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ABSTRACT 

Now that first-principles calculations of ordering transformations are becoming increasingly 
accurate, the deficiencies of earlier mean field methods are becoming increasingly apparent. 
New techniques, based on cluster expansions, are now alleviating many of the earlier problems 
and are producing very satisfactory results. These ideas will be illustrated for the case of 
oxygen ordering in the YBa2Cu30z superconducting compound, for which a very simple two
dimensional Ising model has been developed. The model features nearest-neighbor repulsive 
effective pair interactions and, anisotropic (attractive/repulsive) next-nearest-neighbor 
interactions. CVM (cluster variation method) calculations based on this model have produced a 
phase diagram in remarkable agreement with experimentally determined phase boundaries. 
Monte Carlo simulations have confirmed the validity of the model and have provided a 
rationalization for the influence of oxygen order on the value ofTc (superconducting transition 
temperature) in off-stoichiometric compounds. . 

INTRODUCTION 

The study of order-disorder phenomena in crystalline alloys has progressed considerably over 
the last ten years or so. No longer is the field confined to finding increasingly sophisticated 
methods of calculating critical temperatures and critical exponents in somewhat physically 
artificial but mathematically tractable systems. Today, effort is placed on investigating ordering 
in real systems, so that the emphasis is shifting away from the pure mathematical problem of, 
say, Ising model statistical mechanics, to the more physical problem of the quantum mechanics 
of interacting atoms. More importantly, the most fundamental task is that of combining the 
quantum and statistical mechanics into one coherent whole so that a free energy may be 
cpnstructed from which all thermodynamic alloy properties may be deduced. It has been 
apparent for some time that the basic building block for a theoretical treatment, combining both 
statistics and energetics of ordering, is the cluster of lattice points. 

This work was supported by the Director, Office of Energy Research, Office of Basic Energy 
Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. 
DE-AC03-76SF00098. 
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The notion of cluster is introduced quite naturally when one attempts to describe the 
state of order of a crystalline solid solution. For a binary system (atoms A,B), on may attach a 
pseudo-spin variable a p at each lattice point (p), equal to + 1 if the pOlln is occupied by an A 
atom, -1 if by a B. Such detailed information is not available experimentally, of course, and 
would in any case be of no use theoretically. Instead, one seeks averages of site occupancies. 
The problem is, which averages? 

In this article, we shall describe briefly the principle of the cluster method, then apply it 
to the case of oxygen ordering in the superconducting compound YBa2Cu30z (YBCO). It will 
be shown that oxygen ordering is intimately related to the phenomenon of superconductivity 
itself. 

CL USTER EXPANSION 

In 1982, Sanchez, Ducastelle and Gratias [1] showed that products of pseudo-spins on the 
sites of lattice-point clusters 

(1) 

form a complete set of orthonormal functions over the space of all possible 2N configurations 
of a system of N lattice points. In Eq. (1), a denotes the cluster of points {p, p', ... p"}; in 
principles, all possible clusters' of points must be considered. In more recent publications 
[2,3], some of the present authors showed that other choices of cluster functions and of 
configuration space also produce possible sets of orthonormal functions. 

Regardless of the particular choice of basis sets, it follows that any function of 
configuration {a} can be expanded in the set <i>a (a), the expansion is unique, and the 
(generalized) Fourier coefficients of the expansion are obtained in the standard way by taking 
scalar products of the function in question with the corresponding cluster function. 

The energy E( a), being a function of configuration, can therefore be expanded in this 
manner. The expectation value <E> of the energy at given temperature and concentration can 
then be written as 

(2) 

In this equation, originally derived by Sanchez [4], Eo is a configuration-independent energy, 
~a are expectation values <<i>a(a» of cluster variables, i.e., muLtisite correLation junctions, 
and Ea are so-called effective cluster interactions (ECI), the generalized Fourier coefficients 
referred to above. 

Expansion of the scalar product for the ECl's [2,3] produces exact formulas for "point" 
interactions [a = (p)], 

(3a) 

for "pair" interactions [a = (p,q)], 

(3b) 

C' 
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and so on. In these formulas, WI is rigorously shown to be the average_ energy of all 
configurations of the system having atom of type I (A or B) at point p, and WIJ is the average 
energy of all configurations having atom of type I at p and J and q. Various averaging 
processes have been suggested for calculating the W energies from first principles. One such 
method, the Direct Configurational Averaging method, is described elsewhere [3,5]. 

The correlation functions required in Eq. (2) are obtained at thermodynamic equilibrium 
by minimizing an appropriate free energy functional F expressed in terms of these variables. 
The formalism used is that of the Cluster Variation Method (CVM), originally proposed in 
1951 by Kikuchi [6]. In this approach, the energy is that of Eq. (2) and the configurational 
entropy is expressed by means of logarithms of cluster probabilities, the latter being themselves 
expressed as linear combinations of the correlations ~a. The CVM has yielded excellent 
results, for instance for ab initio computation of phase diagrams [7]. Here, we shall apply the 
method to oxygen ordering in YBCO. Before doing so, however, let us emphasize how the 
cluster approach differs from earlier ones. 

CRITIQUE OF MEAN FIELD METHODS 
. 

Because of their extreme simplicity, mean field models are quite popular, even today. By 
"mean field" we denote that class of models which includes the regular solution (or sub
regular) models (for "clustering" systems), the Bragg-Williams (BW) model (for "ordering" 
systems with sublattices), or the concentration wave model, which is identical to the BW 
model: merely, the mean-field energy is Fourier-transformed, which changes nothing in the 
nature of the approximation. Let us denote collectively these models by the acronym BW. 

It is often stated that these models behave poorly because of their inadequate entropy 
fonnulation. This is true: the entropy is a "point" approximation, hence is the lowest fonn of 
the hierarchy of CVM approximations; hence, the BW entropy typically tends to overestimate 
the configurational entropy by a factor of two or more. The major fault of the BW 
approximation lies with the energy, however, which is expanded as products of average 
concentrations (system average or sublattice average), rather than as averages of products. As 
a consequence, the BW model cannot (a) account for short-range order, (b) handle frustration 
effects such as ordering on an fcc or triangular lattice, and (c) distinguish between various 
lattice geometries: BW approximations merely count the number of sublattices, but the 
geometrical relationship between them is ignored. Such models produce exactly the same 
phase diagrams in either one, two or three dimensions and, in particular, incorrectly predict 
phase transitions on one-dimensional systems. 

It is not surprising that all of these serious deficiencies should be encountered in BW 
models: the mean field energy is simply not included in the exact formulation of Eq. (2) and 
Eqs. (3a, 3b, ... ). Thus, there is no justification at all for replacing averages of products by 
products of averages. 

The concentration wave method [8], of course, does no better: it simply replaces a 
product of sublattice averages by a product of.Fourier transforms of the same averages, while 
maintaining the "point" approximation for the configurational entropy. It is sometimes stated 
that, since long-range interactions are included implicitly in the concentration wave (CW) 
formalism, and since the mean field approximation is correct in the limit of infinite range 
interactions, therefore the CW fonnalism is acceptable for ordering in metallic systems, say. 
That argument is triply fallacious. 

(a) Long-range interactions are of course included in the CVM as well, they are merely 
more difficult to handle computationally. Moreover, as mentioned earlier, the CW model is 
identical to the Bragg-Williams, and represents not the slightest improvement on it. 

" 
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(b) It is true that for "clustering" (ferromagnetic) systems with monotonically decaying 
infinite-range negative interactions, the second-order transition at zero field (average 
concentration 1/2) approaches the exact value. For ordering (antiferromagnetic) systems, of 
interest for this Workshop, no such limiting property exists. For example, no amount of long
range ordering interactions will ever produce a BW (or CW) phase diagram on an fcc lattice 
which even approaches the right overall shape, let alone the approximately correct numerical 
values for the transitions. 

(c) As first shown by Ducastelle and Gautier [9], effective pair (cluster) interactions do 
decay rapidly in magnitude with distance. Recent numerical studies have confinned the rapid 
convergence properties of the effective interactions, particularly in transition metal alloys 
[2,3,10]. In fact, the fIrst pair interaction is responsible for over 90% of the ordering energy in 
typical cases, although the latter is but a small part of the total cohesive energy. The latter 
cannot be expressed in terms of "pair potentials" at all. 

Nonetheless, Fourier transform methods, handled properly, are useful as a 
diagonalization method in perturbation analyses of ordering instabilities [11]. It is best, 
however, to perform such analyses, i.e., to evaluate generalized susceptibilities, on the basis of 
a CVM free energy [12], rather than its BW counterpart. Short-range order intensity can be 
treated similarly [13]. A BW-based stability analysis may give the misleading impression that 
the unstable ordering wave corresponds to a minimum (in k-space) of the Fourier transform of 
the pair interaction energy, V(k). This is not always the case, as the confIgurational entropy 
must playa role in determining the ordering wave as well. There are good indications, for 
example, that equilibrium ordering and spinodal ordering waves belong to different "special 
point ordering families" in the Pd-V system [14], an effect which can be explained in the CVM, 
but not in the BW context [14]. A fortiori, k-space stability analysis cannot predict the 
ordering wave spectra of stable ordered structures. Hence, the oft-quoted statement that "the 
most stable superstructure is generated by the star whose ordering wave vectors provide the 
absolute minimum of V(k)"[8] is quite simply incorrect. 

The CVM is no panacea, however, and suffers form defIciencies of its own. Mainly, 
the CVM recognizes only a limited range of correlations, those corresponding to the largest 
clusters used in the CVM approximation~ It therefore follows that second-order transitions, 
which are characterized by infInite-range correlations, are not treated very accurately by the 
CVM. Still, with reasonable large-cluster approximations, one can approach transition 
temperatures to within a few percent of the exact (or best known) value, as opposed to, 
typically, 100% error for the BW. 

In closing these sections on general considerations, let us mention that excellent 
reviews of the CVM, its advantages and limitations, are to be found in the doctoral 
dissertations of A. Finel [15], M. Sluiter [16], and G. Ceder [17], and also in a recent review 
by Inden and Pitsch [18]. . 

YBCO OXYGEN ORDERING MODEL 

The compound YBa2Cu30z (YBCO) was the first one discovered whose superconducting 
transition temperature (Tc) exceeded the technologically important limit of 77 K [19]. At 
stoichiometry z=7, Tc is about 93 K, but drops progressively to very low values as oxygen is 
removed. Oxygen gain or loss occurs mostly on the so-called basal planes, or chain planes, 
those containing the CuI sites and 01 (normally occupied) and 05 (normally vacant) oxygen 
sites. Not only oxygen content but oxygen arrangements influence Tc' hence a careful study of 
oxygen ordering is critical to an understanding of the mechanism of superconductivity in this 
material. 
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Most oxygen-ordering phenomena in YBCO can be mapped onto a t~o-dimensional 
Ising model consisting of two interpenetrating square sublattices, the sites (a:01, ~:05) of 
which may be occupied or empty [20]. A third (identical) sublattice is_fully occupied by Cu. 
In the simplest approximation, three effective pair interactions are defmed: V I between nearest 
neighbor sites, V 2 between next nearest neighbor (nnn) sites bridged by Cu (the b direction), 
and V 3 between nnn sites along the a direction of the orthorhombic cell. These three 
interactions are precisely those defined in Eq. (3) although, in the present case, the actual 
computation of Wu energies was not carried out. Instead, the values of the effective pair 
interactions were obtained by parametrizing the energies of a number of two-dimensional 
superstructures and determining VI' V2, V3 by matrix inversion [21]. When a and ~ 
sublattices are equally occupied, the structure has tetragonal symmetry; a/~ sublattice ordering 
produces orthorhombic structures. Ground state analysis [22] reveals that eight ordered 
superstructures are stabilized by these three interactions at stoichiometries z=7 and z=6.5. Two 
of these structures have been observed in YBCO: one is the orthorhombic structure (Ortho 1) at 
z=7, consisting of parallel O-Cu-O chains, the other is the Ortho II structure consisting of 
alternating "full" (O-Cu-O) and "empty" (V-Cu-V; V=vacancy) chains. Another predicted 
ground state superstructure, of tetragonal symmetry [23], has been observed in Ca-substituted 
compounds [24]. The YBCO structures are stabilized when the following inequalities are 
verified [23]: V2<0<V3<VI. As expected, the Cu-mediated interaction V2 must be attractive 
(negative) and V3 must be repulsive (positive) due to Coulomb interaction between 0 ions. 
First-principles calculations [21] confirm these conclusions. The Ca-substituted structure is 
stabilized by a similar set of inequalities but with V I <V 3' Other, more complex stI¥ctures with 
larger unit cells can be stabilized when the V I' V 2, V 3 scheme of effective interactions is 
extended (see below). In all cases, the nnn interactions must have opposite signs, producing 
an Ising model with unique, highly anisotropic properties. Models which do not possess this 
characteristic anisotropy are unphysical and cannot reproduce the correct features of the 
system, claims to the contrary notwithstanding. 

PHASE DIAGRAM 

A pseudo-binary (oxygen-vacancy) phase diagram was calculated by the CVM, first with 
phenomenological interactions V 2/V I = -1/2, V 3N I = + 1/2 [25]. The high-temperature 
tetragonal-to-orthorhombic transition was found to be of second-order type, as expected. The 
first complete and consistent CVM phase diagrams were calculated independently by Zubkus et 
al. [26] and by Kikuchi and Choi [27], with parameters taken from [25]. These authors 
showed that only second-order transitions existed at very low temperature and that a new 
phase, now called anti-Ortho I [28], must be present for low oxygen concentrations and low 
temperatures . 

. The phase diagram, calculated [28] with parameters V I' V 2 and V 3 obtained from first
principles LMTO-ASA electronic structure calculations [21], is shown in Fig. 1. The four 
structures mentioned above are illustrated by portions of Monte Carlo simulation outputs: 
small black dots in the inserts are Cu atoms, large dark ones are oxygen atoms, open circles are 
empty oxygen sites. In these simulated structures, Ortho I (01) is shown with two vacancies, 
Ortho II (OIl) contains no defects, and anti-Ortho I (01) is shown to consist of a random 
dispersion of a few filled stable chains in a predominantly empty background, the opposite of 
off-stoichiometric 01 which consists of ~dispersion of empty chains in a predominantly full 
background. The symmetry of 01 or 01 is orthorhombic, whereas that of the tetragonal 
structure (T), consisting of small segments of fluctuating chains in orthogonal orientations, is 
tetragonal, though locally orthorhombic. The CVM phase diagram, in this and earlier 
calculations [25-27] and in unpublished ones using larger cluster approximation [29-30], 
predicts narrow two-phase regions on the left border of the Ortho II phase region. This could 
be an artifact of the approximation, as Monte Carlo simulations [31] yield only higher-order 
transitions throughout. The existence of the 01 phase and of higher-order transitions at very 
low temperatures is required by symmetry [28] and is not an artifact of the CVM. Other 
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models, predicting a wide miscibility gap between T and 01 structures, with pos_sible spinodal 
mechanism, are in error. 
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Figure 1. Phase diagram calculated by the CVM approximation, for parameters determined by 
Sterne and Wille [21] (full lines). Experimental points (filled circles) from Andersen 
et al. [32]. Insened structure diagrams were obtained from Monte Carlo simulations 
(small filled circles in insens denote copper ions, large filled circles denote oxygen 
ions, and open circles denote vacant sites). 
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The extensive experimental data of Andersen et al. [32] for the .. tetragonal-to
onhorhombic transitions are shown as filled circles in Fig. 1. The agreement is extraordinarily 
good given the fact that the calculated phase diagram was obtained with no adjustable 
parameters. In essence, the phase diagram of Fig. 1 was calculated only from the knowledge 
of the atomic numbers and positions of the atoms and knowledge of the lattice parameters of 
the tetragonal unit cell. The lower concentration (c) scale in Fig. 1 is that of oxygen content in 
the chain plane. If all vacant oxygen sites in the three-dimensional structure are assumed to lie 
in this plane, then the parameters c and z (top scale) are linearly related by z=6+2c. 

Other structures are expected to be stable at low temperature in the region roughly 
delineated by the dashed-line box in Fig. 1. The reasoning is as follows: longer-range 
attractive interactions along chains (b direction) do not produce new structures but repulsive 
interactions along the a direction may produce additional ordered superstructures at low 

. temperatures. We know that interaction V 3 must be positive because of repulsive Coulomb 
interactions between nnn 0 atoms, and because Ortho II has been shown to be a stable 
structure [33]. It follows that the second nearest interaction V 4 between chains in the a 
direction must also be positive (repulsive), and so on. In fact, we expect [34] a set of 
monotonically decreasing "convex" interactions along a: V 4' V 5' V 6' ... At low temperature, 
the strongly negative V 2 interaction makes for very stable long O-Cu-O and V -Cu-V chains, so 
that, roughly in the area of the box in Fig. 1, we expect parallel-like chains to be mutually 
repulsive, theoretically out to infinite chain spacings. The ground state problem of infinitely 
repulsive objects along a line has been solved exactly [35-36], and a simple algorithm 
determines uniquely the sequences of stable "branching phases" which result [34]. Some of 
the predicted structures and their respective diffraction patterns (one-dimensional structure 
factors) are indicated in Fig. 2 of Ref. 34. Successive branching levels are expected to occur 
at successively lower temperatures, the complex structures with very long periods becoming 
stable only at temperatures so low that oxygen mobility may well prevent their formation for 
kinetic reasons. 

It is imponant to note that, because a structure is difficult to observe, or cannot be 
observed in all its expected regularity, it does not mean that such a structure is metastable, or 
transient, or is characterized by shon-range order only. Actually, all of these branching phases 
must be stable, at least at low enough temperatures. Diffuse intensity diffraction patterns are 
then due more generally to imperfect long-range order rather than to stable shon-range order 
(from fluctuations). The calculated diffraction patterns are in remarkable agreement [34] with 
electron diffraction patterns observed by Beyers et al. [36] for off-stoichiometric YBCO. 

We have also calculated phase diagrams featuring Ortho ill, the simplest and lowest
level branching phases [37]. This structure may be described as a repeating unit of two filled 
chains and one empty one. To stabilize that phase, it is necessary to add interaction V 4, which 
was arbitrarily taken to be 0.17 V3, and, for simplicity, the sites of sublattice J3 were assumed 
to be always unoccupied. A two-dimensional CVM calculation produced a phase diagram very 
similar to one published by Zubkus et al. [38]. That phase diagram exhibited some incongru
ous features, such as the 01 phase region subsisting to absolute zero for concentrations below 
OIII stoichiometry. This undesirable feature was clearly an artifact of the two-dimensionality 
of the model. A more complete three-dimensional CVM calculation based on pyramidal and 
prismatic clusters gave a much more realistic phase diagram, with an 0111 phase region 
separated from 01 and Oil by two-phase regions, as required by the Landau rules, the 01I1 unit 
cell in the a direction being three times as long as that of 01. The relevant portion of the phase 
diagram is shown in Fig. 2. 
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Figure 2. Portion of phase diagram corresponding roughly to boxed area of Figure 1. 
Ortho III phase is obtained by including a small repulsive V 4 interaction along 
direction a. 

ORDERING AND SUPERCONDUCTIVITY 

In February 1990 we wrote [34]: 

Although neither the theoretical branching temperatures nor the temperatures at 
which oxygen configurations are frozen in during sample preparation are 
known at present, the agreement between recent experimental findings and our 
theoretical model is really quite striking. We are thus tempted to relate the 
plateau structure of the T c versus concentration curve to the existence of a 
theoretically infinite set of branching phases, the T c plateaus corresponding to 
states of quasi-one-dimensional order frozen in at a cenain "generation" level. 
The number of plateaus and their range of oxygen content should depend 
critically on sample preparation. Recent experimental and theoretical work 
suppon these ideas. For example, Farneth et al. [39] repon that the Tc plateau 
for low-temperature vacuum-annealed samples of YBa2Cu30z is sharply 
defined and entirely located at temperatures higher than the monotonically 
decaying Tc versus oxygen-content curve for samples quenched from high 

. temperatures. Lambin [40] has used a tight-binding model to show that the hole 
concentration for well ordered Ortho II and Ortho ill phases should be higher 
than those for the corresponding disordered compounds. It is clear that chain 
formation minimizes the fraction of incorrectly coordinated copper ions in the 
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basal plane. Hence, chain ordering can be regarded as a fonn of doping in this 
compound. 

This conjecture received spectacular confInnation in the work of Argonne scientists on 
oxygen ordering at and below room temperature [41,42]. For quenched YBCO single crystals 
of oxygen content z=6.45, it was found that Tc increased markedly on subsequent aging, in 
fact by as much as 27 K [41]. During this process, it was ascertained [42] that oxygen content 
was not altered: the average occupancy on sites 01, 02, 03, 04 and 05 did not change, 
although the molar volume and lattice parameters contracted significantly, the a more than the 
b. Such behavior can only be interpreted as being due to additional oxygen ordering. 

Recent "quench and age" Monte Carlo simulations [43] based on the model described 
above, i.e., with VI' V2, V3 parameters used in calculating the phase diagram of Fig. 1, have 
shed considerable light on the problem. Immediately after the essentially instantaneous 
"computer quench," <I/l3 ordering takes place during a very short transient, so short that it is 
probably unobservable experimentally. Subsequently, ordering of chain segments parallel to 
themselves, so as to fonn the longest possible chains, takes place at a rate characterized by a 
lower time constant. 

The oxygen coordination of CuI atoms was monitored continuously during simulated 
aging at room temperature for samples quenched from 800 K. In the chain plane, Cu can be 
0-, 1-, or 2-fold coordinated, corresponding to 2-, 3-, or 4-fold three-dimensional coordination 
if it is assumed that 04 sites are always occupied (see Fig. 3). Three- and four-fold planar 
coordination are forbidden because of the strong V I nn repulsive interaction. Electronic 
structure calculations [44] reveal that (spatially) 3- and 4-fold coordinated Cu is mostly present 
as Cu++, and 2-fold coordinated Cu is present as Cu+. As a result, chain "healing," i.e., 
progressive elimination of chain ends. where Cu is 3-fold coordinated, gives rise to the 
following "reaction" in Kroger-Vink notation: 

. 
2Cu3x -? CU4x + CU2x + h 0 

thus creating holes (hO

), accompanied by an excess negative charge on 2-fold coordinated Cu. 
The increasing hole concentration should favor a high T c' but oxygen loss tends to destroy 
holes by the following mechanism: 

x 00 

Va -? Va + 2e' 

2e' + 2h
o 

-? <I> 

The fIrst of these equations describes oxygen loss to the gas phase (g), the second describes 
ionization of vacancies and creation of electrons, the third describes electron-hole 
recombination. 

Monte Carlo simulations [43] clearly show that the fraction (fn-Cu' with n=2, 3 or 4) of 
2-fold or 4-fold coordinated sites increases with annealing time, that of 3-fold sites decreases. 
These trends (see Fig. 4) reproduce those of the rise in Tc observed experimentally by the 
Argonne group [41,42]. Moreover, since it is argued that oxygen ordering promotes hole 
formation, and that oxygen loss destroys holes, these two conflicting tendencies may well 
produce non-monotonic decay ofTc as oxygen content is decreased, possibly giving rise to the 
"plateaus" observed in the Tc vs. oxygen content curve. 
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Recently, Poulsen et al. [45] were able to reproduce the observed plateal.! structure by a 
Monte Carlo procedure, much like the one reported here. The counting algorithm was 
different, however; instead of monitoring Cu-coordination, these author~ considered a relative 
population of two-dimensional "minimal-size clusters" of both Ortho I and Ortho II types. 
Upon careful analysis of their counting algorithm, it appears [46] that the good agreement with 
experiment obtained by Poulsen et al. is due to a very particular choice of rather artificial 
assumptions. Substituting another set of equally valid assumptions, differing but little from the 
original one, tends to destroy the plateau structure altogether. Clearly, a deep understanding of 
the relationship between superconductivity and oxygen ordering is still lacking . 

CONCLUSION 

A new "fIrst-principles thermodynamics" of alloys is emerging thanks to the unifying concept 
of clusters: both ordering energy and configurational entropy are expressed in terms of cluster 
functions, multi site correlations, cluster probabilities. Clusters provide the link between . 
quantum and statistical mechanics and, by means of the cluster variation method, with classical 
thermodynamics itself. Calculated phase diagrams, such as the one for oxygen ordering in 
YBCO, have yielded excellent agreement with experimentally determined ones. By contrast, 
mean field models (BW, CW) produce phase diagrams which are not only quantitatively but 
even qualitatively in error. . 

The asymmetric two-dimensional Ising model described above has explained 
successfully many features of the YBCO system: the experimentally observed phases 
(tetragonal, Ortho I, Ortho II) are ground states of the model; the calculated phase diagram 
(with no adjustable parameters) agrees remarkably well with experimental data; the observed 
electron diffraction maxima correspond closely with calculated structure factors of additional 
"branching phases" (such as Ortho III); and Monte Carlo simulation reproduces correctly the 
trends in change in Tc with annealing time in off-stoichiometric samples. It may therefore be 
concluded that this simple model captures most of the physics of oxygen ordering in the YBCO 
and related systems. 
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