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Theory- of Ordering in Metals and Minerals 

Timothy Francis Lindsey 

- " 
ABSTACT 

This dissertation presents an invest~gation of ordering in FCC based 

systems using the pair potential approximation in the ground state and 

mean field, limits. The theoretical approach is used to explain the occur-. [ ('. 

rence of observed equilibrium phases and characteristics of thermodynamic , . 
instabilities, in particular, spinodal ordering and decomposition. 

It is shown that the stability of non-integer domain sizes in long' period 
, ' , 

superstructures such as A13Ti and Ag3Mg may result fro!ll,the tendency 

of a system to reduce the number of non-dominant ordering waves, thus 

producing domain sizes that have the rational fraction form n/m. This con-

elusion is used to explain the domain size stability with respect to variations 

in temperature and electron concentration. 

The cation ordering in the precipitate phases in calcite and dolomite 

is analyzed by analogy with ordering in FCC based metals. The ordered 

phases in calcite and dolomite are shown to be consistent with pair potential 

minima at {lOO} and {t, t, t} positions in reciprocal space respectively. The 

results of the thermodynamic analysis show that the ordered phases may 

have resulted from an ordering instability of the disordered matrix. This 

suggests that the ordered precipitates form spontaneously on the surface of 
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CHAPTER 1 

INTRODUCTION 

I. Background 

The problem of predicting the ordering transition temperature for alloys 

is an important theoretical problem. The simplest technique of estimating 

the transition temperature is the Braggs-William mean-field method [1]. 

While this method gives a good qualitative explanation of the emergence of 

the long-range order parameter [2-3], it does not accurately predict the tran

sition temperature [4]. Bethe [5] and Peierls [6] showed that better agree

ment with experiment results can be obtained by taking the near-neighbor 

correlations into account using statistical mechanics. Their approach con

sidered the thermodynamics of a cluster which experiences the average po

tential due to the surrounding atoms. Kikuchi developed a method of deter

mining the entropy of system with a specified set of cluster probability values 

[7]. This method has been extensively used to calculate phase diagrams and 

is presently known as the cluster variational method [4]. 

The cluster variational method provides a means of both determining 

the free energy and the short-range order parameters. Another method that 

may be used to calculate the free energy is the Kirkwood method [8]. This 

method assumes near neighbor interactions. However, as shown by Badalyan 

and Khachaturayan, the Kirkwood method can be generalized for the case 

of arbitrary range pair interactions [9]. The Kirkwood method gives the free 

energy as expansion in powers of inverse temperature for a given composition 
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and long-range order parameter(s). While the short-range order parameters 

do not explicitly appear in the Kirkwood free energy series, the effect of 

the short-range correlations is taken into account via computation of the 

cummulant energy moments. 

When the predictions of the mean-field method and the more accurate 

cluster variation method are compared, the mean-field estimation of the 

transition temperature is found to be highly inaccurate [4]. For example, 

it may be shown that the maximum mean-field transition temperature for 

the CU3Au phase is at composition 0.50. However, by taking correlations 

into account using the cluster variational method, the maximum transition 

temperature for CU3 Au phase is at the stoichiometric composition 0.25 Au 

[4]. 

Although the mean-field approximation is highly inaccurate at temper

atures near the transition point, at temperature well above or below the 

transition point, the mean-field method is a good approximation [10]. This 

is a very important result because materials are often processed at tempera

tures that are sufficiently low for the mean-field to be a good approximation 

[11]. When this is the case, it is not necessary to use the more accurate, but 

also more complicated, statistical mechanical methods such as the cluster 

variation method or Kirkwood expansion. 

The recognition that the mean-field method is a good approximation 

at low temperature is important because it is very simple and requires little 

computational effort. In this thesis, the theoretical analysis will use ground 

ii 
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state and mean-field analysis. The justification of this approach is that the 

ordering phenomena that will be discussed occurs at sufficiently low tem

peratures to justify the use of mean-field or ground state theory. However, 

since the inaccuracy of the mean-field method at higher temperatures is 

very well known [4], I will now provide an explanation of why the mean-field 

approximation is valid at sufficiently low temperatures. 

II. The Mean-Field Limit 

The free energy may be expanded in powers of inverse temperature 

using the thermodynamic perturbation series [12], 

F = F O + Ml - ~M2 + ... 
c 2T c 

(2.1) 

where Fo is the unperturbed free energy and M~ are the nth order cummu-

lant moments [13] of the perturbation energy distribution, 

M: =< bE > (2.2a) 

(2.2b) 

The notation < ... > refers to the ensemble average of the quantity ( ... ) 

and bE is the perturbation energy. If the perturbation energy is chosen such 

that < bE > is zero, then equation (2.1) takes the form 

° 1 2 F = F - 2T < (bE) > + ... (2.3) 

where F O is the mean-field free energy. Badalyan and Khachaturyan evalu

ated equation (2.3) assuming that the configurational energy is given by the 

pair potential formula, 

(2.4) 
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where Vr is the interaction pair potential and n r · is the solute distribution 

function. It has value 1 if site r is occupied by a solute atom and zero 

otherwise. Taking the unperturbed energy to be 

o 1~ 
E = '2 ~ Vr-r'PrPr', 

rr' 
(2.5a) 

where pr is the ensemble average of the solute occupation at site r, l.e., 

Pr =< nr >, and the perturbed energy to be 

(2.5b) 

where bn r is defined by the relation 

(2.5c) 

Badalyan and Khachaturyan showed that Fo is the mean-field free energy, 

(2.6a) 

So = - 2: (Pr lnpr + (1 - Pr)ln(l - Pr)) , (2.6b) 
r 

and that leading term in perturbation series is 

bFI = - 2~ 2: V2(r - r')Pr(1- Pr) Pr,(l - Pr'). 
rr' 

(2.6c) 

As the temperature is decreased, the solute occupation probability value Pr 

at each site r tends to either the value 1 or O. In either case, the product 

Pr(l- Pr) tends towards zero as the system approaches the ground state. It 

can be shown that the limit T --+ 0, the term 

(2.7) 
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tends to zero. Hence, in the low temperature limit, the first correction to the 

free energy tends to zero, and in the ground state limit the first correction 

vanishes. Therefore, at sufficiently low temperature the free energy is given 

accurately by the mean-field formula. This is the result also obtained by 

Krivoglaz who considered the thermodynamics of nearly ordered crystals. 

[10]. 

In the ground state limit, the mean-field entropy So tends to zero. This 

result follows from equation (2.6b), since it may be shown that the limit as 

x goes to zero or one, the quantity 

x In x + (1 - x) In( 1 - x) 

tends to zero. Hence, for systems that are very nearly fully ordered, the free 

energy is accurately given by the mean-field energy EO. 

III. Value of Phenomenological Models 

It is often useful to discuss ordering phenomena within the context of a 

phenomenological model because this permits the ordering in different types 

of crystals to be discussed using a common theoretical prospective. The 

value of this approach is that it allows one to explain the general character

istics of a material in a simple way. For example, the competition between 

volume and surface energy provides a simple means of explaining the con

cept of a critical nucleus. However, to predict the actual critical nucleus 

size from first principles would be very complicated. This would require an 

estimation of the bonding forces and a statistical mechanical calculation of 

free energy. The degree of accuracy that is built in the calculation depends 
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on one's objectives. If one wishes to start with atomic numbers and derive 

results that reproduce experimental observations, then a high degree of ac

curacy will be required. However, if one only seeks to explain the main idea, 

a simple theory that is not necessarily very accurate may be sufficient. For 

instance, the Braggs-William theory does not accurately predict the tran

sition temperature, but does correctly explain ordering transformations at 

the conceptual. 

Compared with the more accurate methods such as the cluster varia

tional method [4,7] and free energy expansion methods [8,9], the mean-field 

and ground state methods of analysis may seem less useful. However, on 

the contrary, these simpler methods may give better conceptual insight. For 

this reason, simple theories still have considerable value and continue to be 

widely used in the theoretical investigations of materials. 

The use of the pair potential model is phenomenological in situations 

where the pair potential function is regarded as an adjustable parameter. 

Even without knowledge of what the actual pair potential function is for 

a given system of interest, the results of the general pair potential can be 

discussed after making some physical assumptions. For example, the range 

of the pair potential function may be assumed to extend to only first and 

second near-neighbors. The two simplest levels of approximation to calculate 

the free energy of a system where the atoms interact in pairs are the ground 

state and mean-field methods. While the mean-field method is not accurate 

at temperatures near the transition point, it is a good approximation at 

temperatures well below the transition point. The value of using the ground 
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state and mean-field method together with the pair potential approximation 

is that this provides the simplest means of explaining and understanding low 

temperature thermodynamic behavior. 

IV. Applications For FCC Based Systems 

In this thesis, the ground state and mean-field method of analysis will be . 

used to investigate three selected examples of FCC based ordering transfor-

mations. This type ordering occurs when the ordering species are distributed 

over the sites of a face centered cubic (FCC) array. These examples were 

chosen because they illustrate how the low temperature thermodynamic be

havior may be explained in a simple way using the pair potential approxi-

mation. 

The pair potential may be defined in either real space or reciprocal 

space. Since ordered phases are a superposition of ordering waves, it is 

useful to use the reciprocal space representation of the pair potential. This 

quantity is obtained from the real space pair potential V(r) by using the 

definition of a Fourier transform, 

( 4.1) 
r 

However, since the pair potential will be regarded as a phenomenological 

quantity, the values of V( k) will be treated as adjustable parameters. 

Whereas the real space function V(r) may have an infinity of values 

corresponding to the infinity of ordering sites of the crystal, only a finite 

number of V( k) values determine the mean-field free energy. This is expected 
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since an ordered phase is a superposition of a finite number of ordering waves. 

Moreover, V( k) will have the same value for wave vectors that are related by 

the symmetry of the fundamental lattice. Hence, the number of independent 

pair potential parameters that determine the mean-field free energy may be 

very small. For example, it may be shown that for CU3Au, there are just 

two independent pair potential parameters. 

The reciprocal space positions corresponding to the minima of the pair 

potential function V( k) have a significant effect on the thermodynamic prop

erties of ordered phases. This result has been discussed by Clapp and Moss 

[14]. They presented experimental evidence showing that the ordering wave 

vectors are determined by V( k) minima positions, and explained their find

ings by a consideration of the ground state energy minimization problem. 

Moreover, Khachaturyan [11] has shown that in the mean-field limit, the 

high temperature ordering instability is due the formation of ordering waves 

with wave vectors corresponding to the V(k) minima. The ordering wave 

vectors are not always determined by the V( k) minima positions, since a 

specified composition, it is not always possible to construct a ground state 

phase containing ordering wave vectors from the star of k corresponding to 

the V(k) minima [13]. Nevertheless, it is often the case that the ordering 

wave vectors are determined by the positions the V(k) minima [14]. 

In the theoretical treatment presented in this thesis, the relationship 

between the V( k) minima positions and the equilibrium ordered state will 

be a central theme. Chapter 2 presents a ground state investigation of 

long-period superstructures. It is shown that the maximum amplitude or-



'. 

9 

dering wave vector is approximately determined by minimum position of 

V ( k) along the reciprocal space line joining (1, 0, 0) and (1, 0, 1). Chapter 

3 presents a ground state and mean-field analysis of the cation ordering of 

ordered precipitate phases that are observed in calcite and dolomite. It is 

shown that the experimental observations are consistent with the existence 

of pair potential minima at the special point positions {l, 0, O} and {!, !,!}. 
Chapter 4 presents a mean-field calculation of the Al - Li phase diagram 

and instability limits at low temperatures. The theoretical method assumes 

that the V (k) minima for AI- Li are at the special point positions {l, 0, O}. 

This assumption is shown to provide a good explanation of the conditions 

for spinodal ordering and decomposition in the Al - Li alloy system. 



CHAPTER 2 

STABILITY OF NON-INTEGER DOMAIN SIZE IN 

LONG PERIOD SUPERSTRUCTURES 

10 

This chapter presents a theoretical investigation of the equilibrium con

ditions for long period superstructure ordering. Assuming pairwise interac

tions, the stability of rational fraction domain sizes and Fujiwara's assump

tion of square wave modulation of domain boundaries is predicted by the 

minimization of the configurational energy. The results of the pair poten

tial theory are interpreted using Khachaturayan's concept of dominant and 

non-dominant ordering waves. While the domain size M is determined by 

the wave vector of the dominant ordering wave, the stability of non-integer 

periods are shown to result from the influence of the non-dominant ordering 

waves. The variation of domain size with valence electron concentration and 

temperature is discussed. 

I. INTRODUCTION 

A well known example of long period ordering is CuAu(II) [16]. This 

structure results from a periodic sequence of displacements of a L10 cell 

as shown in figure lea). Sato and Toth showed that the experimentally 

observed relationship between the valance electron to atom ratio (e / a) and 

the domain size M agrees well with the formula 

e 7r 1 1 3/2 
-;; = 12t3 (2 ± M + 4M2) (1.1) 
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which was derived from a band theory argument [16]. The Sato-Toth theory, 

using the idea of long period ordering caused by a fermi-level effect, explains 

the AuCu(II) type LPS very well, and thus it has become widely accepted 

[17]. 

In alloys such as Ag3M 9 [18] and Al3Ti [19], a different type of LPS is 

observed. These are produced by a periodic sequence of displacements of a 

L12 cell as illustrated in figure l(b). In a survey of long period structures 

of this type, Schubert [20] showed that the domain size M is related to the 

valence electron concentration by the empirical formula 

1 
2M ~ (e/a) - 1. (1.2) 

He also showed that the axial ratio c/ a of the fundamental cell is likewise 

linearly related to the valence electron concentration. 

The domain size M is defined by the Fujiwara square wave function 

[21]. This function is generated by a square wave with half period M and 

sampled over discrete points, i.e., 

{ 
+1 

f(n) = a if cos( ~ n) > a , 
if cos(~n) < a . (1.3) 

where the value of f(n) indicates whether or not the nth cell is shifted by 

the displacement vector H11o). The function f(n) is +1 for a unshifted cell 

and a for shifted cell at position n. 

Equations (1.1) and (1.2) suggest that the domain size varies continu

ously with the valence electron concentration. However, for the Ag3M 9 and 

Al3 Ti alloys, M values are observed to be of the irreducible fraction form 
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M = (s/ L). These long period superstructures may have a fixed domain 

size over a range of both temperature and composition. 

Tachiki and Maekawa [22] investigated stability of the domain size 

against small variations in the valence electron concentration by calculat-

ing the configurational energy assuming that the interaction pair potential 

function has the Lorentzian form 

-a 
V(O, 1, kz) = (k _kmin)2 

1 + z z 
~ 

(1.4) 

along the reciprocal space line joining (010) and (Olt). Using equation 

(1.4), they determined the domain size that minimizes the configurational 

energy. Their results show that the domain size decreases in steps as the 

minimum position k,;in is varied. The width of these steps decreases as .6. 

increases. This lead Tachiki and Maekawa to conclude that the domain size 

will deviate slightly from the relation 2M = l/k,;in that would be obtained 

if the domain size were assumed to correspond to the minimum of equation 

(1.4). 

Tachiki and Teramoto [23] calculated the band structure for the Cu-Au 

system as a function of the electron concentration (e/ a). They observed 

that the electron eigen energies for the unperturbed Hamiltonian H 0 had 

the general shape of a Lorentzian function. The variation in the minimum 

position of Ho(O, 1, kz) with (e/a) was approximately linear. Hence, they 

assumed that parameter k~in of the Lorentzian function in equation (1.4) 

varies with the electron concentration according to the relation k~in = 

(31(e/a) + {32. 
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The Tachiki-Maekawa theory provides a good explanation of how com

mensurate long period ordering may occur for a continuously varying elec

tron concentration. Their calculation assumed that the configurational or

dering resulted from a regular mixture of different domain sizes. Hence, they 

took M to be the average domain size. However, as I discuss in section III, 

their formula for the configurational energy corresponds to the exact result 

for Fujiwara phases for only integer values of M. 

In this chapter the configurational energy is calculated assummg a 

Lorentzian pair potential function, but using the exact formula for the con

figurational energy. In addition, a more general minimization method will 

be used to determine the equilibrium configuration. This will provide the 

basis for investigating the two chief characteristics of the long period super

structures. These are the formation of long periods configuration that are 

Fujiwara phases and the stability of non-integer domain sizes. 

The theoretical approach makes use of Khachaturyan's theory of maxi

mum amplitude ordering [24]. The set of maximum amplitude configurations 

includes all Fujiwara phases and as well as non-Fujiwara type configurations. 

By performing the minimization over this set of configurations, it is shown 

that the Lorentzian potential leads to equilibrium long period superstruc

tures that are Fujiwara phases. 

According to Khachaturyan's theory, the wave vector of largest (domi

nate) superstructure reflection of the equilibrium phase will be located near 

the minimum of the pair potential function, but this wave vector will not 
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exactly correspond to the pair potential minimum because of energy contri

bution of the other less intense (non-dominate) superstructure reflections. 

This general principle is consistent with the results obtained by the calcula

tion of Tachiki and Maekawa. Since the same general conclusions would be 

obtained using other pair potential functions with a similar shape, the use of 

the Lorentzian pair potential function is justified on the basis that the actual 

potentials for real long period superstructures are similar to a Lorentzian 

potential. Hence, using this potential I will demonstrate how the energy due 

to the non-dominated reflections leads to long period superstructures with 

stable non-integer domain sizes. 

II. THEORY 

A. Shift Function 

Let us consider long period superstructures that are produced by a 

periodic sequence of displacements of a L12 unit cell as illustrated in figure 

1b . The shift function f(n) is defined to be equal to one if the nth cell is 

shifted by a displacement vector a(O,~, ~), and zero otherwise. For example, 

the shift function for the structure shown in figure 1b takes on values 

110011001001100110 (2.1) 

for n = 0,1,2, ... 17. The shift function specifies the configurational order 

of the long period superstructure. 

B. Ordering Representation 

The solute and solvent atoms are assumed to be distributed over the 

.. : 

, 
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sites of an FCC array. The long period superstructure under consideration 

have stoichiometry A3B. Let the A atoms to be the solvent and the B atoms 

to be the solute. 

The distribution function p( n, i) defines the solute occupation proba

bility at site i of the nth cell. The four sites within the FCC unit cell are 

shown in figure 2. Using the convention, 

{

I for site (0,0,0), 
. _ 2 for site (~, t, 0), 
Z - 3 for site (0, 2"' t ), 

4 for site (~, 0, 2"). 

(2.2) 

the solute distribution function can be expressed in terms of the shift func-

tion f(n), 

{

f(n) ifi=4, 
p(n,i)= 1-f(n) ifi=3, 

o if i = 1 or 2. 

(2.3) 

The Fourier coefficients Q k are defined by the formula 

L-l 4 

Q k = 4~ L L p( n, i)ei27rk
.( ntH;) 

n=Oi=l 

(2.4) 

where bi is the basis vector for the ith site in the FCC unit cell and L is the 

period of the structure. Using equations (2.2 - 4), one obtains 

L-l 

Q(kx, ky, kz) = 4~ L[J(n) + (1 - f(n))e i7r
(k.,+k g

)] ei27rk
., (2.5) 

n=O 

where k = (l/a)(kx, ky, kz) and r = a(x, y, z). Evaluating equation (2.3), 

the non-vanishing coefficients are 

1 
Qooo = QIOo = 4' 

1 U 
QOlO = QOOI = '4 - 2L' 

(2.6a) 

(2.6b) 
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L-l 

Q 1 ~ f( ) i 2,.. an 
Oli: = 2L ~ neT , 

n=O 
(2.6c) 

where 
L-l 

a = L f(n). (2.6d) 
n=O 

C. Pair Potential Energy 

Within the pair potential approximation, the configurational energy is 

E = ~ L V(k)IQ(k)12 
k#O 

(2.7a) 

where V (k) is the Fourier transform of the real space pair potential function 

V(r), 

(2.7b) 
r 

The function V(r) is the interaction energy VA A + VBB - 2VAB due to 

chemical mixing. Using equations (2.6-7), the energy is 

(2.8) 

Since the FCC fundamental cell experiences a tetragonal distortion, 

VIOO and VOIO are not necessarily equal. However, from equation (2.6a), 

QIOO is configuration independent. Hence, the value of VIOO will not effect 

the minimization process. 

D. Energy of Maximum Amplitude Configurations 

For a given period L, there are 2L possible configurations. As the 

period becomes larger, the number of configurations becomes much larger, 
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thus making it impossible to allow energy minimization calculations on a 

computer. Therefore, the minimization process is restricted to a subset of 

configurations that satisfy Khachaturyan's maximum amplitude criterion 

[24]. This criterion is such that, for a given concentration of A and B 

atoms, the configurational order is determined by maximizing the amplitude 

for one wave vector. This wave vector is called the dominant wave vector. 

In the case of the long period superstructures, the configurational order is 

defined by the one dimensional shift function f ( n). Hence, the ordering of 

unshifted and shifted cells is analogous to the ordering of A and B atoms 

on consecutive lattice planes. Thus, to construct the maximum amplitude 

long period superstructure, the amplitude of the dominant wave vector is 

maximized subject to the constraint that the fraction u / L of unshifted cells 

is held constant. 

For a given set of values for the integers So, L, and u, the objective is 

to maximize the amplitude of the vector (0,1, T). From equation (2.8), the 

configuration that maximizes Q(O, 1, T) is determined by maximizing the 

function 
L-l 2 

Aso = L f(n)eilfson (2.9) 
n=O 

Since the shift function f( n) takes on values one and zero, the quantity A 

will be maximized when f( n) is chosen such that 

This corresponds to 

u-l 

A ~ j2,.. 1 
So = L...J e L 

1=0 

{
I if (son) mod L < u , 

f(n) = 0 if (son) mod L ~ u. 

(2.10) 

(2.11) 



18 

where the function x mod y is the remainder of y divided into x. This 

implies that the amplitudes of the harmonics of the dominant wave are 

. 0'-1 

Q 1 "" ihml 01~ = 2L-~e T 
1=0 

(2.12) 

U sing the formula, 

N 1- x N +1 

"" xn = , ~ I-x 
n=O 

(2.13) 

equation (2.12) is summed to obtain 

sine 7r "l0') 
Q ~=-~~-,-

01-.;- 2L sine 7r 7) (2.14) 

Equation (2.14) gives the amplitude spectrum of the maximum amplitude 

configuration with (j unshifted cells, a period L, and a dominant wave at 

(0,1, i). 

The wave vector (0,1, mlO) can be reduced to the first Brillouin zone 

using the identity k = k + H where H is a reciprocal lattice vector. Let Sm 

be defined by the relation 

where 

Sm 
-1 < - < +1 

L 

Sm = mso +2n 

(2.15a) 

(2.15b) 

and n is the integer that puts sm/ L between the bounds ±l. Then the 

equivalent wave vector for the mth harmonic of So is 

Sm mso 
km = (0, I'L) = (0, I'L)· (2.16) 
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Using equations (2.8), (2.14), and (2.16), the energy is 

(2.17) 

E. Energy Minimization 

Let us suppose that the pair potential V(O, 1, kz) has a well defined 

minimum at kr:in. If the configurational energy was due solely to the dom-

inant wave, one would expect the minimum energy configuration to have 

a dominant wave vector k~om located at the minimum of the pair poten

tial function, i.e., k~om = kr:in . However, the other non-dominant waves 

which result from the harmonics of the dominant waves also contribute to 

the energy. This may cause the dominant wave vector for the minimum en-

ergy configuration to be displaced away from the pair potential minimum. 

To illustrate this point, the pair potential function is chosen to have the 

Lorentzian form given in equation (1.4). The Lorentzian potential has two 

adjustable parameters, kr: in and~. The parameter kr: in determines the 

position of the minimum whereas the parameter ~ determines the sharp-

ness of the potential function as illustrated in figure 3. Since the value of a 

in equation (1.4) will not effect the minimization of the energy provided it 

is positive, the parameter a is set to unity .. 

In the examples that to be presented, two energies will be plotted. The 

quantity Edom is the energy neglecting the non-dominant ordering waves. 

This energy is obtained from equation (2.17) by truncating the term contain

ing the sum over m .at m = 1. The energy E tot is the total energy obtained 
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by including all of the terms in equation (2.17). The points for Edom and 

E tot are plotted using circles and squares as markers, respectively. 

1. Minimization with respect to u 

Let us first consider a superstructure with dominant wave vector 

(0,1, i), and minimize the energy with respect to the number u of Uil

shifted cells. In figure 4, this is illustrated for sol L = 5/18 and 3/11 with 

the Lorentzian parameters chosen to be k,:in = 5/18 and ~ = .1. Note that 

the minimum is at u / L = 1/2 for even L and at the next nearest position 

to. u / L = 1/2 for odd L. Computer calculation shows that this result is 

obtained for most choices of sol L, ~, and k,:in. From the plotted energies 

in figure 4, one may note that the contribution of the non-dominant waves 

significantly increases the energy. However, the minimization of Edom and 

E tot lead to same value of u. 

2. Minimization set 

To show how the dominant wave vector is related to the minimum po

sition of the pair potential, a finite set of superstructures will be considered. 

This set is defined to be the set of maximum amplitude superstructures with 

period less or equal to 20. To eliminate redundancy, kz = sol L is required to 

be an irreducible fraction. For a given k,:in and ~, the energy is minimized 

with respect to u. The energies Edom(so/L) and Etot(so/L) are plotted in 

figure 5 for k,:in = 5/18 and ~ = .10, and .01. An important point to 

note is the substantial effect of the non-dominant waves. The minimum 

of Edom (so / L) corresponds to the minimum of the pair potential function, 

.. 

• 
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whereas a very different result is obtain for the minimum of Etot(so/ L). In 

this case, the minimum may be displaced away from kz = k,;"in. Moreover, 

as the value of ~ increases, the minimum of Etot(so/L) moves further away 

from minimum of the pair potential. Let us refer to the dominant wave vec

tor (01 7) of the equilibrium long period superstructure as (Olk~quil). From 

figure 5b, one may note that this vector will be near to, but not necessarily 

equal to, the wave vector (Olk,;"in). 

3. Minimization with respect to kr;in 

The energy is minimized for different values of kr;in for a fixed value of 

~. Again, the minimization is over the wave vectors listed in table 1. The z 

component of kequil = (Olk~quil) is plotted as a function kr;in. The results 

of this minimization is shown in figure 6 for ~ = .01, .05, .50. Note that as 

o increases, fewer configurations are selected by the minimization process. 

An important characteristic of the result obtained is that variation k~quil 

with kr;in is a step like function. That is, as kr;in increases, k~quil increases 

in steps. As 0 becomes smaller, the minimum of the pair potential becomes 

sharper. This leads to the steps becomes smaller. This result is evident by 

comparing the plots for the different values of ~. 

4. Minimization with respect to ~ 

To further emphasize the effect of ~, the minimization process is per

formed holding k,:in constant and varying~. In figure 7, k~quil is plotted as 

a function of 0 with kr;in = 5/18. Note that for a sufficiently small ~, k~quil 

converges to k,:in. On the other hand, as ~ increases, the k~quil decreases 
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in steps towards k z = 1/4. 

III. DISCUSSION AND CONCLUSIONS 

A. Fujiwara Phases 

One of the most characteristic features of the long period superstruc-

tures is that their configurational order may be described by the Fujiwara 

square wave function given in equation (1.3). The Fujiwara phases are a 

subset of the Khachaturyan maximum amplitude superstructures. This re-

sult is apparent by comparing equation (1.3) and (2.11). Equation (2.11) 

defines the configurational order for maximum amplitude configurational 

with dominant wave vector at (017) and a unshifted cells. It can be put in 

the equivalent form 

{
I if sin(27f7n) < sin(27ff) , 

f( n) = 0 if sin(27f7n) ~ sin(27f f) . (3.1) 

Note that for even L, equation (3.1) reduces to a square wave function for 

a / L = 1/2. For odd L, the same result is obtained with a being the integer 

for which a/L is closest to 1/2 since fen) is evaluated only for integer n. 

The plots shown in figure 4 show that for a Lorentzian pair potential 

the minimum configurational energy is achieved with a / L equal to 1/2 for 

even L and a / L nearest to 1/2 for odd L. Note that from figure 4 that 

this result holds even when the minimum (0, 1, k,;in) of the pair potential is 

not at the same position as the dominant wave vector (0,1, T). The reason 

for this can be understood in general way by inspection of the amplitude 

formula for maximum amplitude superstructures given in equation (2.14). 
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The amplitude of the mth harmonic is proportional to 

(3.2) 

For (7/ L = 1/2, the amplitudes with odd m are non-vanishing. As (7/ L is 

varied away from 1/2, the superstructure intensities decrease since they are 

proportional to the square of equation (3.2). Note that both the dominant 

and non-dominant intensities become smaller. Hence, since the pair poten

tial V(O, 1, kz) is negative for all kz, the configurational energy increases 

as (7/ L is varied away from 1/2. Therefore, the configurational energy is 

minimized by a Fujiwara phase, i.e., (7/ L -t 1/2. 

In Fujiwara's original work on long period ordering, the existence of non

integer domain sizes was interpreted as a regular distribution of domain of 

different size. The square wave function given in equation (1.3) was used to 

generate a regular distribution of domains. The x-ray scattering amplitudes 

where calculated for different values of the half period of the square wave 

function. These amplitudes where then compared with the experimental 

data. From the distance between x-ray peaks, the half period M defined by 

equation (1.3) was measured. This quantity is widely used as a measure of 

the domain size. 

While many theoretical studies have focus on the relationship between 

domain size and valence electron concentration, much less attention has been 

devoted to the issue of why the long period superstructures are Fujiwara's 

phases. That is, what is the theoretical rational of Fujiwara's assumption 

of regular mixing of domains? Moreover, since there are different types of 
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regular mixing, why is the regular mixing specifically of the type defined by 

the Fujiwara square wave function? 

In this chapter it has been shown that the regular mixing as defined 

in equation (1.3) occurs as a consequence of the minimization of the config

urational energy. This is an important result because the widely accepted 

view point that the domain size corresponds to a change in periodicity due 

to a flatting of the fermi level does not explain the configurational ordering. 

This is because, as point out by Fujiwara, there are many different distribu-

tion that have similar ordering amplitudes with the the same value of M as 

determined by the separation distance between x-ray peaks. 

B. Stability of Domain Size 

The domain size M as defined by the Fujiwara square wave function 

in equation (1.3) corresponds to a maximum amplitude superstructure with 

dominant wave vector (0,1, 2~)' i.e., 

L 
M = -. (3.3) 

2so 

This result follows from comparing equations (1.3) and (3.1). In figure 

6, the z component k~quil of the dominant wave vector of the equilibrium 

superstructure is plotted as a function of the minimum position kr;in of 

the pair potential. Since k~quil = sol L, the domain size is related to the 

dominant wave vector by the relation 

1 
2M=--ol· 

k~qu, 
(3.4) 

Hence, figure 6 shows that the domain size decreases in steps as kr;in in-

creases. The parameter ~ in equation (1.4) determines the sharpness of the 

.. 

.. 
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minimum of the Lorentzian potential. As ~ becomes larger, the minimum 

becomes less sharp, and the steps in domain size become bigger. Hence, the 

domain size M becomes more stable with respect to variations in kr: in as 

potential minimum becomes broader. 

The stability of the domain size carr be conceptually understood in 

simple way using Khachaturyan's maximum amplitude principle [24]. This 

principle describes in a qualitative way the general relationship between 

the minimum in k-space of the pair potential function and the ordering 

wave vectors. Khachaturyan noted that in many ordered phases the wave 

amplitude is very large for one wave vector and much smaller for the other 

ordering wave vectors. Thus, he divides the ordering waves into two types 

- the dominant wave which has the largest amplitude, and the other waves 

which are called non-dominant waves. The configurational energy is the sum 

of two energies, 

(3.5) 

where E DOM and END are the energies associated with the dominant wave 

and non-dominant waves. The separation of the energy into these two terms 

assumes the energy result from pairwise interactions. If END is neglected, 

the energy is minimized by placing the dominant wave vector at the position 

corresponding to the minimum of the pair potential function V(k). As the 

period L increases, so does the number of dominant ordering waves, but 

these are less energetically favorable. Therefore, the system may decreases 

its energy by reducing the number non-dominant waves. This will cause 

the dominant wave vector to be near to, but not exactly at, the k-space 
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minimum of V(k). Therefore, if the minimum of V(k) is at (sl L)Ho where 

Ho is a reciprocal lattice vector, the configuration that minimizes the total 

energy may be at (s'IL')Ho where L' < Land (sIL) ~ (s'IL'). 

The influence of the non-dominant waves is clearly evident in figure 

5(b) where the energy versus dominant wave vector is plotted. Note that 

the energy E dom , which is the energy neglecting the contribution of the 

non-dominant waves, has a minimum that coincides with the pair potential 

minimum at k;"in. However, the total energy Etot has a minimum that 

is shifted away from k;"in. As the pair potential becomes broader, i.e, ~ 

increases, the difference between the equilibrium dominant wave vector k~quil 

and pair potential minimum k;"in increases. This difference between k;"in 

and k~quil results because of the energy contribution of the non-dominant 

ordering waves. In figure 5(a), the value of ~ is .01 which is ten times 

smaller than for value used in figure 5(b). In this case, k;"in and k~quil are 

the same. This is because for ~ = .01, the minimum of the pair potential 

function is very sharp as illustrated as figure 3. 

C. Comparison with Experimental Data 

In terms of the theory presented in this chapter, the dependence of the 

domain size on the electron concentration given in the empirical formula 

in equation (1.2) is explained by assuming that the minimum position of 

the pair potential is determined by the electron concentration. This is the 

assumption previously suggested by Tachiki and Maekawa. For example, 

... 
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equation (1.3) corresponds to assuming 

k,;in = ~ = (e/a) - 1. (3.6) 

since 2M = L/so. 

If electron concentration were the sole factor determining domain size, 

one would expect the domain size to vary continuously with changes in com

position. However, the long period superstructures in the Ag3M 9 and A13Ti 

alloys have been observed directly in the transmission electron microscope 

[18,19]. For these alloys long period superstructures with a very well defined 

crystallographic period are observed. 

Tachiki and Maekawa had noted that for some systems such as CU3Pd, 

the domain size varies continuously with the electron concentration whereas 

for other alloys such as P d3 M 9 and A U3 Z n the domain size is fixed at M = 2 

- that is, the domain size is constant over the composition range for which 

the alloy exist. Hence, their work sought to explain why an integer domain 

size may be stable with respect to changes in the electron concentration. 

One may note from figure 6( c) that when ~ = .5, the dominant wave 

vector (01 i) which corresponds to M = 2 will minimize the configurational 

energy over a wide range of kr;'in. Hence, by equation (3.6) the M = 2 

domain size will be stable over a wide range of electron concentration. For 

example, for the result plotted in figure 6(a) this range is 

1.17 < (e/a) < 1.33. (3.7) 

Hence, for the alloy CU3Pd, the pair potential must have a broad minimum. 

On the other hand, if ~ is reduced by a factor of ten, thus making the 
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minimum of the pair potential much sharper, the range of stability is greatly 

reduced. If ~ becomes sufficiently small, then the domain will appear to 

vary continuously with the electron concentration. 

These results reproduce the conclusions previously obtained by Tachiki 

and Maekawa for the case of integer domain sizes. The stability of non

integer domain sizes is now considered. 

Superstructures with non-integer domain sizes are observed in Ag3M 9 

and AhTi. Moreover, for both of these systems a large number of differ

ent M values are observed. It has been shown that non-integer domain 

sizes that are fractions of the form 2M = L / So may be stable with respect 

to changes in k,:in because of the influence of the non-dominant ordering 

waves. To predict exactly the long period superstructures in the Ag3M 9 and 

AI3 Ti would require a more precise knowledge of the pair potential function. 

Hence, the Lorentzian potential is regarded as a useful means of illustrating 

how the minimization of the energy leads to the stability of non-integer do

main sizes. For the long period superstructures in the Al - Ti and Ag - M 9 

systems, this work suggest that the pair potential minimum is sharper than 

for CU3Pd but not as sharp as systems where incommensurate long period 

ordering occurs. 

The superstructures in the Al - Ti alloy are observed over a narrow 

composition range of 71 - 73% Al [19]. The phase diagram for the AI- Ti 

system shows that this range corresponds to the single phase region of the 

AI3Ti type phase [25]. Hence, it is not possible to vary the composition 
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of the long period superstructures in Al - Ti by more than a few percent. 

However, a large number of different domain sizes are observed by varying 

the temperature. Amelinckx et al. obtains the results given in figure 8. The 

different domain sizes at each temperature result from different compositions 

of the samples. Note that the largest effect is the variation of domain size 

with temperature. This cannot be explained by assuming that kr:in is solely 

a function of the valence electron to atom ratio as in equation (3.6). 

To explain how the temperature dependence of the domain size may be 

explained with the context of the theory presented in this chapter, let us 

digress briefly to discuss the origin of the pair potential function. The theo-

retical approach assumed that the solute and solvent atoms are distributed 

over the sites of a FCC array. Hence, the quantity V(k) is obtained by 

performing the discrete Fourier transform of the real space pair potential 

VCr), 

V(k) = I: VCr) ei21rk
.
r

. (3.8) 
r 

where the sum is over the sites of FCC array. Actually, in the case of the long 

period superstructures, the FCC array is an idealization since the subcell 

is a tetragonally distorted FCC array. Then, the points in space for which 

V(r) is sampled is a function of the lattice parameters a and c of the subcell. 

Suppose that the real space interaction pair potential is a function of the 

electron density E. Then, the Fourier quantity V( k) is function of electron 

concentration and sub cell lattice parameters, i.e., 

V(k) = V(k; E,a,c). (3.9) 

Hence, the k-space position of the V( k) minimum is a function of the same 
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parameters, 

kmin - kmin(€ a c) 
z - z ". (3.10) 

The expansion of the crystal with increasing temperatures changes the the 

sub cell lattice parameters. By equation (3.10), this causes the V(k) mini-

mum to shift its position. Therefore, it would be reasonable to assume that 

the k,;,in is a function of both electron density and temperature. 

The data shown in figure 8 implies that the k,;,in decreases as the tem-

perature is raised. At higher temperatures, a larger number of domain sizes 

is observed. Hence, this indicates that the pair potential minimum becomes 

sharper as the temperature increases. As already shown, as the pair po-

tential minimum becomes broader, i.e., ~ becomes bigger, the domain size 

is stable against larger variations in k,;,in. Hence, the long period super-

structure with domain size M will be stable against larger variations of 

both composition and temperature. This prediction is consistent with the 

observations of Amelinckx et al. 

D. MaxiInum Amplitude Principle 

In part A of this section it was shown that the Fujiwara phases sat-

isfy Khachaturyan criterion for maximum amplitude ordering. This result 

is significant because the maximum amplitude principle is very general. In 

this chapter it has been demonstrated how maximum amplitude ordering 

leads to stable non-integer domain sizes using the pair potential approxima-

tion. It is likely that the same conclusion could be achieved by performing 

the same calculations using a solid state physics approach. For example, 
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for each maximum amplitude configuration, the energy could be computed 

from a band structure calculation or pseudopotential theory. Computing the 

energy in this manner instead of equation (2.17) and employing the same 

minimization procedure, the stability of non-integer domain sizes could be 

investigated at a more fundamental level. 

When superstructure ordering occurs with period L, the bands of the 

fundamental structure are split into L bands. This leads to a change of 

energy due to the introduction of additional band gaps. From this point of 

view, the formation of long period superstructures with a rational fraction 

non-integer domain size results from a lowering of the energy due to reduc

ing the number of bands. This would stabilize the crystallographic period of 

superstructures with non-integer domain sizes. Moreover, the most energet

ically favorable coupling between the electrons and the array of atomic ion 

cores is likely to occur when the dominant ordering wave vector corresponds 

to the band gap that leads to the greatest reduction in electronic energy. 

Hence, it is quite possible that the use of maximum amplitude principle, 

which was originally derived by Khachaturyan using the theoretical frame

work of a pair potential model, may also be explained in the case of the 

long period superstructures by a calculation of the energy using solid state 

theory. 
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(a) 

• Cu 0 Au 

(b) 

eMg 0 Ag 

Figure 1. Long period superstructures CuAu(II) (a) and Ag3Mg (b). 
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Figure 2. Basis positions of face centered cubic (FCC) unit cell. 
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Figure 3. Lorentzian potential as function of kz for .6. 0.1 (solid line), 

0.05, (dashed line) and 0.01 ( dotted line). 
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Figure 4(a). Dominant energy, Edam, (circles) and total energy, E tat , 

(squares) vs. fraction of unshifted cells, (7. Energy is computed with pair 

potential parameters k,,:in = 5/18, and ~ = 0.1. The dominant wave vector 

is (0,1, ts)' 
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Figure 4(b). Dominant energy, . Edom , (circles) and total energy, Etot , 

(squares) vs. fraction of unshifted cells, (7. Energy is computed with pair 

potential parameters kr:in = 5/18 and !J. = 0.1. The dominant wave vector 

is (0,1, 1
3
1). 
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Figure 5(a). Dominant energy, E dom , (circles) and total energy, E tot , 

(squares) vs. dominant wave vector (0, 1, kz) for k,:in = 5/18 and L\ = 0.01. 
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Figure 5(h). Dominant energy, Edam, (circles) and total energy, E tat , 

(squares) vs. dominant wave vector (0,1, k z ) for kr:in = 5/18 and ,6. = 0.1. 
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Figure 6(a). Dominant wave vector (0,1, kz) vs. pair potential minimum 

position (0, 1, k~lin) for b. = 0.01. 
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Figure 6(b). Dominant wave vector (0,1, kz) vs. pair potential minimum 

position (0,1, k,;,in) for /). = 0.05. 
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Figure 6(c). Dominant wave vector (O,l,k z ) vs. pair potential minimum 

position (0,1, k,:in) for ~ = 0.1. 
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Figure 7. Dominant wave vector (0,1, kz) vs. pair potential parameter 6. 

for k;,in = 5/18. 
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Figure 8. Domain size vs. temperature data obtained by Amelinckx et. al. 
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CHAPTER 3 

CATION ORDERING IN CALCITE AND DOLOMITE 

This chapter presents a theoretical investigation of the cation ordering 

in calcite and dolomite. It is shown that the ordering may be treated as a 

distribution of cations over the sites of a pseudo cubic FCC array. This pro

vides the basis for an analogy with FCC based metal alloys. The theoretical 

analysis shows that there is an isomorphic relationship between the precipi

tate phases in calcite and dolomite and the special point superstructures in 

the Cu - Au and Cu - Pt alloy systems. Assuming pairwise interactions, the 

conditions for homogenous ordering equilibrium and ordering wave instabili

ties are determined. Using the quantity V(k), which is the Fourier transform 

of the interaction pair potential VCr), it is shown that the observed precip

itates in calcite and dolomite are consistent with the assumption that V(k) 

has minima at the special point positions {l, 0, O} and {t, t, t} respectively . 

. I. INTRODUCTION 

The ordered superstructures that appear as precipitates in ferroan 

dolomite (ankerite) and calcite were recently studied by Wenk et.al. by 

electron microscopy [26]. Their samples were obtained from an aggregates 

of calcite and dolomite that formed in the cavity of an ammonite snail shell. 

The calcite and dolomite regions are believed to have formed from an aque

ous solution millions of years ago. One possible mechanism of precipitate 

formation is that of an ordering transformation from a phase where the 



.' 

• 

45 

cations are randomly distributed over the Ca sites of the calcite structure. 

However, since the disorder to order temperature is well above the tempera

ture where aqueous growth may occur, this mechanism is not very likely. To 

explain how the precipitate phases may have formed, it is suggested in this 

chapter that the initial growth at the mineral to aqueous solution interface 

is followed by an ordering wave instability which produces a spontaneous 

formation of precipitates. Since this transformation can occur near the sur

face where the kinetics are favorable, the precipitates become frozen within 

the bulk. 

The theoretical approach is based on the isomorphic relationship be

tween the cation ordering in the rhombohedral carbonates and the sub

stitutional ordering in face centered cubic (FCC) based metal alloys. In 

particular, the ordered rhombohedral carbonate phases are described as a 

distribution of cations over the sites of a pseudocubic FCC array. Subse

quently, by analogy with FCC based ordering in metals, the ordering wave 

method is used to investigate the conditions for homogenous phase equilib

rium and ordering wave instabilities. 

The configurational energy in FCC based alloys is often modeled by as

suming that the solute and solvent atoms interact by means of an interaction 

pair potential V(r). An important quantity in the ordering theory of FCC 

based superstructures is the quantity V(k), which is the Fourier transform 

of the pair potential function V (r ). The points of isolated symmetry in the 

reciprocal space of the FCC fundamental lattice are known as the Lifshitz 

special points, named after Lifshitz, who first discussed their significance 



46 

for transitions of the second kind [12]. Clapp and Moss [14] showed that 

pair potential V (k) function can be deduced from x-ray diffuse scattering 

data. Additionally, they concluded for the alloys Au - Cu and Zn - Cu, 

the minima of V(k) are at special point positions in reciprocal space. They 

also showed that thennodynamic requirement of energy minimization will 

often produce a special point superstructure, if the minima of V(k) are at 

special point positions in reciprocal space. The special point superstruc

tures are defined to be ordered structures that have ordering wave vectors 

that are located at the special point in reciprocal space. This conclusion 

that the special point superstructures in FCC based metal alloys occur as a 

consequence of special point V(k) minima has become widely accepted [11]. 

Since the cation array is a pseudocubic FCC array, the cation distri

butions in the rhombohedral carbonates may be described as FCC based 

ordered phases [26]. With the exception of one phase, all of the ordered 

rhombohedral phases in calcite and dolomite are special point superstruc

tures. However, the dominant ordering wave vector (largest amplitude wave) 

for the exception is a special point wave vector. Since all of these phases 

contain special point ordering waves, the occurrence of these phases is ex

plained by assuming that the cation interaction pair potential has minima 

at special point positions in reciprocal space. Hence, the aim of this chapter 

is to explain the special point ordering for the cation distributions in the 

rhombohedral carbonates using the same theoretical approach that is used 

for FCC based metal alloys. 

By a consideration of the equilibrium conditions for homogenous order-

... 
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ing, it is shown that the ordered precipitates in calcite are consistent with 

pair potential minima at the special point positions {I, 0, O}, whereas the 

ordered precipitates in dolomite are consistent with pair potential minima 

at the special point positions {!,!,!}. Khachaturyan has shown that the 

highest temperature ordering wave instability will have wave vectors corre

sponding to the minima of the pair potential function V(k) [11]. Moreover, 

these ordering waves will be the most energetically favorable, and thus will 

have the most rapid rates of formations out of the disordered state. Hence, 

the existence of the special point V( k) minima in calcite and dolomite of

fers a simple explanation of the observed ordered rhombohedral carbonates 

phases in these minerals. 

The interaction pair potential for a mixing of A and B atoms is 

(1.1) 

where VI J(r) is the potential between atoms of type I and J separated by a 

distance r . Since ordering species are C a and M 9 for calcite, the interaction 

pair potential is 

VCr) = VCaCa(r) + VMgMg(r) - 2VCaMg(r). (1.2) 

The ordering species in ferrroan dolomite (ankerite) are Ca, Mg and Fe, 

thus the cation ordering is ternary. However, since the M 9 and Fe disorder 

over the same sites, the ordering in dolomite may be treated as a pseudobi

nary ordering of Ca and X where X is (Mg, Fe). In this case 

VCr) = VCaCa(r) + Vxx(r) - 2Vcax(r). (1.3) 
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Hence, the result that the V (k) minima are at different special point ordering 

stars for calcite and ferroan dolomite is due to the difference in their pair 

potentials as defined by equations (1.2-3). 

The central aspect of the theoretical development in this chapter is 

the analogy between the cation ordering in the rhombohedral carbonates 

and substitutional ordering in FCC based alloys. Therefore, the theory 

section begins by describing why the cation ordering may be treated as a 

distribution over a pseudocubic FCC array. Further discussion will explain 

the relationship of ordered phases in calcite and dolomite to ordered phases 

in metal alloys. The ordering wave description of the ordered rhombohedral 

carbonated phases is developed using the pseudocubic cation FCC ordering 

frame. The ordering wave representation provides a means of determining 

the conditions for homogenous equilibrium. Using the result obtained from 

the equilibrium analysis, I describe how the ordered cation distributions may 

result from an ordering wave instability. 

In the discussion section, I describe how the results of the theory section 

offer a new perspective on how the precipitate phases in calcite and dolomite 

may have formed. In particular, I will argue that the special point order-
I 

ing wave instabilities provide a thermodynamically and kinetically favorable 

mechanism of producing the cation ordering in the observed rhombohedral 

carbonate phases. 
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II. THEORY 

A. Isomorphism with FCC Based Ordering 

The ordered phases that will be considered are superstructures of the 

calcite structure. The crystal structure results from the packing of carbon

ate groups and smaller metal ions. As shown in figure 1, the carbonate 

ions lie in the basal plane of the hexagonal calcite unit cell and have two 

orientations which alternate back and forth. The metal ions are surrounded 

by octahedral arrangement of oxygen atoms. The cation ordering results 

from the distribution of metal ions over the sites of these octahedrally co

ordinated positions. Hence, the carbonate groups playa passive role in that 

their oxygen atoms serve only to provide interstitial sites for the cations. 

The calcite structure is a distorted N aCI structure where the N a sites 

are occupied by metal cations and the CI sites by carbonate anions. The 

C 0 3 molecules are almost planar and lie in the < 1, 1, 1 > plane of the 

cubic unit cell for N aCI. This introduces a distortion in the < 1,1,1 > 

direction. If this distortion is neglected, the cation sites define a pseudocubic 

FCC array. Therefore, since the carbonate ions have a passive effect on the 

cation ordering, the cation ordering is analogous to the ordering of metal 

atoms in FCC based alloys. This is an important result that I wish to 

emphasize. Since both the cation ordering in the rhombohedral carbonates 

and the substitutional ordering in FCC based metal alloys may be described 

as a distribution over the sites of a pseudocubic FCC array, these two types 

of ordering are isomorphic. 
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The site positions and occupancies of the cations for the rhombohedral 

carbonate phases are given in table 1. The cation distributions are illustrated 

in figure 2 using a hexagonal ceil, and in figure 3 using a pseudocubic celL 

The transformation from the hexagonal coordinate system to a pseudocubic 

coordinate system is achieved using the relations 

A = (1,0, O)hex = (-1,0, l)cub 

B = (0,1, Ohex = (-1,1, O)cub 

C = (0,0,1 )hex = (2,2, 2)cub 

(2.1) 

(2.2) 

(2.3) 

These relations are obtained in the following way. The basal plane of the 

hexagonal unit cell corresponds to the < 1,1,1 > plane of the FCC pseu

docubic frame. Since the basis vectors A and B define the basal plane of 

the hexagonal cell, they must lie in the < 1,1,1 > plane of the FCC pseu

docubic frame. The close packed directions in a FCC frame are ~{1, 1,0}. 

Hence, by inspection of figure 3, the basis vectors for the basal plane of 

the hexagonal cell may be chosen to be (-1,0,1) and (-1,0,1), since these 

vectors are in the < 1, 1, 1 > plane and correspond to displacements equal 

to twice the distance in the close packed direction. In the hexagonal cell, 

there are six layers of cations, each layer being parallel to the basal plane. 

In a FCC crystal the normal direction from one < 1,1,1 > plane to the 

next is (1/3)(1,1,1). Hence, the C axis basis vector for the hexagonal cell 

corresponds to (2,2,2) in the FCC pseudocubic frame. 

The hexagonal and pseudocubic coordinate systems provide an equiva

lent means of describing the cation ordering, but the isomorphism with FCC 

... ' 



• 

51 

based metal alloys is easier to see using the pseudo cubic coordinate system. 

As shown in figure 3, the calcite phase (a) is the fundamental structure and 

is analogous to a FCC structure. The dolomite structure (f3) and precipitate 

phase 'Y are isomorphic with the CuPt and CuPta phases, respectively. On 

the other hand, the v and tt precipitate phases are isomorphic phases with 

the CuAu(I) and CuaAu phases, respectively. For the 8 precipitate phase, 

there is no isomorphic metal alloy phase, but this phase can still described 

as an isomorphic superstructure of the FCC superstructure. 

The fact that the matrix phases f3 and a, and the precipitate phases 'Y, 

tt, and v are isomorphic with known metal alloy phases suggests that the 

theoretical explanation of the cation ordering can be developed by analogy 

with ordering in metals. To emphasize this point of view, I will find it 

useful to refer to the cation distributions for the different rhombohedral 

carbonate phases by association with their corresponding isomorphic metal 

alloy phases, i.e., the matrix phases are a (FCC) and f3 (CuPt). Similarly, 

the precipitate phases are 'Y (GuPta), v (AuGu), tt (GuaAu), and 8 (A2B). 

For the 8 phase, I will use the generic notation A2B since this phase has no 

corresponding isomorphic FCC based metal alloy phase. 

B. Ordering Wave Description 

For a binary alloy, the ordering species are of two types. One is taken 

to be the solute, and the other the solvent. Let the probability of a site 

r of the FCC array being occupied by a solute atom be denoted as p(r). 

The values of solute probability taken over all the sites of the FCC array 
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defines the probability function p( r). The Fourier transform of the solute 

probability function is 

per) = L Q(k) e i27rk
.
r (2.4) 

k 

w here the Fourier coefficients Q( k) are defined by the relation 

Q(k) = ~ L nCr) e-i27rkor. (2.5) 
r 

This sum is computed over the N sites of the unit cell. The Fourier ampli

tude Q( k) is regarded as the amplitude of the ordering wave 

(2.6) 

From this point of view, the ordered superstructures results from a super-

position of ordering waves. 

Since the conventional unit cell of the FCC array is cubic with edge 

length a, one may define the real space positions to be 

r =a(x,y,z) (2.7). 

The wave vectors are then defined by the relation 

(2.8) 

where a is the length of the FCC unit cell. Let us regard the C a atoms 

as the solute, and the other atoms as the solvent. Using definitions (2.7-8) 

and equation (2.2), the solute probability function for each ordered phase is 

Fourier transformed. The resulting ordering wave amplitudes for the ordered 

rhombohedral phases are given in table 2. 
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In describing these phases it is useful to make use of the concept of 

an ordering star. The star of k is the set of non-equivalent wave vectors 

obtained by applying the point operations of the fundamental lattice onto 

the wave vector k. 

Two wave vector k and k' are equivalent if they differ by an reciprocal 

lattice vector, i.e., k - k' = H where H is a reciprocal lattice vector. This 

definition follows from equation (2.6). Since the wave function Pk(r) is 

evaluated over the discrete sites of the fundamental lattice, Pk( r) = Pk' (r) 

if k and k' are equivalent wave vectors. 

Let us consider the calcite sample. Within the calcite matrix, a 

(FCC), the two ordered precipitate phases are observed are v (AuCu) and 

/1; (Cu3Au). The AuCu phase is generated by the ordering wave (0,0,1), 

whereas the CU3Au phase results from a superposition of the three ordering 

vectors in the star of (1,0,0), i.e., (1,0,0), (0,1,0), and (0,0,1). However, 

it should be noted that both the AuCu and CU3Au phases have ordering 

wave vectors from the ordering star, {1, 0, O}. 

A different set of phases are observed in dolomite. Within the dolomite 

matrix, f3 (CuPt), two ordered precipitates phases are observed, , (CuPt3) 

and b (A 2B). The CuPt phase is generated by the ordering wave (t, t, t), 
whereas the CuPt3 phase result from a superposition of the ordering waves 

(0,0,1), (t,t,t), and (t,t,-t). The A2B phase is a superposition of 

ordering waves (t, t, t), ±( t, t, t), and ±( i, i, i)· A feature that these 

ordered phases in common is that their largest ordering amplitude is at 
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C. Equilibrium Conditions 

Let the interaction potential be given by the function VCr). The 

potential V(r) is due to the chemical mixing of ordering species, i.e., 

VCr) = VAA(r) + VBB(r) - 2VAB(r) where r is the distance between two 

ordering sites. The configurational energy is 

(2.9) 

Using equations (2.2) to Fourier transform equation (2.9), one obtains 

E = ~ L V(k)IQ(k)12 (2.10) 
k 

where 

V(k) = L VCr) e- i27rk .r (2.11) 
r 

and N is the number of atoms. 

Using equation (2.10) and the ordering amplitudes given in table 2, the 

configurational energies for the ordered phases are 

EOt = 0, (2.12a) 

N 1 1 1 1 1 
Ep = 2"[4 YeO, 0, 0) + 4V( 2' 2' 2)]' (2.12b) 

N 1 1 
Ell = 2"[4V(0,0,0) + 4V(1,0,0], (2.12c) 

N9 1 2111 
E-y = 2"[16 V(O,O,O) + 16 V(l,O,O] + 16 V(2' 2' 2)' (2.12d) 

N 9 3 
Ep. = 2"[16 V(O,O,O) + 16 V(l,O,O)], (2.12e) 

N4 1111 11111111 
E-y= 2"[gV(0,0,0)+9V(2'2'2)] + 18 V(S'S'S)+ 18 V(6'6'6)]· 

(2.121) 
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The derivation of equations (4.12a-f) makes use of the fact that the value of 

V(k) is the same for wave vectors in the same star of k. For example, for 

the stars {I, 0, o} and {!,!,!} , one obtains the identities 

V(l, 0, 0) = V(O, 1,0) = V(O, 0,1), (2.13) 

and 

(2.14) 

The stars {I, 0, O} and {!,!, !} are special point ordering stars since the 

vectors in these stars at located at special point positions in the reciprocal 

lattice. At the special points, the k-space gradient of any function of k 

will vanish as a consequence of symmetry. Therefore, at each special point 

position in k-space, any function f(k) will have a local maximum, saddle 

point, or local minimum. For example, at the (1,0,0) special point position 

in the reciprocal space, a four-fold rotation axis intersects a perpendicular 

mirror. Therefore, expanding V(k) about ko = (1,0,0) to the second order, 

one obtains 

(2.15) 

where k = ko + Sk. If V:~ > ° and V~~ > 0, then V( k) will have a local 

maximum at (1,0,0). IT the pair potential function V(k) does not have 

accidental minima, i.e., minima due to symmetry, then the global minima 

of V( k) must be at one of the special point positions. 

The equilibrium phase is determined by the minimization of the energy. 

Let us consider the consequences of assuming that the V( k) minima are at 
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either {1, 0, O} or {t, t, t}. There are two phases with Ca composition 

50% - f3 (CuPt) and v (AuCu). Likewise, there are two phases with Ca 

composition 75% - , (CuPt3) and J.L (Cu3Au). To determine the conditions 

for homogenous ordering, the energies of phases with same composition are 

compared. If the V(k) minima is at {I, 0, OJ, then by equations (2.12e-f), 

the v and J.L phases have the lower energy for compositions 50% and 75%, 

respectively. These are the ordered precipitates phases observed in calcite. 

On the other hand, if the V ( k) minima is at {t, t, t }, then the f3 and , 

phases have the lower energy for compositions 50% and 75%, respectively. 

These ordered phases are observed in dolomite. 

The occurrence of the b (A2B) phase in dolomite is also consistent with 

the assumption that the V ( k) minima is at {t,!, t }. This is because the 

largest (dominant) ordering wave amplitude of the b phase is at (t, !, t). By 

Khachaturyan's maximum amplitude principle [9], for a fixed composition, 

the system seeks to maximize the ordering wave amplitude corresponding to 

the V(k) minima, but the ground state condition may require the formation 

of additional ordering waves. His theory predicts that the wave vector of the 

dominant (largest amplitude) ordering wave(s) correspond to the positions 

in k-space where V(k) has minima. For the composition (2/3) Ca and V(k) 

minima at {!,!,!}, by Khachaturyan's maximum amplitude principle, the 

minimum energy homogenous ordering configuration is an ordered sequence 

on consecutive < 1,1,1 > planes of the pseudo cubic FCC ordering frame. 

The pattern of this sequence is ... (CaMgCaCaCaMg).... This is the 

ordering pattern observed for the b (A2B) phase. 
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From these considerations, it follows that the V( k) rmmma are at 

{1, 0, o} for calcite and at {t, t, t} for dolomite. The difference in the 

pair potential functions for ordering in calcite and dolomite is likely due to 

the fact that for the ordered phases in calcite there is a binary ordering of 

Ca and Mg, whereas for the ordered phases in ferroan dolomite there is 

a pseudobinary ordering of Ca and MgxFel-x. Hence, the addition of Fe . 

causes the pseudobinary pair potential for dolomite to differ from the binary 

pair potential for calcite. 

An important point to note is that whereas all of the ordered phases 

observed in calcite require that the V(k) minima be at {1,0,0}, all of the 

ordered phases in dolomite require that the V ( k) minima be at {t, t, t }. 

D. Ordering Wave Instabilities 

For stability of the disordered state, the second order coefficient b( k) in 

the free energy expansion 

F = pO + ~ Lb(k)IQ(k)12 
k 

(2.16) 

must be positive for all values of k. The coefficient b(k) is composition 

and temperature dependent, i.e., b(k) = b(k; c, T). If b(k) is negative, then 

ordering waves with wave vector k will form spontaneously. Khachaturyan 

has shown that mean-field theory predicts that the ordering wave instability 

will occur if the temperature is below the instability temperature 

T*(k) = -V(k)c(l- c) (2.17) 

where c is the composition and k is the wave vectors of the instability or-

dering waves [10]. The highest instability temperature will be for ordering 
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waves with the most negative value of V(k). Hence, the ordering wave vec

tors for the ordering wave instability will be the vectors in the star of k 

corresponding to the V(k) minima. Since the minima are most likely to be 

at the positions of a special point star, the ordering wave instability is most 

likely to produce a special point superstructure. 

After the initial instability, the state of the system may evolve rapidly 

if the ordering transition is of the first kind. Hence, during the time between 

the initial instability and the final formation of the precipitate phase, the 

system may be in transient states of non-equilibrium. Ordering wave insta

bilities will occur for all ordering wave vectors for which b(k; T, c) < 0. If the 

temperature is below the instability temperature, b(k; T, c) will be negative 

for some region surrounding points where V(k) takes on its minimum value. 

This leads to superposition of ordering waves with wave vectors within the 

b( k; T, c) < ° region. However, the growth rate of the ordering waves is 

largest for the wave vectors for which V( k) is the most negative. Hence, 

the ordering waves corresponding to the V ( k) minima will grow fastest. 

Therefore, the kinetics of the instability transition favors the formations of 

ordering waves with wave vectors at the V( k) minima positions in k-space. 

It has been shown that the conditions for equilibrium imply that the 

V(k) minima are at {1,0,0} in calcite and {t,t,t} in dolomite. Both 

{I, 0, O} and {t, t, t} are special point ordering stars. Therefore, special 

point ordering wave instabilities may occur in both calcite and dolomite. 

The ordering wave vectors of the instability ordering waves is deter-
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mined by the k-space positions of the V(k) minima. However, if two or-

dering wave vectors k and k' appear, then the loss of symmetry caused by 

these waves may introduce the additional ordering wave k + k'. Hence, the 

initial ordering wave instability may produce ordering waves from both the 

ordering star corresponding to the V( k) minima and additional ordering 

stars. 

Let us consider the possible ordering wave instability in calcite. The 

transition from the disordered solid solution to v (CuAu) or I-l may occur 

by means of an {I, 0, O} ordering wave instability. While both phases result 

from the same ordering wave instability, they obtain different crystal struc

tures because CuAu contains only one ordering wave from the {I, 0, o} star, 

whereas CU3Au contains three ordering waves vectors from the same star. 

For the ordering transition in dolomite, the situation is somewhat more 

complicated. The transitions from the disordered solid solution to f3 (CuPt), 

, (CuPt3), and 8 (A2B) all involve the formation of a (~,~,~) ordering 

wave. However, the nature of the transitions are different. The transition 

to CuPt may occur by means of single {~,~, ~} ordering wave, whereas for 

the transition to CuPt3 the initial {~, ~, ~} instability produces the ordering 

wave vectors (!, !, !) and (!, ~, -! ), but the symmetry breaking of these 

waves leads to the simultaneous formation of a (0,0,1) ordering wave vector 

sInce 

(4.13) 

The transition to the A2B phase begins with an initial {!, !,!} instability 

which produces a non-stoichiometric CuPt phase. The ordering pattern 
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is ... (CaXCaXCaX) ... where X = Caz(Mg, Fe)l-Z' This phase can 

transform to the A2B phase by replacing the second X in the sequence with 

Ca, i.e., 

... (CaXCaXCaX)... -+ .,. (CaXCaCaCaX) .... ( 4.14) 

This secondary ordering transformation introduces ordering waves from the 

stars {t, t, t} and {-k, -k, -k }. However, if the V ( k) minima are at {~, ~, ~ }, 

the (~, ~, ~) ordering wave should form first by instability. The additional 

ordering waves then form as the temperature is lowered sufficiently below 

the instability temperature. This is because at Ca composition (2/3), a 

single (~, ~, ~) ordering wave cannot exist in the ground state. 

III. DISCUSSION AND CONCLUSION 

Compared to metals, minerals are much more complicated in struc

ture. Yet, it has been shown that the cation ordering in the rhombohedral 

carbonates can be theoretically investigated by analogy with FCC based 

metal alloys. I will now discuss how this analogy provides a simple means 

of explaining how the precipitates in calcite and dolomite may have formed. 

If a metal alloy is heated to a sufficiently high temperature, its atoms 

will disorder over the sites of the ordering frame. To discuss the sequence 

of events that occur upon cooling of the alloy there are two temperatures of 

interest. One is the transition temperature TO and the other is the instability 

temperature T*. If the alloy is cooled to a temperature between TO and T*, 

then there is a thermodynamic driving force for the disorder to ordering 

transformation, but the disordered alloy is still thermodynamically stable. 

." 



61 

Hence, the transformation requires nucleation and growth. However, if the 

alloy is cooled below the instability temperature, then the disordered alloy 

becomes thermodynamically unstable. This may lead to the spontaneous 

formation of ordering waves. Initially, the amplitudes of these waves are 

small, but they grow with time and eventually produce ordered phases. 

The calcite and dolomite minerals are believed to have grown out of an 

aqueous solution at a temperature well below the cation ordering temper

ature. In this case, the initial disordering of cations could not have been 

produced by thermal forces. However, as the metals and carbonate ions are 

transferred from the aqueous solution to the surface of the mineral, it seems 

likely that the initial surface configuration of the cations will be random. 

That is, while the cation and anions position themselves according to the 

crystal pattern of calcite, the metal ions are randomly distributed over the 

cation sites. Since the cation sites form a FCC array, the subsequent cation 

ordering may be discussed by analogy with FCC based alloys. 

At the temperature where the calcite and dolomite minerals form, the 

kinetics in the bulk are too slow for cation ordering. However, near the 

surface where the cations and anions are more loosely bound, the kinetics 

of cation ordering may be sufficiently rapid to permit the formation of pre

cipitates. After these precipitates form, the crystal continues to grow, thus 

enclosing the precipitates in the bulk. Once inside the bulk, the kinetics 

are too slow for the precipitates to dissolve. Hence, the precipitates that 

initially formed near the surface become trapped within the bulk. 

Let us now discuss the cation ordering using the theoretical results of 
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the last section which was based on the assumption that the cations ordered 

over the sites of a pseudocubic FCC array. The ordering of cations over 

the sites of the FCC fundamental lattice can then be described using the 

ordering wave representation. It has been shown that the ordered phases in 

calcite are generated by ordering waves from the {I, 0, O} star. The ordered 

phase in dolomite is more complicated, but the dominant (largest amplitude) 

ordering wave is from the {t, t, t} star. The stars {I, 0, O} and {t, t, t} 
are located at the special point positions in the reciprocal space of the FCC 

fundamental lattice. The special point positions are significant in that the 

minima and maxima of any function of wave vector is most likely to fall at 

these points. 

Let r( k) be the rate of formation of ordering waves with wave vector k. 

This may be defined by the rate of change of the ordering wave amplitude 

Q(k), i.e., r(k) = 81~~k)l. The most likely maxima positions of the func

tion r( k) are at the special point positions. This can be explained in the 

following way. Let us assume that the ordering energy results from pairwise 

interactions. Then the energy of an ordering wave with amplitude Q( k) is 

V(k)IQ(k)12 . This implies that the change of energy due to a change in 

wave amplitude is linearly proportional to V(k). The most likely change in 

state are those which produce the most negative change of energy. Thus, as 

V ( k) becomes more negative, r( k) increases. Therefore, the maximum rate 

r( k) will be for the wave vectors corresponding to the V( k) minima. Hence, 

by this logic, the formation of special point ordering waves is a consequence 

of V(k) having minima at special point positions. 

It follows from these considerations that the observed cation ordering 
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can be explained solely in terms of kinetics. However, the results of the pre

vious section show that the cation ordering can also be explained in terms of 

thermal forces. It was shown that if the ordered phases are predicted by min

imizing the homogenous ordering energy, then it follows that the observed 

ordered structures in calcite and dolomite are consistent with the assump

tion that the V ( k) minima are at {I, 0, O} and {~, ~, ~ }, respectively. This 

result was achieved by a consideration of the conditions for ground state 

equilibrium and ordering wave instabilities. Below a certain temperature 

T* which was called the ordering wave instability temperature, an infinitesi

mal variation in the ordering wave amplitude Q( k) will lower the mean-field 

free energy if the temperature is below T* = -V(k)c(l - c), where c is 

the solute concentration. If this condition is satisfied, ordering waves will 

spontaneously form. Therefore, it follows that a {I, 0, O} ordering wave in

stability will occur in calcite and a {~,~, ~} ordering wave instability will 

occur in dolomite. Moreover, it was shown that the ordered phases observed 

in calcite, v and Il, can exist as equilibrium phases if the V(k) minima are at 

{I, 0, O}, whereas the ordered phases observed in dolomite, (3, ",(, and 8, can 

exist as equilibrium phases if the V(k) minima are at {~,~, ~}. However, 

because more than one type of precipitate is observed within the matrix, the 

mixture of phases in calcite and dolomite cannot correspond to an equilib

rium microstructure. Rather, the system must be metastable. Nevertheless, 

each precipitate phase should satisfy the conditions for homogenous ordering 

equilibrium, otherwise an ordering transformation to another phase would 

likely occur. 

From these considerations, it follows that precipitates in calcite and 
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dolomite can be explained by a kinetic and/or thermodynamic mechanism. 

The theoretical approach developed in this chapter provides an consistent 

phenomenological explanation of the experimental observations, however, to 

establish the theory at a more basic level would require a more detail study 

such as a first principles calculation or an experimental investigation to de

termine the sequence of events that produce the precipitates. However, this 

work suggest that the occurrence of the precipitates in calcite and dolomite 

may have a rather simple explanation in terms of ordering theory. In par

ticular, the analogy with FCC based ordering provides a means of analyzing 

the cation ordering by treating it as a specific case of FCC based ordering. 

In conclusion, two main results are presented in this chapter. First, it 

was shown that the observed ordered phases in calcite and dolomite can be 

described as a distribution of cations over the sites of a pseudocubic FCC 

array. The ordered phases (3, " v and J-l were found to be isomorphic with 

the FCC based special point superstructures GuPt, GuPt3, GuAu( I), and 

GU3Au, respectively. Secondly, the occurrence of the observed precipitates 

can be given a consistent explanation using the pair potential approximation. 

Of particular importance is the function V( k), which is the Fourier transform 

of the interaction pair potential V(r). It was shown that the formation of 

the ordered precipitates could be explained in terms of the k-space positions 

of the V( k) minima. This result followed from a consideration of kinetic 

rates for ordering wave growth, thermodynamic ordering wave instabilities, 

and equilibrium conditions for homogenous ordering. In particular, it was 

shown that the ordered phases are consistent with a V( k) minima at {l, 0, O} 

in calcite and at {~,~, ~} in dolomite. 
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Table 1. Atomic coordinates of cation sites in rhombohedral carbonates and 

their occupancy [27]. 

Hexagonal Cell Pseudocubic Cell Ca Occupancy 

x y z x y z a p v jI JJ b 

• 0 0 0 0 0 .0 1 1 1 1 0 1 
1/2 0 0 -1/2 0 1/2 1 1 0 1 I I 
0 1/2 0 1/2 -1/2 0 1 I 1 1 I 1 
1/2 1/2 0 0 -1/2 1/2 I I 0 I 1 1 
1/6 1/3 1/6 1/2 0 1/2 1 0 0 0 I 0 
2/3 1/3 1/6 0 0 1 1 0 1 1 0 0 
1/6 5/6 1/6 1 -1/2 1/2 1 0 0 0 I 0 
2/3 5/6 1/6 1/2 -1/2 1 1 0 I I I 0 
1/3 1/6 1/3 1/2 1/2 I 1 1 I 1 I 1 
5/6 1/6 1/3 0 1/2 1 1/2 1 1 0 I 1 1 
1/3 2/3 1/3 1 0 1 1 1 I 1 0 I 
5/6 2/3 1/3 1/2 0 11/2 1 1 0 1 I I 
0 0 1/2 1 1 1 1 0 1 1 0 1 
1/2 0 1/2 1/2 1 11/2 1 0 0 0 1 1 
0 1/2 1/2 1 1/2 1/2 1 I 0 1 1 1 1 
1/2 1/2 1/2 1 1/2 1 1/2 1 0 0 0 1 1 
1/6 1/3 2/3· 1 1/2 1 11/2 1 1 0 1 I 1 
2/3 1/3 2/3 1 1 2 1 1 1 1 0 1 
1/6 5/6 2/3 2 1/2 1 1/2 1 1 0 I I I 
2/3 5/6 2/3 1 1/2 1/2 2 I 1 I I I 1 
1/3 1/6 5/6 11/2 1 1/2 2 1 0 1 1 I 0 
5/6 1/6 5/6 1 11/2 21/2 1 0 0 0 1 0 
1/3 2/3 5/6 2 1 2 1 0 1 1 0 0 
5/6 2/3 5/6 I 1/2 1 21/2 1 0 0 0 1 0 
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Table 2. Wave vectors k in cubic coordinates of ordering waves and their 

amplitudes for superstructures of rhombohedral carbonates [27]. 

kC kC P 
-

1 ~ ex V }' Jl. 

0 0 1 1/2 1/2 3/4 3/4 2/3 .e. 

0 0 0 0 0 0 -1/4 0 
1 0 0 0 0 0 -1/4 0 
0 1 0 0 1/2 1/4 -1/4 0 
1/2 1/2 0 1/2 0 1/4 0 1/3 
1/2 -1/2 0 0 0 -1/4 0 0 
1/6 1/6 0 0 0 0 0 -1/6 

-1/6 -1/6 0 0 0 0 0 -1/6 
1/3 1/3 0 0 0 0 0 1/6 

-1/3 -1/3 0 0 0 0 0 1/6 
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Figure 1. The calcite structure, CaC03 [32]. 
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a, v 

'Y 

Figure 2. Ordered cation distributions for rhombohedral carbonates in a 

hexagonal coordinate system [28]. Ca and Mg atoms are represented by 

closed and open circles respectively. The isomorphic metal phase is given 

below the greek symbol for each phase. 
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Figure 3. Ordered cation distributions for rhombohedral carbonates in pseu

do cubic coordinate system [28], Ca and Mg atoms are represented by closed 

and open circles respectively. The isomorphic metal phase is given below 

the greek symbol for each phase. 
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CHAPTER 4 

PRECIPITATION OF L12 PHASE IN FCC BASED ALLOYS 

This chapter presents a theoretical investigation the thermodynamic 

conditions whereby the L12 phase may precipitate out of a quenched disor

dered FCC solid solution. The different transformations paths and mech

anism that may the produce precipitates within the matrix are classified. 

Using a pair potential mean field model, the instability temperatures for 

spinodal ordering of the disordered phase and spinodal ordering of the ho

mogeneously ordered L12 phase are computed. This theory is applied to 

the case of h' precipitation in the Al - Li alloy. The results predict that 

depending on which part of the two phase field the alloy is quenched into, 

the L12 phase may precipitate out of the disordered matrix, or the matrix 

may homogeneously order to the L 12 phase which then decomposes to a two 

phase mixture. Each of these transitions may occur by means of nucleation 

and growth or by spinodal instability. 

I. INTRODUCTION 

The L12 phase is observed as a precipitate phase in many face centered 

cubic (FCC) based alloys. A two phase mixture of h' precipitates and a 

disordered solid solution results from quenching the alloy from above the 

transition temperature. While the fractions of h' and a phases are fixed 

by the conditions for thermodynamic equilibrium, the size and distribution 

of the h' precipitates are highly dependent on the transformation path and 
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mechanism of precipitate formation. In a recent work [29], the thermody

namics of the 6' precipitation was modeled using the pair potential approx

imation and the mean field approximation. This work predicted that the 

precipitation process may preceded be preceded by homogenous ordering of 

the matrix, a result that has been subsequently confirmed experimentally. 

In this chapter a theoretical investigation of the transformation paths 

and thermodynamic mechanisms that produce L12 precipitates within a 

disordered matrix is presented. This theory is then applied to the Al - Li 

alloy system. A good agreement between theory and experimental data is 

obtained. The context of the problem that will be addressed in this chapter 

will be discussed to assist in understanding the motivation for this study. 

In many metal alloys the atoms are distributed over the sites of an FCC 

array. The disorder to order transformations produces ordered phases that 

are superstructures of the FCC structure. One the most common of these 

is the L12 structure shown in figure 1. This phase is of significant interest 

because in many systems it serves as an age hardening precipitate. Since the 

distribution of precipitates is an important aspect of the microstructure, it 

is desirable to understand how they form. In many alloys the L 12 type pre

cipitates are known to result from a nucleation and growth process, however, 

in the Al - Li system, there is experimental evidence that the precipitates 

result from a spinodal decomposition of a homogeneous ordered L12 phase. 

A nucleation and growth precipitation occurs in the following way. First 

the alloy is solution treated by heating it to above the transition point. 
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This produces a disordered FCC solid solution. Then the alloy is quenched 

to a temperature below the transition point. Assume that the quenched 

disordered phase is thermodynamically stable, but that it is inside the two 

phase region of the phase diagram. Thermodynamic fluctuations of the 

stable phase will cause local variations in the composition. When the local 

composition is near to the stoichiometric composition of the L12 phase, an 

local reconfiguration of the atoms produces a coherently ordered precipitate. 

The precipitate may subsequently grow thereby decreasing the concentration 

of the surrounding disordered matrix. This process will continue until the 

concentrations and fractions of the disordered and precipitate phase have 

the values required by the phase diagram, that is, until an equilibrium two 

phase mixture is obtained. 

The process of spinodal decomposition for a homogeneously ordered 

matrix occurs in the following way. Again, the alloy is solution treated by 

heating it above the transition point. Now assume that upon quenching 

to alloys transforms homogeneously to the L12 phase. This ordering trans

formation can occur by either nucleation and growth, if the temperature is 

above the supercooling limit, or by ordering wave instability, if the temper

ature is below the supercooling limit. In either case, one of two possibilities 

exist. If the ordered phase is stable with respect to composition variations, 

then the transition to a two phase mixture requires nucleation and growth. 

However, if not, then a spontaneous variation in the composition will occur. 

This leads to spinodal decomposition of the L12 ordered matrix. 

The process of spinodal decomposition for a disordered phase is quite 
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well known. However, the conclusion reached in reference 29 that spinodal 

decomposition of an ordered phase may also occur is not as well known . 

Moreover, reference 29 is significant in that it provided convincing theoret

ical evidence that spinodal ordering of the L12 ordered matrix in Al - Li 

may prodU:ce the 8' precipitates observed in that system. 

The organization of this chapter is as follows. In section II the trans

formation paths and mechanisms that may produce a two phase mixture 

( disordered solid solution + L12 ordered precipitates) are discussed. The 

purpose of this section is to emphasize the fact that the existence of differ

ent types of transformations paths and mechanisms that follow from general 

principles of thermodynamics and is therefore not a model dependent result. 

In section III a thermodynamic analysis using pair potential mean field the

ory is presented. The analysis is general in that the results apply to all 

systems where L12 ordering occurs. In section IV, the results of section III 

are applied to the Ai - Li system and the predicted behavior is discussed. 

Section V contains a brief summary and discussion of the theoretical results 

presented in this chapter. 

II. TRANSFORMATION PATHS AND MECHANISMS 

Suppose that that an initially disordered state ao transforms upon 

quenching to the two phase mixture a + 8'. There are two possible trans

formation paths. 1) The 8' precipitates grow out of the disordered matrix, 

(2.1) 

2) The matrix homogeneously ordered to a non-stoichiometric L12 phase 8~ 
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which subsequently decomposes to the two phase mixture, 

00 -+ h~ -+ 0 + hi. (2.2) 

Each transformation can occur by one of two mechanisms: 1) Nucleation 

and growth, and 2) Thermodynamic instability. This implies that there are 

six possible methods. The conditions for these methods can be stated using 

the general principles of thermodynamic equilibrium stability. 

A phase is stable if all possible infinitesimal perturbations of its state 

increase its free energy. Two types of instabilities may occur. The first is 

instability with respect changes in long wave length composition waves. This 

leads to spinodal decomposition. The second is instability with respect to 

the formation of an ordered phase, i.e., an ordering instability. (This is also 

called spinodal ordering.) However, if the alloy is stable, then a change to 

another state requires a finite free energy fluctuation. This can be achieved 

only by a nucleation and growth process. 

Suppose that the disordered alloy is quenched to a temperature where 

it is stable with respect to both spinodal decomposition and ordering. Then 

the transformation to the two phase mixture can occur only by means of 

nucleation and growth, 

00 -+ 0 + h. 
NG 

(2.3a) 

On the other hand of the quenched alloy is unstable with respect to compo-

sitional variation, then spinodal decomposition occurs, 

00 -+ 0 + h. 
SD 

(2.3b) 

.. 
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In this case composition waves emerge. As regions of the alloy develop local 

compositions near to the stoichiometric composition of 8' , precipitates begin 

to form at these regions. Hence, the sequence is first spinodal decomposition 

then ordering. 

Suppose that the disordered alloy orders homogeneously after being 

quenched. If the temperature is below the ordering transition point but 

above the supercooling limit, the disorder to order transformation will re-

quire nucleation and growth, whereas as if it is below the supercooling tem-

perature, then spinodal ordering will occur. The matrix is then a homoge

neously ordered L12 phase. Next, two possibilities exist. The transformation 

to the equilibrium two phase mixture can occur by spinodal decomposition 

or by nucleation and growth. For the first case the ordered matrix sponta-

neously develops compositional waves, whereas for the later case disordered 

regions emerge out of the ordered matrix. It therefore follows that the fol-

lowing four possibilities exist, 

ao ~ 8~ ~ a + 8' 
NG NG ' 

(2.3c) 

ao ~ 8~ ~ a + 8' 
NG SD ' 

(2.3d) 

ao ~ 8~ ~ a + 8' , 
SD NG 

(2.3e) 

a ~ 8' ~ a+8'. o SD 0 SD 
(2.3J) 

The precipitation methods given in equations (2.3a-f) are very gene~al. 

The only assumption so far have been that initially disordered alloy trans-

forms to a two phase mixture and that the ordering transformation involve 
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only L12 ordering. Hence, the classification of methods is not dependent on 

any thermodynamic model. However, to demonstrate how the conditions of 

thermodynamic equilibrium and stability determine which method produces 

precipitation, it is useful to introduce a specific thermodynamic model. The 

pair potential approximation will be used in the mean-field limit since this 

provides a simple means of computing the free energy, and hence predicting 

the thermodynamic behavior. 

III. THERMODYNAMICS 

A. Pair Potential Mean-Field Free Energy 

The Al and Li atoms are assumed to be distributed over the sites of 

a FCC array. The thermodynamic state of the alloy is specified by the 

probability function, p( r) which defines the probability of each site r being 

occupied by a solute atom. In the mean field limit and assuming pairwise 

interactions, the energy is 

1 
E = '2 LP(r)V(r - r')p(r) 

rr' 

(3.1) 

where VCr) is the interaction pair potential and the entropy is 

s = - L [p(r)ln(p(r)) + (1- p(r))ln(l- p(r))]. (3.2) 
r 

The mean field free energy is given by the formula 

F=E-TS (3.3) 

where E and S are defined by equations (3.1) and (3.2) respectively and the 

temperature is units of energy. 



Fourier transforming the probability function, 

where 

r = a(xex + ye y + zez ), 

271" . 
k = -(kxex + kye y + kze z ), 

a 
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(3.4) 

(3.5) 

(3.6) 

and a is the cell length of the fundamental FCC cell. Using equations (3.1) 

and (3.4), the energy may be written in the form 

E = ~ I: V(k)IQ(k)12 
k 

(3.6a) 

where N is the number of atoms in the alloy and 

V(k) = I: VCr) ei27rk .r • (3.6b) 
r 

B. Stability of Phases 

Consider the change in free energy resulting from a variation of the 

probability function. Adding to the equilibrium probability function p( r) 

an additional term hp(r), the probability function is 

per) = per) + hp(r). (3.7) 

Since the first variation in free energy will vanish if the phase defined by p( r ) . 

is at equilibrium, the change in the free energy hp(r) is, to second order, 

hF = ~ I: A(r, r')hp(r)hp(r') 
rr' 

(3.7) 
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62F 
A(r, r') = 6p(r )6p(r') 
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(3.8) 

Substituting equations (3.1-4) and (3.6) into equation (3.8), one obtains 

') ( ') T6rr, 
A(r, r = V r - r + p(r )(1 _ p(r)) (3.9) 

where 6rr , is the kronecker delta function. 

The eigenvalues of A( r, r') are defined by the eigenequation 

(3.10) 
r' 

The phase will be thermodynamically unstable if one or more eigenvalues 

are negative. If the ith eigenvalue is negative, there will be a corresponding 

fluctuation associated with the eigenfunction 8pi(r). The eigenvalues are a 

function of temperature, composition, and equilibrium probability function 

p(r). Hence, the conditions for instability are found by solving for the zero 

eigenvalues, i.e, 

(3.11) 

The instability limit is determined by the highest temperature solution of 

equation (3.12) for a given composition. The locus of points (T, c) obtained 

in this way defines the instability limit for the phase defined by the equilib-

rium probability function. 

The Fourier transform A(r, r') is 

A( k, k') = L: L: A( r, r')e i211'(k.r+k' .r') . (3.12) 
r r' 



" 

79 

Since an phase will have a finite number of non-zero Fourier coefficients Q( k), 

the matrix A( k, k') can be put in block diagonal form. Hence, to determine 

the conditions for thermodynamic instability, the eigenvalues of each block 

must be solved for. The matrices A( r, r') and A( k, k') will of course define 

the same eigenvalues and vectors, however, for the purposes of the chap-

ter, it is more convenient to investigate the conditions for thermodynamic 

instabilities using the k-space representation of the matrix A. 

C. Conditions for Instability of Disordered Phase 

The probability function for the disordered phase a is 

p(r) = c. (3.13) 

where c is the composition of the alloy. Substituting equation (3.13) into 

equation (3.9), the matrix A is 

, , Tbrrl 
A(r, r ) = V(r - r ) + ( ) 

c1-c 
(3.14) 

Fourier transforming equation (3.14) gives the result 

(3.15) 

Since this matrix is diagonal, its eigenvalues are 

(3.16) 

and have corresponding eigenfunctions 

(3.17) 
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The eigenvalue Ak will vanish when 

T = T; = -V(k)c(l - c). (3.18) 

The highest temperature T; for a given composition determines the insta

bility temperature. 

The maxima of T; correspond to the minima of V(k). It therefore 

follows that in the mean-field limit, the instability wave vector is determine 

by the k-space positions of the minima of V(k). If the minima of V(k) 

is at {O, 0, OJ, the alloy will be unstable with respect to k = ° waves, i.e., 

composition waves. On the other hand, if the V (k) minima is at the position 

of the star of k*, then the alloy will be unstable with respect to the formation 

of {k*} ordering waves. 

Now consider the transformation of the disordered alloy 0 0 to the two 

phase mixture 0 + 8'. L12 ordering would not occur unless V(l, 0, 0) < 

V(O, 0, 0). This is because if otherwise the {I, 0, O} ordering waves of the 

L12 phase would increase free energy. The instability temperature for 

(0,0,0) compositional instability must be lower than for the {I, 0, O} order

ing wave instability. Hence, the disordered phase can not undergo spinodal 

decomposition, but it can experience a {I, 0, O} ordering wave instability. 

From equation (3.18), the {I, 0, O} ordering wave instability temperature is 

Ttl,O,O) = - V(l, 0, O)c(l - c). 

D. Conditions for Instability of L12 Ordered Phase. 

Consider now the case where the equilibrium phase is an ordered phase. 
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Writing the stability matrix A in the form 

A(r, r') = VCr - r') + Ta(r )6rr l (3.19) 

where 
1 

a(r) = p(r)(l- p(r)) , (3.20) 

Fourier transforming equation (3.19) gives the result 

A(k, k') =V(k) + Ta(k - k')6kkl. (3.21) 

Note that the off-diagonal matrix element A(k, k') is nonvanishing only when 

a(k - k') is non-zero, i.e, when the difference between the vectors k and k' 

is one of the wave vectors of the equilibrium ordered phase. This is because 

the functions p( r) and a( r) have the same crystal symmetry, and thus, their 

Fourier transforms p(k) and a(k) will have non-vanishing coefficients for the 

same wave vectors. 

The probability function for the L12 has non-zero Fourier coefficients 

for fore k vectors, 

{ 

ko = (0,0,0) 
kl = (1,0,0) 
k2 = (0,1,0) 
k3 = (0,0,1) 

(3.22) 

Hence, p( k) and a( k) will have non-vanishing coefficients for only the wave 

vectors ko, kI, k2' and k3 • Therefore the matrix A(k, k') can be put a block 

diagonal form where each block is a 4 by 4 matrix. The basis vectors for the 

blocks are k + ko, k + kl' k + k2' and k + k3 • Using the shorthand notation 

V ( k) = Vk and a ( k) = a k, the the corresponding block matrix is 

Takl 
Vk+k1 + Tako 

Tak3 
Tak2 

Tak2 
Taka 

Vk+k2 + Tak o 

Ta k 1 

(3.23) 



82 

where identities 

ki = -ki i = 1,2,3 (3.24) 

and 

(3.25) 

have been used. (Two wave vector ki and kj are equivalent, ki = kj, if they 

differ by a reciprocal lattice vector.) Let the four eigenvalues be denoted as 

>'l(k), >'2(k), >'3(k), and >.(k). Each eigenvalue is a function of temperature 

and composition. At a given composition, the instability temperature is 

determined by the highest temperature for which there exists a vanishing 

eigenvalue, i.e., 

>'i(kj T, c) = o. (3.26) 

To solve for the solution of equation (3.26), one may recognize that the cubic 

symmetry of the L12 phase implies the identities 

(3.27) 

Two cases may occur. If the solution of equation (3.6) is for k = 0, then 

there will be an instability which causes a spontaneous variation in the 

composition and ordering wave amplitudes of the L12 phase. However, if 

the solution of equation (3.6) is for k = 0, then the instability introduces 

new ordering waves with wave vectors given by equation (3.22). 

For spinodal decomposition of the ordered 6' phase, the solution of 

equation (3.6) must correspond to the first case, that is, for k = O. Then 

since the L12 phase and the FCC fundamental lattice have cubic symmetry, 
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the block matrix for k = 0 takes the form 

( 

Vooo + Taooo TaIoo TaIoo 
Tatoo VIOO + Taooo Tatoo 
Tatoo Tatoo VlOO + Taooo 
TaIoo TaIoo, TaIoo 

(3.28) 

With some algebra, it can be shown that the eigenvalues of this matrix are 

(3.29a) 

A2 =x - y (3.29b) 

(3.29c) 

where 

x = Vooo + VtoO T 
2 - aooo (3.29d) 

1 [ 2] 1/2 Y = 2" (VtoO - Yooo + 2TalOO) + 12(Taloo) . (3.2ge) 

From these equations, it is apparent that Al is smallest when order param

eter is non zero. (If the order parameter were zero, the probability function 

would correspond to the disordered state.) The spinodal instability occurs 

when Al vanishes, i.e., Al = O. Solving equation (3.29a) for T and taking 

the positive solution, the instability temperature is found to be 

(3.30a) 

where 

1 1 
B = 4[3Vooo + ViooP2(1 - P2) + 4 [Vooo + 3Vioo]PI(1- pt), (3.30b) 

c = Vooo ViOOPl (1- PI )P2(1 - P2)' (3.30c) 
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and PI, and P2 are the solute probabilities on the corner and face sites of 

the fcc unit cell respectively. In deriving equations (3.30b-c), the relations 

al = aOOO + 3alOO (3.31a) 

(3.31b) 

were used. These were obtained by Fourier transforming the function a( r ) 

and assuming L12 symmetry. 

The eigenvector corresponding to the eigenvalue Al is 

(3.32) 

where 

, = _ [aooo + V(O) - AI] 
3 a lOO TalOO 

(3.33) 

The eigenvector <I> can be transformed from the k-space to real space repre-

sentation by using the Fourier transform equation, 

<1>( r) = L <1>( k )e i27rk
.
r (3.34) 

k 

The function ,( k) will have non-zero coefficients for the vectors (0,0,0), 

(1,0,0), (0,1,0), and (0,0,1). Therefore, the function ,(r) will have L12 

symmetry. Evaluating equation (3.34) leads to the result 

1 
<1>1 = <1>(0,0,0) = (1 + 3,2) [1 + 3,] (3.35a) 

1 
<1>2 = <1>(1,0,0) = <1>(0,1,0) = <1>(0,0,1) = (1 + 3,2) [1 -,] (3.35b) 

• 
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The quantities <PI and <P2 give the variations for the corner and face sites of 

the FCC fundamental cell. When the L12 phase is almost fully ordered the 

coefficient, is close to unity. Then by equation (3.35b), <P2 is approximately 

zero. Therefore, the decomposition instability is largely confined to the 

(0,0,0) sites of the FCC cell. 

An important point that has been illustrated by the foregoing deriva

tions is that the instability of the L12 phase leads to the formation of cou-

pled composition and ordering waves. Hence, when the instability limit is 

reached, both the composition and ordering wave amplitudes spontaneously 

change together. The relationship between the couple waves is determined 

by the eigenvectors of the instability matrix A. 

E. Calculation of Phase Diagram and Instability Limits 

The probability function for the L12 phase has the form 

(r) = {PI = C + t1] come: sites 
P P2 = C - '41] face SItes 

(3.36) 

Using equations (3.1-3,6), the mean-field free energy per site is 

(3.37) 

where 

sex) = -(xlnx + (1- x)ln(l- x). (3.38) 

For equilibrium, the first variation with respect to the order parameter 1] 

must vanish, i.e., 

8FN = o. 
81] 

(3.39) 



Using equations (3.36-2.38), equation (2.35) becomes 

T 
VlOO 
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(3.40) 

Equation (3.40) gives the temperature for which an L12 phase with a compo

sition c and order parameter 7] is an equilibrium phase. Equation (3.40) may 

be solved for the order parameter for a given composition and temperature, 

I.e., 

7] = 7]( c, T). (3.41) 

Using equation (3.41), one obtains the free energy of the equilibrium phase 

as function of temperature and composition, 

FN(c,T) = F(c,T,7](c,T)). (3.42) 

From the function FN( c, T) the two phase solubility limits and the spinodal 

decomposition instability limits may be obtained. The solubility limits are 

found by using the common tangent rule, i.e., 

[
BFa] = [BF6/ ] ] = Fa - F6 1 

• 

Bc a Bc 6' Co - C6' 
(3.43) 

For the L12 h' phase to be stable, its second variation with respect to vari-

ations in the composition must be positive, i.e., 

(3.44) 

On the other hand, when the second derivative is negative, the ordered L12 

phase is unstable with respect to spinodal decomposition. The decomposi-

tion instability will cause a variation in the composition and order parameter 

.. 
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as described in the last subsection. This can be understood in the following 

way. An initial homogeneously ordered L12 with composition c is unstable 

and therefore decomposes into regions with compositions c+ = c + Ac and " 

c_ =" c - Ac. This leads to phases with order parameters TJ+ = TJ(T, c+) and ; 

TJ- = TJ(T, c_) respectively. Therefore, since the ordering amplitudes depend 

on the order parameter, the coupling between the variation in composition 

and ordering amplitudes is due to the fact the order parameter is a function 

of composition. 

IV. APPLICATION TO 8' PRECIPITATION in Al - Li 

In this section the theory presented in last section is used to analyze 

the 8' precipitation observed in the Al ~ Li system. The basic approach 

be to determine the values of Vooo and VIOO that produce a best fit with 

experimental data. The data fit is confined to the low temperatures where 

the mean-field approximation is valid. 

In the analysis that is to follow the reduced temperature 

T 
T=--

IVIOOI 
(4.1a) 

is used so that the results obtained in dimensionless form. 

The predicted results are computed by means of the following steps 

which were performed on a digital computer: 

1) Equilibrium order parameter TJ( c, T). 

The order parameter as a function of composition and reduced temper-
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ature 7 is determined by equation (3.35). This equation is solved by using 

the Newton-Ransom method to find the zeroes of the function 

I(TJ)=7- TJ 
In (Pl(I-P2») 

(I-pdp2 

( 4.1b) 

where PI and P2 are defined by equation (3.31). The iteration starts with 

an initial guess corresponding to a maximum value for the order parameter 

TJ. At first the iteration value of TJ decreases monotonically, then cycles back 

and forth around the solution, and eventually converges. This technique will 

find the equilibrium order parameter for stable phases. Equation (4.1) also 

has other solutions, but these correspond to either the disordered state or 

an unstable equilibrium phase. However, the iteration technique will alway 

obtain the stable solution. 

2) Superheating limit 7+(C). 

Below a reduced temperature 7_, the solution converges to a non-zero 

order parameter. However, above this temperature, the solution converges 

to zero which corresponds to the disordered state. This is because for 7_ > 

7, the free energy function FN(C, T, TJ) will have either a global or local 

minimum for TJ =1= O. On the other hand, for 7 > 7_, the free energy function 

has a global minimum at TJ = 0 (disorder) but does not have a local minimum 

for TJ =1= O. Since the ordered phase can exist above 7 _, it follows that 7_ is 

the superheating limit. 

To determine 7_ (C), TJ( C, 7) is calculated for reduced temperature incre

ments of +.001 and the value of 7 is determined for which the solution of 

the order parameters goes from positive to zero. 
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3. Transition temperature Te(e). 

The transition temperature is defined by the conditions that the free 

energies of disordered and ordered state are equal, i.e., 

(4.2) 

The order parameter TJ is determined by comparing the two free energies for 

reduced temperature increments of +.001. 

4) Homogenous ordering instability limit T_(e). 

Using equation (3.18), the reduced ordering instability temperature for 

{I, 0, O} ordering waves is 

( 4.3) 

At this temperature {I, 0, O} ordering wave will form spontaneously. Hence, 

T _ (e) is the super cooling limit. 

5) Solubility limits ea(T) and C6'(T). 

One standard method to determine the solubility limits is to match 

chemical potential using equation (3.38). However, at lower temperatures 

this method has the problem that the derivative of /oe varies very rapidly 

around the solubility limits. Hence, to match chemical potentials requires a 

very accurate determine of the compositions for the solubility limits. There

fore, an alternate method is used here that is much simpler to implement 

on the computer. For a given reduced temperature T, the free energies of 
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the disordered and ordered phase are computed for composition increments 

of +.001. For each composition, the phase with the lowest energy is deter

mined. The corresponding free energy is F( c, T). A simple method to find 

the solubility limits is to plot these points on a sheet of paper and then 

use a ruler to construct the common tangent. This procedure is easily pro

grammed into the computer. The solution is defined by the line which goes 

through two points with all other points above the line. In this way, the 

solubility limits CO' and C6' are determined to an accuracy of +.001. 

6) Spinodal decomposition region of L12 phase. 

In step 5 the free energy of the ordered phase was computed for +.001 

increments of the composition. Let i be an index for the composition, i.e., 

Ci = i( .001). For stability the second variation of the free energy with respect 

to variations in compositions must be positive, i.e., 

( 4.4) 

where Fi is the free energy for composition Ci. The spinodal decomposition 

region is defined as the points (T,C) for which the Lb phase is unstable with 

respect to compositional variations. Hence, in this region equation (4.3) will 

not hold. 

To determine the limits for the spinodal decomposition for a given tem

perature, equation 4.3 is evaluated for each composition Ci = i( .001). The 

limit is obtained by finding the composition where the second variation test 

is passed for Ci but not Ci+l. This composition will be called Csd. In this 

way, the spinodal decomposition limit Ccd is determine to an accuracy of 

+.001. 
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Calculations show that for a given temperature T the spinodal decom

position is defined by the inequality 

(4.5) 

where c_ is the composition where the {I, 0, O} ordering instability will 

occur, i.e., T = T(C_), and Cad is the limit described in the last paragraph. 

7) Procedure for fitting theoretical phase diagram to experimental phase 

diagram. 

The phase diagram is defined by the solubility limits CO' and C6'. The 

reduced phase diagram is computed for different ratios 

V* = -VOOO/VIOO. (4.6) 

For example, the results for V* values 0.0, 1.0, and 2.0 are plotted in figure 

2. 

For 0.1 increments of V* between 0.0 and 2.0, the value of Vioo is chosen 

to obtain a best fit with the experimental data shown in figure 3. This 

produces 21 fitted curves. The best fit curve was obtained for V* = -1.3 

and V1oo/k = -4060K. Hence, the corresponding value of Vooo/k was 

-5070 K. The phase diagrams for these values of VlOO and Vooo are plotted 

in figure 4. In the same figure the experimental points are plotted. Note the 

that the fit with experimental data is quite good. 
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8) Predicted theoretical results. 

Now that Vooo and VlOO have been determined from the experimental 

data, the temperatures for which the spinodal decomposition and ordering 

instability occur are predicted. 

In figure 5, the phase diagram is constructed by plotting COl and Cs'. 

In the same plot, the super heating limit T+ ( c) = I VlOO IT + ( c) and ordering 

instability limit T- (c) = IVIOO IT _ ( c) are plotted. These two curves are 

plotted as dashed lines. 

In figure 6, the phase diagram is constructed again but now shows the 

limits of the spinodal decomposition region defined by equation (4.5), and 

also the instability temperature. 

Let us now interpret these theoretical predictions. If the solution heat 

treated alloy is quenched into the two phase region, figure 5 shows that 

there are three cases to consider. 1) To the upper right of the superheating 

limit (longer length dashed line), the disordered phase is stable and the 

matrix can not exist as a homogeneously L12 ordered metastable phase. 2) 

Between the dashed lines the disordered phase is stable, but the matrix can 

now exist as equilibrium or metastable L12 ordered phase. 3) To the lower 

left of the supercooling limit, which is the {I, 0, O} ordering wave instability 

temperature, (shorter length dashed line), the disordered phase is unstable 

with respect to the formation of {I, 0, O} ordering waves. Hence, the matrix 

will spontaneously homogeneously ordered to the L12 phase. 

• 
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If the alloy homogeneously transforms to the Lh phase, then it may 

be either stable or unstable with respect to variations in its composition . 

These results together with the conclusions of the previous paragraph imply 

that there are four different types of precipitation processes for AI- Li. The 

corresponding regions are marked as A, B, C, and D in figure 6. All of these 

regions are in the two phase field of Al - Li. The predicted behavior for 

each of these regions is as follows: 

Region A The homogenous L12 ordered matrix is stable with respect to 

variations in the composition; hence, spinodal decomposition of the ordered 

matrix can not occur. 

Region D The ordered L12 phase can not exist as an equilibrium or 

metastable precipitate. Thus, decomposition to the two phase mixture can 

occur only by nucleation and growth. The right hand side of the region has 

been previously shown to correspond to the superheating limit. In figure 6, 

it is indicated by a solid line dividing region D from regions B and C. 

Regions Band C. A homogenous L12 ordered matrix is unstable with 

respect to variations in the composition, therefore, it will spinodal decom

pose to the equilibrium two phase mixture. The region for which spinodal 

decomposition of L12 will occur is indicated as the cross-hatched region 

in figure 6. However, for the spinodal decomposition to occur, the homoge

neously ordered L12 phase must form. Below the supercooling limit (dashed 

line) and inside the spinodal decomposition region (cross-hatched) is region 

C. In this region, spontaneous L 12 ordering is followed by spontaneous de-
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composition. On the other hand, in region B, which is above the super

heating limit (dashed line) and inside the spinodal decomposition region 

(cross-hatched), the homogeneously ordered matrix must form by nucle

ation and growth. Once formed, it may spontaneously decompose by means 

of spinodal decomposition. 

v. DISCUSSION AND CONCLUSIONS 

The best known mechanism of precipitation of an ordered phase out of 

a disordered matrix is the process of nucleation and growth. In this case 

the precipitate grows out of the surrounding matrix. The characteristic 

feature of nucleation and growth is the existence of a free energy barrier for 

precipitate formation. This implies that the precipitation process requires 

a thermodynamic fluctuation. Hence, upon quenching a disordered solid 

solution, the precipitates will take some time to nucleate. 

In this chapter it has been shown that there also exist alternative pro

cesses. The quenched alloy may first homogeneously order. Then the or

dered matrix may decompose into a two phase mixture. There are a rich set 

of possibilities because both the initial ordering and the decomposition may 

occur by either nucleation and growth or as the result of a thermodynamic 

instability. 

It has been shown that the pair potential mean field theory predicts that 

the instabilities are of a specific type, namely, either spinodal decomposition 

or ordering. Since spinodal decomposition may be viewed as a k = 0 ordering 

wave, these two types of instabilities can be regarded as being different cases 

• 
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of the same phenomena. The prediction that the instability modes produce 

ordering waves is a result that followed from the pair potential mean field 

theory. This theoretical approach is quite simple and provides considerable 

insight. A case could be made for using more accurate statistical mechanical 

method for computing the energy and perhaps a more realistic energy model, 

however, the objective here was more qualitative in nature. In particular, 

the aim was to show that depending on which region of. the two phase 

field the alloy is quenched into, different types of transformations paths and 

mechanism may occur. Certainly, the general idea that a disordered phase 

may homogeneously order and then spinodally decompose can be deduced 

from general principles of thermodynamics, however, the calculated results 

provide convincing theoretical reason to believe that this transformation 

does indeed occur in the Al - Li system. Hence, it is concluded here that 

the pair potential mean field theory provides a sufficiently accurate method 

of investigating thermodynamic behavior at temperatures well below the 

transition point. 
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Figure 1. The L12 ordered superstructure. 
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Figure 2. The boundaries of the two-phase region between a disordered solu-

tion and an Lh ordered phase for three values of the interaction parameter, 

V* [30]. 



98 

, 

000 

...-. b )UU -W a: .00 

~ 0 

~ JOO 
0 

W 
a.. 200 Cl+8 
:E w 
t- 100 

O--~l~~.~.~~'~~IO~I~l~I.--~--~I'~2~O~~~2~2.~2~6~ 
ATOMIC % U· 
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Figure 4. The computed metastable two-phase (a + b') region for Al - Li 

showing the experimental data [30]. 
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computed curves for which a disordered solution is metastable with respect 

to congruent nucleation and growth of the ordered phases (between dashed 

lines) and unstable with respect to spontaneous, homogenous order (right 

lower dash line) [30]. 
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Figure 6. The metastable two-phase (a + b') region in Al - Li showing the 

computed sub-region (lightly shaded) in which a homogeneously ordered 

AI3Li phase is unstable with respect to spinodal decomposition. A solution 

quenched into the regions marked A and D in the figure is metastable. A so

lution quenched into the region C orders homogeneously (at the dashed line) 

and then decomposes through a secondary spinodal. A solution quenched 

into the region B is metastable with respect to order, but will undergo 

spinodal decomposition if it orders [30]. 
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CHAPTER 5 

SUMMARY 

A common theme presented throughout this thesis is that both phase 

equilibria and thermodynamic instability can be explained using the function 

V(k), which is the Fourier transform of the pair potential function VCr). 

Since this is a phenomenological quantity, the form of V( k) is deduced from 

the observed behavior of the system under study. 

Chapter 2. Since the ordering amplitudes of the long period superstruc

tures in Ag - Mg and Al- Ti are along the line from (0,1,0) to (0, 1,~) 

in reciprocal space, the pair potential function V(k) was assumed to have 

a minimum at some point along that line. To investigate the conditions for 

which different long period configurations may occur, a Lorentzian form for 

V( k) was used since it has as the correct general characteristics required for 

long period ordering. Since it is known that the long period superstructures 

are very close to being fully ordered, ground state analysis was used. The 

results. show that the dominant wave vectors of the long period superstruc

ture correspond approximately with the V(k) minimum position (0, l,s/L). 

The integer L determines the crystallographic period, whereas the fraction 

L / s determines the domain size. 

Chapter 3. The ordered precipitates in calcite and dolomite are due to 

the ordering of cations over the sites of a distorted FCC array. The sites 

of this array are located interstitially with respect to the carbonate anions. 

Since the carbonate ions are passive in that they do not take part in the 

.. 
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cation ordering transformation, the cation ordering may be treated as a case 

of FCC based ordering by ignoring the distortion of the cation ordering array. 

Ground analysis shows that the dominant wave vectors at are {I, 0, o} and 

{ t, t, t} for ordered phases observed in calcite and dolomite, respectively. 

This suggest that the V(k) minima positions for these minerals are at these 

points in reciprocal space. These points are significant in that they are at 

special point positions. This is because the most likely positions for the 

V(k) minima are at these positions. Using mean field theory to determine 

the conditions for ordering instabilities, the results suggest that a plausible 

explanation of the observed cation ordering is that an initially disordered 

cation distribution experiences an ordering instability which produces the 

ordered precipitates. 

Chapter 4. The LI2 precipitate phase is also a special point ordered 

superstructure. It is generated by a superposition of the special point or

dering waves from the star of {I,O,O}. This suggest that the V(k) minima 

positions for systems where LI2 phases form are at {I, 0, OJ. To investigate 

the ways in which the LI2 precipitate phase may form, mean field theory 

was used to analyze the conditions for spinodal ordering and decomposition. ' 

The results show that within some portions of the two phase field, (disor-

, dered matrix + LI2 ordered precipitates), a quenching of a disordered alloy 

results in two step precipitation process. The matrix first homogeneously 

orders to a phase with LI2 symmetry, then this ordered phase spino dally 

decomposes. The initial homogeneous ordering may occur by nucleation and 

growth or by spinodal ordering instability. 
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In this dissertation two major points have be demonstrated. First, the 

validity and usefulness of using the mean-field and ground state methods 

at temperatures well below the transition point. (This author certainly 

recognizes that more precise methods must be used at higher temperatures 

near the transition point. The point, however, that has been argued is that 

at sufficiently low temperatures the mean-field and ground state methods 

are good approximations.) Secondly, the use of the ordering wave method 

together with reasonable assumptions regarding the locations of the minima 

of the pair potential function V(k) provides a means of predicting both 

equilibrium phases and the phase transformation paths. 

Long-period ordering, cation ordering in minerals, and precipitation in 

metal alloys, may seem at first to be very different. However, as shown 

in this dissertation, these kinds of ordering phenomena may be understood 

with a common theoretical prospective using mean-field and/or ground state 

analysis together with the ordering wave representation. Hence, the work 

presented in this dissertation is an effort toward making the case for the 

value of using simple methods of analysis that are general enough to be 

applicable to different types of systems, and thus, hopefully providing a 

better understanding of how ordering transformations occur. 
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