to an axial "VxB" force 

as it oscillates in the potential well 

2 2 
dz =l __ l __ ~_~_ Py Asin(l') 
d-c 2 2 2 2 2 2 2 \:" P, P, P, pz 

(9) 

dpz Py 
~ = - k z -p; A eos( C) , ( 10) 
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where the normalized time coordinate -r=ct. The y-motion consists of 

an oscillation in the ion channel potential, subject to the Lorentz force 

due to the signal field, 

(11 ) 

(12) 

and coupled to the z motion via pz and A. The x-motion is a free 

oscillation in the potential well, which is however coupled to the axial 

motion via pz due to the relativistic mass effect, 

dx 
d-r 

Px =-, p, (13) 

(14 ) 

In Eqs. (9)-(14), derivatives of the slowly varying eikonal quantities, 

and their transverse gradients, have been neglected. 

The particle motion simplifies with an average over the rapid 

betatron motion. For this purpose, the transverse momenta may be 

expressed in terms of eikonal variables qx, qy, Oy, and Oy, such that 

p x = q x s i n( Ox) , 

Py = qy sine Oy), 

(15) 

(16) 

For A=O, qx and qy are constants and dOx,yld-r=kfJ=mfJlc. With 

averagmg, Eqs. (9) and (10) become 

6 
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- 2 2 dz 1 q]C qy 1 qy 
- = 1 - ----- - --+ ---Acos( ljI) • 
d~ 2 q~ 4 q~ 4 q ~ 2 q ~ 

(17) 

d q% 1 k q Y A . ( ) 
d~ =-y zeT, Sln ljI • ( 18) 

where the bar indicates the average over the betatron period. In 

deriving Eqs. (17) and (18) we neglected axial oscillations in z at 

frequency 2 OJp, which occur as an electron climbs or descends the 

ion-channel potential. Neglect of this "jitter" is appropriate In the 

limit q x. qy«1. In addition, it is assumed that the phase of the 

transverse motion measured with respect to the phase of the 

radiation field and averaged over the betatron period, 

(19) 

is slowly varying on the scalekp-l. This condition requires that the 

"detuning" parameter 

- OJ 
Q = k % f3z - c + k f3 , (20) 

be small compared to kp. The quantity 

_ 2 + q~ + q~ 1 + P z HJ. 
f3z=1- 4p~ =1- 2p~ 

(21 ) 

is the normalized drift velocity in z, at zeroth order, averaged over 

the betatron period. Note that detuning depends only on pz and H.1, 
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not qx or qy individually. For example, a step radial profile and a 

monoenergetic beam, corresponds to a delta function distribution in 

H.L and Pz, and there is no spread in n. 
To average Eqs. (11)-(14) we differentiate, eliminating x and y, 

At first order in A, these equations, expressed in 

eikonal variables, reduce to 

(22) 

(23) 

terms of 

(24) 

(25) 

(26) 

(27) 

and formally qy>O(A) is assumed in Eq. (26). This approximation is 

valid even in the limit q y-7 0, since all terms varying as 1/ q yare 

eventually multiplied by qy, i.e., qyexp(i By), is always well-defined, 

even if the phase is varying rapidly. The formal divergence at qy-70 

simply shows that an initially small transverse oscillation adjusts 

rapidly to a phase determined by the wave, independent of qy( 0) 

8 
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and Oy(D). In these equations the terms involving dkpld1: contribute 

at higher order in q x' qy and may be neglected. 

Combining these results and eliminating z in favor of VI, the 

equations of motion take a form reminiscent of that found by Kroll, 

et al., for the free-electron laser (FEL),9 

(28) 

(29) 

(30) 

(31 ) 

Note that the formal singularity in Eq. (29) may be removed by 

replacing the variables Oy and qy with the complex variable, 

X= qy exp(- iX) (32) 

where X=1jf-<P. 

Equations (28)-(31) show that 1jf determines the sign and 

magnitude of all the perturbative effects of the field. From Eq. (28) it 

is evident that the evolution of VI is dominated by variations in pz 
and Oy, which are in turn determined by the variations in p z and qy. 

For a fast-wave (m-ck z) Eq. (30) describes the slowing of particles 

wi th 1jf>0 and the acceleration of particles with 1jf<0, due to the z­

component of the Lorentz force, i.e., the ponderomotive force. The 

9 



first term on the right in Eq. (31), as well as the first-order term in 

Eq. (29), are due to the y-component of the Lorentz force. These 

terms arise from the resonant perturbation of the transverse motion. 

In an FEL this effect is small; here, it will be non-negligible. 

To gain further insight into Eqs. (28)-(31), consider the motion 

of a "test" particle. Combining Eqs. (28) and (29) yields 

dVl dcp 
-=-+ [1- ITAcos( VI), 
d-r d-r 

where the parameter IT is 

(33 ) 

(34) 

and arises from the qy variation of Eq. (29). Equation (33) shows that 

particles with small qy can be significantly detuned from resonance. 

This is because the phase of a driven harmonic oscillator varies 

rapidly when its initial amplitude is small. 

Examining Eq. (33) it is tempting to think of .a >0 as 

corresponding to a particle with energy above resonance, as in an 

FEL. However, from Eq. (20), [1 depends on both /Jz, (which increases 

with p z) and k p, which decreases with p z. Thus higher energy 

particles drift faster in z, but they oscillate more slowly. Depending 

on the wave phase velocity, more energetic particles may actually be 

below resonance. 

To make this more preCIse, we differentiate Eq. (33) and 

subsititute from Eqs. (28)-(32), to obtain, 

10 
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2 
d ljI { _ dljl }. d A 
-- ::< - .:::. - [J- A s zn( ljI) - [J- cos ( ljI) 
d-r2 d-r d-r, (35) 

where the bunching parameter 3 is 

(36) 

This parameter describes the dependence of de tuning on energy, and 

includes a negative (antibunching) term due to the relativistic mass 

effect, and the y-component of the Lorentz force. In the slow-wave 

limit (kzc < m), the relativistic mass effect and transverse damping 

. dominate bunching, which occurs In the opposite sense as for axial 

bunching. An analogous transition in bunching was examined by Chu 

and Hirshfield 1 0 for the cyclotron maser instability. Here, the 

transition (3=0) occurs for k z-kppz2, which corresponds to a group 

velocity close to c/Jz. Thus 3 varies from a value which is appreciable 

(for m=kzc, 3 _kp2qy), to zero over a small range of phase velocity 

1 <{3rp<l +1/2pi, where {3rp=m/ckz. 

The effect of the 3-term is clarified by considering motion in a 

constant eikonal, for which Eq. (35) simplifies to 

(37) 

and /5/»[Jdljl/dt is assumed, corresponding to an appreciable value of 

qy. Thus ljI oscillates as in a nonlinear pendulum with stable point ljI- 0 

1 1 



(VI-1t) for 8>0 (8<0). In a growing eikonal Eq. (37) describes bunching 

about the stable point, corresponding to the growth of a beam 

centroid oscillation coherent with the signal. 

Further insight into Eqs. (28)-(31) is gained by considering the 

constants of the motion, 

(38) 

(39) 

(40) 

Here J x and J yare the invariant actions of the unperturbed motion. 

Equation (39) defines a modified action for the y-motion, and shows 

that a loss of energy l1H is accompanied by a loss of action in amount 

l1H / ro. This result is consistent with Liouville's theorem, gIVen the 

coupling to the z-motion, and can be adduced to demonstrate the 

stability of a beam with negligible transverse energy. The quantity 

cI>z of Eq. (40) IS constant since energy l1H deposited in the fields will 

correspond to a field momentum l1pz=(k zc/ro)l1H, and this axial 

impulse must be taken up by the particles, in the absence of external 

axial forces. 

These invariants are helpful in understanding the bunching 

parameter, 8. A loss of axial momentum is compensated in part by a 

loss of transverse energy, due to the relativistic mass effect and the 

resonant damping of the transverse motion. When kz-k pp z2, these 

effects cancel and 8 vanishes; bunching is stationary with respect to 

variations in axial momentum, brought about by interaction with the 

12 
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eikonal. With three integrals of the motion in hand, one may in 

principle describe the particle motion with just two equations, for pz 

and VI, analogous to those for the FEL. 

c. Maxwell's equations 

Having examined the single-particle motion,. consider next the 

feedback from an ensemble of such particles, through .the field 

equations. Maxwell's equations are 

(41 ) 

where Ay is the vector potential In the Lorentz gauge, J y is the 

transverse beam current density, and ~ is the Laplacian In the 

transverse plane. The high-frequency scalar and axial vector 

potentials (" space-charge effects") have been neglected. The radial 

mode is assumed to be specified, corresponding to a transverse 

wavenumber k.L, satisfying k.La«l, where a is the beam radius. We 

define the mode area, ~ 

~-l = 
IAy{ r= 0 )1

2 

Jdxdyl Ayl2 
(42) 

the overlap integral 1] = rca 2 / ~, and W IS assumed to satisfy the 

dispersion relation, 

(43) 

13 



Expressing Ay in terms of the eikonal quantities A and <p, from 

Eqs. (2) and (3), and neglecting second derivatives, and products of 

derivatives, of A and <p, Eq. (41) reduces to 

where the effective beam plasma frequency IS given by 

2 4 7r e
2 

( I ) 
mbe!!= ~ T 

o , (45) 

and X=lJI-<p. In this expressIOn, an average has been performed over 

the period 2 rei m and over all electrons at Z ,t, as indicated by the 

brackets. Following essentially the treatment of Bonifacio, et al., for 

the FEL,ll we will neglect "slippage", assuming that the eikonal group 

velocity is close to the average beam axial velocity V. In terms of the 

-r-derivative at fixed s= Vt-z, Eq. (45) then reduces to, 

aA _ m~eff ( q y • ( ) \ 

a-r - 2 me P z S l n lJI I' 
a<p =_ v+L ~eff / qy eos( lJI}) 
a-r A2mc\Pz 

where 

2 

V = m beff 1_1_) 
2em\Pz , 

(46) 

(47) , 

(48) 

14 
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represents the shift in frequency due to the non-resonant portion of 

the beam susceptibility. Equations (46), (47) and (28),-(32) are the 

basic equations describing the "ion-channel laser" instability. 

Note that the power associated with a drifting beam slice and 

the comoving eikonal wave front 

(49) 

is constant in 'r. Here Po=m2c5Ie2-8.7 GW. 

D. Dispersion relation 

To examine linear amplification~ we may rewrite Eqs. (46) and 

(47) in terms of the complex eikonal B=Ae irp , 

( a. '0 m~eff (!!L ( .) ) d-r + IV? = I 2 me P z exp - 'X . (50) 

Expanding x= Xo+ Xl and qy=qyO+qyl In zeroth and first order terms 

glves 

(51 ) 

(In principle, there is also a perturbed p z term, but it contributes at 

higher order in qi.) The perturbed phase is determined from Eqs. 

(28)-(32), or equivalently, Eq. (35), 

15 
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d Xl {_ (dXo dCP)} . dA 
d-r2 = - .::. - II d-r + d-r A sln( Xo t cp) - II d-r cos( Xo + cp) 

(52) 

Writing X1=Im( Z) , we have 

(53) 

We look for a solution B(t)ocexp( r-r), and integrate Eq. (53) to obtain 

X:::: - .... + Be 0 { ::;" "II} iZ 

1 ( r + if2) 2 ( r + if2) (54) 

neglecting small constants of integration. 

The qyl term in Eq. (51) is obtained by linearizing Eq. (31), 

dq 1 1 
_'Y_::::::_ -k A sin( X + cp) 

d-r 2 p 0 (55) 

which is integrated to gIve 

{ 
q'Y 0 II iZo} 

q'Y 1 :::: -.g (r + if2) Be 
, 

(56) 

neglecting small constants of integraton. .. 
Combining Eqs. (51), (54) and (56) results In the dispersion 

relation 

1 6 



or (q { -r . . -be" Y .=, + I V = I -.:::.::J.L. - 2 
4 we P z (r + in) 

+ 2 ill }) 
(r+ in) ,. (57) 

III. ANALYSIS OF THE DISPERS~ON RELATION 

A. "Cold" Beam (uniform detuning) 

The simplest limit of Eq. (57) corresponds to a detuning n 
which is the same for each particle. In this case, the resonant 

denominators may be removed from the average. Defining a 

dimensionless parameter ,. and detuning 8, 

,= (ir - n) / k p , 

8 = ( n- v) / kp . -

the dispersion relation takes the form 

( + 8[ - tl ,- 8 p3 = 0 . 

The gam parameter p is given by 

3 W~eff ( q Y _) ( 11/ - ) 3 
P = 3 p'=' = 32 P / 6( {3I(UP z) 

3 2 wk p e Z Z 0 . 

where the function 6=1 for a fast-wave, and for {3rpi: 1 ; 

17 
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(59) 

(60) 

(61 ) 



{ 
1 - 2 p: ( /3", - 1) 1 } 

t9( /3""p ,) == 1 + 2 p ~ ( /39- 1) /39 

II] 

(62) 

. taking /3 z,...1 -1 12 P z2, and neglecting .Q. This variation of the gain 

parameter with wave phase velocity may be understood from the 

discussion of Eq. (36). For definiteness we will assume p>O; from the 

symmetry of Eq. (60) this entails no loss of generality. 

The constant J1 is given by 

J12 = m:e~ ( II q y ) == 8 p: ( 6 3 ) 
2 mk c p, a p - p , 

and the last equality holds in the fast-wave limit. The dimensionless 

parameter a p is given by 

a ~ = (q ~ ) = (p, H J.) , (64) 

and plays a role simliar to that of the "wiggler parameter" in an PEL. 

Note that the assumption qx,qy«l, requires ap2«1. In evaluating the 

averages in Eqs. (61), (63) and (64) we have assumed a step radial 

profile, for which ap=p zkpaI21!2. 

Considerable insight is gained by comparison of Eq. (60) with 

the FEL dispersion relation in the limit of small "wiggler" parameter, 

with a uniform distribution in detuning. 12 In fact, it is not hard to 

show that the two dispersion relations are identical, if one identifies 

(1) kp with the FEL wiggler wavenumber, (2) p with the FEL Pierce 

18 
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parameter and (3) ±pkp with the FEL detuning spread. Thus a number 

of results from FEL theory may be taken over directly. 

In general, the solution for the eikonal is a superposition of 

three terms corresponding to the three roots ':1:, '0, of Eq. (60), at 

most one of which, ,+ results in amplification. The solution for the 

normalized growth rate Im( ,+) is depicted in Fig. 3. For illustration, 

consider the limit 8,p«p, in which Eq. (60) reduces to a simple cubic. 

In this "cubic gain regime" the signal is amplified with exponential 

gain length, Lg .... f3z1Re(r+), where Re(r)=kplm('+), so that 

A 113 

P (rIo) L g = 1 12 :::= 0 .3 Ap -I 
2n3 p 7J (65) 

with Ap .... 2 nf3z/ kp the betatron period. Depending on current, energy 

and the overlap factor, this gain length may be as short as a few 

betatron wavelengths. Efficiency may be estimated by taking Xl"" 0 (1 ), 

corresponding to the onset of non-linearity and particle trapping, 

This gives an efficiency of .... p, and and output power P sat .... pP beam, 

where P beam .... mc2(r-I)I is the initial beam power. A rough estimate of 

the length for saturation is Lsat .... O.5Lgln(9Psat/Pi)' where Pi is the 

input power. l3 

Generally, these p=8=O results are useful for simple estimates of 

instability growth. However, they represent the optimal performance. 

possible and the approximation p=O omits some important features. 

In particular, without special preparation a typical beam will have a 

spread in transverse energy, corresponding to a detuning spread of 

order k pa p2. If J1. is small, this detuning spread is large, and gain will 

19 



be reduced. Thus the finite J.L limit IS of intrinsic interest (moreso 

than for the FEL). 

In general, the instability is stabilized for a finite positive 

detuning, which for J.L=O is 0Ip-3.8. As J.Llp increases to J.Llp-2.8, this 

upper bound on 0 decreases to O. On the other hand, for any finite 

negative detuning, there is some range of J.L which yields growth. 

Conversely, for any J.L, there is some negative detuning which yields 

growth (provided /0/«1). Practically, for a given J.L, it is useful to have 

in hand the maximum growth rate, as depicted in Fig. 4(a), with the 

corresponding detuning in Fig. 4(b). 

It is also useful to have analytic formulas, for the limit /o/»J.L,p, 

with 0<0. In this limit, as for the FEL, the growing root is the solution 

of a quadratic ("quadratic gain regime"), 

Ii '0 ..,- 0 - 8' 
Jl ± .jr-J-2-p-3-0-+-J.L-4 

~.., 20 

(66) 

(67) 

and the threshold for gain In this limit is p3 0< - J.L 413 2. Far above 

threshold, Im( ,+) decreases slowly, as 11/0/112 , as seen in Fig. 3. From 

Eq. (67) the maximum growth rate occurs at 0--4p3 I ap4, and 

corresponds to ,+:::; 8 p3 ( - 1 + i) I J.L 2 • In the limit a p2 < <p, the peak 

. growth rate is Im( '+)-ap2 . 

To summarize, the detuning effect represented by the J.L term in 

Eq. (60) (or the II term in Eqs. (33) or (57» tends to reduce growth, 

even eliminating growth for some range of 0 and p. We have seen 

20 



that the competition between the bunching (8) and antibunching (II) 

terms depends on the ratio p/ a 132 • It also depends on detuning, since 

the ponderomotive force may be varied by tuning the beam off-

resonance. 

B. Effect of Detuning Spread 

Next consider the effect of a spread in n. We define the 

dimensionless center detuning 00= < n-v>/ kfJ' and introduce a new 

particle variable 01 =( Q- <Q»/ kfJ. In terms of "defined by ,,= <ir-n>/kfJ ' 

the dispersion relation takes the form 

(68) 

The effect of momentum spread may be modelled by taking particles 

to be uniformly distributed over some range of detuning -Os< 01 < Os. 

The dispersion relation then becomes, 

(69) 

It is straightforwaid to show that in the limit of large Os, the 

roots are real, corresponding to stabilization. In the limit of small Os, 

Eq. (69) takes the approximate form 

r + o( - ( Ii + 0: ) ,,- 8 p3 "" 0 (70) 

2 1 



and is formally identical to Eq. (60) provided we make the 

replacement J1 -7 /1= ( J12 + 0: /'2. Thus the discussion and 

conclusions for the cold beam case may be carried over directly. 

The resulting conditions for gain, expressed in terms of 8s may 

be related to practical constraints on the beam through the 

dependence of detuning on pz and H.1 as given by Eq. (21). In the 

fast-wave limit this gives 8s .... 1.5pslpz for a momentum spread of ±ps. 

For a spread In transverse energy ±hs, 8s .... p zhs. In principle there are 

four sources of detuning spread in the IFR. The first is detuning 

spread due to a spread in beam energy. In addition, from Eq. (7), 

there is a momentum spread of order Pslpz .... (JJvlpz. While for typical 

beam profiles, there is a spread in H.1, hs .... (J2ap'2IPz. Moreover, due to 

beam self-fields there is a spread in kp corresponding to a detuning 

spread, 8s .... (J3 vlpza p2. The dimensionless quantities 0';<1 are factors 

depending on the beam profile. For a step profile, (J;=O. For estimates 

we will take (Ji .... 0.5. 

C. Discussion 

Having exploited the similarities with the FEL it is important to 

note a significant dille re nee. Bunching in the phase 'II does not 

correspond to a simple axial resolution of the beam into a stream of 

charge bunches separated by a signal wavelength, as in an FEL. 

Instead the centroid oscillations of a beam slice become coherent, as 

discussed in connection with Eq. (37). To check this, one may simply 

calculate the average y-momentum in a beam slice from the 

linearized equations of motion. In the small J1 limit, for z»Lg, this is, 
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() 
1 a p • k 2 n 

P :::::: - --A s w( z - rot + ff) + -) 
y 24 / % "t' 3 (71 ) 

Thus amplification of the eikonal proceeds by feedback in the form 

of growing beam centroid oscillations. This feature has motivated 

analogies with the cyclotron auto-resonant f!1aser. 6 

Further insight into the mechanism of amplification is revealed 

by examining the ponderomotive force. In the fast-wave limit and 

expressed in terms of 'r=Re( ,+) and 'i=Im( ,+), this takes the form 

(72) 

Thus for a beam with negligible transverse energy (ap2~0), dH/d-r 

and 'i are of the same sign. Energy conservation then implies that 

growth vanishes ('i~ 0) in this limit, confirming that an ensemble of 

simple harmonic oscillators with negligible transverse energy is 

stable against electromagnetic perturbations. This also shows that 

that when p>O (i. e., when electrons bunch about '1'-0), gain requires 

-kp'r-d qJ/ d-r+ £2>0. 14 This can also be understood from Eq. (33), and 

occurs because particles are being continually detuned from 

resonance by the transverse Lorentz force, with a sign depending on 

the wave phase velocity . 

Said differently, the driven transverse velocity In an eikonal of 

constant amplitude is ninety degrees out of phase with the electric 

field, as reflected in the factor of i multiplying IT in Eq. (57). Thus no 
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net work is performed on the fields, on average. On the other hand, 

when the eikonal is growing, the driven motion absorbs energy from 

the wave, while the "free" oscillation does work on the fields, 

mediated by axial bunching. If there is no free oscillation (a p2 -70), 

the system is stable. 

IV. EXAMPLE 

To test the analytic results of Sec. PI, we consider a specific 

example with parameters as given in Table I, corresponding to a 

microwave amplifier, operated in the TElO mode of rectangular 

waveguide. The beam parameters for this example correspond 

roughly to what has already been achieved with induction 

accelerators. IS 

A. Analytic estimates 

For a free-space wavelength A-3.2 cm (m/2 n-9.4 GHz), and 

5.5cmxllcm guide, resonance corresponds to a betatron wavelength 

Ap-30cm and a plasma density np -5xlO I2 cm-3• The transverse 

wavenumber is kJ..=n/wx-0.3 cm- I , so that kz-1.9cm- I , from Eq. (43). 

The phase velocity is /3rp-1.01, and pz-2.7, corresponding to a 

reduction in the Pierce parameter by a factor tJ-0.9, from Eq. (62). 

The mode area is £=w xwyl2-30cm 2 , corresponding to an overlap 

factor 1J=2na 2/wxwy-O.2. The Pierce parameter is p-7.4%, from Eq. 

(61). From Eq. (65) one expects a gain length of L g-O.l Ap/p- 40 cm, 

corresponding to a gain of 22dB/m. Assuming an input power P 0- 50 
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kW, the cubic gain regime·' scalings predict saturation in a length 

Lsar-2.7m, with power at saturation Psar,,2.9xl0SW. On the other 

hand, a p2 .... 0.5, so that Ji.1 p ..... 1.4 and, from Fig. 4( a), one may expect 

somewhat lower gain and peak power. 

B. Numerical results 

To check these analytic predictions, we follow instability 

growth numerically, using two codes, ECL and FCL. The code ECL solves 

the betatron-averaged equations, Eqs. (28)-(31), expressed in terms 

of the variable X of Eq. (32), combined with Maxwell's equations, Eq. 

(50). The code FCL solves the full equations of motion, Eqs. (9)-(14) 

and Maxwell's equations, Eq. (50), with the eikonal average removed. 

As seen in Fig. 5, ECL predicts P sat ..... 2.2xl0SW, with saturation in 

a length L sat ..... 2.8 m, for an efficiency of 5.6%. FCL IS in rough 

agreement, predicting Psat ..... 2.3xl0sW, with saturation m a length 

L sat .... 3.0 m. for an efficiency of 5.8%. Note that the deviations from 

simple exponential growth in Fig. 5 arise from the detuning v of Eq. 

(48), the effective detuning spread Ji. of Eq. (63), and the presence of 

all three roots of Eq. (60) in the numerical solution. Figure 6 depicts 

the FCL results for y-momentum averaged over the ensemble and 

rms normalized emittance in y. The maximum momentum amplitUde 

<py> ..... 0.3 is roughly the value <Py> ..... apI23/2 ..... O.2 predicted by Eq. (66). 

The fractional reduction. in rms y-emittance may be estimated from 

Eq. (39), t1 f-nyl f-ny .... pi a p2..... 0.3 and agrees well with the numerical 

result. 

Next consider finite temperature effects. The spread 1D 

momentum due to self-fields will be of order vl2 p z ..... 5%, while that 



due to a typical spread in transverse energy will be of order 

at?12-10%. The effect of detuning spread OJ} gain as predicted by ECL 

is summarized in Fig. 7. Evidently, a detuning spread Ds<P has only a 

small effect on output power (about a factor of two), in accord with 

the results of Sec. III. 

On the other hand, Fig. 4 predicts that optimal gam requires a 

negative detuning. This motivates a survey of P sat versus DO at fixed 

Ds, as depicted in Fig. 8. Thus, for example, with DO-O and Ds-15%-2p, 

peak power is Psat-lxl07W. However, for Do--20%, P sat-7xl07W, only 

a factor of three reduced from the Ds=O result. 

To check the effect of nonlinear focussing we consider a 

gaussian radial ion profile oc exp( - ,2 / b2 
), with waist b equal to 

the beam radius, a-l.4 cm. The code FCL predicts saturation in a 

length L sat- 2.7 m, with peak power P sat-I. 9 xl 0 8W. This implies that 

the naive estimate of detuning spread due to beam self-fields 

Ds-v/2pzat?-16% is somewhat of an overestimate. 

In addition, one should consider plasma effects deleterious to 

gam. The chief constraint is due to ion-motion and imposes a limit on 

the pulse length. The ion-neutralization. time-scale is 21!/ (0;-250 ns, 

assuming a molecular weight of -150 amu as for diethlyaniline. The 

slosh time-scale is 2 1!/ ws-160 ns. These time-scales are acceptable, 

considering that induction linacs provide pulse lengths in the range 

10 ns - 100's of ns. The ion-hose growth length computed in the rigid 

beam modeI2 for a 20 ns pulse is Lh-8 cm, with about four e-folds 

after three meters. As for other plasma effects, emittance growth due 
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to scattering is negligible16.17 as are the beam-ion longitudinal two­

stream instability,2 and beam head erosion.I 8 

In summary, the numerical results of this section have 

confirmed the scaling l~ws for efficiency, gain length, and saturated 

power. For the example presented, amplification would be 

observable and the parameters appear practical for a proof-of­

principle experiment. 

v. CONCLUSIONS 

A simple formulation for an electromagnetic instability of the 

ion-focused regime has been presented. It has been shown that the 

Pierce parameter p roughly determines the efficiency and the gain 

length. It was also shown that corrections due to detuning spread 

may be crucial depending on the parameters. A practical conclusion 

from this work is that control of such detuning spread will be vital to 

a successful experiment. (At the same time note that a method of 

co.nditioning beams to effectively remove such an axial velocity 

spread has recently been proposed,19) 

Analytic scaling laws were verified VIa numerical simulation 

for a particular example and it was shown that, for reasonable beam 

and plasma parameters, amplification would be observable. Indeed 

such a microwave "ion-channel laser" could achieve performance 

comparable to that of an FEL, without the expense of magnets and 

magnet power supplies. 
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To place these results in context, one may VIew the ion-channel 

laser as simply another fast-wave free-electron device; the similarity 

with the FEL, and the differences, are discussed in connection with 

Eqs. (60) and (71). One may also draw analogies with the quadrupole 

FEL proposed by Levush, et al,2o work of Latham,21 and more recent 

work by Tang, et aZ. 22 One expects a similar betatron-coupled 

instability in the magnetically self-focussed regime of propagation, 

and this appears to have been observed experimentally .23,24 

Theoretical work for this regime also has been performed.25 

This work suggests a number of areas for further research, one 

of which IS radiation guiding. The original guiding mechanism 

proposed in Ref. 5, ion-channel dielectric guiding, now appears 

problematic due to the electron-hose instability.26 However, one 

expects optical guiding, as in an FEL, due to the resonant contribution 

to the radially varyIng dielectric constant.27 ,28,29 The simple 

treatment of this effect given in Ref. 7, indicates that optical guiding 

is typically quite strong and a thorough analysis of the strong­

guiding limit may well reveal the possibility of producing intense, 

short-wavelength (microns to nanonmeters) radiation with high 

efficiency. A particular attraction of the IFR at such wavelengths is 

that in a plasma, Af3 may be exceedingly small compared to a typical 

FEL wiggler period. This permits operation at a lower energy (and 

higher efficiency) for a given wavelength. Practically, guiding itself is 

readily amenable to experimental tests; for example, for the 

parameters of Table I the optical guiding overlap is predicted to be 

of order unity, corresponding to a reduction by a factor of two both 

in gain length and the detuning spread constraint. 
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Another subject of interest is the ion slosh motion, which could 

give rise to an electromagnetically coupled ion-hose instability, and 

result in emittance growth toward the tail of a long pulse, even when 

the initial beam alignment is "perfect". 
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Table I. Parameters for an ion-channel. mIcrowave amplifier. 

beam energy 

beam current 

rms emi ttance 

beam radius 

betatron period 

betatron parameter 

plasma density 

signal wavelength 

input power 

waveguide width 

waveguide height 
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E 

I 

a 

Wx 

Wy 

1 MeV 

4 kA 

0.25 cm-rad 

1.4 cm 

30 cm 

0.5 

6xlO lO cm- 3 

3.2 em 

50 kW 

11 em 

5.5 cm 
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FIG. 1. A relativistic electron beam propagates through a preionized 

plasma, less dense than the bea"m core. (a) All plasma electrons are 

expelled from the beam volume, by the beam head (flared portion) 

leaving a non-neutral column of ions or "ion-channel" to focus the 

remainder of the beam. (b) A cross-section of the beam well­

removed from the beam head. The beam radius is a, and the ion­

channel extends out to the laser waist b > a. 

FIG. 2. An electromagnetic wave propagates with an ion-focused 

relativistic electron beam. Beam electrons oscillate transversely and 

are perturbed axially by the ponderomotive force, much as in an FEL. 

Unlike the FEL, the perturbation to the transverse motion (via the 

relativistic mass effect and the transverse Lorentz force) is important 

to an understanding of instability growth. 

FIG. 3. The solution of the dispersion relation, Eq. (60), for the 

normalized growth rate 'i=Im(,+)=Re(T+)lkp, plotted versus 

detuning, 0 and the parameter J.L, for -100<0Ip<50 and 0<J.Llp<20. The 

peak value 'i=31/2 occurs at 0=J.L=0. 

FIG. 4. Solution of Eq. (60) for (a) the maXImum growth rate Im( ,+) 

and (b) the corresponding detuning, 0, plotted versus J.L. All 

quantities are normalized by the Pierce parameter p . 
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FIG. 5. Results of the simulations ECL (smooth curve) and FCL for 

microwave power P, versus axial displacement along the beam line, z 

for the example of Table 1. The oscillatory character of the FCL result 

is due to the jitter motion discussed in connection with Eq. (17). 

FIG. 6. (a) Result of the simulation FCL for y-momentum averaged 

over the ensemble. Near saturation, the beam develops a coherent 

oscillation consistent with Eq. (65). (b) FCL result for the rms 

normalized emittance in y. Emittance in y IS reduced near saturation, 

as discussed in connection with Eq. (39). 

FIG. 7. Results of the simulation ECL for power at saturation and 

length for saturation versus detuning spread Os, at zero center 

detuning. These results confirm that a detuning spread os<P has only 

a small effect on the output power. 

FIG. 8. Results of the simulation ECL for power at saturation and 

length for saturation versus center detuning 00, for a fixed detuning 

spread os= 15 %-2 p. Higher gain occurs for 00<0, consistent with Fig. 4. 
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