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Abstract 

We consider two dimensional topological Landau-Ginzburg models. In order to 

obtain the free energy of these models, and to determine the Kiihler potential for 

the marginal perturbations, one needs to determine flat or 'special' coordinates that 

can be used to parametrize the perturbations of the superpotenti8.ls. This paper de

scribes the relationship between the natural Landau-Ginzburg parametrization and 

these flat coordinates. In particular we show how one can explicitly obtain the dif

ferential equations that relate the two. We discuss the problem for both Calabi-Yau 

manifolds and for general topological matter models (with arbitary central charges) 

with relevant and marginal perturbations. We also give a number of examples. 
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L Introduction 

LBL-3111Z14 
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Topological Landau-Ginzburg theories t are not only ~f interest in their own 

right, but they also determine the modular dependence of the Yukawa couplings 

in string theories [21_ The correlation functions of such topological models [3) are 

completely determined by a prepotential (or free energy), F, and in particular there 

is a set of 'flat' (or 'special') [4-7) coordinates, ti, i = 1, __ . ,/" in which the three 

point function can be written as 

and for which 

Gijl 
{fJF 

OtiOtjOtl' 

Gijm Gl1m G"m Gkjm' 

(1.1) 

(1.2) 

These coordinates are referred to as flat since the two point function, T/ij, is an 

invertible, t-independent matrix, providing a natural, flat metric on the space of 

chiral primary fields. One set of flat coordinates is provided by taking the ti to 

be the coupling constants of the chiral primary perturbations about the underlying 

N = 2 superconformal field theory. In particular one has: 

Gijl(t) == ( .pi.pj 'I>l exp[~>t J d2z.p~l'l)(z,z)]) (1.3) 

where .p~l,l) == G=JJ=l.pt. One could, in principle, consider perturbations by any 
2 2 

chiral primary field; however, for several reasons it is natural, and perhaps necessary 

[1), to restrict ones attention to relevant and marginal perturbations. 

In string theory,only marginal perturbations are considered (relevant operators 

would generate space-time tachyons and thus are projected out). The three-point 

By tbis we mean the topological, chiral primary sub-sector of two-dimensional N = 2 super
symmetric Landau-Ginzburg models, or equivalently, topologically twisted Landau-Ginzburg 
models [I]. 

. . ...... 
. -"'lo. 
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functions, or structure constants, Ci;k, determine the Yukawa couplings of the low

energy effective field theory. In addition to this, the Kahler potential, K, of the 

Zamolodchikov metric is determined from the prepotential F. To obtain K one 

first passes to homogeneous coordinates zA, A = 0, ... , P, such that ti = zi / zo; 

i = 1, ... , P and views F( ti) as a function of the zA that is homogeneous of degree 

2. That is, F(zA) == (zO)2F(zA/zO) = (Z°)2F(ti). One then has [8)[4r 

( 
. _jaF .; aT ) 

K = -log t t ".. - t t ~ . v,, at' 
(1.4) 

In this paper we will consider topological (or N = 2 supersymmetric) theories 

that have a Landau-Ginzburg description (10). One can obtain a set ~f coordinates 

for such a topological field theory simply by parametrizing the superpotential, W 

[3}. The problem is that these parameters are generally not the flat coordinates. 

One needs the flat coordinates to use (1.4). Moreover, for general coordinates the 

derivatives in (1.1) are covariant, making it difficult to determine F from Ci;k. How

ever, once given a parametrization of W in terms of flat coordinates ti, it is trivial 

to determine the structure constants Cijk(t) via simple polynomial multiplication 

modulo the vanishing relations: 

4>i(t) 4>;(t) C/(t) 4>k(t) mod V'W == 0 , (1.5) 

where 4>i(t) == -kW(t) [3J. 

Thus our purpose will be to determine how these flat coordinates can be related 

to general parametrizations of the Landau-Ginzburg potential. 

To date there have been several approaches to solving this problem. On Calabi

Yau manifolds the required coordinates can be related to the periods of the holo

morphic 3-form evaluated on an integral homology basis [5J [4-12J. One can some

times evaluate these periods explicitly as in [l1J. One also knows that such periods 

• It appears [9] that K is not uniquely defined given flat coordinates that obey only (1.1). We 
believe that the 'correct' flat coordinates are those which obey (1.2) as well. 

w·-,. 
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must satisfy a linear differential equation, and it turns out that there is an elemen

tary algorithm for determining this differential equation directly from the Landau

Ginzburg superpotential W. (A brief exposition of this has already been given in 

[13J.) This method has been well known to mathematicians for many years (see, for 

example, [14,15) [16]), but is apparently not well known in the physics community, 

and so we will give an exposition of the procedure, along with some examples, in 

section 2. 

In section 3 we will discuss the relationship between flat coordinates and the 

differential equations of section 2, and derive in detail the flat coordinate of a family 

of K3 surfaces. We will also discuss the role of the duality group of the Landau

Ginzburg potential. In section 4 we will describe how the Calabi-Yau techniques 

can be generalized to general topological Landau-Ginzburg models. This time one 

considers periods of differential forms on the level curves of W, and then one shows 

that by choosing the gauge carefully, one can solve the consistency conditions (1.1) 

and (1.2). The basic method is also known in the mathematics literature and is an 

application of the work of K. Saito. A recent, rather brief exposition of this appeared 

in [6J. Our intention here is not only to simplify the exposition still further, but 

also to show that if one restricts to relevant and marginal perturbations then the 

calculations can be simplified. Indeed (contrary to the expectations expressed in [6]) 

it becomes relatively straightforward to solve topological models whose underlying 

conformal theory has c > 3. 

2. Chiral Rings and Differential Equations for Periods 

In this section we will, for simplicity, consider a d-dimensional (non-singular) 

hypersurface, V, defined by the vanishing of a homogenous polynomial, W, of degree 

v in cpd+l (the generalization to weighted projective spaces is elementary). We will 

denote the homogenous coordinates on cpd+1 by x A, A = 1, ... , d + 2. We will also 

consider W to be a function of the x A and of some (dimensionless) moduli Pi. 
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If the first Chern class of V vanishes then there is a globally defined, holomorphic 

d-form, n, on V. This form can be represented [15] [17,18] by 

n J ~W' W ' .., 

4+2 

W= ~)-1)AxAdxlA ... AdxAA ... Adx4+2, 
A=l 

(2.1) 

where "( is a small, one-dimensional curve winding around the hypersurface V. More 

generally, the integral 

na J Pa(XA) 
Wk+! W, (2.2) 

.., 

where Pa(XA ) is a homogenous polynomial of degree kv, represents a (rational) 

differential d-form. The form, na , is an element of E9!=o 1\(4-9,d. One finds [15)[18] 

that na represents a non-trivial cohomology element in Fk == E9!=o H(d-9,9)(V,lR.) if 

and only if Pa is a non-trivial element of the local ring, n, of W. If we take the Pa to 

be a basis for n, then the corresponding forms, na , are a basis for the cohomology 

H4. For the moment we will restrict our attention to these cohomologically non

trivial differential forms. 

The set of periods of a differential form, na , is defined to be the integrals of na 
over elements of a basis of the integral homology of V. This also has a convenient 

representation: 

IT! = J Pa(x
A

) 
Wk+l w, (2.3) 

rp 

where r fJ is a representative of a homology basis in Hd+l (cpd+l - V,ll). The curve 

r fJ may be thought of as a tube over the corresponding cycle in H4(V,ll). 

From now on, we will fix r fJ and consider the vector tva == IT!. Considered as 

a function of the moduli Jli of W, the vector tv satisfies a regular singular, matrix 

-5-

differential equation 

[o~j - Aj(Jli)] tv = 0 (2.4) 

for some matrices Aj. (The complete set of solutions to this differential equation is 

in fact all of the columns of the period matrix IT! [15] [19].) 

Our purpose in this section is to give an elementary procedure that generates 

the differential equation directly from W. The key ingredient is a technical result 

established in [15]. That is, one considers a differential (d -1 )-form of V defined by 

t/>= J~, { L (_1)B+C[xBYc(xA)_xCYB(xA)jdxll\ .. . AdxBA ... A;;;CA .. . Adx4+2}, 
.., B<C 

(2.5) 

where the YB(XA) are homogenous of degree Iv - (d + 1). One finds that 

J 
1 4+2 oW 4+2 oYA 

dt/> W'+! [I (LYA oxA ) - W( L axA)]W' 
.., A=l A=l 

(2.6) 

Because this is an exact form, it provides us with a simple means of integrating by 

parts. Equivalently, if PaC xA ) in (2.2) has the form l: YA ~ then, modulo exact 

forms, we have from (2.6) 

n. = ~ J [_1 ~ oYA ] - k Wk ~ (axA) w. 
"I A 

(2.7) 

One can iterate this procedure (if necessary) and so reduce the numerator until it 

lies in the local ring of W. Note that this procedure amounts to the most naive 

form of partial integration. 

To derive the differential equation, simply differentiate under the integral to 

obtain 

Otva J [(al';Pa) _ (k + I)Pa(OI';W)] 
OJli WHI WH2 w, (2.8) 

r 

and then partially integrate until all numerators have been reduced to elements 
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of the local ring of W. Expressing this reduced r.h.s. of (2.8) in terms of the 0", 

immediately yields (2.4). 

If one is interested in the dependence of 0", on one particular modulus, po, then 

one can reduce the first order system (2.4) to one linear, regular singular O.D.E. 

for WI ;: J 0 of order equal to or less than the dimension, p, of the local ring of W. 

Note that the order is often much less then p. For example, if p",( xA) and W( XAj po) 

are invariant under some discrete symmetry, then the foregoing reduction procedure 

can generate only those Op for which pp is also invariant. Hence the order of the 

differential equation cannot be greater than the number of s.uch invariant pp's. 

We conclude this section by calculating a couple of examples. First we consider 

the cubic torus, that is, we take d = 1, (po;: 0:), and: 

W(x A ) l(x3 + y3 + z3) - 0: xyz (2.9) 

Let WI = Ir b w and W2 = Ir ~w. Then obviously Iowl = W2 and 

8 / x 2y2 z2 
80:W2 2 waw. 

One now uses the identity: 

(1 - 0:3) x2y2z2 =: xz2{ 0:2y8. W + o:z8. W + x8¥ W} , (2.10) 

and integrating by parts yields 

3 8 / z3 2/ xyz (1 - 0: ) 80: W2 0: W2 w + 20: W2 w . 

Using z3 = z8. W + oxyz in the first term and again integrating by parts gives then 

'--.. 

3 8 (1 - 0: )-W2 
80: 

O:WI + 30:2W2 , 
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and hence 

8 (WI) (0 1) (WI) 
80: W2 (1~",3) (1~"':3) W2 

Upon eliminating W2, this equation can be rewritten 

[(1 - 0:3)8~ - 30:28", - a] WI o. (2.11) 

This example can easily be generalized to the series of potentials, 

W(Nl(XA) 
1 N 

NLxf 
i=1 

N 

Q fix;, 
;=1 

N~3, (2.12) 

that describe N = 2 Landau-Ginzburg theories with central charge c = 3(N -2). 

Consider the following periods, which are associated with (N -1-1,/-1)-forms 

on V(Nl, 

(N) w, (/- 1)!/ n!I(Xi)'-1 
r (W(Nl)' w, 

l=l, ... ,N-l. 

We find an equation in a "Drinfeld-Sokolov" form: 

~w(Nl 
80: 

0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 I' w(Nl 

0 0 0 0 
ob(N) o'b(N) o'b(N) crN-26<;~'l aN-Jb<;ll 
~ ~ ~ ~ ~ 

, 
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where the coefficients are recursively defined: 

b(N) I b(N-I) + b(N-I) 
I I I-I' for 1= 1 •...• N - 2 • 

with b~N) = 1 and b<:~1 = !N(N - 1). The matrix equation yields 

aN-I N-I 0' I 

[(1 - aN) aaN- I - ( L b\N)a' aa~-I) ] w~N) = o. 
. 1=1 

(2.13) 

Note that due to the high degree of symmetry of the perturbation. the order of this 

equation is much less then the dimension of the corresponding local ring. 

Under the substitutions aN --+ z-I and WI --+ ziiN Wit this equation transforms 

into the following generalized hypergeometric differential equation (20) with regular. 

singular points at z = 0.1.00 : 

[( 
8)N-1 (8 1)( 8 2) (a N-1)) (N) 

z 8z - z z 8z + N z 8z + N ... z 8z + ~ WI = o. (2.14) 

For N =5. this is identical to the equation that was discussed in (11): 

[ 
3 at 2 Bl 72 B2 24 8 24] (5)_ 

z (1-z)az4 +(6-8z)z 8z3 +(7- sz)zaz2 +(1- sZ)az - 625 WI - o. 
(2.15) 

Equation (2.14) is solved (20) by 

(N) [1 2 N - 1. . ] 
WI N-I FN-2 N' N.···.~.1.1 •...• 1. Z • 

where 

AFB[ al.a2.··· .aAj bJ,~ •... bBjZ 1 
TIf-1 r(bk ) ~ zn TI~-I rea, + n) 

- A L..., 1 B 
TI,=I rea,) n=O n. TIk=1 r(bk + n) 

(2.16) 

is the generalized hypergeometric function. In direct generalization of the results of 

-9-

[11], a complete set of linear independent solutions to (2.14) for N > 3 is given by 

-kiN [k k k .'k + 1 k + 2 k + N -1. -I] 
Yk z N- I FN-2 N' N.···. N'~'~'···' N • z (2.17) 

(k = 1 •...• N - 1). where the overbrace indicates that the entry with value equal 

to one is to be omitted. 

The reduction method that we have described for obtaining the differential 

equation (2.4) works far more generally than for the class of potentials W discussed 

above. For example. the generalization to quasihomogenous spaces is straightfor

ward. Moreover. one can apply these techniques to marginal deformations of more 

general Landau-Ginzburg models. One does Iiot have to restrict to Landau-Ginz

burg theories that have a sigma-model interpretationj one such generalization is 

obtained by formally combining theories with other ones so as to mimick the c = 3d 

situation. Then one applies the results derived above and makes the trivial observa

tion that so long as the marginal perturbations do not mix one component theory 

with another. this tensoring of theories is irrelevant for the determination of the 

differential equation. Hence we need not restrict to theories with c = 3d. As an 

illustration. consider 

W x3y+y3+z3_ax3z. (2.18) 

which describes a perturbation of an N =2 theory with c = ¥ and {I = 14. We find 

[ 
3 a2 

2 8 ] 9(1 - a )- - 24a - - 4a WI = o. 
aa2 aa 

(2.19) 

In general. for theories that have effectively one modulus. the order of the differential 

equation will be two if 3 ~ c < 6. three if 6 ~ c < 9. and so on. 

In the next section. we will describe how the linear equations (2.4) for the periods 

are related to non-linear differential equations that determine the dependence of 

the flat coordinates on the moduli. {Ii. In section 4. we will further generalize the 

method to arbitrary marginal and relevant perturbations of generic Landau-Ginz

burg potentials. 
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3. Non-Linear Equations, Duality and Monodromy Groups 

To obtain the flat or 'special' coordinates on the moduli space of a Calabi-Yau 

manifold one expands the holomorphic (3,O)-form in a basis of integral cohomology 

[5][11). That is, one introduces a symplectically diagonal basis, {et4 , ph}, of integral 

cohomology and writes the (3,O)-form as: 

n Z4 et4 + Qh ph. (3.1) 

(The periods Z4 and Qh are integral linear combinations of the entries of an appro

priate row of the period matrix ne). Since n is only defined up to multiplication by 

an arbitrary function f(Z4), the quantities Z4 and Qh are only defined projectively. 

It was shown in [5][11][12) that the Z4 define good projective coordinates on the 

moduli space, while the Qh satisfy Qb = 8t.(Z4Q4)' It is thus the inhomogeneous 

coordinates (4 = Z4/ zO that constitute the required fiat, or special coordinates, ti. 

The crucial ingredient that leads to the flat coordinates is the choice of an integral 

cohomology basis. This, in a very strong sense, means that we are choosing a locally 

constant frame for the cohomology fibration over the space of moduli. 

In the following, we will not restrict ourselves to 3-folds, but we will consider 

projective coordinates (4 that are provided by the expansion of the the holomorphic 

(d,O)-forrn on a general 'Calabi-Yau' manifold. 

In section 2 we saw how to derive a linear system of equations (2.4) that is 

satisfied by the periods, Z4. Obviously, if one multiplies n by f(Z4) then one will 

obtain a different set of equations, and thus (2.4) is not unique. The a~propriate 

invariant equation is a non-linear system of equations for (4 that can be derived 

from the linear system for Z4. 

For example, the linear, second order equation 

~Z dz 
diJ2 + p(iJ) diJ + q(iJ) Z o (3.2) 

' ...... 
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gives rise to the non-linear, Schwarzian differential equation: 

{(;iJ} = 21, 1 2 I == q - iP 
I dp 
'idiJ 

(3.3) 

where ( = zl/ Z2 and Zi , i = 1,2 are the two solutions of the linear equation (3.2). 

The Schwarzian differential operator on the left-hand-side of this equation is defined 

by: 
2 (", ~(II) 

{(j iJ} == (' - 2 (' 

and satisfies: 

{YjX} = _(~~)2{XjY} 

{YjX} = (~:n{Yjz}-{Xjz}] 

{Yj x} == 0 if and only if Y 

for some a, h, c, dEC and ad - be '" O. 

ax + b 
cx+d' 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The quantity I in (3.3) is often referred to as the invariant of (3.2) since it is 

unchanged if one replaces (3.2) by the linear equation for f(iJ)z(iJ) (where f(iJ) is 

an arbitrary function). 

Recall (21) that the 'duality group' rw of the superpotential W consists of those 

transformations of the moduli that are induced through quasihomogeneous changes 

of the variables, xA, that leave the form of the superpotential unchanged up to an 

overall factor. That is, if Wo(xBj iJi) is a quasihomogeneous potential then one seeks 

quasihomogeneous changes of variable .iA whose Jacobian, det (~), is constant, or 

at worst a function, Ll(fli), of iJi and for which: 

Wo(.iAj iJ;) = h(iJi)-1 Wo(xAj ili(iJ;)), (3.8) 

where ili is some function of iJi. If one makes such a change of variables in the 

period integrals of n then the result is changed by an overall factor of h(iJi )Ll(iJ;). 
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It follows that the linear system of differential equations must be covariant with 

respect to the duality group of the superpotential. That is, if Z(lli) is a solution, 

then so is Ll(lli)h(lli)Z(jji(lli)). The corresponding system of non-linear equations 

must be invariant with respect to this duality group. This duality covariance and 

invariance can be very instructive in understanding the properties of the linear and 

non-linear equations. Thrning this around, it allows in principle to determine fw 

from the differential equations. In particular, given a second order equation (3.2), 

one can often read off the solution of the associated Schwarzian equation in terms of 

triangle functions, 8(ct,.8,1'). The parameters ct,.8 and l' then determine the duality 

group of the superpotentiai. For triangle functions, this group can be thought of 

as being generated by reflections in the sides of hyperbolic triangles (with angles 

7rct,7r.8 and 7r1') that cover the upper half-plane. 

It is thus of interest to understand the relationship between the foregoing dual

ity group fw, the monodromy group f M of the linear equations and the 'modular' 

group f of the surface. The integral homology basis undergoes an integral sym

plectic transformation when it is transported around singular points in the moduli 

space of the manifold. Consequently, the periods of the differential forms undergo 

just such symplectic transformations about these singular points. This is directly 

reflected in the monodromy around regular singular points of the solutions of the 

differential equations. The set of all such monodromies will generate a subgroup, 

fM, of the 'modular group', f. The set of duality transformations fw of the su

perpotential maps the surface back to itself and will thus extend the group f M to 

an even larger subgroup of f. In some cases this extension is all of f, and then the 

duality group of W is fw = r /f M. 

We are uncertain as to the general validity of this conclusion, but a simple 

illustration is provided by the cubic torus, (2.9). The non-linear system associated 

to (2.11) is given by the Schwarzian 

{ ct; t } ~ (8 + ct3 ) 
2 (1 _ ct3 )2 ct(ct')2 , (3.9) 
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which is solved by the triangle function ct(t) = s(!,!,!; J(t)) [22][21]. The trans

formation properties of this function are well known; in particular, it is a modular 

form of f(3) == PSL(2,71.3), and this group is the monodromy group rM of the 

differential equation (2.11). Both sides of (3.9) are invariant under f = PSL(2,71.), 

which is the full modular group of the torus. The quotient, the tetrahedral group 

f/r(3), is precisely the duality group fw of the superpotential (2.9), [22][21]. 

As a further example of the non-linear systems of equations that one can derive 

for the flat coordinates, we will descibe in some detail the a very particular family 

of K3 surfaces. That is, we will consider the surface defined by the superpotential 

(2.12) for N =4. Equation (2.13) becomes: 

[ 
4 {f3 3 02 

2 0 ] (4) (1 - ct )- - 6ct - - 7ct - - ct WI 
Oct3 Oct2 Oct 

0, (3.10) 

Before discussing the solution of this system, it is instructive to consider a general 

third order equation and see how one passes to the associated non-linear system 

and obtains the invariants. Our discussion will follow that of [23]. Consider the 

generic third order equation: 

Will + 3p(ct)w" + 3q(ct)w' + r(ct)w = O. (3.11) 

One starts by partially removing the freedom to multiply a solution by an arbitrary 

function of ct. This is done by requiring the vanishing of the coefficient of the second 

derivative, and is accomplished by substituting w == ye - J pda. The differential 

equation then takes the form: 

ylll + 3Q(ct)y' + R(ct)y 0, (3.12) 

where 

Q = q _ p2 _ p' 

R = r - 3pq + 2l - p" . 
(3.13) 



- 14 -

Let YI, Y2 and Y3 be solutions of (3.12) and define sand t by 

S 
Y2 
YI 

Y3 
YI 

Substituting Y2 = SYI and Y3 tYI into (3.12), and using the fact that YI IS a 

solution, one obtains: 

3s'y~ + 3s"y; + (3Qs' + S"')YI 

3t'y~ + 3t"y; + (3Qt' + t"')YI 

o 
O. 

(3.14) 

If one now differentiates these two equations again, and eliminates Yr' using (3.12) 

one obtains two more equations that are linear in YI, Y; and y~. These two equa

tions, along with (3.14), provide four linear equations for the three non-trivial, 

independent unknowns YI, Y; and y~, and thus there are two indepedent 3 x 3 de

terminants that must vanish. The vanishing of these determinants gives two fourth 

order, non-linear equations for s and t. Conversely, given a solution to these non

linear equations, one can eliminate y~ from the linear system described above to 

obtain a simple linear, first order equation for YI, whose solution is: 

YI (s"t' - s't") -1. 

The other solutions are then obtained from Y2 = SYI and Y3 = tYI. 

The actual non-linear system for s and t is fairly unedifying, but we will give it 

here for the sake of completeness. Define the following variables: 

UI = s"t' - s't" U2 = s(3) t' - s't(3) U3 = s(4) t' - s't(4) 
(3.15) 

VI = s(3) t" - s"t(3) V2 = s(4) t" - s"t(4) , 

where s(i) == tPs/da i , and introduce the differential operators: 

DI(s,tja) U3 - 2vI 4 (U2)2 ----- -
UI 3 UI 

9V2 _ 6U2(U3+4vI) +8(U2)3 
UI u~ UI 

(3.16) 

D2(S, tj a) 

---;> 
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The non-linear system may then be written: 

DI(s, tj (1) 

D 2(s, tj (1) 

3Q(0I) == I, 
8Q 

27( 801 - R) == J. 
(3.17) 

The operators DI and D2 are invariant under fractional linear transformations: 

(
a2 + /r.!s + C2t a3 + b3s + C3t ) 

DI , ja 
al + bls + CIt al + bls + cIt 

D (a2 + /r.!s + C2 t a3 + b3s + CJt. ) 
2 al + bls + CIt' al + bls + CIt' a 

DI(s,tja) 
(3.18) 

D2(S, tj a) . 

The right-hand-sides of (3.17) define the quantities I and J, which are called the 

invariant3 of the system. 

To solve (3.10) one needs to use some more of the theory of reduced differential 

equations of the form (3.12)[23)* . The form of (3.12) can be preserved by a com

bined rescaling and reparametrization. That is, one introduces a new parameter t 

and sets Y = (9!.) -Iu . Under this transformation the resulting differential equation 

has the form of (3.12), but with: 

a -+ t, Y -+ U, - (dt )-2( 2 ) Q -+ Q == da Q - 3' {tj a} 

R->R c:r3 

[( R - d~ {tja} ) - 3(~;) (::)0 ] . 

It is interesting to note that Q transforms precisely like an energy momentum tensor, 

and that the combination W3 == R - !~ transforms homogeneously, i.e.: 

- (- 3 dO ) ( dt )-3 W3 -+ W3 == R - - - - W3 . 
2 dt da 

It is precisely one of the classical W-generators [24). One can fix the reparametriz-

* A recent discussion of this subject may be found in [24J. 



.... 
-~ 

- 16 -

ation invariance by requiring that Q = 0, or 

3 
{t;a} = 2 Q. 

If one puts (3.10) in the form (3.12) one has: 

Q 

R 

a 2 (a4 + 11) 
"3 (1- ( 4 )2 

a 
11 + 36a4 + a 8 

(1 - ( 4 )3 

(3.19) 

From this one finds an extra bonus: W3 == 0, or R = ~Q'. This means that when 

one passes to the equation for u(t), one obtains ~ = 0, whose solutions are 1, t 

and t2 • Therefore the solutions to (3.10) are: 

" , (dt)-I w = (1 - ( 4
)-. da u(t) ; u(t) = l,t,t2

, (3.20) 

where t(a) is the solution of (3.19): 

3 1 2 ( a
4 + 11 ) 

{t;a} 2Q == 2a (1_a4)2 (3.21) 

Finally, changing variables z = a-4 in (3.21) one obtains: 

1 1 3 1 13 1 
{tjz} = 2z2 + 8(z _1)2 - 32z(z -1)" 

The solution of this equation is given by a triangle function, t(z) = 8(0,!, h z), 

which can, in turn, be re-expressed as the ratio of two solutions to the ordinary 

hypergeometric equation with parameters a = 1, {3 = l, and 'Y = 1. (The solution 

can, of course, also be expressed in terms of ratios of generalized hypergeometric 

functions (2.17).) We remark that the structure of the monodromy group of (3.10) 

is very similar to that of the quintic of [11), the difference being that all appearances 

of 5 in the formulae of [11) must be replaced by 4. This rule seems to hold for all 

N. 
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As we have seen, the modular dependence of the periods of this family of K3 

surfaces could have involved a non-trivial W3 invariant, but instead we found that 

W3 vanished. In this sense, the structure is determined merely by the Virasoro 

algebra, that is, by the Schwarzian differential equation (3.19). 

It would be very interesting to discover to what extent the higher dimensional 

surfaces defined by (2.12) might be similarly reduced, and to understand whether 

the appearance of such reduced W-algebras has any deeper meaning. In particular, 

note that the solutions of (3.10) are algebraically related (inspection of (3.20) shows 

that WI W3 = wn, and as we have seen this is a consequence of the vanishing of 

W3. It turns out that for the quintic, i.e. for (2.15), one also has W3 == 0 but 

W4 f 0, and it is known that the 96 in (3.1) are homogenous functions of the zG. 

Thus it appears that the vanishing of W -generators is closely connected to algebraic 

relations between the solutions. We hope to discuss these issues elsewhere. 

4. Flat Coordinates for Generic Perturbations 

We now wish to generalize the methods of section 2 to marginal and relevent 

perturbations of arbitrary topological Landau-Ginzburg field theories· . The basic 

problem is that general N = 2 superconformal theories have no obvious analogue of 

integral cohomology. As discussed in the previous section, it is this that leads one 

to flat coordinates for 'Calabi-Yau' spaces. 

For general topological matter models, one can make a general ansatz for :F, or 

for W, in terms of the flat coordinates, and then evolve algebraic and differential 

equations from consistency conditions of the topological matter models [3) [25) [26). 

In particular one requires that the Cijl be given by (1.1) and that they satisfy (1.2). 

However, solving the system (1.2) is extremely laborious, except in the simplest 

cases. 

* Our discussion will follow, and extend, that of [6]" Flat coordinates in generic topological 
matter theories have also recently been discussed in [n 
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Thus we like to obtain differential equations that determine the flat coordinates 

more directly from the superpotential. Let Woe x A ) be a quasihomogenous superpo

tential and W(x A ; 5i) be a parametrization of a general, versal deformation of Wo by 

elements 4>0 of the chiral ring. The problem is to determine the relationship between 

the general coordinates 5i, and the flat coordinates ti. Once the parametrization of 

W in terms of the ti is known, the free energy :F and all correlation functions can 

easily be computed. 

We will regard W(x A ; 5i) as a quasihomogenous function of x A and Si, and thus 

the coupling constants 5i can be assigned dimensions. (We will adopt the convention 

that both Wo and W have dimension equal to one.) Below we will actually consider 

only marginal and relevant perturbations, whose corresponding coupling constants 

will have vanishing or positive dimensions. This will lead to the major simplification 

that all quantities will have polynomial dependence on the coupling constants with 

positive dimension, and the only non-polynomial behavior will be via the marginal 

parameters. 

The coupling constant associated to the constant term in W(X A;5i) (i.e., the 

unique coupling constant of dimension one) will playa distinguished, important 

role and it will be denoted by 5\. The remaining coupling constants 52,53, ... will 

be denoted generically by 5'. We will take 

W(xA ,5') W(XA,5i) - 51 (4.1) 

as independent of SI. 

Let 4>O/(x A ; 5'), 0< = 1, ... ,11, be any (polyno~ial) basis for the chiral ring and 

consider integrals of the form 

(~) 
Uo 

~ .-, 

(-I)~+lr(A + 1) J 4>0.~:~~.5') dx l /\dx 2 ••• /\dx" , 
.., 

(4.2) 
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where the integral is taken over any compact homology cycle t f in the set {x E 

en : W(x, s) f. O}. The gamma function and the factor of (-I)~+l are introduced 

for later convenience. These integrals are related to the periods of differential forms 

on the level surfaces of W, [19J. They satisfy some important recurrence relations 

[27][6J: 

8~, u~.\) 

8.; u~~) 

(~) 
SI u'" 

(.\+k) 
U o , k E 71. 

00 

"" B(k) p(,) (~-k) 
L .'" S up 

k=-I 
00 

_l:A~k-2) p(s')u~~-k) 

k=O 

(4.3) 

(4.4) 

(4.5) 

These recurrence relations are derived by the same procedure as that employed 

in section 2. Equation (4.3) is a trivial consequence of differentiation under the 

integral. Equation (4.4) is also obtained by differentiating under the integral, but in 

this second instance the numerator of the integrand is a polynomial (8 .. W)4>o(x A ; s') 

which might need to be reduced. That is, by definition of the local ring of W this 

polynomial may always be rewritten in the following form: 

( " W)A. ( A. ') - C. PA. ( A.,) (O)A( A. ') 8W( A.,) (6) U.; '1'0/ x ,5 = '0 '1'/3 x ,5 + qi 0 X ,5 8xA x , S 4. 

for some polynomial qjOlA. One now integrates by parts' to obtain 

a (O)A 
8.;u~.\) Ci",/3u~~+l)+(-l)~+lr(A+l) J(~_~i.': )dxl /\dx 2 ..• /\dxn . 

There are I' independent possible choices, but the choice is not important for the moment. The 
reader might find it helpful to consider the one-variable case, in which -y is some loop around 
some su bset of the zeros of W. 

• That is, one uses the fact that 0 =: f b (~) dZ'f\dz2 .•. f\dz" for any vector VA . 
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Once again one decomposes the numerator 

a (O)A 
axAqi a 

B~Ol Pes') cPp(xAj s') + qPlA(xAj s') ;~ (xAj s') , 

and integrates by parts. In this manner one may recursively compute B~kl lI(s'), 

k = -1,0, 1, . ... Note that after every integration by parts the polynomial degree 

(in xA) of the successive terms (bqlklA) decreases by one unit, and hence this 

procedure must terminate after a finite number of steps. Also note that Cioll == 

8~-:.1) lI(s') are essentially the structure constants of the local ring. 

Finally, equation (4.5) is obtained by taking SI inside the integral, and rewriting 

it as SI == W(XA;Si) - W(xA,s'). The factor of W is cancelled immediately, while 

W( xA ,s')cPo( xA j s') is simplified by the identical, recursive reduction procedure de

scribed above. 

It is very convenient to make a "Fourier transformation" in the SI variable. 

Specifically, it replaces f(s!) by J~oo e"/' f(s!) ds1• This has the effect of sending 

a" ~ z-1 and 51 ~ -z2fz. Let lIk\)(Zj 5') denote the transform of 1I~A)(5). Then 

equations (4.4) and (4.5) may be rewritten as a linear system: 

(a.; - k~1 zkBlkl '\5'») 1I~A)(Zj5') 

(a. - k~2 zl: A~I:) lI(s'») lI~A)(Zj s') 

o 

o 

(4.7) 

(4.8) 

Observe that the lI~A)(Zi s') are, by definition, covariant constant sections of a flat 

vector bundle whose connections are defined by 8ll:) and A(k). 

To get more insight into why we make this construction, suppose that 8lk
) == 0 

for k ? 1 and define Vi = a., - BlO), Ci.P = 8l-:.1) Pes'). Then the flatness of the 

connection, or integrability of (4.7) implies 

[Vi - Z-ICi, Vj - Z-I Cj] 0, ( 4.9) 
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and separating out different orders in z, one gets the zero curvature equations l 

[Vi ,Vi] == V[iCi] == [Ci,Cj] o. ( 4.10) 

Hence the connection 8~0) is flat, the structure constants Ci.1I commute and are 

covariantly constant. If we now arrange that the basis {cPo} of the chiral ring is, in 

fact, given by {~}, and let 

ri/ = 8(0)1: 
'1 ' 

then one finds that ri/ = rji k and equation (4.10) implies that r is the flat 

coordinate connection we seek. We thus have solved the consistency conditions 

(1.1) and (1.2). The remainder of this section will essentially reduce the general 

problem to the foregoing simpler situation. 

Because the connection defined by A and 8 is fiat, one already knows that one 

can find a gauge transformation that will trivialize it. More precisely, because there 

might be non-trivial monodromy, one can find a matrix M such that q 

A (a.M)M-1 + M(A(s'»)M- 1 
Z (4.11) 

8i (a.;M)M- 1 . 

Thus we can gauge away all of B and almost all of A. The problem is that the 

matrix M will in general involve all powers in z and l/z. Hence M will define a 

basis change involving u~A+k) for all k E 71.. To control this, and indeed to preserve 

quasi homogeneity, we want to restrict ourselves to changes of basis that are upper 

triangular, that is, lI~AH) is only modified by addition of polynomials in 5' and 

1I~A+1) for I ~ k. This means that the change of basis must be analytic at z = o. 

t Such equations have also been discussed in [5][7]. 
b Tbese matrices are analytic in .', but not in " hence the form of the equation. 
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Now suppose that we can decompose M of equation (4.11) in the following manner: 

M = 90(z;s')goo(~;s'), ( 4.12) 

where go is analytic at z = 0 and goo is analytic at z = 00. Now let A' == gal Ago -

90 1(a.go) and 8: == gol8;go - 90 1(a,go). Then it is elementary to see that 

A' 

8~ 
I 

[(a ) -I (Ao(s'») -I] ,goo goo + goo -z - goo (4.13) 

(a,;900)9;;} . 

Moreover, by modifying 90 by multiplying by a suitable matrix, h(s'), one can 

further gauge away the z-independent term in 8'. Thus, provided that we can make 

the split in (4.12) there is a z-analytic gauge choice that has A(k) == 8~k) == 0, k ~ o. 

The problem of finding the splitting (4.12) is called a Riemann-Hilbert problem, 

and is generically [28J, but not always, solvable. Its solution is intimately connected 

with solving integrable models (see, for example, (29)). We have, in fact, a vari

ational Riemann-Hilbert problem in that our matrices have parameters s'. This 

makes the problem much easier to address and it will be discussed further in the 

appendix. In particular, we show in the appendix that go = 1+ 0(5'), where I is 

the identity matrix, and we will also show that go is analytic in S' and preserves 

quasihomogeneity (i.e. the elements of the new basis have a well-defined scaling 

dimension). 

To get flat coordinates, we need to make the restriction to marginal or relevant 

perturbations (of dimension less than or equal to one), which means dimes;) ~ o. 
Let v",(Zj 5') be the basis in which A(k) == 8(k) == 0 for k ~ o. Observe that if 

we restrict to ~",( x A j S') of dimension strictly less than one, then the corresponding 

u~")(s') have dimensions strictly less than (LWA)->' (where WA is the weight of x A). 

However, because the basis change has the form: go = 1 + O( s'), is analytic in z and 

s' and preserves quasihomogeneity, it follows that the v'" of dimension strictly less 

than 0::: WA) - >. are analytic, quasihomogenous combinations of 5' and the u~">C s'). 

~ 
; 
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In particular, such v", do not involve any u~·Hk)(s') for k =f 0). Furthermore, the v", 

of dimension equal to (LWA) - >. must be analytic, quasi homogenous combinations 

of 5', the u~"), and 

, - ("-I) - ( )"r( ') J 1 dId 2 d n Uo = U o = -1 A w" x II x ... 11 x . ( 4.14) 

One of the v", of dimension equal to (LWA) - >. must be (a dimensionless mul

tiple of) u~"-I) = zu~"), while the rest of the v", must start with a u~") term for 

which ~",(xAj s') is a marginal operator. Let 8 denote the (dimensionless) marginal 

parameters and let v~ and 1(8) be such that {v~,/(s)u6} forms a set of linearly 

independent vi") of dimension less than or equal to (LWA) - >.. 

It follows from the foregoing that there is a quasihomogenous, analytic, invert

ible matrix e", j (5') and a set of functions qj( s) such that 

a -u' 
aSj 0 

ej '" v~ - qj(S) u~ 

and qj == 0 if dim(sj) > O. Next observe that 

a2 
--u' 

as;aSj 0 
(a;ej "') v~ + ej "'(a;v~) - qj(a;u~) - (a;qj)u~ 

[a· '" . "'J' + -I "'c· P , + [ .. a··J I lej - qJe; v", z ej .a vp q.qJ - .qJ Uo • 

(4.15) 

By linear independence of the v~ and u~ we have q; qj] == 0 and hence qj == ajq for 

some function q(s). 

The foregoing combines to give us the following simple result. There is a 'uni

versal' function q( s) of all the marginal (dimension zero) parameters such that the 

integral 

Uo (-I)"r(>.) J ~ldxIAdx2 ... II~xn ( 4.16) 
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satisfies the following equation' 

8
2 

.. 0 (.HI) .. k ( 8 ) 
-8 8 Uo C'J Uo +r'J -8 Uo· Si Sj Sk 

( 4.17) 

Thus, the function q(s) is determined by requiring that (4.17) contains no term 

proportional to uo itself. The Cijo are just the structure constants of the chiral 

ring and ri/ is the Gauss-Manin connection. Flat coordinates are determined by 

simply requiring that r == 0 on the r.h.s. of (4.17). 

In practice one takes the Si to be the flat coordinates ti, and considers a per

turbation of the form 

W(x;t) = Wo(x) + L>i(t)mi(X)' (4.18) 

where mi(x) are monomials in the local ring (with degree less or equal than one), 

and the Landau-Ginzburg couplings, I'i( t), are unknown functions to be determined. 

We note that it is elementary to explicitly write down the constraints implied by 

(4.17) since this only involves differentiating under the integral and integrating by 

parts, just like the reduction procedure described in section 2. The constraints take 

first the form of linear differential equations for the I'i. One determines q(i) in 

terms of the I'i(t) by requiring that the Uo piece in (4.17) vanishes. Substituting for 

q(i) then turns the linear system into the associated non-linear system (e.g., into a 

Schwarzian differential equation) that determines the I'i(t). 

The function q( i) appears to be playing the role of a conformal rescaling of the 

vielbein. In particular we note that for the examples we computed, the function 

q(i)-2 is precisely the conforml!l factor that takes the Grothendieck metric o~ (7) to 

the flat metric. 

For conformal theories with c > 3, there are chiral primary fields of dimension 

larger than one. With the restriction that we have made on the perturbed superpo

tential, we cannot write these irrelevdlIt chiral primaries as ~ for some Si. Thus 

* Remember that W is only perturbed by marginal and relevant operators, i .•.• 0 ~ dim( Bj) ~ 1. 
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it might appear that these irrelevant chiral primaries play no role in determining 

the form of the equations that we derive from the procedure described above. This 

is not so. It is important to remember to pass first to the basis for all the chiral 

primaries in which one has B~k) = 0 for k ~ 0, and then one must use this basis 

in calculating the separate terms in expressions like those on the right-hand-side of 

(4.17). 

Finally we note that equations (4.17) and (4.10) can be recast in the familiar 

form 

Vi tv = 0 and [Vi, Vj] 0, (4.19) 

where Vi = 8.; + ri + Ci(h and tvi = 8iUO. The first equation is a generalization of 

the matrix differential equation (2.4) we discussed in section 2. 

5. Examples Revisited 

It is instructive to reconsider first the torus example (2.9) of section 2, but now 

with an additional, relevant perturbation: 

W = l(xJ + y3 + z3) - a(t)xyz - s,Bl(t)xy - !s2Ih(t)z - ~s3,B3(t) . (5.1) 

Here, t is a dimensionless, flat coordinate (the modular parameter of a torus), and s 

is a parameter of dimension 1/3. The dependence of the Landau-Ginzburg coupling 

constants on the relevant perturbation parameter s is already fixed by its dimension, 

so we will have to determine only the dependence on the modular parameter. The 

two-parameter perturbation is certainly not the most general one (which was con

sidered previously in (25)), but the extension is obvious. The specific perturbation 

we chose is however the most general one consistent with the 7lJ x 713 symmetry 

generated by (x,y,z,s) --+ (wx,w2y,z,s) and (x,y,z,s) --+ (wx,wy,wz,ws). 

Let Uo == (-l»).r(>.) fW/dx IAdx2 ••• AdxR. We want to solve for aCt) and ,Bi(t) 

by requiring the connection r in (4.17) to be flat; this corresponds to the vanishing 
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of terms proportional to u~~) in this equation. In particular, we obtain 

8
2
uo (q,,) HI J I 2 n 1 fJt2 = q .UO + (-1) r(A+l) dx/\dx ... /\dx WHI x 

{ [ q' 01" ] [q' [3" ] 2-; + -;;t OI'qxyz + s 2-; + [3; [3;qxy 

I 2 [q' [3~], I 3 [q' fJ~],} + -s 2- + - [32q z + -s 2- + - [33q 
2 q[3~ 6 q[3; 

+ (-1)~+2r(A+2)Jdxl/\dx2 ... /\dXnW~+2 X 

{ (0I')2 q X2y2z2 + 28a' [3; q x2y2 z + S2([3;)2q x2y2 + s2a' [3~q xyz2 + S3[fJ;[3~ 

I 'a') I 4(fJ')2 2 I 4 a' fJ' I 5 a' fJ' I 6( a')2 } + 3a P3 q xyz + is 2 q z + 3s PI 3q xy + 6"s P2 3q z + 36s P3 q . 

(5.2) 

We could obtain equations for q,a,[3i by considering all the different powers of sin 

this equation, but it is easier to just concentrate on the 8 = 0 pieces. We can thus 

use (2.10) and subsequently z31.=o = (z8.W + axyz)I.=o to integrate J ilx2:: 
by parts to reduce its degree. The vanishing of the connection r corresponds to the 

vanishing of the terms proportional to whr, i.e. 

J 1 [q' a" 3a2a'] (-l)'\+lr(A + 1) dx
l
/\dx

2 
... /\dxn WHI 2-; + a' + (1 _ (13 ) OI'q xyz == O. 

This determines q(t) 

q(t) = (1 - a(t)3) 1/2 
OI'(t) 

(5.3) 

Integrating (5.2) (with s = 0) by parts, substituting (5.3) and requiring the van

ishing of all terms that are proportional to Uo, we then indeed obtain directly the 

Schwarzian differential equation (3.9) for a(t), 

{OI;t} = _! (8+a
3

) 
2(1- (13)2 01(01')2, 

which is associated to the linear equation (2.11). However, by using the methods 

derived in the foregoing section, we can now also solve for the couplings [3i(t) of the 

-..., 
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relevant perturbations. To obtain [31(t), it is easiest to consider the s = 0 piece of 

~; by integrating by parts, we find the condition 

__ 2-...l a 01 1 [q' fJ' 2 2 , 

W~+I q + fJl + (1 _ (13)] [3lq xy == 0, 

and this gives [31(t) = A(a(t),)1/2(1-a(tJl)1/6 (where A is an integration constant). 

Similarly, from the 8 independent piece of ~ we obtain 

1 [ fJ2 a ] W~+1 [32 + (1 ~ ( 3 ) q z == 0, 

which yields [32(t) = -A2a(t)a(t)'(1 - a(t)3)-2/3. Finally, for [33 we consider the 

piece linear in s of ~, and use the identity 

x
2

y2 (1 ~ (3) {axz8x W + x2
8y W + a2xy8.W 

+ 2sa[31 xyz + sfJl x8x W + s2 [3i + !s2 a 2 [32XY } 

Partial integration gives 

J 1 [ [33 
W'\+I sq fJ3 + (1 _1(13)] == 0 

and thus determines [33(t). These results coincide with the expressions derived in 

[25]. One can also check that for the choice of a,{Ji give above, the connection r is 

completely flattened. 

To illustrate that our method may be used for theories with arbitrary central 

charges, reconsider the potential (2.18) with additional, relevant perturbations: 

W = x3y+y3+z3_0I(t)x3z-sl[3l(t)Z-S2{J2(t)x2, 

We find for the wt+! piece in the Sj = 0 part of ~ 

1 [q' 0/' 8 01
2

01' ], 3 
W'\+I 2-; + -;;t - 3(1 + (13) a qx z 
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and this determines 

q(t) = 0'(t)-1/2[1 + 0(t)3j4/9 . 

The Uo piece in (4.17) then vanishes if 0 satisfies the differential equation 

{} 
40 , 2 

o;t nt •• _",0(0) . 

This is precisely the Schwarzian form of the linear equation (2.19). Moreover, fh 
may be obtained from the Si = 0 piece in ~: /31(t) = 0'(t)I/2[l + 0(t)3J-I/3. 

Similarly, we find /32(t) = 0'(t)I/2[l + 0(t)3J-I/9. Hence, we can compute the 

following term of the free energy: 

.r(Si, t) !S\S220'(t)I/2[l + 0(t)3JI/9 + .... 

It is clear that we could compute the other terms of .r in a similar way. 
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APPENDIX 

Our purpose here is to show why one can find a matrix go(z, s') that is analytic 

in z and s' in the neighbourhood of z = 0, s' = 0 and which will gauge the 

potentials A(k) and B(k) to zero for k ~ O. As was shown in section 3, it suffices to 

show that the matrix M(z;s') defined in (4.11) can be factorized as in (4.12). The 

Birkhoff decomposition theorem [28J [31J implies that any matrix M(z; s') can be 

decomposed according to: 

M go(z; s') A(z; 5') goo(~; 5') , (AI) 

where go is analytic at z = 0, goo is analytic at z = 00 and A(z; 5') is a diagonal 

matrix whose entries are integral powers' of z. We need to show that A = I, 

where I is the identity matrix. More simply, it suffices to show that all the integral 

powers of z in A are, in fact, zero and hence A is z independent and can thus be 

absorbed into go or goo. Since integers can only be continuous functions of 5' by 

being constant, we can establish the desired result in a region about 5' = 0 by 

simply showing that it is true at 5' = O. 

Let ,pa(X) = ,pa(X,5' = 0), and recall that Wo(x) == W(x,s' = 0). Byassump

tion Wo(x) and ,pn(x) are quasi homogeneous of weight 1 and of some weight An 

* These integers are related to the Chern daBS of the relevant vector bundle over 52. 
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respectively. It follows that Wo == L:AwAxA~ and hence 

Wo(x) l/lo(x) == ~ A 8Wo 
~WAX 8 A l/lo(X) 
A x 

~ [8:A (WAxAWol/lo) 
A 8l/lo ] - wAWol/lo - wAx W08xA 

L 88A (WAxAWol/lo) 
A x 

[(LWA) +-Xo]Wol/lo. 
A 

Therefore Wo(x) l/lo(x) is a total derivative at s' = O. It follows that A(kl(s') == 0 

for k ~ O. Now take 

00 

90(Z, s') I + L L zk sj8yl(s' = 0) + 0«s')2) 
j k=O 

where I is the identity matrix. This yields the desired gauge for all values of z but 

with s' = O. As descriBed above, the Birkhoff theorem then guarantees that it can 

be done in a region about s' = O. Also note that 90(Z,S' = 0) = I. 

To see that the solution can be made quasihomogeneously, consider the differ

ential equation that needs to be solved: 

901 A90 - 9018,90 = z-2 P-2(S') + z-I P_I(s') 

9018j90 - 9018.;90 = z-2Qj(s') 

where P_I, P-2 and Qj are unknowns. This means that we must solve: 

8.;90 90[9018j90t (A2) 

where [ 1+ means: take only the non-negative powers of z in a power series 

expansion about z = O. The fact that the system (A2) is integrable follows from 

the general observations above. (It could probably be proved more directly.) If 90 is 

known to n-th order in s', then (A2) determines the (n + 1 )-st order term. Thus one 

o 
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can evolve a power series in s'. (The convergence of this power series is guaranteed 

by the Cauchy-Kowalewski theorem.) It is elementary to see that quasihomogeneity 

is preserved order by order. Finally, it is of some interest to know over what size 

~~~~~~~~p~~~~~~~~~~ 

choice can be made in a large Schubert cell of the underlying Lie group. That is, 

one expects that 90(Z; s') will become singular when one runs into a Weyl point of 

the underlying Lie group. 
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