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Abstract 

The Standard r.fodel of particle physks, together with the Big Bang 

model of the early universe, constitute a framework which encompasses 

our currellt understanding of fundamental laws a",1 beginning of our uni­

Vl!rse. Despite recent speculative trends, qllantum field lhL'Ory remains 

the theoretical tool of choice for investigating new physics either at high 

energy colliders, or in the early universe. In this dissertation, several 

fidd tllL'oretic phenomena relevant to cosmology or part ide physics are 

explored. 

A common theme in these explorations is the structure of the vacuum 

state in 'Iuantum field theory. First, we discuss first-order phase tran­

sitions in the early universe, in which the elrective V'.u:UUIII state of the 
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universe shifts discontinuously as the temperature drops below some criti­

cal point, We find that the dynamics of a certain type of first-order phase 

transitions can leatl to production of primordial bla(:k holes, which could 

constitute the dark matter of our universe. Alteruatively, supercook'<l 

first·order phase transitions may be the cause of an extended inflation­

ary epoch in the early universe, which is generally regarded as nccL'Ssary 

to solve several cosmological puzzles. We derive limits on such scenarios 

based on nearly model-independent percolation propertiL'S of the transi­
tion. 

We also study some nonpertllrbative aspects of the field theory Vat:­

uum. We show that non-topological solitons of a single fermion and IIiggs 

fields can only exist in strongly coupled theories. In particular, we find 

that at the lowest energy fermionic excitations in the Standard Model 

are single fennions, an,1 not bound states of ferlllion plus lIiggs. Finally, 

We investigate the intriguing behavior of instanton-intlured cross sections. 

We discover lIiggs-Higgs cross sections which incrcase exponentially with 

center of mass energy due to the prescnce of instanto" solutions related 
to vacUUIIl instability. 
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Chapter I 

The Big Picture 

topics 

A Introduction 

an overview of 

Theorists of this generation have inherited a dazzling array of ideas, models and the­

ories with which to describe the world around us. The Seventies and Eighties have 

provided confirmation after confirmation that quantum field theories, and in particu­

lar gauge theories, offer correct descript.ions of the (thus far discovered) fundamental 

interactions: We even have at our disposal the SU(3)0SU(2)0U(1) Standard Model 

of partic.:le physics, which thus far accounts extremely well for all experimental high 

energy dat.a. 

Faced with tI,e phenomenological successes of the Standard Model, and with 

our seemingly satisfactory understanding (at least at the perturbative level) of its 

theoretical underpinnings, theoretical physicists have opted to pursue many different 

lines of investigation. Some look to higher, or lower, dimensionalities in search of 

"interesting" mathematical structures. Others attempt to extend, or generalize the 

Standard Model, hoping to account for some of its shortcomings. Still others look 

to cosmology or astrophysics for clues as to new physics. The attitude adopted in 

this thesis is that there are many interesting physical phenomena which occur quite 

generically in quantum field theories in four dimensions. We will investigate the 

relevance of some of these phenomena to long standing puzzles of cosmology and 

astrophysics, ~ well as to new high energy physics. 

The common theme (if one exists) of the investigations in this thesis is the sub­

ject of the field theory vacuum, or ground state. This subject is extremely important 

in c(~slllology, as dramatic effects often result frolll phase transitions at finite tem-

perature. These effects include inflation, baryogenesis, creation of topological and 

non-topological solitons and many other non-equilibrium phenomena. It is crucial 

that we have a first-principles understanding of the dynamics of these transitions in 

order to conduct future investigations of the early universe. 

The relevance of the ground state to particle physics is of course obvious. The 

symmetries of the vacuum may not coincide with those of the Lagrangian, and in 

that case the theory is said to exhibit spontaneous symmetry breaking. This is pre­

cisely what is observed in both QCD and the electroweak sector. In the case of 

QeD, approximate global symmetries are broken by strong interactions of which we 

have lit tie first-principles understanding. In the case of electroweak interactions it is 

gaoge symmetries which are broken, and due to our present ignorance we can at least 

pretend that they are broken due to perturbative dynamics (i.e., the Higgs sector). 

Future experimental efforts at the Superconducting Super Collider and Large Hadron 

Collider will focus on determining the dynamics of electroweak symmetry breaking, 

whether it be due to perturbative scalar dynamics, nonperturbative dynanlical sym­

metry breaking, or something yet undreamt of. 

The models we investigate in this thesis are all of the first type. That is, the 

vacuum state will always be determined by a perturbatively calculable scalar effective 

potential. These models allow a large range of interesting behavior, including various 

types of phase transitions at finite temperat.ure, all of which can be studied using 

perturbative and semiclassical techniques. They also allow the possibility of multiple 

vacua, and in the case of weak coupling the resulting nonperturbative effects can be 

studied using semiclassical techniques such as instantons. (See, however, chapters IV 

and V for examples where semiclassical techniques can break down.) 

Of course, purely scalar theories have naturalness problems, as no symmetry can 

protect scalar masses from quadratic divergences. These quadratic divergences tcnd to 

force the scalar mass to be roughly the cut-off of the theory. For the Standard Model, 

this cut-off is typically thought to be the Planck or Grand Unification scale, and the 

naturalness problem found in the Higgs sector is referred to as the Hierarchy problem. 

There are two well known solutions to the Hierarchy problem. In supersymmetric 

theories, extra scalars and fermions are added in just the proper representations to 

cancel all quadratic divergences. An alternative is to rid the theory of scalar fields 

entirely, and rely on nonperturbative dynamics of strongly couplf'c! gauge theories to 

break symmetries and give fermion masses. This a1ternat.ive is g""f'ri('ally referred 

to as technicolor or dynamical symmetry breaking. In the supcrsYIlIlIlt·tric case the 

effects of the new weakly coupled fields can be integrated out, lcavillg us again with 

a scalar effective potential. The second case, howevcr, involves strong ("("'plings and 
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t.herefore is much less well understood, even with QCD as a model. 

It is certainly possible in principle that strongly coupled gauge theories may ex­

hibit dynamics and finite temperature behavior which is qualitatively different from 

that found in scalar models. However, the range of phenomena that can be studied 

in scalar models is quite broad, and the techniques (both perturbative and nonper­

turhative) arc well developed, so we will adopt the attitude that they provide a good 

guide for the types of phenomena likely to be found in more complicated theories. 

In t.he remainder of this introduction we will review the theoretical foundations 

for the investigat.ions that are to follow in subsequent chapters. 

B The effective potential 

The effective pot.ential is a much studied and extremely useful object (1). It is the 

quantum analog of the classical potential. and therefore determines the lowest energy 
st ate of a quant 11111 system. Consider for the momellt a classical scalar field theory 

givell by the followillg Lagrangian: 

c = !a"c/lD"c/l - U(c/l) 
2 

(1.1) 

The lowest energy translat.ionally invariant configuration of this theory is obviously 

just .pc(x) = constallt = .pmin. where .pmin is the minimum of U(.p). 

When we quantize the theory U(c/l) loses its interpretation as an energy density. 

and instead gives the various interaction vertices for the quantized field cPo However. 

one's intuition suggests that. at least when quantum effects are "small" (we will 

quantify this in a moment), the vacuum state of the full theory is not so different 

from .pc. In other words. there should at least be some limit in which our classical 

int.uition holds true. 

Now consider the construction of the effective potential, Y.,,(cP). Let Z[J) be 
the generating functional of n-point functions G(XI •... , xn) == (cP(x.), ... , .p(xn). Then 

connected Green's functions are generated by iW(J) = InZ(J]. and one-particle­

irreducible (IPI) truncated Green's functions irn (vertex functions for' n > 2) are 

generated by r[~j. which is just the Legendre transform of W[J): 

W(J] = r[~) + j d"xJ(x)~(x), (1.2) 

wh ... re 
~(X) = (O+I~(x)IO-) = 6W[J) = J Dc/l cP(x) eiS{<I>.J] 

M(x) J D.p eiS{<I>.J] (1.3) 

3 

.) " 

is the expectation value of the field operator ~ in the presence of source J. r can be 
formally expallded in terms of the IPI Greell's functions: 

- ~l A- -r[c/l) = ~ ,d"xl ... axncP(x.) ... <p(xn)rn(XI ... Xn). 
=2 II. 

(1.4) 

We note that any connect.ed Green's function generated by W(J) can now be written 

as the sum of tree graphs in a theory whose "effective action" is given by r[c/l). That 

is. the quantum theory described by W(J) is equivalent to a classical (i.e .• involving 

only tree graphs, and no loops) theory described by the effective action r[~). 

Defining ['(PI ... Pn) as the Fourier transform of r(XI"'Xn ), and taking ~(x) = ~ 
to be a homogeneous. stationary stat.e yields 

_ oo~n _ 

r[cP) = L -, jd"xr(o •...• 0). 
n+2 n. 

(1.5) 

Since the effective action r[4» can be written in terms of a derivative expansion. 

r[~) = j d" .c[- V(~) + A(a,,~)2 + ... ). (I.G) 

We see that for constant cP(x) =~. (1.5) can be identified with V(c/l) == Y.,,(c/l). which 

we will henceforth refer to as the effective potential. For constant configurations a 

solution to dl'." /d~ = 0 is also a solution to 6r /6~ = O. From (1.2) and (1.3) we see 
that. 

6r = -J. 
6~ 

(1.7) 

Therefore. if dY." / d~ = 0 is satisfied for some nonzero ~. we will have found a nonzero 

st.ationary point for the effective action, even when the source J(x) vanishes. This is 

precisely the signal for spontaneous symmetry breaking. To study the properties of 

the broken theory, we can define a shifted field with zero expectation value, 

cP' = cP -~. (1.8) 

and determine the spectrum of the broken theory by expanding perturbatively about 

the new vacuum state. 

At this point it is enlightening to stop for a moment and consider the relationship 

of this formal machinery to the intuitive classical expectations expressed early on. In 

particular. how is the new effective potential related to the classical potential U(c/l)? 

By examining in greater det.ail the expression (1.5). we see that each term rn(XI"'Xn ) 

will generally have contributions from tree graphs (i.e., from U(cP) itself) and from 

higher order processes (i.e., loops) that are suppressed by t.he assumed small couplings 
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of the interactions. Specifically, for the scalar theory at hand, \1./1 can be wmputed 

exactly to one loop, yielding 

. (/Ik 00 I L1"(cP) 
Ve/l V + I J (2 )4 L -2 (-k2 .) 

7r .. =1 n + If (1.9) 

V + i J (~~4/n(k2 + V"(cP) - if). (1.10) 

We note in passing that the second expression can only be obtained by analytic 

continuation of the first expression from where it is well defined (i.e., k2 > V''(4))). 

If V(4)) contains only renormalizable interactions (dimension four or less), then the 

divergences in (1.10) can be absorbed into counterterms of the form already appearing 

in the theory. 

It is well known that the loop expansion in field theory is equivalent to an expan­

sion in powers of Planck's constant h. Therefore, it is obvious that our expression for 

\-;'/1 has the correct classical limit V(4)) as we t.ake h -+ O. Furthermore, in the limit 

of weak coupling we expect the effective potential to closely resemble the classical 

potential. In fact, one can show that the effective potential is equal to the stationary 

expectation value of the Hamiltonian 

\~/I(4)) = (alllla) (1.11) 

(i.e., for states la) such that 6(alllla} = 0) under the constraints (ala) = 1 and 

(al¢la) = 4). That is, it gives the minimum energy of all normalized states which 

yield the specified vacUUIJI expectation value. 

This particular definition is problematic if one allows states la} which are not 

localized in 4>. By localized, we mean states which are smeared versions of eigenstates 

of cPo If we include nonlocalized states the set of la} 's is too general, and the effective 

potential so defined is always convex, contrary to our classical intuition. If, however, 

we restrict ourselves to localized la} 's, \I." can be nonconvex, and even complex in 

the region where it is nonwnvex (2). The restriction to localized states does not 

commute with the Hamiltonian, and the complex part is related to an instability for 

the localized state to decay into a superposition of states. 

The restriction to localized states is relevant to our purpose of studying ground 

states and phase transitions, and the definition of the effective potential given in (1.2) 

in fact coincides with that restriction. We will continue referring to this object as the 

effective potential, although others may prefer to call it the one-particle irreducible 

potential, since it is computed by summing I PI graphs aL a particular order in the 

loop expansion. 

5 
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We note briefly here that interesting effects can arise due to quantum corrections 

even in weak wupling. Consider the standard model in the limit of a heavy top quark 

(i.e., m, »mz,mHigg.) (3). The largest radiative corrections to the Higgs potential 

in this case come from the top itself, and lead to an instability. That is, 

\1./1 = -(2A + B)(124)2 + A4>4 + B4>4In(4)2/(12), 

where m~igg. = 4(12(2A + 3B), (4)) = (1 = 246 GeV, and 

B = 6
1 2(6m~, + 3m~ + mtigy. - 12m:). 

47r 

(1.12) 

(1.13) 

Note that a heavy top quark causes B to be negative, and hence \-;'/1 to become 

unbounded from below for large values of </>. It can be shown that higher loop effects 

restore the boundedness of the potential from below, but a new lower minimum does 

appear at large values of 4>. While it may be disturbing that the vacuum we observe 

(i.e., the one with SU(2) violating vacuum expectation value equal to 250 GeV) is 

not the true minimulJI, it is certainly consistent with observational constraints as 

long as our vacuum is metastable and has a very long lifetime. There will, however, 

be nonperturbative effects due to the nontrivial structure of the effective potential at 

large field values. Some of these effects, particularly their relation to Green's functions 

and cross sections calculated in the metastable vacuum, will be discussed in chapter 

V. 
\Ve now turn to finite temperature effects on the effective potential. The finite 

temperature effective potential can be interpreted as the free energy of a system in 

equilibrium statistical mechanics, and therefore Ve/l is useful for determining the 

equilibrium state of the system. To study field theory at finite temperature, we 

imagine placing the system in contact with a thermal bath at temperature T. Then 

the background in which we study a particular scattering process is no longer an 

empty vacuum, but rather a thermal distribution of particles. We can now define 

finit.e-temperature Green's functions in terms of ensemble averages, 

CO(XI ... X2) N L e-OE(o)(al4>(x.) ... 4>(x2)la) 

Tr [e-PH4>(xl ) .. -4>(X2)) 
Tr c PIi 

(1.14) 

(1.15) 

The sum runs over a complete set of states la) with energies £(0), and can be written 

as a trace in the space of states. 

In analogy with the zero temperature case we can define a gelll'rat ing functional 

ZOIJ), from which the above Green's functions can be obtailled. Theil 

Z0(J) = Tr [e-OHexp(i I (/IxJ(r)cP(x))) , (LlG) 
Tr e-Oll 
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and CO(XI."Xn) can be obtained by varying ZO(JJ with respect to J(XI) ... J(Xn) in the 

usual way. The important point is that ZO(JJ can be written in terms of a Euclidean 

path integral over scalar fields satisfying periodic (antiperiodic in the case of fermions) 

boundary conditions in Euclidean time 111i. In particular [4J, 

Z°(JJ = N J D4>o exp( -l dxo J cfxe'E - J A) (1.17) 

where the measure D4>o is restricted to periodic paths 4>(0, x) = 4>({3, Xl, CE is the 

Euclidean Lagrangian and N is chosen to make ZO[OJ = I. 
We now see that, at least formally, the only difference between zero and finite 

temperature field theory is in the boundary conditions imposed on the fields. Having 

made this modification in boundary conditions, we can bring to bear all of the tech­

niques (i.e., diagrammatic expansion or functional methods) originally developed for 

the zero t.emperature case. In particular, we can see quite directly what becomes of 

the efT ... cti,·e potential when we go to finite temperature. Consider equation (1.10). 

Due t.o the periodicit.y in to, integrals over 1.0 become sums over discrete energies 

given by w~ = {3-2 + f2. This gives 

1 J" tPk 2 - 2 " v."=U+ 2{3 ~(21T)4In(wk+k +U (4))-i{). (1.18) 

Simplifying this expression, and subtracting off the zero temperature effective poten­

tial, yields the temperature dependent correction, 

1 100 

~i3v.JJ(4)) = 21T2{3 -00 dk k
2
ln(1 - e-OEl

), (1.19) 

where E~ = P + U''(4)). Although we have said little about renormalization up to this 

point, we note that ~i3V.,,(if» is finite, and hence the zero temperature counterterms 

necessary to ensure finiteness also suffice for the finite temperature potential. 

In the high temperature limit (4)11 < < 1) the correction bemmes 

U''(4)) _ ~ + 0(4)\ ~ol~JJ(.p) = 24/12 90{34 (1.20) 

If. for example, the Lagrangian contains a 4>4 interaction, the first term has the form 

of a temperature dependent mass term ( 4> 2T2), and therefore tends to increase 

the free energy of any state with nonzero vacuum expectation value 4>. This term 

ensures that at sufficiently high temperature the state of lowest free energy (the finite 

temperature equivalent of the ground state, henceforth referred to as the thermal 

ground state) is the maximally symmetric state with zero vacuum expectation value. 

\\'t' therefore see that symmetries which are spontaneously broken at zero temperat ure 
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may be "restored" at finite temperature. The exact details of how the system adjusts 

its thermal ground state as the temperature is continuously decreased (the case of 

interest in the early universe) will be discussed in what follows. 

C The early universe 

In this section we will review the basic assumptions that make up the Hot Big Bang 

model of the early universe. This model has several notable successes [28J, including 

its prediction of the microwave background and of primordial light element abun­

dances produced in nudeosynthesis. It also provides possible mechanisms which can 

account for various observations such as the overabundance of matter versus anti­

matter (the problem of baryogenesis) and the preponderance of dark versus luminous 

matter (the dark matter problem) in our universe. 

To specify a model of the early universe we need two ingredients: a physical 

theory whicb fixes the dynamics and interactions, and a set of initial conditions. We 

will take for our theory classical general relativity plus a quantum field theory that 

is (hopefully) consistent with current high energy experiments. Formally, then, the 

theory can be written in terms of the following action: 

s= f ~x.;::g[I~ITIcR+Cm."cr] (1.21 ) 

where C is Newton's constant, R is the Einstein curvature scalar and Cm ." ... is the 

particle physics Lagrangian. 

This still leaves us a great deal of freedom. as there are countless proposed models 

of particle physics beyond the standard model, each of which has its own cosmological 

implications. As for initial conditions, we will take the univer~ to be homogeneous 

and isotropic and at some initial temperature T;. 

The metric of a spacetime with homogeneous and isotropic three dimensional 

subspace can always be written in the Robertson-Walker form, 

ds2 = dt2 - R2(t)( 1 :r:r2 - r 2d02). (1.22) 

Here R(t) is the Robertson-Walker scale factor, r is a dimensionless spatial coordinate, 

and the parameter k describes the geometrical curvature of the three dimensional 

spat.ial subspace: 
6k 

3R = R(tp' (1.23) 

It is always possible to rescale r -+ r/lkjl/2,R(t) -+ R(t)/lkll12, so thal k = +1 , -1 

or O. 
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If the contents of the universe are treated as a fluid, then homogeneity and 

isotropy ensure that the matter stress tensor is given in terms of the energy density 

p and pressure p by 

T"V = (p + p )g"V _ pu"u v
, (1.24) 

with u" = (1,0,0,0). The equation of state for the fluid then determines the depen­

dence of p and p on the temperature T. For example, a fluid consisting of relativistic 

degrees of freedom (radiation dominated) would have 

p(T) 

p(T) 

. 4 
" g, 7r r 
.LJ 27r2 15 , 
p(T)/3, 

(1.25) 

(1.26) 

where the sum is over particle species, and the weight factor 9, is the number of spin 

degrees of freedom, times one for bosons and 718 for fermions. 

Tile equations of motion resulting from the action defined above, under the 

assumptions of isotropy and homogeneity, can be reduced to the Friedmann equation 
and the equation for ellergy conservation: 

(~r 81fGp k 
-3- - R2 

d 
di(pW) _ dfC1 Pdt· 

(1.27) 

(1.28) 

These equations, when combined with an equation of state, determine the evo­

lution of the scale factor R(t), pressure p and energy density p with time. This also 

allows us to solve for the temperature T(t) as a function of time. For the relativistic 

fluid described above, ignoring for the moment the curvature term kl R2, we find 
R(t) ex t l / 2 and T(t) ex t- I/2 • 

We note that if the curvature term is negligible the expansion rate HI R and cool­

ing rate tIT of the universe arc just dependent on the qualltity ..jGp - T2lMPlanck. 

The inverse of this quantity is often referred to as the Hubble timescale. For energy 

densities much less than the Planck density - M~/anclc' this expansion or cooling rate 

is much less than the inverse of the timescale over which typical particle reactions 

or thermal fluctuations take place (e.g., .srI - T). This relatively slow expansion 

and cooling of the universe allows us to make the approximation (used implicitly 

above) that the system is able to track its thermodynamic equilibrium as the tem­

perature decreases. Obviously this assumption depends critically on the particular 

rate~ for particle or thermal processes under consideration. For instance, it is possible 

for weakly coupled particles to interact (annihilate or scatter) so seldom that their 
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abundance fails to track equilibrium. This situation is known as "freeze-out", and 

can be used to calculate the relic abundance of stable, weakly coupled part ides such 

as the neutrino (5). Later we will consider the case of a first order phase transition, 

in which the vacuum state of the universe is unable (at least temporarily) to track its 

free energy minimum. This is due to the extremely low rate for fluctuations which 

interpolate between the metastable vacuum and the true minimum of the free energy. 

Before continuing in our discussion of the thermodynamics of the early universe, 

we digress for a moment to reconsider the question of initial conditions. In particular, 

although we specified the initial values T;,p;,p;, we said nothing about the initial 

value of the scale factor R;. Since there is only one dimensionful constant in the 

gravitational sector of the theory, we might expect that R; - Mp/~nd<' However, 

unless k is extremely small, this would be a disaster as the curvature term would 

then dominate the Friedmann equation, and lead either to a curvature dominated 

universe (for k < 0) or a universe that qui~kly recollapses (k > 0). If we work in the 

rescaled basis, where k = +1, -lor 0, it is clear that only k = 0 or an R; » MP/~nck 

would allow the universe to have lived as long as it has and to be as flat as it is. This 

generic problem, of fine-tuned initial conditions, is known as the flatness problem. 

Another problem of initial condit.ions for Robertson-Walker universes is under­

standing how regions separated by large distances today ended up at the sanle tem­

perature. This is known as the horizon problem. A horizon in a Robertson-Walker 

universe denotes a region that is in causal contact. Consider a photon whose geodesic 

satisfies ds2 = 0 emitted at coordinates (I = 0, r = 0, (J = 0, t/I = 0) along a radial 

path satisfying (J = t/I = O. This hypothetical photon would reach coordinate rH at 

time to, where 
('H dr flo dt 

10 Vi - kr2 = 10 R(t)" 
(1.29) 

The horizon size at time to is the physical distance between r = 0 and r = rH at time 

to: 
tH dr flo dt 

DH(to) = R(to) 10 ~ = R(to) 10 R(t)' 

where the physical distance between two points A and B is DAB = J!: V-ds2 . 

For power law expansion (R(t) = R;(tlt;)n), the horizon size increases as 

DH(to) to/(l-n) 

to/n(tolt;) 

to/(n - l)(tolt;)"-I 

(n < 1) 

(n = 1) 

(11 > 1). 

(1.30) 

(1.31 ) 

(1.32) 

(1.33) 

Now, consider the physical volume at some past time t that would colTt'spond to a 
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horizon volume today at to. The size of this region, relative to a horiwn size at that 

time, would be 

d(/) _ R(t) dH(to) _ (~)I-n 
dH(I) - R(to) dll(t) - t 

(n < 1). (1.34) 

From the last equality, we see under either radiation dominated (n = 1/2) or matter 

dominated (II = 2/3) expansion our present horiwn volume must correspond to a 

volume which at early times consisted of many causally disconnected volumes. It is 

then difficult to understand why the microwave background (which decoupled from 

equilibrium at temperatures of about leV), is so uniform today. Such uniformity 

would require that the initial temperature distribution (or, at least the temperature 

distribution at leV) of the universe was uniform over distances which were acausally 

separated at the time. 

We see now t hat to accommodate a universe like the one we observe in a Robertson­

Walker framework req'lires extremely unnatural initial conditions, both in the initial 

scale fador and in t.he distribution of energy density. An attractive possible solu­

tion to these problems is the idea of inflation [26, 6]. Inllation postulates an era 

when the equation of stat.e of the quantum fields in the t.heory was such that the 

universe expanded exponentially, R(f) ....., ell', while maintaining a constant energy 

density, p. Sufficient exponential expansion solves both the flatness and horizon 

problems. Tl~e rapid growth of the scale factor suppresses any curvature, leading to 

a flat universe with negligible curvature, hence the generic prediction from inflation 

t.hat n == p/ Pe = 1 (Pe is defined as the critical energy density necessary for a flat uni­

verse). Secondly, one can check that during the era of exponential growth, the horiwn 

size increases dramatically, and it is possible for our universe to have originated from 

a relatively small initial volume that was causally connected before inflation. 

The state necessary to ensure exponential growth of the scale factor is one in 

which vacuum energy dominates the malter field stress tensvr T"V. The stress tensor 

for a scalar theory such as that described by (2.1) is 

T"" = 1/2(8"4Xf'¢» + VI1(¢» (1.35) 

where \a(¢» is the full temperature dependent effective potential. If the ground state 

of the theory is one in which the derivatives vanish (translationally invariant), then 

the stress tensor is simply given by the (possibly nonzero) potential energy ~a(¢» 

times g,,". In this case the solution to the Robertson-\\'alker equations of motion, 

m·gle·cting the I'lu\'ature term, which quickly becomes irrelevant, is R(/) = R(to)e H', 

whe're 1/ 2 = ~fl'joo. Here roo = P is simply the energy density of the "false vacuum" 
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stat.e. We note that the energy conservation equation (1.28) is automatically satisfied 

by the p = -p equation of state of the false vacuum. 

The spacetime of the exponentially inflating universe is actually a De Sitter 

spacetime. It exhibits an 0(4) symmetry which is larger than the symmetry of the 

general class of Robertson-Walker spacetimes we have been considering. There are a 

number of interesting aspects of De Sitter space, specifically the presence of quantum 

fluctuations in the various fields due to background gravitational curvature. These 

quantum fluctuations can be the source of density perturbations necessary to seed 

subsequent structure formation in the early universe. We will not discuss either topic 
here, but they are investigated in [7]. 

From the above discussion it is clear that there is an intricate interplay between 

the ground state of the quantum fields in the theory, and the large-scale evolution of 

the metric. This brings us back to the discussion of the statistical, or thermodynam­

ical, properties of the early universe. We now turn t.o t.he details of how the universe 

could find itself in a "false vacuum" state, and indeed, how it might manage to extri­

cate itself. One simple scenario involves the quantum fields undergoing a first-order 

phase transition as the universe cools. By first-order, we mean a phase transition in 

which the minimum of the effective potential (or free energy) shifts discontinuously 

as the temperature is decreased. This type of phase transition occurs generically in 

a large class of perturbative theories with scalar potentials. In figure 1 we sketch the 

type of finite temperature behavior of the effective potential which would lead to such 

a transition. We note that at zero temperature, the true minimum of the potential 

occurs at nonzero vacuum expectation of the field ¢>. At zero temperature the local 

minimum at ¢ = 0 is metastable, and represents a state of mucll larger energy density 

than the true minimum. However, at finite temperature the corrections are such that 

above some critical temperature Te , the minimum of the potential (i.e., free energy) 
occurs at zero vacuum expectation value. 

Now let us follow the e\'olution of the ground state of the theory, beginning at 

temperatures T > Te. We will assume that the system is in thermal equilibrium 

for these large temperatures, and therefore occupies a stat.e with 4> = O. At tem­

peratures less than Te , the system suddenly has available states of much lower free 

energy. However, because of the barrier in the effective potential, the system cannot 

homogeneously shift to the lower minimum. The classical equation of motion for the 

scalar field is satisfied by the field remaining constant at the local minimum. 

Because of the lower minimum there are field configurations which are ener­

getically favored over the false vacuum state, and which can be excikd by thermal 

fluct.uations or by quantum tunneling. Quantum tunneling proceeds by cla-,sically 
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forbidden paths, which nonetheless contribute to the path integral for the system. 

We leave a discussion of quantum tunneling until later, when we discuss semiclassical 

techniques in general. For now we will merely mention that tunneling typically results 

in the nucleation of some sort of critical bubble which then evolves according to its 

classical equations of motion (45J. 

Thermal fluctuations represent excursions from the equilibrium state, and occur 

at a rate (8J 

r - T 4exp(-f3F), (1.36) 

where F is the free energy of the fluctuation. The subsequent evolution of a fluctu­

ation, if it remains in thermal equilihrium, is governed by the equations of motion 

gotten from the finite temperature effective potential. Alternatively, it is possible 

that the timescale over which a configuration evolves is insufficient to ensure thermal 

equilibrium. In that case the evolution of the configuration cannot be computed using 

the free energy, but rather should be studied using the zer<>-temperature potential, 

takillg into account interactions with the background thermal spectrum of particles. 

The fluctuations we have in mind are typically sollle sort of bubble, in which 

the field r/> probes the true minimum of its potential at the core before patching on 

continuously to the false vacuum. This description is of course in a semiclassical spirit, 

where the bubble is treated to a good approximation as a classical field configuration. 

Dubbles of sufficiently large size are typically free energetically favored to expand, 

and will be termed critical. Subcritical bubbles will collapse soon after appearing, 

and will not interest us here. 

Now consider the total (thermal plus quantum) nucleation rate for critical bub­

bles. If this rate is large compared to the inverse of the Hubble timescale at tem­

peratures of order the critical temperature Te , a large number of critical bubbles will 

appear within each horizon volume. These bubbles will typically grow and percolate 

before the universe cools appreciably below Te. In that event, we will avoid the situa­

tion in which the false vacuum energy density dominates the thermal energy density 

and the universe begins inflating. This is the type of non-supercooled first-order phase 

transition we will study in chapter II. 

If, however, the total nucleation rate is small, the universe will begin expanding 

at an exponential rate, and the temperature will drop correspondingly. In this case 

we end up with an extremely cold De Sitter universe, which is trapped in a metastable 

vacuum state. Critical bubbles will continue to nucleat.e, but now primarily through 

quant.um tunneling. Detailed studies of t.he subsequent evolution of these bubbles (26J 

shows that they will never percolate, and that the majorit.y of the universe remains 

in De Sitler space. 
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The scenario of inflation we have described is known as "old inflation", and is 

unfortunately not successful. Later attempts to devise successful scenarios generally 

rely on fine tuning of scalar potentials to achieve "slow-rollover" second-order tran· 

sitions (28J, in which the scalar field evolves continuously to its zero temperature 

minimum, but which also provide for vacuum energy dominance and sufficient expan· 

sion. These fine-tunings of the scalar potential art· unnecessary to achieve the type 

of phase transition required for the original scenario, and it would be very appealing 

if the first-order type of transition could be made to work. 

A recent proposal, dubbed "extended inflation" (29], makes use of modifications 

to Einstein gravity in order to make a first-order scenario successful. In chapter III 

we will study the percolation of the vacuum in extended inflation, and determine 

that the scenario leads to the production of a large number of primordial black holes. 

This result will allow us to place some fairly model independent constraints on such 

scenarios. 

Defore turning to other subjects, we mention briefly the relation of the so-called 

"cosmological constant" problem (9J to the idea of inflation. In quantum field theory 

the zero point or vacuum energy of a system is arbitrary in the sense that one can 

always add to or subtract from it without affecting the physics. Therefore, it is always 

possible in principle to define the theory so that the vacuum energy density is zero 

by adding the appropriate constant to the potential. We say in principle because the 

constant to be added must cancel order by order in perturbation theory any higher 

loop corrections to the zero point energy. (This also applies to any nonperturbative 

contributions. ) 

Now, we know that to good accuracy the zero point energy of the theory of 

our universe is zero because gravity couples directly to energy density. The afore­

mentioned invariance of the quantum theory is not an invariance of classical gravity, 

and we can place a constraint on the vacuum energy density simply because the 

universe is not vacuum energy dominated today. This constraint gives (roughly) 

pvoe < JO-'19g/ cm3 ~ 10-47 GeV4 • Since the quantum corrections to the vacuum en­

ergy density are expected to be roughly A 4 , where A is the cutoff for the theory, it 

is obvious that the cancellation between these corrections and the arbitrary constant 

must be exceedingly fine. 

In studying inflation we must, in a sense, assume a solution to the cosmological 

constant problem. That is, we assume that there is some meclliUlislIl thaI fixes the 

actual zero point energy of the theory, and that what appears as the sl .. "ss tensor in 

the Friedmann equations is measured relative to this zero poillt. 
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D Saddlepoints 

We now return from the early universe to the subject of saddlepoint expansions 

and their use in evaluating field theoretic quantities via the Feynman path integral. 

We have in fact already encountered saddlepoint approximations, as the one loop 

expression given in (1.10) for the effective potential is equivalent to the result, of a 

saddlepoint expansion of the effective action about t/J = ~. 
The saddlepoint approximation is useful in general for the approximation of 

integrals of the type 
J = J dz e-f(z) (1.37) 

where the function J(x) has a stationary point about which it can be expanded. In 

other words, J(x) == J(xo) + 1/2f"(ro}{x -xo)l + ... , where f'(xo) = 0 and f"(xo) > O. 

This expansion allows the int.egral to be approximated as 

J == e-f(zo) J dx e-l/ll"(zo)(r-rol' + ... (/.38) 

1'1,<, last integral is simply a Gaussian, and can b<, directly evaluated. The approxi­

mation is known as a saddlepoint. approximat.ion because if the function J(x) is taken 

to be the real part of some analytic function w(z = x + iy), then by the Cauchy­

Riemann equations J(z) is harmonic and satisfies 8l J(z)/8x' = -82J(z)/8y2. This 

implies that the critical point is actually a saddlepoint of J(z). 

These techniqlles can be used to approximate Euclidean path integrals if one is 

somewhat cavalier about extending the results to infinite dimensions. In particular, 

the Euclidean action can be expanded about a stationary point as 

6l S 
SE["'] ~ Sd¢o) + 1/2 J dx dy c "\c~f\14>o (t/l(x) - ¢o)(t/l(y) - 4>0) + ... , (1.39) 

where by functional differentiation 

filSE 
. . 14>0 = -(0 + U"(t/Jo))6(x - V)· (1.40) 

Bere, a stationary point is nothing more than a solution to the Euclidean equations 

of motion. Keeping track of Ii's tells us that the quadratic piece is actually O(Ii), 

and therefore corresponds to the first loop correction to the saddlepoint result. The 

saddlepoint expansion used here is actually equivalent to the semiclassical, or loop, 

expansion as we will see below. 

For example, we can use this type expansion to compute the saddlepoint result 

for t.he Euclideall analytic continuation of W(J). the generating functional for n-point 

flln('tions. \\le have 
e-K'EIJ) = J Dt/J e-S.,loI>.J), (1.41) 
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which gives 

e-K'EIJ) == e-SEI4>o.J) J Dt/J el/l J dzol>(r)(D+U"(4>oJlol>(z) 

e-SEI4>o.J) J Dt/J det[O + U"(t/JoWl/l• 

Using the result detA = eTr InA and rotating back from Euclidean space yields 

W[J) = S[t/Jo,J] + 1/2Tr In [0 + U"(t/Jo)] + ... 

(1.42) 

(/,43) 

(/,44) 

From the result for W[J), we can quickly get to the effective potential by noting 

that to the order O(Ii) in which we are working, the above equation implies 6W/6J = 

t/Jo. Using the definition of W(J) given in (1.2), 6W/6J = ~, we have 

r[~) = S[~) + 1/2Tr In [0 + U"(~)) + ... (1.45) 

Now, for constant configurations ~, the above result becomes an expansion of the 

effective potential \~ff in terms of the classical potential U(~~ and the first quantum 

correction. The O(Ii) correction found here is precisely equal to the one found earlier 

by diagrammatic means, since 

Tr In[O + U"(~)) = Jerk In(k2 + U"(~)). (1.46) 

The saddlepoint found above is an almost trivial one: it corresponds to a uniform 

value of the field t/J throughout spacetime. Below we will consider two more interesting 

types of saddlepoints, namely solitons and instantons. Here by soliton we mean 

a stable, time independent solution of the classical equations of motion. It is the 

last property that makes the configuration a saddlepoint. The first two properties 

are generally true of topological solitons (i.e., kinks, monopoles) (41), but are not 

necessarily true of a more complicated class of solutions known as non topological 

solitons (Q-balls, fermion-scalar bound states, etc.) [39,40). Solitons, because of their 

stabilit.y (or near-stability, in the nontopological case), car. be treated as extended 

particle-like excitations. On the other hand, instantons are solutions of the classical 

equations which are localised in time as well as space. Rather than representing 

particle-like states in the theory, they will provide a means for saddlepoint expansion 

of various nonperturbative amplitudes in the path integral. 

The prototypical (topological) soliton we will briefly discuss here is the (1+1) 

dimensional kink, which is trivially related to "domain wall" solutions in higher di­

mensions. The kink is a solution to the classical equations derived from the following 

Lagrangian, 

(./Ii = g!1i J dx H(8"t/J')' - /1
2

2 

(I - t/Jrl )2] . (1.47) 
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where we have rescaled the fields by the small coupling, ¢' = g¢. The point we wish to 

emphasize here is that in weak coupling g, where we expect the semiclassical expansion 

to be valid, the ¢ field configuration corresponding to the soliton is of magnitude 

Ilg". This can be seen by dimensional analysis: as the ¢' field Lagrangian has no g 

dependence, we expect the solutions to scale as ¢' - /J, which implies ¢ - /JIg. 

The quantum fluctuations about the soliton solutions are higher order in the 

loop expansion, and therefore are O("g). Hence, it makes perfect sense in the full 

quantum theory to retain the soliton solutions, and to imagine that their classical 

properties will still be approximately valid. In chapter IV, we will discuss putative 

new non topological solitons which can exist in weakly coupled scalar-fermion theories, 

(One such theory is the slilJldard model with two Higgs doublets). Careful examina­

tion of these "would-be" solitons shows that the quantum fluctuations are actually 

larger than the solutions themselves. In contrast to the case discussed above, the 

saddlepoint expansion about these solutions is untrustworthy. 

Finally, we come to the subject of instantons [45, 10J, and their use in computing 

nonperturbative Green's functions. In the brief discussion presented here, we will refer 

to a generic class of instanton solutions ¢1(X,{} which satisfy the relevant Euclidean 

equations of motion and have finite action SE!¢IJ. The parameter ( represents the 

zero modes of the solution, typically given by translations or internal space rotations. 

Instanton solutions of this type occur in non-Abelian gauge theories such as QCD 

and the electroweak gauge theory, as well as in scalar theories with nontrivial vacuum 

structure (eg multiple vacua). 

The instant on configurations can be used to compute contributions to n-point 

Green's functions in the saddlepoint approximation. In the case of the electroweak 

sector of the standard model these one instanton Green's functions lead to the vi­

olation of (O+L) number, which is conserved classically but violated by anomalies, 

An index theorem relates the change in winding number of the SU(2) gauge fields 

in the instanton background to the change in (O+L) number [llJ. Alternatively, 

iteration of instanton-antiinstanton configurations can give contributions to pertur­

batively allowed processes, .such as (B+L) conserving processes in the electroweak 

theory. 

Consider the following Euclidean n-point function, 

G(X ..... Xn) (¢(XI), ... ¢(x"» 

Z[W 1 f D¢ ¢(xl) ... ¢(x")e-sE!4». 
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(1.48) 

(1.49) 

·' 

We can compute G(xa, ... X n ) in the instanton background as follows: 

G(XI' ... Xn) = B f d( ¢1(Xa,()".¢I(xn,()e-S,,(.,I, (1.50) 

where B = (det[O + U"(¢/)])-I/2 is a function of the determinant evaluated in the 

instanton background. We see that in the one instanton approximation the full func­

tional integral has been reduced to an integral over zero modes. 

If we Fourier transform, the Green's function becomes 

G(XI,"'X") 

which yields 

B f dXI ... dx" e,I>· ... f d~ ¢/(xa,() ... ¢I(Xn,() e-S£(~,) (1.51) 

B f d(xi - (} ... d(x" - () ei}:>'(z,-() (1.52) 

. f d( e,er>. ¢1(XI - (} ... ¢I(X" - () e-S,,(4),), (1.53) 

G(X ..... Xn) = B cS(LP,) ~,(p.) ... ~,(p,,) 1''-5.,(4),). (1.54) 

The n-point functions we have obtained have a form as if they were obtained from a 

local operator of the form B ¢¢ ... ¢ e-S,,(4),I. For n > 4 these are local, higher dimen­

sion operators, and hence naively lead to unitarity violation when used to calculate 

scattering at sufficiently high energies. 

Of course, we have to check that these particular Green's functions actually 

contribute to scattering between on-shell modes. That is, we must check to see that 

G(P .. ... Pn) has poles at p~ = _012 (recall, we are in Euclidean space). However, this 

will be a general property of instanton solutions with finite action. In order to have 

finite action, the solutions ¢/(X - () must asymptotically approach the vacuum state 

(¢) == u upon which the spectrum of states with masses 01
2 is built. In other words, 

in the asymptotic limit x - { » 0 the solutions satisfy 

(0 + m2
) (¢I(X - {) - u) = 0, (1.55) 

whereas for x - {, the configuration has some nonzero value of ordcr one over the 

small coupling in the theory. It is easy to see that a configuration with the above 

properties always has the desired pole structure. Given that fact, it is a straightfor­

ward application of the LSZ procedure to arrive at an S-matrix elemcnt by truncating 

the on-shell poles. 

The above arguments, when repeated for the case of SU(2) installtolls of the e1ec­

troweak sector, lead to the prediction that (B+L) violating ClOSS sediolls, although 

extremely small at low energy, grow exponentially with ('enter of lIIass energy and 
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may even violat.e unitarity at sufficiently high energies. This is a subject of ongoing 

illt.erest [46, 50, 48) which will be discussed in greater det.ail in chapter V. There we 

study the Green's functions induced by scalar instantons present in a theory with non­

degenerate minima (i.e., Higgs sector with heavy top quark, as previously discussed). 

More sophisticated saddlepoint computations allow us to compute to leading order 

the exact rate of exponential growth of the cross section, and also to show that the 

saddlepoint approximation actually breaks down at large energies, before any con­

clusion can be drawn concerning unitarity violation, or observability of the relevant 

process. 
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Figure 1: The finite temperature effective potential for a first· order phase tran­

sition. At temperature Tc the two phases have equal free energy. 

<I> 
fig 1 

20 



Chapter II 

Cosmological production of black 

holes 

A Introduction 

The framework of the standard Friedmann-Robertson-Walker big bang, together with 

a theory of particle physics, allows us to calculate, at least in principle, the present 

content.s of the universe. However, there are several open problems: we do not know 

the part.icle physics of baryon number violation, nor the particle physics corresponding 

to dark matter. Furt.hermore, while accurate calculations of relic particle abundances 

can be made, it is much harder to compute abundances of extended, non-pointlike 

relics produced at phase transitions. 

It is critical to consider any mechanism whi<:h at high temperatures transforms 

energy from radiation to a form which redshifts more slowly. For example, suppose 

that at temperature Tc, during the radiation dominated era, a fraction JM of the 

radiation energy is converted to a form which redshifts like matter. Today this matter 

will contribute to n = pI Pc an amount 

OM ~ }O8 (G~cV) b." (Il.l) 

where p is energy density, and pc is the value which makes the universe critical. At 

high 1~ only a very weak conversion mechanism is required to produce significant nM. 
Alternatively, if the conversion mechanism at high Tc is too strong, the universe will be 

. overdosed. Examples include the cosmological monopole problem, which constrains 

certain phase transitions, and a limit of about 1000 TeV on the llIasS of point particle 

candiddtes for dark matter. III this chapter we give a new mechanism for primordial 

black hole (POll) productioll at. a first order phase lrallsilion. It produces PBHs only 
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rarely, but this may suffice to give the dark matter. 

It is an unproven, but widely believed, conjecture in general relativity (the "hoop 

conjecture" (12)) that if a mass M is located inside a region of radius R. ~ 2GAI, it 

forms a black hole. Such a black hole emits radiation (13) with a spectrum similar 

to a thermal one of temperature T = 1/(87fGAI) (14). The black hole lifetime is 

therefore T = 0(G"lM3) ~ 1010 year (M/IQ39GeV)3. pons produced with masses 

less than IQ39 CeV will reach a temperature of the Planck mass before today. The 

final state of such an exploding PBn is unckar; we will not consider the case of pon 

remnants as dark matter (15). 

Could the dark matter be dominantly in POlis of mass O( 1039GeV)? No, they 

have a temperature today of about }O MeV, and the diffuse background radiation in 

this region implies 0 < }O-9 for such masses (16). Furthermore, if the temperature 

of the PBBs today is larger than m., they will emit significant numbers of e- and 

e+. If our galactic halo were made of these PBBs, the positrons would slow down 

in the interstellar medium and annihilate to produce 512 keY line radiation. We 

find that this implies that the halo should be dominated by POlis of mass greater 

than }O41 CeV. If 0 = I in POlis of mass 0(1041 CeV), they will lead to a diffuse 

background radiation peaking at energies of 0.25 MeV with a flux of 0.1 cm-1S- I . 

This is just below the observed background, and apparently is barely unable to explain 

the observed feature in the MeV region. 

Many dark matter candidates, monopoles and stable point particles for example, 

are more dangerous in overclosing the universe the earlier they are produced. This 

is not the case for PBBs. At temperatures larger than lOS CeV the horizon mass is 

less than }O41 CeV. Hence, prior PBn production is unimportant for dark matter, 

unless PBn's can be made to collide and "cannibalise" before evaporating. We argue 

later that significant cannibalism does not occur. Consequently, we find that if PUHs 

are the dark matter today, the scale of the particle physics responsible for the phase 

transition is less (for our mechanism, much less) than Hf CeV. 

Cosmological production mechanisms of PBHs are not new. Carr showed that 

the Harrison-Zeldovich scale-invariant density perturbation spectrum, which is com­

monly taken for the origin of large scale structure, leads to PBII formation as the 

perturbations enter the horizon (17). The resulting spectrum of PAlls is a steeply 

falling power law, implying an 0 in PBHs today which is much too small to be of 

interest for the dark matter. Cross, Perry and Yaffe calculated PBllpruduction rates 

via quantum tunneling (18). The tunneling rate becomes expollclltially suppressed 

at temperatures less than the Planck mass, and hence this lIl('cilallislIl does not lead 

to POHs massive enough to survive until today. More intereslillg frOIll the viewpoint 
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of dark matter is the mechanism of Hawking, Moss and Stewart (19). They produce 

horizon size PilUs at a first order phase transition by the unlikely event that many 

neighboring bubules grow to horizon size before percolating. Providing the phase 

transition occurs at Te < lOS GeV, the PBH masses will be large enough to survive 

until today. Critically closing the universe with these PBHs requires a choice for the 

bubble nucleation rate. In this chapter we provide an alternative production mech­

anism, in which the PBII masses are much less than the horizon mass at formation, 

and where the density of POHs is largely independent. of the bubble nucleation rate. 

B The mechanism 

We illust.rat.e our mechanism in a simple field theory with a real scalar field 1$ coupled 

to a Dirac fermion 1/': 

c. = ~8"4>a .. 4> + i~(4) - 01')", + /?4>1 + 14>3 - >.1$4 + o-;jjI/'4>, (11.2) 

where all the parameters are chosen to be real and positive. At high T the vacuum 

is at (1$) = 0, while at. lower temperat.ures this becomes a false vacuum with the true 

vacuum appearing for positive (I/» = v(T), as shown in Figure 1. At the critical 

temperat.ure Te , the two phases coexist and are separated by a transition region in 

which 4> interpolates between the two vacua. The energy per unit area of the boundary 

region is the surface tension u == ~3. The scale ~ is a function of the parameters of 

the scalar pot.ential, and is typically, but not a1ways,.of order Te • 

At Te, there will be a non-zero difference in vacuum energy": B(Te) = V(4) = 
0) - V(4) = l,(Tc » -# O. This is because the vacuum, or bag, pressure tending to 

collapse the regions with I/> = 0 is countered by the pressure due to the fermions being 

transmitted and reflected from the boundary. For convenience we take m' « Te and 

ignore m' from now on. The fermions have a mass difference m = av(Te) across the 

phase boundary and the fermion pressure arises from the change in momentum of 

fermions which are reflected or transmitted at the boundary. 

Suppose that bubble nucleation is appreciable at some temperature.TN which is 

not very much less than Te. As the bubbles grow and convert false to true vacuum, 

we assume that the released energy reheats the bulk of the universe and does not 

accumulate as domain wall kinetic energy. Throughout this analysis we assume a 

"llere we use a ditTerent definition ror Te than in the introduction. While in thermal equilibrium, 

the evolution or regions or different phases is governed by the rree energy or finite temperature 

e.rertive pOlentiaL Howe\,er, when the evolution is on timescales 80 .hort that equilibrium is not 

8A:hieved, there can be etTects 8uch 88 thooe discusoed here. 
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"thermalon" mechanism which always maintains the universe at a single homogeneous 

temperature. Finally, we assume that the temperature reaches Te while t.he fraction of 

the universe in the true vacuum, IT, is much less than 1/2. This will prevent further 

bubble nucleation, establishing an era of quasi-static equilibrium [20) (QSE). Such 

a phase transition is of great interest: the transition proceeds very slowly at a rate 

governed by the rate of expansion of the universe: 

. 3 
IT = B(7~) /I(p + p), (1I.3) 

where J/ is the Hubble paramet.er during this era, p the pressure and p the energy 

density. The rat.e at which vacuum energy is released is equal to the rate of doing 

work of expansion together with the rate at which energy densit.y must be created to 

fill the increased physical volume. For p ~ p ~ Te4
, H = t ltl

, the era of quasi-static 

equilibrium lasts for a time 
TQSE _ B(Te) 

tH - Te4 • 
(11.4 ) 

We consider the case that TQSE/IH~O( 1) since in this case no significant inflation 

takes place, and for many simple estimates the expansion of the universe can be 

ignored. In the case that the mass acquired by the fermion crossing the boundary, 

m = ov(Te), is less than Te, we find B(Tc)/Tc4 = m2/7~, so that this condition is 

straightforward to satisfy. The controlled nature of the slow-burn phase transit.ion 

allows us to make simple calculations. 

When IT approaches 1/2, bubble collisions become frequent. We assume that 

at TN the nucleation rate is fast enough so that when the bubbles collide they are 

sufficiently small that a period of bubble coalescence takes place. The origillal scale 

of the bubbles is erased and the final scale of the bubbles depends on the dominant 

dYliamics of bubble coalescing. During coalescence of two bubbles of size T, bubble 

walls must move a distance T in time ~ TQSE. Bubble wall speeds are limited by 

frictional drag: the transmitted fermions impart a momentum of order (m/Te)27~ to 

the wall. This turns out to be a severe limitation, so that bubbles coalesce by setting 

up bulk fluid flows rather than having walls moving rapidly with respect to the fluid. 

Bulk motion of fluids is set up because fermions crossing the phase boundary have 

their momentum changed. We find that in time TQSE bubbles coalesce by fluid flow 

up to an average scale Tc = liH, where 

_ (~) (m)2 ( Te )1/3 
l ~ T. Te Alp' 

(11.5) 

After the era of coalescence, further expansion of the bubbles causes JT to become 

greater than 1/2. The true vacuum percolates to produce a connected region of true 
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vacuum containing shrinking bubbles of false vacuum. We will argue t.hat eventually 
a few of these shrinking bubbles will form black holes. 

Consider first the idealized situation of a density nB = ,.;3 of identical spherical, 

collapsing bubbles of radius ret). Since 1 - IT = OB,·3, 

. r2r 
IT ~ ilt 3 • (11.6) 

H 

As the bubbles get smaller, r must increase in order to satisfy the condition of quasi­

static equilibrium, equation (11.3). When the bubble walls reach the speed of light, 

quasi-static equilibrium will be lost and the bubble radius will be 

;. ~ fi/2 (Te) m tHo (11.7) 

Next we consider the case of a distribution of initial bubble radii about the average 

r = fill. If the temperature in the true ·vacuum during QSE is uniform throughout 

the universe, the rate of collapse of bubbles will be approximately independent of 

their size. This, of course, neglects surface tension which causes smaller bubbles to 

contract sliglltly faster than larger bubbles. Therefore, at the end of QSE, while r has 

decreased to fI / 2(TJm)r (and smaller bubbles have already disappeared), a bubble 

with initial radius ri > r has only decreased to ri - r. Thus, as QSE ends, we are left 

with the bubbles on the large end of the size distribution, most of which have barely 

decreased in radius. 

After QSE is lost, work is done on the bubbles as they undergo relativistic collapse 

W = PnetflV = (B(T) - Pm.uer)flV. (11.8) 

There are two separate effects which contribute to Pnet . Ql1e is the increase in B(T) as 

the temperature falls beneath Te: B(T) ~ B(Te) + B'(Tcl(T - Te). The time 6t neces­

sary for relativistic collapse of a bubble is at least 6r 2: {tlf. The corresponding tem­

perature drop will be 6T - (Mp,)1/2(t'H3 /2)6t - Te(!;) - d~, so 6B(T) -IB'(Te)ltTe 
which we will approximate as - (fl3Te)l. The second contribution comes from the 

fact that the bubble walls become increasingly porous to fermions as they become 

highly relativistic. Consider the scattering of fermions from a bubble wall, which we 

have idealized as a step-function potential. Since the thickness of the bubble wall 

- fl- I , and the de Broglie wavelength of fermions is - T-I, this is a relatively good 

approximation for nonrelativistic scattering with fl > Te. In this case we have the 

following results from elementary quantum mechanics: 

EoP < m -+ reflection, flp ~ 2EI/> 

EoP > In -+ {

probability (;")4 of reflection 

probability (1- (;'.)4) of tra/Jsmissio~, (with flp ~ 2~:)' 

25 

Note that these results already indicate that very energetic particles (EI/> » m) 

barely interact with the interface between true and false vacuum. For the extremely 

relativistic case, in which the domain wall has a velocity /JDW - I, we can still 
apply the results above if we calculate the scattering process in the franle of the 

domain wall and then Lorentz transform back to the cosmological frame. In the case 

where /'011' » I, we find that virtually all fermions penetrate the wall, and that the 

momentum change is flp ~ 2E.(~·i1DW)' The above considerations imply that Pm." ... 
in equation (11.8) decreases as the collapse becomes relativistic. This means that we 

can approximate Pne, in equation (11.8) by 

Pne' ~ (fl3Te)f + T:(m/Te)2. (11.9) 

The dominant term for small f is the latter, which yields the following mass formula: 

lIJPBIi ~ Pnetfl" ~ r:(ctll )3(m/Te)2 (11.10) 

_ (fl)3 (~)8 ~ 
- Te Te 1~' 

(11.11 ) 

This of course applies only for bubbles with f > f. Bubbles smaller than or only 

slightly larger than r = ftJl will collapse without forming black holes. Bubbles with 

e »f produce heavier PBH. In general, the mass distribution of hlack holes formed 

can he given in terms of the initial distribution of bubble sizes after percolation. Let 

N(e - l)de be the number of bubbles in the e,e + de range. Presumably N(e - f) is 

peaked about e = f, with some power law or exponential falloff. Then the number of 

black holes formed with mass in the m,m + dm range is ()( (f - l)3N(e -l)dl, which 

applies for f > emin > f. (emin represents the smallest bubble which can collapse to 

form a black hole.) 

Given the mass estimate (11.11), we can now estimate how far a bubhle must 

collapse before falling into its Schwarzschild radius r •. Using C(juations (11.5) and 

(11.1 I): 

!:! = 2 ~ (fl)2 (~)2/3 
r; erH Te Alp! 

(11.12) 

where we drop factors of miTe from /lOW on. We see that for high Tc (i.e., GUT scales 

or higher), this factor is not extremely small. However, to produce PUlis which are 

interesting as dark matter, equation (11.11) requires a much lower Te. This leads to 

r./ri « I, which can only be achieved for bubLles which are extrcmely spherical at 

collapse. 

Bubbles which have fractional asphericities greater than (r.I,·,) itt tloe I'oilll of 

collapse will probably self collide, rather than form Plllls. In co/lsid"rillg coalt'l;('cJl(:e, 
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we calculated the maximum size of bubbles that could become roughly spherical in a 

Hubble time. To understand exactly how spherical such a bubble can become, it is 

necessary t.o include the effects of damping on the motion of bubble walls. During the 

QSE era, we can treat an individual bubble as a stationarY, nearly spherical membrane 

wit.h surface tension u - £l3 and radius r = (rH. We can now study the damping of 

an arbitrary perturbation on our membrane hy examining the excited normal modes. 

We can characterize a given mode by its amplitude fJr and wavelength ..\. A bubhle 

minimizes its surface energy by becoming spherical. For fixed fJr, it is clearly the 

longest wavelength modes (..\ - r) that are hardest to eliminate. The equation of 

motion for such a mode is 

..... .. U (fJr) (u + .lcfJr)fJr + ')"fJr +;- -;:- = 0 (11.13) 

where '-1 is the damping factor and (u + Tc
4fJr) is the effective mass per unit area 

(surface tension plus mass per unit area of bulk fluid) to be moved. 

The danlping factor represents the rate of energy dissipation into the bulk fluid. 

Each bounce of the membrane produces a sound wave in the fluid which carries off an 

energy per unit area of - Tc
4 fJrfJ2, leaving the membrane with kinetic energy - ufJ2. 

I1ere fJ is the velocity of the membrane when fJr = O. Since initially, T:fJr » u, 

we expect each succeeding bounce to have a drastically smaller amplitude than the 

previous one. This approximation holds until u - Tc4fJr, i.e., until: 

~ ~ (~t 1~-1 ~ (~)2 (~)2/3 
r (rll Tc Alp! 

(11.14) 

which is O(r./r;). 

In general, ignoring dissipation, the timescale for a particular mode to bounce is 

TI>ounu/TQSE - (fJr/r)1/2. Therefore a bubble which is initially fairly spherical (6r « 
r) should be able to achieve the sphericity required by (11.14). Thus, in the approxi· 

mation where we treat the background particles as a bulk fluid, bubbles can become 

very spherical. While this .!lPproach is extremely naive, we are encouraged by the fact 

that only about one in IOS( i:v) bubbles need be this spherical in order to account 

for P",,;hcal today. 

C Cannibalism and Conclusion 

It is perhaps not clear that equation (11.1 I) gives the final result for the mass of pm Is. 
Dlle might wonder whether it is possible for many POlis to collide and combine to 
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form larger black holes (21). In this case the eventual mass distribution of PDHs 

might bear no resemblance to the mass distribution at formation. We will show that 

cannibalism will be a negligible effect for the case of PHH dark matter. There are 

other scenarios in which cannibalism can be an important effect and we will discuss 

those also. 

Statistical fluctuations in the number density of POlis can lead to density per­

turbations which eventually grow to nonlinearity. While POll "galaxies" so formed 

can be composed of very many individual POHs, it is very difficult for these POlis to 

find each other and cannibalize. In particular, the PBlls are slow to dissipate their 

energies and hence only a few collisions due to intersections of orbits can occur for a 

long time. 

Due to the st.ochastic nature of PHIl formation, we expect fluctuations - .;N 
in regions containing N POlis. 1I0wever, a fluctuation in POll number does llQt 

correspond to a density perturbation. The energy density p is the same in regions 

of different PBII number density. This is because failed PBHs (huhbles which had 

self-<ollisions before reaching their Schwarzschild radius) contribute to the thermal 

densit.y hy radiating their energy away. The total energy density p = PPBII + P,h..-.... I 

is constant. It is only when two regions with differing P,h..-m.l come into causal contact 

that thermal energy equilibrates to give an actual density perturbation in PHUs 6/,/ p. 

Therefore density perturbations are always inside the horizon. 

It is well-known (22) that density perturbations inside the hori7.on do not grow 

while the universe is radiation dominated. Once the universe is matter dominated, 

however, fJp/ p grows like t2/3. When ¥ - I the perturbation goes nonlinear; a bound 

structure is formed which does not take part in the expansion of the universe. In 

our case, such structures will take the form of PHil Ugalaxies~ in which many PBHs 

move in virialized orbits. In order to cannibalize, it is necessary for these PBII's to 

dissipate their kinetic energies. For a non-relativistic PBH, collisions with thermal 

particles cause the loss of momentum, 
~ 4 

dP 2 ~ (TD) ~ dt ~ R.rofJ ~ Mp/ mpBHP, 

where TD is the temperature of the universe at PHil "galaxy" formation. 

the following timescale for dissipation: 

( MpI)4 -I 
tD ~ TD mpBH· 

Requiring that tD < TpBII - m},BH/M~ yields 

(AlP!) 
mpBH > Mp/ 1'D . 
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(11.15) 

This gives 

(11.16) 

(11.17) 



Note that for a perturbation made up of many PDlls (N)> I) to go nonlinear, it is 

clear that TD « TAlD, where TMD is the temperature at which the universe becomes 

matter~ominated. For IPBH - leril - 1O-8(G;~), matter domination occurs at 

T - e V, so TD < < e V. Unless the critical temperature of the phase transition, Tc , is 

extremely low, it is clear that (11.17) cannot be satisfied. Although PBII structure can 

form, the individual PBns typically evaporate before any significant cannibalization 

can occur. Or, in the case of Tc~ GeV, the timescale for dissipation is much longer 

than the age of the universe. 

On the other hand, one can consider scenarios in which lPEm - 1. In this case the 

universe is matter dominated almost immediately by PBlIs, and a potentially large 

amount. of cannibalization can occur. 1I0wever, IPBH - 1 is clearly unsatisfactory for 

dark matter. Let N. be the size of a fluctuation that can go nonlinear and cannibalize 

before TpBlI. If N.rnpBJI::?'IO~9 GeV, then the lifetime of such a large PBII is longer 

than the age of the universe. Only a small fraction of the total number of PBlls 

can end up in such fluctuations, or else PPBH (today) » Pcritica/' Therefore, for a 

given volume containing N. PBHs, a fluctuation capable of cannibalization must be 

very rare, and correspond to a fluctuation in PBII number many times ../N.rn. This 

means that there will be exponentially llllm: cannibalized PBlls with mass k:il; than 

N.m. Since experi.mental measurements of ,.-ray backgrounds limit 0 in PBII of 

lIlasS - 1039 GeV to be less than 10-9
, it is not possible for cannibalism to lead to 

o = 1 in PDlls with InPBH > lQ39 GeV. 

Interesting consequences may result from PBII production even if they evapo­

rate while the universe is still hot. Consider a phase transition at. Tc in which I 
is the probability that a false vacuum bubble collapses to a PO" of mass M~/Tc. 

For I > (Tel MpI) 1/2, the PBns dominate the energy density of the universe at tem­

perature ITc and subsequently evaporate, reheating the universe to a temperature 

Tn ::::: 1~(Tc/ MpI)'/2. A particle X, with mass mx < T" will be produced in the 

evaporation with a relative abundance 

Ix = n~ = ! ( Tc ) 1/2 

TR 9 M ' " 
(11.18) 

where 9 is the number of degrees of freedom lighter than Tc (23). This abundance 

can be large enough to have important consequences. For example, X particles might 

decay out of thermal equilibrium to generate the cosmological baryon asymmetry at 

low temperatures. It is easy to arrange for 1R < < rnx, avoiding wash-out of the 

asymmetry. TI.is can be used for a baryogenesis scheme where the X particles are 

'reV top squarks [2,1). 

2!.l 

If the X particles are stable, the above abundance may be larger than the Lee­

Weinberg freezeout value, and may give Ox = 1. For example, for Tc = 105 GeV 

and I > 10-7
, the PBII evaporation could lead to Ox = I, with X being 50 GeV 

neutrinos. The reheat temperature of 10 MeV would be sufficient to give a fresh start 

to nucleosynthesis. 

In this chapter we have considered the collapse of false vacuum bubbles in a model 

of a first order phase transition which undergoes an era of quasi-static equilibrium. 

We find that, during the initial era of non-relativistic collapse, a few bubbles may 

sphericalize to a sufficiently high degree that the work done on them during the later 

relativistic collapse can result in their becoming black holes. The required collapse 

factor and the resulting PDII mass are given in equations (11.12) and (lUI). For Tc 
above a TcV, the PBlls are likely to be produced, but are unlikely to survive until 

today. Their evaporation leads to a production of relic particles. For Tc beneath a 

TeV, the PDII can be heavy enough to survive until today and, with even a very 

slllall probability of a bubble becoming a PBlI, can give OPBH = 1. It is possible 

that this might arise ill QCD, although we have not studied that case here. For QeD, 

if holes survive until today to be the dark matter, it is likely that they would have 

a mass close to the observational bound of 1041 GeV. To detect such holes from the 

particles they evaporate would require their mass to be very close to the limit. lIoles 

in the range of 1049 - 1056 GeV, which would occur for lower Tc , could be detected 

by lensing of background stars [25). 
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Chapter III 

Percolation of the vacuum and 
black holes in Extended Inflation 

A Introduction 

The inflationary universe (6) was proposed as a solution to several cosmological 

puzzles including the flatness, horizon and monopole problems. Its main feature is a 

period of rapid expansion, in which the energy density of the universe remains roughly 

constant, followed by thermalization. 

In the original scenario, "old inflation", a particle physics model in which the 

universe became trapped in a meta-stable false vacuum was utilized. The energy 

density of the false vacuum resulted in the Robertson-Walker scale factor growing 

exponentially with time. The phase transition was to have completed due to the 

nucleation (via quantum tunneling) of bubbles of true vacuum, which then percolate 

and Ihermalize. However, it was shown [27,19) that a tunneling rate sufficiently low 

to provide enough inflation (R(t) must increase by a factor of at least 1027 to solve the 

aforementioned cosmological puzzles) also implied that percolation never occurred. 

Subsequent work on inflationary models (28) has produced scenarios ("new infla­

tion") in which second order phase transitions, involving slow-rolling of a scalar field 

in a flat potential, produce enough inflation while avoiding problems of percolation. 

These theories require extreme fine-tuning of parameters to ensure a suitably flat 

potential. Another alternative, "chaotic inflation", involves scalar field dynamics just 

below the Planck temperature. These models also involve unnatural choices of pa­

rameters, and may make unrealistic assumptions conceruing t.he neglect of quantum 

gra\'ity effects. 

All interestillg alternative approach has r('celltly been suggested (29) which, 

31 

instead of focusing on exotic particle physics models, looks to minimal modificat.ions 

of Einstein gravity. In a Brans-Dicke (30) or dilaton-modified (31) theory of gravity, 

the authors find that a first order transition of the type utilized in old inflation can 

be successfully completed. 

This scenario, which the authors term "Extended Inflation" (EI), has several 

attractive features. First, the particle physics of the phase transition is natural, with 

no fine-t.uning of parameters. Secondly, the modifications to gravity can be motivated 

from string theory or Kaluza-Klein theory (31). 

It is important to study any inflationary model which offers the possibility of 

obtaining inflation without. fine-tuning of paranleters. Several authors (32, 33) have 

already studied the Brans-~icke (BO) theory, and have found it impossible to rec­

oncile ('xperimental constraints on the BO parameter (w > 500) with the constraint 

that thermalization of large bubbles does not lead to large anisotropies in the mi­

crowave background (1.5 < w < 25). These considerations require the introduction of 

a potential for the BO scalar which fixes its vacuum value at :::: AI~'anck' at least for 
low energies. Alternatively, several mechanisms (dynamical or otherwise) have been 

developed which circumvent this difficulty [36). 

In this chapter we will examine in detail the distribution of pockets of false 

vacuum remaining near the end of the extended inflationary era. Pockets larger than 

a certain critical size (Re:::: MPlancJr/T; where T: is the false vacuum energy density) 

are already within their Schwarzschild radius and are likely to form black holes. We 

will show that for any Extended Inflationary phase transition, a nontrivial fraction 

of the volume of the universe after inflation is in false vacuum pockets of size He or 

larger. Similar conclusions concerning black hole production in the context of "old 

inflation" and Einstein gravity were arrived at by Hawking, Moss and Stewart (19), 

and also by 1(. Sato and collaborators (37). 

For inflationary phase transitions which occur with critical temperatures below 

108 GeV the universe becomes dominated by black holes, and has a reheat temper­

at.ure (when black holes Hawking evaporate) of less than :::: MeV (insufficient for 

nucleosynthesis). Larger values of Tc also lead to black hole domination, but imply a 

sufficiently high reheat temperature to avoid disastrous consequences (although there 

may then be problems with conventional baryogenesis). Finally, we will speculate on 

the possibility that the interiors of false vacuum regions evolve into baby universes 

(34). 
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B Review of Extended Inflation 

There are already several variants of the EI scenario (36) which reconcile seemingly 

contradictory solar system limits on Brans-Dicke theory (w > 500) with those from 

cosmology (w < 25). A common feature of all of these variants is that bubble per­

colation is achieved through the power law, rather than exponential, growth of the 

Robertson-Walker scale factor during inflation. Since the physics of percolation is 

essentially the same as in the original EI model (29). all of our results will be generic 
to the models of reference (36). 

The Drans-Dicke plus matter action is given by 

SBD = f crx F9 [-~R + Wg .. va .. ~:"~ + .ema" • .]. (111.1 ) 

lIere ~ is a scalar field which plays the role of a time-dependent gravitational coupling. 

In the limit of infinite w, ~ decouples and the theory reduces to Einstein gravity. The 

only assumpt.ion we will make concerning the matter fields is that a supercooled, 

first-order phase transition occurs with crit.ical temperature Te • 

For a homogeneous and isotropic universe described by a Robertson-Walker met­
ric, t.he equations of motion for this theory reduce to: 

(R) 87rp k W (4-)2 
Ii = 3~ - R2 + 6" i 

and 

~ R. 87r(p-31') 
i+3R~= 2..1+3 

R4-
R~ 

(111.2) 

(111.3) 

In the case of interest, that of a vacuum dominated universe, the curvature term 

is negligible, and we set k = O. In this case we have the following solutions for Rand 
~: 

where 

R(t) = Il(O)(1 + Bq ... +1/2 

~(t) = ~(O)(l + Bt)2, 

327rPvacuum 
B = ·f. (6w + 5)(2w + 3)~(O) 

plays the role of the effective Hubble parameter as a function of~. 
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(111.4) 

(II 1.5) 

(111.6) 

In most models the nucleation rate per unit volume of true vacuum bubbles is 
time-independent, and given by r = ,\4. In such an approximation one neglects the 

init.ial contribution from thermal nucleations, and assumes that quantum tunneling 

(at effectively zero temperature) is the dominant effect. One exception to this rule is 

the model of Holman, Kolb and Wang (36) in which, due to the nonstandard couplings 

of the inflaton to the BD scalar, r becomes time d<'pendent. This time dependence 

is of the form r = ro(l + Bt)m where m ~ -2. For simplicity, we will present our 

results for the case m = O. The generalization to nonzero m is straightforward, and 

leads to similar conclusions. 

C Black hole formation 

In this section we will argue that large false vacuum bubbles which remain at the 

end of an inflationary era are likely to become black holes. The issue is complicated 

by the possibly unthermalized energy densit.y present in such an era. In a first order 

phase transit.ion, the latent heat present in the false vacuum is converted primarily 

into kinetic energy of t.he domain wall-like structures which separates the two vacua. 

1I0w this energy is thermalized is not fully understood, nor is the outcome of highly 

relativistic collisions between domain walls. 

We are interested in the fate of regions of false vacuum in whose causal past 

no bubble nucleations have occurred. At some cosmological time t .. which we define 
by the requirement that only a fraction of the universe remains in false vacuum, 

the remainder of the universe is clearly not homogeneous, but is in the process of 

becoming so as energy in bubble walls is thermalized. In what follows, we will make 

the assumpt.ion that the universe is still approximately described by a Rohertson­

Walker metric during this era. 

A naive criterion for black hole formation follows from DirkhofT's theorem and 

the location of the Schwarzschild horizon. From Birkhoff's theorem we know that 

the vacuum solution to the Einstein equations outside a spherical mass is given by 

the Schwarzschild metric. This exterior solution will include a horiwn if the mass 

is confined to a region of size R < R. = 2GM. The above considerations lead to a 

criterion for black hole formation which applies whenever mass or energy is confined 

to a region of size R. or less. 

We would like to apply this criterion to the case of a pocket of false VacUUIlI in 

the background of a Robertson-Walker (RW) metric: 

ds2 = dt2 _ R(t)2(dr2 _ r2d01 ). ( 111.7) 
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(\\.',. take the curvature parameter k to be zero since we have just undergone a period 

of inflation.) For simplicity, we will take the pocket to be roughly spherical, although 

this assumption will not be critical to our conclusions. 

Notice that the RW metric is flat on distance scales < fl./ R == II-I, which is 

just the horizon scale. If a pocket is within the horizon, then Birkhoff's theorem is 

approximately valid, and our criterion holds. 

At the end of inflation, the reheat temperature is at most == Tc and the horizon 

size is ~ /I-I == All'lonc./T;. Consider a pocket of false vacuum of size rj = NH-I 

and energy del'lsity p == Tc4 • Since the pocket shrinks relativistically, while the horizon 

grows at tloe sp<'Cd of light, the pocket will enter the horizon after a time 6i = 

IN;\) IJ- I . At this point the background thermal energy density has fallen by a 

fador of (2/(N + 1»2 (for radiation dominated expansion). 

Now, requiring that r, < 2GAf = ~H-I implies that any pocket with N > 1 

will form a black hole. The mass of such a black hole is (within an order of magnitude, 

depcndillg on t.he initial shape of the false vacuum pocket. and the kinetic energy of 

its collapsing surface) 

AlB/I::::: N J (!IIPlonc./Tc)2 AlPI.nck. (IlLS) 

So far we have not included any effects from the scalar modifications to Einstein 

gravity. In fact, we have taken the value of the Brans-Dicke scalar to be ¢> = M~'onck 

everywhere in true vacuum after inflation. It appears possible that spat.ial variation 

of ¢> near the edge of the false vacuum pocket might tend to stabilize it against 

collapse. (An increase in ¢> corresponds to a decrease in the strength of gravitational 

interactions.) In fael, if the interior of the pocket is still inflating, ¢> may have a much 

larger value in the false vacuum than in the rest of the universe. 

However, it is well known [35) that solutions in which the variation of a BD type 

scalar or dilaton prevents the appearance of a Schwarzschild horizon are unstable to 

perturbations. In studi~ of gravitational collapse in BD theories, it is found that any 

scalar charge is radiated away, leaving a black hole which is identical to that found 

in Einstein gravity. 

In the following section, we will calculate the size distribution of false vacuum 

pockets at the end of an extended inflationary era. Applying the above criterion, we 

. will assume that any pocket with N > 1 forms a black hole. 
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D Percolation in EI models 

The extended inflationary era ends when a majority of the volume of the universe 

has been converted to true vacuum. Using the expressions given above for R(i) and 

r, we can calculate P(i) which is defined to be the fraction of volume still in false 

vacuum as a fundion of time: 

where 

P(t) = exp (- 4;r L'di'lr(t')r3(i,/')) , 

I di" 
r(i,i') = 1. R(i") 

(111.9) 

(111.10) 

and io is the time at which the universe first becomes vacuum dominated. VI'e will 

assume that percolation occurs for P(i) == 1/2, and that inflation ends when P(i) 

becomes somewhat smaller. We will denote the time at whicn this occurs as ie· 

Next we will calculate P(r,t) which is defined as the volume in false vacuum 

regions of coordinate size > r as a function of time. We should note that such a 

region has physical radius strictly in excess of R(t)r. P(r, t) is given by 

P(r, t) = exp ( - 4;r Lldt' ff(t')(r + r(t,t'»J). (111.11) 

The above expression is merely the probability of no nucleations in the causal 

past of a spherical region of coordinate radius r in the time interval (io, t). The ratio 

P(,-,t,)/P(t e ) then gives the fraction of false vacuum pockets of physical radius in 

excess of R(te)r at the end of inflation. If the above ratio is not extremely small for 

r > rBH (i.e., for pockets that are large enough to form black holes), then the universe 

will inevitably become black hole dominated after suitable (radiation dominated) 

expansion. 

Using R(t) from equation (111.4), r(i,t') becomes 

r(t,i') = RoB(w
1
_l/2) [X;~1/2 - X~~1/2]' (/11.12) 

here XI == (1 + Bt) and XI' == (1 + Bt'). Since our expressions for P(I) and P(r,t) 

involve integrations over I', or equivalently XI', it is convenient to rewrile the above 

expression as 
, 1 1 [ (XI' )"'_1/2] 

r(t,t) = RoB(w _ 1/2) x~-1/2 1 - ~ . ("'.13) 
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P(r, t) can now be expressed as 

P( t) ( 4lTrJ."" dXI' 03 3(",+1/2) 
r, =exp -3 I s''ox,. 

3 (3) ( 1 )k [ (X )"'_1/2]k E k r
3

-
k ~Bxl .... -I/l 1- X'; ) (111.14) 

=exp(- 4rrr t (3)~3-kB-(k+I)r3-kX,O+1 [I + N(k,w)]). 
3 k=1 k 0 + I 

Here,o == 3(w + 1/2) - k(w - 1/2). In the second equation we have used the approx­

imation that x, » I, which is necessarily true if R(te ) > 110 1027
• N(k,w) is given 

by 

k(k) I 0+1 . 
N(k,w) = t; I (-I) Q + 1 + I(w - 1/2) (111.15 ) 

(Note that N(k,w) is a negative function that is strictly greater than -I for w > I.) 

The k = 3 term is merely P(t}. P(r,t)/l'(t) is given by the remaining terms in 

the expression. For large r the k = 0 term dominates, as can be easily checked for 

w>1. 

Since we are interested in the period just after inllation ends, we set P(t) == 
exp(-n) (where n ~ I), which implies n = lTrte4(1 + N(3,w»/(3(w - 1/2)3). 

We can now rewrite P(r,t)/P(t) for large r (i.e., neglecting k = 1,2 terms) as: 

)3) 4n 1 ~R(/.), 
P(r, 1)/ P(/) = exp ( -J..., + 1/2 [I + N(3,w)] ( LBII (111.16) 

where LBH = ll(t.t l ~ x,f(wB) is the critical size necessary to form a black hole. 

(To be more precise, JJ(t.) = BX;I(W + O(t». ) For values of w acceptable for 

inflation (1.5 < w < 25), the factor in brackets is less than - 10, so regions of false 

vacuum of size> LB/I will comprise a large fraction of the remaining unpercolated 

volume. The universe just after inflation will therefore contain a large number of 

bl.u:k holes of mass AlBU ~ (!lfPlanck/Tc)lA/Planek. 

Finally, as previously noted, it is possible in some models for r(t) = rox;" to be 

time dependent. In that case the results above are modified by taking 0 -t 0 + m 

in equations (111.14) and (I1I.15). For the model of Holman, Kolb and Wang, m is 

~ -2, and does not significantly alter the conclusions of the preceding paragraph. 
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E A black hole dominated universe 

We have argued above that an extended inflationary era leads to the production of 

bl~ck holes. Since nonrelativistic matter redshifts more slowly than radiation, even 

a small number density of black holes can eventually become the domina.nt form of 

energy in the universe. What are the consequences of such an era? 

Black holes do not last forever, but rather evaporate due to Hawking radiation. 

The Hawking temperature is given by TH = M~'anck/(87rMBH) and the lifetime of 

the black hole is TBH = O(M3 Mpi!nck). Since the fractional energy density in black 

holes redshifts like T 3 , while radiation energy density redshifts like T 4 , black hole 

domination will occur before evaporation as long as P(rBII' te) > (Te/ MPlanck )l, where 

rBIi == LBH/R(/e). From (111.16), we see that this requirement is always satisfied for 

Tc less than GUT scales, or so, and for larger Te if w » I. 

If the universe is black hole dominated at evaporation, the reheat temperature 

is Tn ~ 1~(I~/AlI'IQn"d. Dy requiring that Til exceed an MeV, so as to guarantee the 

results of standard nucleosynthesis, we have the bound Te > 10" GeV. 

Other limits can be derived by requiring that GUT-scale baryogenesis provide 

the matter-antimatter asymmetry that we observe today. If baryogenesis is due to 

the decay of GUT-mass bosons, we require that a sufficient number of such bosons be 

produced by the black hole in its final stages of evaporation. Any bound of this Iype 

is of course model dependent, as (, the baryon asymmetry produced per heavy boson 

decay, is a function of CP violating phases and values of specific a.mplitudes in each 

model. However, it is straightforward to calculate the baryon asymmetry produced 

as a function of f and go, the number of degrees of freedom lighter than MGVT. For 

TBII < AlcuT this yields 

nB ([ Tc Te] 
n.., ~ 9. MGVT AlPlanck . 

(1/1.17) 

The above expression yields a lower bound on ( as a function of 1~ and MG(lT, 

since we expect nB/n.., - 10-10 and g. - IOl
• For example, Te ~ MGVT ~ 1014 GeV 

yields ( > 10-3 • 

F Baby universes 

Blau, Guendelman and Guth (34) have studied the qllestion of the evolution of the 

interior of a false vacuum bubble. They find that for a spherical b""bl,, larger than 

some critical size, the interior inflates in a very non-Euclidean way, fonllillg its own 
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causally separated universe. This critical size is almost identical to our criterion for 

black lIole formation. If this type of behavior also occurs in Brans-Dicke gravity, 

tllen Extended Inflation would lead to the production of a large number of such baby 

universes. 

Since the work of reference [34] is in the context of Einstein gravity, it cannot be 

directly applied to false vacuum bubbles in EI. The evolution of such a bubble in BO 

theories is complicat ed by the dynamics of the BO scalar, which would necessarily take 

on some spatial dependence near the surface of the bubble, as well as in its interior. 

In fact, we can display this spatial dependence in a simple way by momentarily 

neglect.ing gravity and considering the BO scalar alone. 

Consider a spherically symmetric, uniform mass distribut.ion of radius ro (a spher­

ical false vacuum bubble would serve equally well). Using the equation of mot.ion for 

tile no scalar (wit.h 1~~ the matter stress tensor), 

(82, - V'2)~ = TO. o.' (I1I.18) 

We can solve for the static configuration of the scalar field. To do so, we need to 

specify its value at infinity as ~(oo) = GN~UJ'cm = M~'."ck and to employ the Gauss 
law. Then, for r > ro we have 

~(r > ro) = !II~ . + I cflx T: 
lone,," Ai 7Tr ' (I1I.19) 

(Hereafter I cflx T: == TV = !II, where V is the volume of our sphere and M is its 

mass.) Similarly, for r < ro, we int.egrate equation (111.18) and require continuit.y of 

~ and ~' at r = rD. This yields 

Por r « ro, we have 

Tr~ 1',.2 
~(r < ro) = !II~'."ck + 2 - 6' (III .20) 

~ 3GN "",'cm M 
~ ~ 1 + --8 --. (111.21) 

Pl.nck >rro 

From equation (111.21) we see that at the center of a relatively massive sphere 

(GNewlcmM/ro "" I), the BD scalar deviates significantly from its vacuum value. 

An observer at the cent.er of this sphere would therefore find gravity relatively weak 

compared to an exterior observer. In fact, for such a massive sphere we dearly cannot 

neglect gravitational effects. This forces us to use the curved-space D'Alembertian 

in equation (111.18), and implies that the scalar field and Einstein equations must 

be solved simultaneously. This demonstrates some of the complications involved in 

generalizing the calculations of reference [3·1] to Brans-Oirke gravity. We will not 

('Omment further on this issue except. to say that much work needs to be done. 
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G Conclusion 

In this chapter we have studied the percolation of the vacuum in theories of extended 

inflation. While there are a number of very different EI models in existence, t.he 

common feat.ure among them is power-law growth of the scale factor which makes 

percolation possible. We have argued that this leads to the production of black holes 

which inevitably dominate the energy density of the universe. The most conservative 

constraint (from nucleosynthesis) on such a universe restricts the critical temperature 

of t.he inflationary transition to be > lOS GeV. Other const.raints can be derived by 

assuming st.andard baryogenesis. 

An int.eresting, but unresolved, issue is the fate of the interiors of large false 

vacuum bubbles. 
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Chapter IV 

Can a .particle have a bag? 

A Introduction 

Recently, it has been argued (38) t.hat non-topological solitons consisting of a single 

part.icle and a condensate of a background scalar field to which the particle couples 

exist in weak coupling. In other words, in a certaiu class of theories the lowest 

excitation of the system containing a single particle is one in which a bag of scalar 

field condensate, or "dimple" , forms around the particle. 

It is known that classical bag configurations can form when many particles are 

present. Such non-topological soliton solutions have been studied in detail [39, 40). 

In this chapter we investigate whether such bags can form about a single particle. 

Intuitively, it appears that bag formation will occur if the energy in the scalar field 

gained by locally relaxing its vacuum expectation value is less than the energy liber­

at.ed by the resulting decrease in particle mass. The exist.ence of such bags around 

heavy quarks and gauge bosons would lead to interesting effects in both the masses 

and decay signature. 

In section B we present semi-classical arguments for bag formation around a 

single particle. The validity of this semi-classical approximation is discussed in section 

C, and again in the language of coherent states in section D. For bags supported by 

one particle, we find that energetically favorable deformations are too small to be 

built up from the fundamental quanta. Hence, we argue that there are no dimples in 

t.he scalar field near a single, perturbatively coupled particle. 
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B A wrinkle in ¢ 

To present the arguments for bag formation around a single particle we discuss an 

explicit example. Consider the Hamiltonian for a scalar field with a potential \'(4)) = 
~A(4)2 - V 2 )2, coupled to a fermion with a mass ma + g(4)) , where (4)) is the vacuum 

expectation value of the scalar 4>. For time independent field configurations, 

J/ = f Jlr H( V' 4»2 + \1(4)) + ~(iV. 1 + rna + g4»"l (IV.I) 

When there are no fermions present, the ground state of the system is just the stan­

dard vacuum (4)) = v. But, for the lowest energy solution with fermion number one, 

classical reasoning seems to imply that a condensate in the scalar field, where (4)) 
differs from v, forms around the fermion. Ostensibly, if the Yukawa coupling to the 

fermion is sufficiently large, t.he scalar field energy gained by relaxing (4)) towards 

zero near the fermion may be more than compensated by the loss in rest energy of 

the ferlllion. For a small dimple in the scalar field around a single fermion, the energy 

of the system is a combination of the surface energy resulting from the change in 

{.;,} = 4>" in the bubble walls, the scalar field potential energy, the loss in rest mass of 

the fermion, and the kinetic energy of the confined fermion. For a bubble of radius 

R and thickness 6R, and for a non-relativistic fermion, 

(
611)2 p2 

E ~ 4rrR2 6R 6R + ~V(4)cI) W + m,«4») + 2mo' (IV.2) 

where ~V is the change in potential energy densit.y inside the bubble, 6R is the 

thickness of the bubble wall, and m, is the mass of the fermion in the presence of the 

shifted vacuum expectation value. The energy of the system will favor a bag wit.h 

thick walls. In this limit, the dimple walls have a thickness comparable to the radius 

of the dimple 6R ..... R, and the energy difference between a fermion in a dimple and 

one without a dimple is 

2A 
E = 37r(6v)2R + 2B(6v)2m~ R3 - Cg6v + p2/2m, (IV.3) 

where 6v is the change in (4)) at the center of the bubble, m~ = VAv is the mass of 

the scalar, and the parameters A, B, C are numerical factors of order I. We call this 

energy the dimple binding energy, ED8 • The confinement momentulII of the fermion, 

resulting from a spread in the fermion wave function over the dimple, will I"e of order 

1 I R. Denoting p = D I R, the ground state of the system call be found by varying R 
and av. When the scalar field mass is small, so that the volume term can I"e lIt'glected, 

and provided g?; (v Imo) 1, the binding energy of the dimple is 

(
A3C4) 

ED8 ~ -o2mo ~ , (IVA) 
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where 0 = g2/47r. The condition g"?(v/mo)i must be imposed to ensure that 6v 

be less than v. This is equivalent to the statement that we have a "dimple" in the 

scalar field rather that a bubble ((.p) = 0 at the center}. Since we have optimized 6v, 

solutions with 6v = v must give smaller energies. Our neglect of the volume term is 

valid provided m¢ ~ omo (iv,). The dimple radius is 

R"-'-- --1 (D2) 
- omo AC2 . 

(IV.5) 

We can get a handle on the size of these factors by performing a Rayleigh-Ritz 

variational calculation. In this approximation we treat the bubble classically while 

treating the V'-particle quantum mechanically. Below we calculate the energy of a 

singh~ particle in a bag in this approximation. Writing 

E= E¢+ Ev', (IV.6) 

for .p" = v' at the center of the dimple, and denoting .sv = v - v', the scalar field 

mlltribution to the energy of the dimple is 

E¢ = f tfx a (V.p,,)2 + \,(.p,,)} , (IV.7) 

while the energy contribution from the 1,1' particle is 

E", = f tfr 1,1,. ( - 2~:o + rna + g.p,,(r)) 1,1" (IV.8) 

Using various sets of trial wave functions, we minimize the binding energy with respect 

to RD, R,. and Vi. This results in RD - R .. , which maximizes the decrease in the 
fermion mass while minimizing its kinetic energy. 

The optimal ansatz was 

.p,,(r) = v (1 - 6e-rIRD ) 

.p(r} = ~ 1T~~ e-rln.. 

For these trial wave functions we find 

1 2 
EDB ~ - 280 rrto 

1 
RD ~9--. 

omo 

(IV.9) 

(IV.ID) 

For fut ure reference we note that the energy of these "would be" non-topological 

solitons vanishes as the couplings are turned off. 
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C The Classical Criteria 

Although the classical reasoning used above seems to suggest that the <i>-field dimple is 

the minimum energy solution in the presence of an external source (eg/ the fermion), 

this does not mean that we should place the dimple on an equal footing with the 

actual ground state, (.p) = v. The arguments used to find this classical, minimum 

energy solution to the field eCjuations treat.ed the scalar field .p as a continuous, c­

number field. Quantum mechanics tell us that this is not in general correct. As a 

result of quantization, changes in the value of a field are discrete. These changes 

may be viewed as continuous when differences in the field considered represent the 

addition or subtraction of many quanta. When a deformation in the value of an field 

operator is small compared to differences induced by the emission or absorption of 

many qllanta, we shouldn't trust classical arguments. Another way of saying this is 

that the expectation value of an operator can be replaced by its classical value only 

when the fluctuations in that expectation value are small. This is only the case when 

the field contains many Cjuant.a. 

Armed with the results of section B, we can check our treatment for self-consistency 

by comparing the energy in the scalar-field dimple to that of an individual scalar 

quantum. We find, unfortunately, that the approximation of treating the dimple 

classically is a bad one because its energy is less than that of a single quantum. Con­

sider a Fourier decomposition of the scalar-field dimple. Since the size of the dimple 

is - o~o (where, for simplicity, we drop numerical factors), we expect the fourier 

modes to have momentum - omo. This implies that the typical energy of a quantum 

in the dimple is 

Equantum ~ (m~ + 02f11~)1/2. 

Comparing this to EDB we find, 

EDB 
-0. 

l:!.:q\tllncum 

(IV. II) 

(IV.12) 

Hence, for perturbatille coupling our solution is composed of much less than one 

quantum. 

The invalidity of the classical treatment of a dimple in a scalar field surrounding 

a particle can be seen directly. In what (ollows, we denote the total energy in the 

scalar field by E¢. The criterion that the deformation in .p" be made up of at least 

one quantum is 

E¢ ~ Equantum ~ Im~ + R-2 > 1/ R. (IV.13) 

In order for a hound state to exist the total energy in the scalar field, E¢, IIIlIst be 
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less than the change in rest mass of the fermion: 

E¢:5 gbv (IV.I4) 

Putting this together with (IV.I3) we have 1 < g(bv)R. In particular the energy in 

the "surface" terms must be less than the change in rest mass of the fermion, 

411'(bV)2R < g6v, (IV.l5) 

so that, bvR < g/411'. Putting these together gives 0 = g2/411' > 1. Requiring that 

the dimple b~ made up of N quanta implies that 

g2 
0= - > N. 

411' 

lIenee there are no bubbles for perturbative couplings. 

(IV.I6) 

It is instructive to compare the behavior of these "would be" non-topological 

solitons to the behavior of classically valid topological solitons [41, 42). For definite­

ness, we recall the properties of the "kink" (domain wall) solitons of t/>4 theory in 

1 + 1 dimensions. Rescaling the scalar field t/> by the small coupling g, t/>' = gt/>, the 

t/>4 theory Lagrangian is 

J:./h = _I jdI {!O 4/8"t/>' _ p2 (1 _ ¢rJ)~} 
g2h 2 " 2 . (IV.l7) 

In addition to the degenerate vacua of (t/>') = ±I, the Lagrangian (3.7) has a stable 

classical solution 

t/>~ = tanhpx. (IV. IS) 

Quantizing around this solution, to order g, the energy is given by 

4p 3 1 3 
E= - -pg(- - -)+O(g p). 

3g 11' • 2V3 (IV.19) 

lIence, we see that, in the region of validity, the "classical" contribution to the energy 

of this topological soliton E ~ pIg is many times larger than the energy of a quantum 

fluctuation Eq ~ gp. The classical limit h --+ 0 is equivalent to 9 --+ O. So, for 

weak coupling, the energy of the classical solution is much larger than the energy 

of fluctuations around the solution (IV. IS). For large values of 9 the energy of the 

classical solution is not the dominant term in (IV.19) and there is no more reason 

to believe the classical analysis than there is to trust perturbation theory [41). The 

same remarks would apply to the soliton structures of sine-qordon theory, the 'tHCIOft­

Polyakov monopole, or other topological solitons in field theory. 

45 

D Classical Values, Fluctuations and Coherent States 

For small shifts bt/> in the field t/> about the minimum of the potential V(t/» = ,\(.p2 -
tl2)2, we can perturbatively define our theory so that to lowest order it is merely the 

theory of a heavy fermion coupled to a free, massive scalar field. The Lagrangian for 

such a th(.'Ory is simply 

1 1 - -
J:. = 2o"t/>8"t/> - 2m2t/>2 + "'(~ - mo)'" - gtPt/'''', (IV.20) 

where m is given by the second derivative of V(t/» at its minimum. Since the scalar 

field is free except for its coupling to the fermion, we can now study its behavior using 

the formalism of coherent states. 

Coherent states are constructed by the application of creation operators (in the 

interaction picture) on the vacuum state 10) so as to yield a prescribed expectation 

value for the field operator ~. We define coherent states for the positive frequency 

part. of the quantum field .p. The field operator ~ call be expanded in on-shell Fourier 

modes in the usual way: 

~ = j dk{akeiki' + ate-iti'} (IV.2I) 

where ik = cPkl(211')32wk. Since we work in the interaction picture, the operators 

ak and at are time dependent (iel ak(t) = ak(O)e;"'·'). The creation and annihilation 

operators also satisfy the usual commutation relation 

[ak,a!.) = (211')32wkb3(k - k'). (IV.22) 

Consider the coherent state 1'1) given by 

1'1) = CNexp{j dklj(k)a!lIO) , (IV.23) 

where f dkl'l(k)i2 < 00, and CN = exp{ -H dkl'l(k)l2} is chosen so that 1'1) has a 

norm of one. It is easy to verify that 

('II~I'I) = j dk{'I(k)ei;;'i' + 'I"(k)e-';;i'} , (IV.24) 

so that by proper choice of 'I(k) one can ensure that ('II~I'I) has the desired form. 

The average number of particles in the coherent state, N = (IV), is 

('IIIVIIj) = ('II j dka!akl'l) = j ii.·II/(kW, (IV.25) 
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so eN = exp{ - ~N}. The coherent state has energy 

('1llfl'l) = ('11 J dkwkatakl'l) = J dkwkl'l(kW· (IV.26) 

Fluctuations in ('IIIlI'l) can be defined by 

(1)11/211)) = (1)IHI'I)2 + J dkw~ll)(kW· (IV.27) 

The classical limit is attained by choosing I)(k) so that the average number of 

particles N is large. As the number of particles is increased, 

(1)IH211)) - (1)IHII))2 1 
.. oc =, 

('1IHI'I)2 N 
(IV.28) 

where N is the total number of quanta as defined in (IV.25). Note that when N is 

small, the energy of the state 11)) is not well defined, and undergoes large fluctuations 

compared to its mean value. This is to be expected as H and J, do not commute. 

The semi-classical approximation used in section B requires that both (J,) (which 

determines the fermion mass) and (if) (which gives the scalar field energy) be known. 

This is only possible in the classical limit where N -+ 00. We can therefore conclude 

that when N is small, there is no reason to expect that the calculation of section B 
has any validity whatsoever. 

Moreover, when N is small the non-classical nature of the coherent state is man­
ifest since 

11)) = e-P'{IO) + J dk'l(k)lk) + ... }, (IV.29) 

so that the coherent state is mostly vacuum with small amplitudes to be in an n 
particle state. 

It is important to reiterat.e that there is no uncertaint.y whatsoever in this system 

as to the identity of the ground state. The ground state is clearly 10), upon which 

all excitations of <I> and '" are constructed. By "turning on" a source term gradually, 

one sees that the resulting <I> field is a superposition of scalar excitations above the 

vacuum. It is only when the scalar excitations consist of many quanta that a classical 
description of the <I> field is valid. 

Quantum fluctuations of the type considered above can also be understood as 

a finite volume effect. A measurement of the value of a field must always be taken 

in some smeared volume. The value of the field can only be determined to within 

fluctuations which are"" IlL, where L is roughly the size of the smeared volume. 

(This can easily be seen by considering the quantity (<I>(x)<I>(x')), which diverges for 

x -+ x' evclI in a free theory.) It is straightforward to show that for the dimple system, 
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with L"" RD, the fluctuations llRD are always larger than the classical shift in the 

vev, /iv. Thus, the quantum fluctuations overwhelm the purported classical shift, and 

it is meaningless to ascribe a physical significance to a scalar dimple in a volume of 

size n::,. 
Now we construct the exact solution to the scalar field equations in the presence 

of a normalizable, localized source which we can take to represent the fermion wave 

function in the dimple system. We can then rigorously show that, for perturbative 

coupling between the fermion and scalar, (JiI) for this solution is less than one. 

The time-independent equation of motion for the scalar field of (IV.2O) in the 

presence of a source J(x) == ",t(x)tP(x) is given by 

(V2 _ m2 )<I>(x) = gJ(x). (IV.30) 

The coherent state corresponding to the solution of (4.10) is given by (4.4), with 

'l(k)/(2wk) = -gJ(k)/(k2 + m 2
). (IV.31) 

where J(k) satisfies J(x) 

number operat.or is then 

J (~~J{J(k)e;ri' + h.c.). The expectation value of the 

- IJ(k)12 
N = 4g

2 J dk (k2 + m2)' (IV.32) 

Inserting for tP our best ansatz (IV.9), we can now directly calculate (J\r). For R.m. < 
1/2, the total number of quanta in the dimple is 

N = 2: [In(16Ie) - 2:] {I + O(en, (IV.33) 

where e = R".m •. We note that most of these quanta have wavelengths of "" 11m •. 

The apparent divergence for e -+ 0 does not concern us, as it is just the standard 

infrared divergence due to long wavelength modes. This is the familiar result for the 

massless limit of a \'ukawa field (i.e., a Coulomb field). Long wavelength modes are 

irrelevant. to the question of whether the dimple should be treated classically. The 

relevant modes are those of wavelength :s It.. Therefore, for extremely small values 

of m., we should impose an infrared cutoff II L in (IV.32) to obtain the number of 

physically relevant quanta. This corresponds to placing the system in a box of size L. 
For L "" R., it is easy to see that the number of quanta (IV.33) is always less than o. 

We note that by suitable choice of the source term J(x), it is possible to obtain 

a valid classical state <I>(x). Since N is proportional to g2IJ(k)l2, it can be increased 

either by increasing g, or by increasing the overall magnitude of J(x). The former 

corresponds to strong coupling, while the latter corresponds t.o increasing tbe nllmher 
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· '. 

of fermions contained in the probability distribution J(x) == v,t(x)V'(x). The solu­

tions obtained in that case correspond to many'particie nontopological solitons, as 

discussed in [39). 

Although we have argued against the existence of a classical condensate surround­

ing the fermion, this does not imply that there is no vestige of collective behavior 

for non-zero g. In fact, the collective effects which do appear are well understood 

[43). For non-zero coupling g, the lowest energy eigenstate of the Hamiltonian with 

fermion number one is just the unperturbed free fermion state "dressed" by a cloud 

of scalar quanta. This "dressing" can be understood simply as wave function and 

mass renormalization of the fermion, yielding a correction to the fermion mass which 

is divergent. A prescription for subtracting this divergence (e.g., by the addition of 

counterterms to the Lagrangian) is necessary to ensure a finite physical mass for the 

fermion. This is the mass of the physical (renormalized) fermion, which is in fact the 

lowest energy st.ate of fermion number one. 

E Conclusion 

To summarize, we have considered here putative non-t.opological solit.ons consisting 

of a single particle and a deformation in the scalar field whose vacuum expectation 

value gives a mass to the particle. Although a purely classical treatment of the scalar 

field suggests that the solution in which a dimple forms in the scalar field near the 

particle is energetically favored, this is overshadowed by the fact that for the bubble 

solution found, the classical treatment is not valid. The classical computation of a 

quantity is only reliable when the fluctuations about the solution are small compared 

t.o the classical value. A necessary condition for the fluctuations to be small is that 

the deformations in a field must be ma.de of llIany quanta. Unlike topolob<ical solitons 

in weak coupling, the dimple solution discussed in this chapter and in [38) is not 

well described by classical physics. For weak coupling, the collective effects of the 

interaction are understood in terms of renormalization. 

We should also mention some phenomenological work concerning a possible "bag" 

around the top quark in the standard model. The existence of such a bag might re­

sult in an int.eresting signature in top quark decays. The work of S. Dimopoulos, 

B. W. Lynn, S. Selipsky and N. Tetradis [44) entitled "The vacuum abhors top bags", 

studies the possibility of a Higgs dimple around the top quark in the sta.ndard model. 

The authors of this paper apply a semi· classical approximation to study the prop­

erties of a Higgs-top dimple, and find that such an olljed is energetically favorable 

ollly for fairly large Higgs-top coul'lillgs (9 t"l' > 2), which they claim are ruled out 
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phenomenologically. We remark here that insofar as any calculations are reliable in a 

theory with such large couplillgs, the arguments presented in our chapter are relevant 

to the Higgs dimple that they consider. Therefore, it can be concluded that such an 

object does not exist without resorting to the phenomenological arguments presented 
in their work. 
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Chapter V 

Instantons and vacuum tunneling 

via particle collisions 

A Introduction 

There has been a great deal of interest recent.ly in the quest.ion of (B+L) violation 

Illediated hy inst.antons in the st.andard model [46,47,48,50,51). Investigations along 

tlll"sc lilies have focused on the calculation of exclusive an,l inclusive (B+L) violat­

illg cross sections in tIle one-instanton sector. Khlebnikov, Ruhakov and Tinyakov 

(1\IlT)[48) have recently given a functional integral expression for the inclusive cross 

section, which reproduces earlier results from calculat.ions using one-instanton Green's 

functions alld the LSZ procedure [46, 50, 51). 

In t.his chapter we will address the closely related issue of producing a vacuum 

bubble in a theory with a metastable false vacuum by colliding energetic particles. The 

cross section for this process can also be expressed in tenns of a KRT-like functional 

integral. We show that the cross section for vacuum tunneling increases with center 

of mass energy, although we are unable to extract its exact energy dependence. There 

have been se\'eral previous works on so-called "induced" vacuum decay in the presence 
of heavy particles [52). 

The simple model we will study is that of a scalar field in 4 dimensions with two 

noudegenerate vacua (the analysis can readily be extended to theories in an arbitrary 

number of dimensions). Tunneling at low energies in this theory is mediated by fixed­

size, 0(4) symmetric instanl.ons (the "bounce" [45)) and result.s in the production of a 

buhhle of true vacuum which expands relativistically after nudeation. These models 

han' more than an academic relevance, as there is a large region of standard model 

paral1leter space in which our universe lives in just such a metast.able false vacuum 
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[49) (i.e., when mtOf' > mlligg., mll'.z), Therefore, a calculation of the rate of vacuum 

tunneling at high energies is important for determining limits on the Higgs-top sector 

of the standard model. (A somewhat heuristic analysis of vacuum tunneling at high 

energies is presented by J. Ellis et aI. in the second reference of [49).) The calculations 

performed in this chapter will be directly applicable to the case mentioned above, 

except that in the standard model the instanton action will not. be calculable ill the 

"thin-wall" approximation, and should be evaluated numerically. 

As we will discuss below, the physical inl.erpretation of the instantons (bounces) 

is in terms of their relation to vacuum decay. However, we will also show that the 

existence of the inst anton solutions implies some pot.entially interesting behavior in 

the inclusive cross section for scalar-scalar scattering in the false vacuum. We find 

that t.his cross section grows exponent.ially with center of mass energy, reminiscent of 

(B+L) violation ill the standard model. 

The organization of this chapter is as follows. In section B we exhibit the instan­

t.on solutions of our theory, and also discuss properties of its sphaleron. In section 

C we review the KilT formalism and apply it in a calculation of inclusive scattering 

between Fock states of the met.astable vacuum. We find that. the nonperturbative 

contribution to this cross section grows exponentially with center of mass energy, in 

agreement with (B+L) violating cross sections in the standard model. In section D we 

modify the KRT formalism to calculate the cross sect.ion for vacuum bubble produc­

tion at low energies, which apparently is also enhanced at high energies. Our results 

can also be used to reproduce the rate for spontaneous decay of the false vacuum, 

previously deduced by other methods. Section E summarizes our results. 

B Instantons and sphalerons 

The syst.em we consider in this chapter is the theory of a real scalar field in four 

dimensions, whose potential exhibits two nondegenerate minima. Although simple, 

this system exhibits many of the features present in the Gauge-Higgs sector of the 

standard model. That is, it possesses both instanton and sphaleron solutions. On 

the other hand, we will see that there are also interesting physical phenomena, such 

as the instability of the higher energy vacuum, which have no analog in the standard 

model, unless one considers the Higgs sector alone in the limit of a heavy top quark 

[49). In this section we study the instanton and sphaleron solutions of t.he theory, and 

derive expressions which will be necessary for subsequent analysis. 
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The theory call be written in terms of the following Lagrangian: 

. I A (2 112)2 , 
£=28,,4>0"4>-8 4> -T +\.b(q,), (V.I) 

where l'ob(q,) breaks the symmetry between the vacua at 4> = +a, -a. (Here a2 = 

112/A.) We will take V'(q,) to be 

l 
V.b(4)) = 2a (4) - a), (V.2) 

where ( has dimensions of (mass)4. 

Henceforth we will refer to u+ = +a as the false vacuum, and u_ = -a as 

the true vacuum. If the lifetime of the false vacuum is long enough (i.e., the rate 

fur spontaneous decay is sufficiently small), we can build states perturbativcly as 

harmolJic excitations which know nothing of the other lower minimum. \"'e can then 

dcfine an S-matrix and discuss scattering between these states of the false vacuum. 

Since there are highcr order (i.e., ..\4>4) interactions among these states, there exist 

tree graphs which contribute to such scattering. We will show that installtons also 

contribute to this scattering, and may even give the dUlIlinallt contribution at high 

energies .• 

Spontaneous vacuum decay via installtons in this theory was first considered 

in [45). The instanton (or "bounce") solutions are Old) symmetric functions of 

p = (t 2 + X2 )1/2_ (It has been proven that non-Old) symmetric solutions all have 

higher Euclidean action than the Old) symmetric solution (45).) The bounce obeys 

the following Euclidean equations of motion and satisfies the following boundary con-

ditions: 

dlell + ~ dell = l"(eIl) 
dp2 pdp (V.3) 

eIl(p -+ 00) = u+. 

Note t.hat. the equation of motion for ell is equivalent. to the equation of motion for 

a particle moving in a one-dimensional potential, with a p dependent drag. The 

onc-dimensional potential is equal to the negative of the scalar potential. Using this 

physical analogy, one can demonstrate that a solution of (V.3) will always exist. We 

should note that if eIl(x) is a solution to (V.3), then so is eIl({, x) == cZl(x-O. That is, 

there are lIlany instantons, each centered at a different point in Euclidean four-space. 

'We III~all this ollly in the sellse that if one believes that (R+L) violating instanlon effects in 

the stall <lard 1II0<lel [",corne strong at high energies, one would also conclude that similar instanton 

nlt,diated processes here will eventually be dominant. At present, however, there is no rigorous 

evid .... ce that this is the case ill either model. 
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The action of the bounce solution can be calculated analytically in the thin-wall 

approximation (45)- In that approximation the energy of the true vacuum is only 

slightly less than that of the false vacuum_ In that case one can show that the bounce 

looks like a four-dimensional spherical bubble of radius R (see Figure 2). For, P » R, 

eIl(p) = u+, while for p« R, eIl(p) = U_. The transition between u+ and u_ occurs 

at p ~ R, and the shape of eIl(p ~ R) is approximately that of a one-dimensional kink 
of thickness fJ -I. 

Given this information, one can perform a variational calculation in R to mini­

mize the action of the bounce. For the theory specified in (V.I), this yields R = 1J3/A( 

and SB = (1T
2
1J11)/(6ClA4

). For self consistency of the approximation, we must have 
IJR» I, or 1J4/A» l. 

In subsequent. calculations we will need to know the asymptotic (p -+ 00) be­

havior of the bounce. This is easily obtained by linearizing equation (V.3) about the 
minima ell +. One obtains 

(
tP 3d ) 

dp2 + pdp -1J
2 

(eIl- u+) = O. (VA) 

This has the solution 

eIl(,,) - u+ = Ah-I(IJP)/IJP, (V.5) 

where nl is a modified Bessel function, and A is determined by matching (2.5) onto 

the exact bounce. Although a precise determination of A requires a numerical calcula­

tion, in the thin-wall approximation A ..... aIJR/ KI (IJR). In any case, the P dependence 

of (2.5) will be sufficient to determine the energy dependence of processes we wish to 
consider. 

Again for future use we will need to compute the projcction uf the bounce onto 

plane wave states for ITI -+ 00. For this purpose we need the three dimensional 

Fourier transform of eIl(p) at time T_ This can be expressed (48) in terms of the 

coefficient of the on-shell pole of the four dimensional Fourier transform of eIl(p): 

... ek.JI:T, 
eIl({,T;,k) = ,~ ,,_ R(k,{) 

_ e-iw• T, 

cZl({, T" k) = In ,,~ R(k,{), 
(V.6) 

where R(k, e) is defined by 

lim (k2 + fJ2) J dxodi eik~r~cZl(x - e) == R(i.:, O. ll __ ." (V.7) 
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The quantit.y R(k,O also appears in the LSZ reduction formulas used in [46J. 

The necessary Fourier transforms of quantities like (2.5) are given in those references, 

and we shall merely state the result: 

R(k,O = 47Tl(A/p1)exp(ik .. ~"). (V.8) 

We note that the magnitude of R is independent of k. This implies, as we will see 

in section C, that the overlap of plane wave states with the asymptotic limit of the 

instanton is not. suppressed when the momentum k of the plane waves is large. This 

contradicts the arguments of [47J, where it is claimed that there is an exponential 

suppression associated with the overlap of the instanton with high energy states. 

The sphaleron t in this theory is nothing more than a particular critical vacuum 

bubble. A bubble is critical if it can decrease its energy by expanding. The sphaleron 

sits at an unstable point in configuration space and can decrease its energy by ei­

ther expanding or shrinking. If pert.urbed, it will either shrink to zero or expand, 

depending on the sign of the perturbation. We can illustrate some of its properties 

by studying how the energy of a vacuum bubble scales with its radius. For simplicity, 

we will again work in the thin-wall approximat.ion. 

Consider a spherical vacuum bubble eII(r) of radius I( in the theory specified by 

(V.I), where ( is small. At large distances from the center of the bubble, eII(r » 
Il) = 17+, while eII(r « R) = 17_. At. r ~ R, the field makes a transition from 17+ to 

17_ over a distance of order p-1. This transition region again has the shape of a kink. 

The surface energy of the transition region can be easily calculated as 1: ~ p3/,X. 

The t.otal energy of the bubble can be written as the sum of surface and volume 
terms: 

EB(R) ~ -(W + 1:n2. (V.g) 

Notice that EB(R) goes to zero as R -+ 0, and -00 as R -+ 00. However, in an 

intermediate region of R there is an energy barrier with a height equal to E.pholeron' 
Consider the behavior of ~ ~ -3(Rl + 21:R. This function is initially positive, but 

goes through zero at R. ~ 1:/(. Bubbles of radius larger than R. will expand, while 

t hose smaller will contract to zero. The sphaleron for this class of configurations is a 

thin-walled bubble of radius R •. Its energy is given by 

E.,,""/eron ~ (1:3 /(1) ~ (p8 / ,X3(1). (V.IO) 

One can also verify that t.he Minkowski rotation of the T = 0 slice of the bounce is 

actually a critical bubble, with R> R •. 

'The allthor is gratefullo G. Anderson (or many o( the observations concerning sphalerons. 
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We note that the scaling of E.,,""'eron with the various parameters of the theory 

is very different from the scaling of SB' Many authors [48,50, 51J have stated that 

the sphaleron energy is somehow the relevant scale at which tunneling rates become 

large, but this daim seems unfounded in general. The suppression factor that must 

be overcome by energy dependence is actually e-ss , and there is no simple relation 

of that factor to the sphaleron energy in this theory. 

Finally, we note that the presence of the symmetry breaking interaction Vob(~) 

is crucial for the existence of the bounce solution. In the absence of this term the 

action of the instant.on goes to infinity, as seen in the expression for SB. In fact, one 

can sec that in the limit t.hat. ( -+ 0, there are no O(d) symmetric solutions satisfying 

the boundary conditions given in (V.3) except the trivial solution, ell = 17+. It is also 

clear that. there are no sphaleron solutions in this limit. 

C KRT redux 

In t.his section we will brieAy review the coherent state path int.egral used by KRT 

to give the inclusive cross section in the one instanton sector. We will then apply 

the formalism using the bounce solution found in section B to give the instanton 

contribution to scattering between particle states of the false vacuum. 

We begin with the transition amplitude between arbitrary stat.es (il and II): 

(iIUII) = J D~,D~J(il~i)(~dUI~J)(~JIf), (V.lI) 

where I~t./) are eigenstates of the field operator ~(x,T;.J) with eigenvalues ~(x, T;.J) 

and Ii), If) are coherent states [53J. The transition amplitude is given by 

l
~(T/)=~1 . 

(~dUl~J) = D~ e,S[~I. 
~(T.)=~. 

(V.12) 

Equations (V.II) and (V.12) are completely general. Since we are interested in the 

process 2 -+ all, where all means asymptotic particle states of the false vacuum, we 

must square (V.lI) and sum over all 11),8 which are superpositions of plane wave 

states, 

17inc ~ L l{ilUlfW = L I J D~iD~J(il~i)(~iIUI~J)(~JIf)11. 
J I 

(V.13) 

We now rotate to Euclidean space and restrict the paths which contribute to 

(V.12) to be the instantons, taking t.he limit T;, TJ -+ ±oo. The pat.h integral is then 

reduced to an intl'gral over inst.anton coordinatt-'5, ~: 

l1inc ~ L J D~D( (ilell i (O)(elli (nli)(4> J(~)lf)(flell J(()exp( -2SB), 
J 
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where SB is the bounce action, and 4I i = 4Ibounce(l: -+ -00),41, = 4Ibounce (T, -+ +00) 
are the asymptotic limits of the instant on. 

The overlaps can be calculated using standard results for coherent states. In 

general, for an overlap between a coherent state (III and 14», evaluated at time T, 

('M) = exp( - 1/2 j dk '1(k. T)'1(-k. T) - 1/2 j dk wk¢(k. T)¢( -k. T) 

+ j dkVwk'1(k. Tr¢(k. T). 
(V.l5) 

Here ¢ and '1 are functions in momentum space. (In particular. ¢(k. T) is the three 

dimensional Fourier transform of 4>(x. T).) 

For the case of interest. we wish to evaluate (iI4l i ). where (il is a 2 particle 

plane wave state of four momenta (E/2, ±k), and l4I i ) is the asymptotic tail of the 

instanton. In that case [48], we have 

(iI4l.(0) = R(k. O)R( -k. O)e-iE(o. (V.16) 

The sum over If)'s in (V.14) yields aJl overlap which can be expressed as 

(4I,(~)l4I,(e)} = exp(j dkei",.((o-(~.-ik((-e. R(k, O)R'(k, 0». (V.17) 

We note that the Euclidean time dependence in 4>i./(k, {) is such that the first two 

terms in the exponential of(V.15) (the normalization terms) go to zero as T;.1 -+ ±oo. 
leaving the third term in which these dependences caJJcel except for a relative factor 

of ~ - ~'. At the moment. we have written the e - e terms as Minkowski (real) 

separations, which explains the factors of i. 

Using (V.16) and (V.17), (V.l4) can be written as 

C7inc -VTexp( -2SB) j D(~ - ~')IR(k, O)I'IR( -k, oW 

. exp (-iE({o -~) + j dke ..... ((o-~.-;k((-(')R(k.O)R·(k,O»), 
(V.18) 

where we have rewritten the integration over ~, e as a total four volume VT times 

an integral over ~ - e. The volume term is necessary for the definition of the cross 

section as C7 = (l/VTj)IAmplitudel'. where j is the flux of incoming particles. 

We can now evaluate the integral (V.18) over ~ - e in the saddlepoint approxi­

mation and extract the dependence of the total cross section on energy. We neglect 

the efrect of the non-exponential prefactors, and simply extremize the exponent. In­

serting the expression for R(k,~) from (V.8). aJJd defining x == ({ - e), we have for 

the exponential 
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eW == exp( -iExo + C f dke .... ·,.o-.r. .. ), 

where C = IR(k.OW is a constant given by l6rr4(A'/1J4). 

(V.19) 

The saddlepoint occurs at 88': 1,.,= O. This yields X" = O. and for Xo the equation 

E = (7 j dke .... ·,.~ = C/(lr'i(x~)3). 

Thus, ixo = -(C/Elr')1/3. and we have for the total cross section 

C7inc - exp(-2SB + (C/8rr')1/3E'/3). 

(V.20) 

(V.21) 

Note that at the saddlepoint Xo the separation ~o - ~~ is actually Euclidean. (The 

last equality in (V.20) is only valid in the limit Xo « 1J-1• but for E » IJ the 

approximation is self-consistent. Alternatively, the integral can be evaluated explicitly 

in terms of a Bessel function.) 

What is the physical interpretation of what we have found? Consider a physicist 

who lives in the metastable vacuum. c.ompletely oblivious to the existence of the 

lower vacuum. (This may indeed be the case with our universe. if m, is sufficiently 

large!) That physicist CaJJ conduct scalar-scalar scattering experiments at higher and 

higher energies. Our results show that. the existence of the lower minimum affects the 

scattering cross section of scalars on scalars. If one extrapolates the exponential rise 

in cross section to sufficiently high energies [46. 5OJ. one could even conclude that this 

is the dominant contribution. • This is somehow disturbing. unless other processes 

more directly related to the instability of the false vacuum also become strong. One 

such process is vacuum tunneling. which we will consider in section D. 

D Semi-bounces 

In this section we will generalize the analysis in the previous section to include scatter­

ing into more complicated final states. Previously. we restricted our final states If) to 

be simple superpositions of plane wave states. They are therefore suitable asymptotic 

states of the theory. whose time evolution is given by the free Hamiltonian. However, 

we know that an object such as a critical vacuum bubble is not an asymptotic state. 

Rather. its evolution is complicated and depends on the nonlinear interactions of the 

full scalar potential. 

t In calculating the inclusive cr06S section (Tmci we &hould legitimately have :;urJHIIl'J over classi4 

cally allowed contributions to ~4> scattering (i.e., from tree graphs) berore squaring the amplitude 

in (V.13). However, if the dominant contribution at high energies is from installtolls, we c311l1cgle<t 

interference due to perturbative processtl8. 
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We will now drop the requirement on If) that it be a simple coherent state. 

Instead, we will take the set of final states to be a complete set of states for the full 

theory, which must therefore include complicated objects such as vacuum bubbles, 

and ot.h<:>r many-particle semiclassical configurations. 

Given the above considerations, it is clear that the full bounce solution will not 

give a contribution to vacuum bubble production. That is, it will overlap asymp­

totically only with free particle stat.es. To remedy this fact, we will use the bounce 

solution ill the region IT; = -00,0]. This describes a Euclidean path that connects 

plane wave states to a snapshot (or 0(3) slice, see Figure 2) of the instanton at T = o. 
The Millkowski rotation of this snapshot is a true vacuum bubble in a sea of false 

vacuum, which is energetically favored to expand. This is precisely the type of con­

figuration which we would expect. to contribute to nucleation of a vacuum bubble due 

to part icle collisions. 

The advantage of these "semi-bounces" is that they are still solutions to the 

Euclidean equations of motion, and hence provide a semiclassical expansion for the 

pilth integral with suitable boundary conditions. Returning to (V. I I )-(V.13), we will 

now generalize the calculatioll to make use of these configurations. 

We wish to evaluate the general expression (V.13), but now keeping T, fixed 

while Tj -+ -00. The paths about which INe will expand are the semi-bounces, each 

labeled by a Euclideall coordillate {". The boundary conditions for a semi-bounce 

are cJ>.(~,i) = cJ>boun",,(T -+ -oo,i - () -+ 0+ and cJ>,({,i) = cJ>bounc.(T= 0,; - (), 
where the latt.er is simply an 0(3) slice through the center of the instanton. 

The contribution of semi-bounces to the path integral (V.13) is given by 

Ojnc - L J n{De (ilcJ>j(O)(cJ>;({')li)(cJ>,WIf)(JIcJ>,(e'l) , 
. (cJ>j({)IUIcJ>,!O)(cJ>,(e')IUIcJ>j(O), 

(V.22) 

where the last. three fact.ors can be expressed as Euclidean path integrals. In partic­

ular, if we do the sum over If)'s. we have 

~(T=<:, ?)=. (i'-C) 
L(cJ>,(OIf)(JIcJ>,({'») = (cJ>,(OIcJ>,(()) = ( , / Dr/> e-S£[~). (V.23) 
, J~(T=(o,?)=./(i'-(1 

The last two amplit.udes in (V.22) are evaluated semiclassically about the semi­

boullces. tTp to a det.erminant each yields a factor of exp( -SSB), where SSB = SB/2. 

Thlls (V.22) can be written as 

O"'C - ! De Dt(ilcJ>. (O)(cJ>. (e)li)exl'(-2SSB )($,WIcJ>,(O)· (V.24) 
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Using the overlap result for initial states (V.16), and rewriting 

we have 

(cJ>,!OIcJ>,(e)) == exp( - f(e - en, 

Ojnc ~ J D(~ - e'lerp( -2SsB)exp(E({ - e'l - f({ - en 

== exp(-2SSB) J Dx e-W(r). 

(V.25) 

(V.26) 

While we are at a loss to explicitly evaluate erp( - fIe - f), we expect that it 

is a rapidly decreasing function of (e - f). This being the case, we expect the largest 

contribution in the integral over «( - f) to come from ( = t On the other hand, 

for Euclidean time separations xo = {o - {~, the first term in W(x) is increasing. If 
the form of fIx) is such that a saddl<:>point cvaluation of the integral is possiblc (i.e., 

~~'~ Ir~= E - #, Ir~= 0 for some x~), then we will recover the exponent.ial growth 
wilh energy of the cross section. In any case, increasing E will always yield a larger 

cross section, although if the fall·ofT in I(x) is precipitous enollgh, the increase may 

be illconsequential. 

How is the quantit.y we have calculated related to the cross section for bubble 

production? We know that 0bubbl. :5 Ojnc, and if the If)'s that dominate the sum 

in (V.23) correspond to critical bubhles, then 0l>ul>bl. ~ Ojnc. This will certainly 

be the case if the integral (V.26) is dominated by small Xo, which will be true for 

E « E.phaleron. In other words, for sufficiently low energies the cross section for 

bubble production is approximately equal to the total cross section due to semi­

bounces. 

It is possible to give an intuitive argument for why t.he cross section for bubble 

production must grow with energy. Consider the amplitude connecting an initial two 

particle state (il to a final state If). which we leave arbitrary except to specify t.hat. it 

is an eigenstate of energy and momentum. Then in the one-instanton approximation 

(iIUlf) = J De (ilcJ>.({)){cJ>,({)lJ)erp( -SSB). (V.27) 

This can be rewritten as 

(iIUIf) = J D{e(i(·(P'-P/))(ilcJ>.(O))(cJ> ,(O)lf)exp( -SSB). (V.28) 

Performing the { integral merely gives a delta function which preserves ellergy and 

momelltum. The total cross section can then be writ.len as 

Ojnc = Lexp(-2SSB)W(P, - P,)(ilcJ>.(O»)(cJ>,(O)lfW , 
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This expression for Uinc is equivalent to previous olles (e.g., (V.24),(V.26)), except 

that here the sum over final states is explicitly showli. III this form, it is easy to 

see that the total cross section has the form of an almost constant matrix element, 

summed over a phase space which grows with energy. At zero energy, we expect the 

dominant final state to be a vacuum bubble of zero energy (the T = 0 slice of the 

bounce). However, at higher energies, we can easily imagine fmal states correspond­

ing to vacuum bubble plus scalars or slightly excited vacuum bubbles which overlap 

equally well with ($,(0)1_ Thus we see that the growth in energy of Uinc, as expressed 

ill (V.26) as the.integral over e-W(z" is mainly due to phase space. 

Finally, we note that our techniques can reproduce earlier results for the rate of 

decay of t.he false vacuum. If we had taken our illitial state (il as the vacuum stat.e 

(i.e., such that. (il4>i) = 1), the result. for Uinc = UbuU>1e in (V.22) can be int.erpreted as 

a decay rat.e per unit volume, per unit tillie, which agrees to leading order with the 

previous result in (45]. 

E Conclusion 

Our purpose in this chapter has been to investigate whether or not indications of 

strong behavior at high energies were present ill theories with a metastable false 

vacuum. One would have naively expected this to be so from the very presence 

of instanton solutions with the correct asymptotic behavior (that is, on-shell poles 

with constant or slowly varying residue). This can be seen most naively by simply 

calculating the one instantoll contribution to a multiparticle Green's function, and 

then applying the LSZ procedure to arrive at an S·matrix clement. Since the operators 

so arrived at are local, the extrapolation to high energies of scattering due to those 

operators will eventually become large and even violate unitarity. 

As expected, we find exactly this type of behavior in the scalar-scalar scatterillg 

cross section, and also suspect that the cross s(!ction for vacuum tunneling (production 

of a vacuum bubble) grows exponentially with energy. Unfortunately, no strong 

conclusions can be drawn from these calculations because, as shown by KRT (48], 

corrections to the one instanton cross section grow large before the suppression factor 

e-ss is overcome. (We must quibble slightly, as mentioned in section B, with the 

general claim that corrections are proportional to powers of (E/ E."".,o,on) , since for 

the theory considered here there is no simple relation between the sphaleron energy 

and the bounce action.) 

The phenomenological alld cosmological impli('ations of the tunneling rate be­
coming large due to high energy collisions are myriad. ~Iodels of inflat.ion involvillg 

(i\ 

supercooling would have to be reexamined. Stringent limits on top and Higgs masSt.'S 

could be derived from the fact that cosmic ray collisions have yet to destabilize our 

universe. Perhaps we would even be forced to reconsider our picture of the dominant 

dynamics of the hot early universe. Dut, before any further speculation, much more 

work needs to be done to understand the true behavior of these semiclassical processes 
at high energy. 
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Figure 2: A schematic representation of the bounce, lI>(p) , where p = (t' +,i'l)I/l. 

I n the shaded region, II> ~ u _, while II> ~ u + at large p. The bounce is sliced into two 

semi· bounces aJong the T = 0 line. 
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