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ABSTRACT

" The effects of incoherent feeding and decay on a coherently driven
two?level_system are investigated using density matrix techniques.‘
A closed form solution that includes the effects of relaxation and spon-
taneous emission between the two levels is obtained for cases in which
the sampletsize is both small and iarge compared to the wavelength of’
the coherent driving field. The steady-state solutioﬁs reveal that
under appropriate conditions a significant coherentvéomponent can be
maintained by the combination of driving field and incoherent feeding,:
and should provide a useful method for the study of superradiance>from‘

excited states.



I. INTRODUCTION

Tﬁe time evolution of an ensemble of twoestate systems under the
influence of a coherent radiation field is a problem of considerable
importance and has been treated extensively for the case in which the
ensemble isialways composed of the same members. By this we mean thaf
the identity of the individual members and the number of'membérs in the
ensemble is constant in fime. Proton nuclear magnetic resonancé ié an
exémpie of this, whe;e for a giveq»sample size the number of protons is
fixed, and the individuai proton maintains its identity throughout an
experimeﬁt. In many cases, such as double resonance,l optiéal pumping,

> stark

chemically induced ngclear and electron spin polarization,
shift optical coh‘erence,4 and any process which involves excitéd states,
the total population of the two-level ensemble is not constant in time.
Although most qf the proéesses mentioned above have been treated within
their own context, little emphasis has been placed on how the creatidn
and destruction of the states affect the properties of the ensemble in

the presence of a coherent driving field. It is the éim of this.papér

to treat an idealized t;o—level'system which is coherently coupled and

af the same tihe_is being incoherently fed and is spontaneously decéying,
In such a case the numberband identity of the individual members ofﬁtﬁé' g
ensemble does not remain constant in time, since the ensemble of excited -
states will not only evolve under the influence of the coherent radiatioﬁ
field, but will also decay to the ground state by radiative and ndn-radiative

processes. In these cases the trace of the density matrix describing

the ensemble is not constant in time, but rather decays from an initial
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t = 0 value to zero. An additional feature is apparent when the‘exci-
tatithsource responsible for producing the excited states is left on after
t éio.“ Specifically, new excited states are continually created and also
evolve under the influence of the coherent radiatioﬁ'field. The collection
of excited state two-level systems is therefore not a ‘time-independent
collection; but rather an'enéemble which constantly has members feeding
into and decéying from it.

In addition to prbviding a bagis for understanding the modificatiéns

which occur when coherent coupling experiments are performed on'éystems{

undergoing feeding and décay, the mathematical formulation developed in the

body of the paper predicts that an important new effect may be observed.
This effeét is thé‘prpduction of long-term coherence ih tﬁe ensemble of
excited state two-level systems that results directly f:ém incoherent
feeding. We will term this "kinetic coherence" gnd'show that it is
possible to maintain a coherent supérposition stéfeviq the ensemble for
times greatly exceéding the lifetimes of the excited states. In fact it
can remain as long as the radiation field remains coherent and éopulation
continues to be fed into the ensemble by iﬁcoherent éumping. The magﬁitude
of the coherent component is controlled by the "effective field"-angle,:
the incoherent pumping rate #nd ;he decay rate constants, This t&pe ofa
.effect is also‘manifest in conventional magnetic.resonance systéms;, o
however, it ig very small owiﬁg to thebinabiiity of T1 processeS'éompeging
with the applied field to maintain a sizeable populétion diffefeﬁce; Ih_
a properly chosen system this is not a problem for the case we are |
béonsidering.because the 1ntrinaic_fate constants and ;he rateiof

incoherent pumping determine the population difference.

<



If the transition 1nvolved‘in producing the kinetic coherent state
is an electric dipole transition in the optical region; the cohefent
component is a precessing macroscopic electric dipole, and the system
will exhibit enhanced coherent spontaneous emission (superradiance).5
Since previous experiments dealing with the suﬁerradiant state, such as
the photon echo,6. can measure the manifestations of coherenée only for .
very short times,‘the kinetic coherent state -should be vaiuable in
probing the nature of superradiance because this stéte is not tranéitbry.
In principle one should be able to choose any "cooperation number"
merely by changing the angle of the effective field.

. An additional possibility existé 1f the kinetic coherent state'cgn

be maintained in the optical frequency region. “Since the intensity of
coherent light‘emitted by the kinetic coherent state is determined by tﬁe:
rate of incoherent pumping and the lifetimes of the-St#tes, in principlé
a caréfully chosen system could exhibit gain, and therefore it could aét»
as a coherent light amplifier} This amplifier is tunable over the épectral
region in which gain occurs. vFurther, if .a sYstep is found which exhibits
gain, the amplified emission could be fed back in phaée into the superradiant
amplifier and the applied coherent field removed; ’If the gain is.gréét- 
enough(to overcome the losses in the feedback cavity,.the superradiant :i
amplifier would go into avself—sustaiping_confinuous mode, emittiﬁg /
coherent light af the wavelength of the initial appliéd field.

In this paper we will present a mathematical deﬁelopment that
treats coherent coupling in two-level systems which undergo feeding énd
decay; Three problems, transient nutation, spin lock and kinétic cdherencé,

will be discussed in detail to illustrate the physical role that feeding
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and decay play in the coherent coupling problem. Initially the

problem is considered for the case in which the wavelength of the
radiation field'is large relative to the size of the sample. The equation
of motion‘of the density matrix includes the Hamilﬁonian, a'decay_tetm- _
which is analogous to adding decay to the Schfadingerquuation; and |

a feeding term which is arrénged to only affect the diégonél elements of -
the density maﬁrix.‘ T, and T, processes are not included at this'point;

1 2
The equation of motion for the densitylmAtrix, neglecting Tl‘and T2
processes, 1s solved exactly using matrix algebra tgchniques._ The
problem is then rewritten to include T, and T,. It .is shown that the ‘

qualitative results obtained in the absence of T, and T2 are cor:ect,__f

1
provided that high power applied fields are used. Finally, the casel
in which.the wavelength of the radiétion field‘is small relative to thef'
size of the sample (the optical case) is considered. It is shown thét |
except for the usual directional’ properfies associated with coherent

optical problems, the results obtained for the long wavelength casevalsd”

apply to the optical wavelength region.



II. DISCUSSION

In order to discuss the role that feeding and decay play in the
excited state two-level coherent coupling problem, wé must have a well-
defined model for these processes. For this purpbse,_the entire expéri-‘
mental systemvis divided into two parts. The first;pért consists of the
ensemble of excited two-level syétems which are couﬁléd by the field. The
second part is taken to be an infinite reservbir that represents both
a source and a sink for population to enter and leave the ensemble'qf
two-level systems. At a given instant of time, the eﬁsemble of twofieyel '_;
systems 1s evolving under the influence of the applied'radiatién fieid,"
it‘is‘also decaying into the reservoir at a rate which is charactetigtiq
of the lifetimes of the two excited states. Populatibn is also conéﬁanﬁiy
being transferred from the reservoir into the ensemble. Wé aésumerthat 
only the states which are affected by the radiatioﬁ field'are included’in
the ensemble, and that the reservoir is taken to be.dnaffected by the fiéld;
As a consequence;'population which 1is transferred-incoherently from the
reservoir to the enéemble enters the ensemble in one of its two eigen-
states, and not in é coherent superposition stﬁte; however, once the
population has entered the ensemble it éay evolve into a coherent éupéré*
position state since it is now influenced by the radiétioﬁ field, In
tefms of a density matfix description of the ensemble, this implies tﬁatf
feeding only occurs to the diagonal elements of the density matrix. Off%
diégonal elements occur only due to the effect of the radiation field on the
population which‘is already in the ensemble. Decay, however, affects

~ both thé diagonal and off-diagonal elements. Since the reservoir is
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infinite in extént and unaffected by the two;level ensémble, the populating
réte into the two eigenstates of the ensemble is taken to be constént.'
Thus, the modelvfor feeding and décay processes contains the following
features. (1) Feeding only occurs to the eigenstates éf the ensemble of
excited two-level systems and not to coherent superposition.states.

(2) The rates for feeding into the twb eigenstates are constants, and are
independent of the state of the ensemﬁle. " (3) Decay bccurs from»bothnthé~
" eigenstates and superposition states of the ensemble. (4) The rate of
decay from the ensemblerwill depend on the state of the ensemble and
therefore the total population of the ensemble need nof be constant in
time.

The above model for the feeding and decay processés is simple and
well-defined, énd closely approximates mény_physicélly real;zable‘ |
experimental situations. qu example, consider ESR experiments performed
on molecular e#citéd triplet states in a molecular érystal.7 An incoﬁerént
light source promotes molecules from their ground singlet state into‘éxcited
singlet states, and some of the molecules‘in excited singlet states
intersystem cross into the lowest lying excited triplet state. In this:
case two of the magnetic spin sublevels of the triﬁletlstﬁte_may be
coherently8 cbupled bybtﬂé application of a microwave fiéld 6f the
appropriate frequency, and mqlecules in the excited friplet state decay'to
the ground singlet state with lifetimes characteristic of the individuai E
magnetic spin sublevels. At a given instant of time,vthosé molecﬁles
which are found to be in the spin sublevels being perturbed by thé
applied microwave fieldvare taken to compose the ensemble discussed above,
‘and the rest of the molecules comprise the reservoir, If the number of
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molecules in the excited triplet state is small pbﬁparéd to the nuﬁber éf
molecules in the sample, which is generally the case, then the singlet
population is independent of thé triplet state population and. the
intersystem crossing rates into the triplet spiQ‘Sublevels, i.e., the
feeding rateé”discuésed above,‘will be constant provided that the light
source responéible for the excitation remains constént'in intensity.
Furthermore, the molecules which are in singlet states are unaffected By
the applied miérowave field, and thus when intersystem crossing occuts,;
it will populate the triplet eigenstates in a'ﬁanner which is identical
to the intersystem crossing process in the absencé of a microwave
field coupiing the triplet spin.sublevels. Once pqpulation has in;ersystem
crossed, it will evolve under the.influence of the épplied microwaﬁe
field until it decays to the ground state which agéin is paft of the
reservoir. Therefore, the situation encountered iﬁ the excited triplet
state ESR experiment is completely analogous to the model we have
estéblished. We have a reservoir comprised'of all_thé states qf the
sample except those two excited triplet spin éublevels which are coupled
by the microwave field. The reservoir is unaffectéd.byffhe field,'thefe
are,éonstant feeding rates from the reservoir intd'ﬁhe.ensembie, and
decay occurs from the ensemble into the reservoir.”‘

A qualitative picture describing the examples to be discussed iﬂ tﬁe-
matehmatical developmént may be made in terms of a geomeﬁrical repfe— -
sentation for the two-level system. The initial population differencé »l
between the two levels is represented by a Qector that 1s aligned glong_.
the r, direction of'the r-space of the well-knbwn Feynman, Vernon apd

3
Hellwarth‘(FVH)s model, If a coherent radiation field with frequency



equal to the frequency separation of the two leveis is turned on, the
Vector, viewed in a reference frame rotating at the ffequency of the applied
fieid;.will begin to pteCess about the field, resultiné in a transient
nutation.lof In an idealized case in which there are no ’1‘1 or T2

relaxation proceSSes, and also | | '

where the composition of the ensemble remains constant in time, the

vector will continue to precessvabout the appliedvfield indefinitely.
However, if we are dealing with an ensemble of excited states, the
population vector which began to precess when the radiation_field wae'

turned on will decay with the lifetimes associated with the encited'

states. - Further , population which enters the enaemhle of excited o
states at times after the radiation field has been turned on will alSo
precess about'the field._vThis feeding and decay process can be vviewedv

in the geometrical model as a vector which suddenly appears along v

T35 immediately starts precessing about the effective field and
shrinks in length as it precesses. These vectors have different
phase than the initial population vector, and have a tandom phase
relationship among themselves. In the NMR problem:we'merely had to -
follow the preceasion of a single vector, whereas in the excited etate
problem, we mnst follow the precessionvof the initial vectof which is

decaying in magnitude at a rate dependent upon its location in r-space,

and in addition follow the precession of the entering vectors which

also are decaying.
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Another important experimental situation which demonstrates the

necessity of including feeding and decay processes in the analysis of

the experiméht.is spin locking.11 . In an NMR

experiment»where there is no feeding or decay, the-initial pppulation
difference Qector is made to precess about the applied radiatién‘fiéld,

as in the transient nutation experiment discuséed ébové. After it has"
precessed 90°, the applied radiation field is turned off. If noth#ﬁg élse
were done .at this point, the vector, which is now in the plane normal
to the direction it was initially pointing; wbuld rapidly yanish due

to fanning in the rotating frame caused by the inhomogeneous natu;ei
of the line undergoing the transition. However, fﬁe field is immediétely
reappiied along thevdirection(that the population vectof is poinﬁing' |
in the rotating frame. _fhe vector finds itself aligned along the

rotating frame static field and : the'faqn§ng does hq; occur.

‘In such a case, the population is said to be spin-lbcked in a superposition

state. The vector will remain spin-locked for a time corresponding to fhc
T1p time in the rotating frame. If the analogous experiment 1s'performed
on the magnetic spin sublevels of an excited molecular triplet state, the
spin—locked vector will vanish due to both,Tlp ptocgsses and relaxgtion_k
to the ground state. Furthermore, new populatioﬁ is continually,epteriﬁé
the ensemble of triplet‘states that are coupled by‘the radiation field. -
However, this additional population intersystem crosses intb'the tripletv

eigenstates, not into the spin-locked suﬁerposition state. We therefore:

encounter the situation in which the population that existed at time

t = 0, which we will refer to as the t = 0 subensemble, is spin-locked,
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whereas the‘entering population is not. The ente:ihg vectors'aré none¥ '
theleés driven by fhe applied radiatibn field and_execute tranéient |
nutations in the plane normal to the spin~locked vector. In the NMR
problem we had to deal only with the single initial population veétor;
whereag in the triplet state problem,:bofh the t = 0 subensemble aﬁd:fhe'v

entering vectors must be considered. In addition, for excited states

there is another path for the loss of the spin—locked“vébtor due tovradia '

ative or non-radiative decay of the excited spin-locked states to the

ground state.

As we will show, the kinetic coherent state is(ﬁroduced by esseﬁtiaily :

spiﬁfloéking a set of vectors along an off-resonance effective field. Thé.
initial popuiation difference vector executes an off;resonance ﬁréﬂéientw
nutation about the effective field direction, and describes a coﬂé arbund
the effective field as illustrated in Figure 1. Owing either to»fiéld'
inhomogeneity or sample’inhomogeneity, this initai végtor will fan butj?
around the conical path prbdﬁcing a thin cone of vectors preceséing .
around the effective field. (Inhomogeneity is not required, for éﬁéﬁ'wigﬁ
a homogeneoﬁs field and sample, the feeding process itself will céuée a |
cone of veétors.) The cone of vectors has a net projectioﬁ;aloﬁg £heﬂ
effective fieid direction which can be résolﬁed into'én ry compon;@;_and

an r

1.coherent component. The cone will
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decay due to relaxation of the excited states to the ground state.
However, as this initial population decays, additional population is
fed into the system,continually forming a new cone with a colinear ry

component. ~ Thus, as the r, vector due to the first cone decays, it

.is replaced by the r vector from succeeding cones throdgh continu31 

feeding. The cone, and therefore the coherent rl vector, is constantly

replenished.
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III. MATHEMATICAL DEVELOPMENT

We consider the situation depicted in Fig. 2 in which a tﬁo;level
system, characterized by the states |y> and |x> is populated from
the reservoir at a constant rate, decays back into the réserﬁoir, and
is also driven coherently by a sinusoidally oscillating field. In

order to isolate and examine the effects of feeding and decay, we shall

first consider the simplest case in which the waﬁelength of the radiation

is much greater than the sample size, i.e., 13 >> vol. We shall also,

at first, mneglect all relaxation processes such as'Tl, homogeneoué

and inhomogeneous T2, and driving field inhomogeneities. These

vconsideratidns complicate. the development considerably but at the same

time do not'significantly alter many of the»qualitgtive feafures of

the proBlem, and are thus reserved for later sections_of the discussion.
We shall use a semi-classical approach for the driving field B

.Hamiltonian. Without loss of generality we assume that the driving

field has real matrix elements and express the Hamiltonian as

(1a)

* =
K=K+ V(E)
hwo,
%% =7 9% ()
(1c)

= h

v(t) w,0y coswt
X 1is the time-independent Hamiltonian with eigenstates |y> and |x>,
separated in energy by hwo, and o, are the Pauli spin matrices.

Invoking the rotating field approximation we have

~10. wt io wt
h 0 hwl g g. |
! . 2 _ _
¥ 2 %3 + 7 e o, e | ()
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" By performing a suitable transformation on the stété;vector It)' we can
obtéin an equation of motion in which the Hamiltonian is time

independent. Let

103wt | | |
U= e 2 ‘ : 3)

and
[£) = ule) o o o (4)

From the Schrodinger equation
ih g_'ltp _;{wlt)v ; ' : (s
dt - : _ (5)

We substitute for |[t)' in terms of [t) and obtain

ﬁ it [t) = |t . _ _‘(6).
where
' ) hw , .
= h - 1 ' ,
I = 5 (wo w) 0y + == 0) | v (7

The Hamiltonian in Eq. (7) is time inéependent for any valﬁe of the
driving field frequency, w, and reduces to the intefaction representa;idhv
for w = w, . The use of the unitary matrix defined bvaq. (3) is
equivalent.tb transforming to a rotating framelz'in terms of the féynman;_
Vernon; Hellwarth (FVH) geometrical representation. o
By considering a model system consisting of a‘reservoir, details.
of the feeding and decay processes are not considered explicitly and
thus allow the many-body problem to_beéome tractable. The simplest
way to include decay,of a state is to assume that the amplitude for

being in the state decays exponentially. For the two-level system we
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have the statevvector represented as a linear combination
e = yly) + x|x) B (8).

where y and x are the usual timé—dependentAcoefficients}3 We now let these

amplitudes decay exponentially14
. k. o
=-5ty (9a)
- kx s

k and kx'aré bhysically observable rate constants associated with'thé‘;
decay of the states |y) and |x), respectively. |

"As discussed earlief, the populating‘proceSS occurs only to the o
eigenstates iyf'and |x) and cahnot appear in a supe;poSition.staté; 3
thus, the equations describing the feeding process must deal only_with:'

the probabilities yy* and xx* and cannot affect the terms which définef- 

the relative phase factor as given by ky* or yxk. . The resultfof this -
is that the feéding cannot be added to the amplitﬁdes y énd X but.dﬁly‘
to the probabilities. |

At this point there are two possible ways to treat the proﬁlém.b.
First, one could éolveithe cpupledhdifferential eQuations formed Si
combining'Eq. (6) and Eq. (9), take ﬁroducts of the'solqtions ana;
fofmvintegral equations that include the feeding process}5 Despite--

the fact that this method is exceedingly lengthy, it provides a certain



~15-

ampunﬁ_of physical insight to the problem since if is straightforward.
The second. approach is to use the density ﬁatrix formulation ﬁhich_ |
effectively deals with thé cpefficient;products from the Beginning. The
solutions are much simpler frqm the coﬁputational p&int of view,-ana

the development is mathematicaily less clumsy. IWé shall use.this

method in the following development. | )

A. Density Matrix Solution

Equation'(6) can be expressed in terms of the density matrixl6 as’
ihp = [¥,p] | . Q0)
The rotating frame Hamiltonian is the same as Eq. (7). The decay t:érmsj

of Eq. (9) are incorporated into the equation of motion by constructing'

the imaginary operator K given in the y-x basisvby

k 0 : : :
k=&Y S an

2\ 0k,
and the decay process is described by an.antigommutator relation  1
ho = -[K,p], I _('12)
The operator K must be imaginafy in order to cause the density matrix
.to decéy.: Combining Eqs. (10) and (12) one obtains a déscriptidﬁ of gl

two-level system whose states can decay with or without an applied

driving field.
tho = [¥,p] - [K,pl, | a3

The differential equation can be solved by constructing an evolution

operator, Q, defined py
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Q= exp 3 £ZS;LJ£_ } S (14)

Notice that since ¥ is real and K imaginary the adjoint of Q is not

the inverse'
R e F R o an

and thus Q is not unitary. Equation (16) is a solution to Eq. (13) as

can be verified by differentiation
p(t) = Q'0(0).Q o (16)

The operations in Eq. (16) do not result in a»similarity transfofﬁation.
This is to be expected, however, since the decay:process must cause |
the ftace of p(t) to vanish--a rgsult which is not possible withva
similarity transformation. Owing to_the fact that the constant-trace.v.
condition has been relaxed,:one will need foﬁr, rather than the usuaiv
three, indeﬁeﬁdentvvariables to describe the density matrix completeiy.k
This caﬁ be done easily by defining the components'éfvthe densityihatrix

as follows:

1 2 4 o
. Ty 5 - | o
p = . - -ooan
r + ir2 . ' :
2 b4

These components have a geometrical significance which is only slightly
different from the FVH model ry is represented by a vector which
points "up" in a three dimensional r-space whereas r, points "down". They

both share the éame "in-plane' components rl’and T, The FVH vector
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are proportional to the upper and lower level populations, respectively.

component r_, is given by ry R In terms of observables, ry and r*

1 2

to the expectation values of an induced or permanent electric or magnetic

The r, and r ~components contain coherence information and are proportional

dipole dependiﬁg,on the explicit form of V(t). An explicit form for Q '

: , 1
is obtained from Eq. (14) using Putzer's method. 7

a8y

+ 1M ' i
K t cos Q% + EQ—§~——— sin Q% . : —ﬁl-sin Q% -
A Q.
Q::e-.z | . o .
' o Ay Qt g Kp t i oo
—— s8in — cos =5 - —q sin =

Q | 2.
Equagidn (18) incorporates the following.definitioné . o
. = ky 4 ky | | - |  ..>'(i9a)’.
el 2 | '._ 12_ _(;95)

Ao = mo -w : o ‘ (19¢)

2,172

2= @+ - k) 9d)

In accordance with earlier discussions, feeding is allowed only to the

ry and r  components. This is expressed by a feeding matrix F given by .

' Fy o ' A
F=1hi, F | Qo

The total eduation of motion which includes feeding, decay and a driving

field is thus given by
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e = Bhel - el +F (D)

Before solving this equation it is worthwhile to write it explicitly

in terms of the r~components

T = -, - kyr S 2
, ;2 = Amrl .-.wl(ry - rx) - k1, :',' A (225)
Ey = m;rz -k +F f o | - '_'(.2.'2c_)

By comparing Eqs. (22) to the rofating frame Bloch Equations,18 one can see
immediately that the average of the decdy rate constants kA will have

the same effect as a T2 process and the combination of feeaing and -

decay will appear to be a Tl process. This is quite reasonable from
a”ﬁhysical point‘bf view since the 1n-plahe componentS‘involve a.'
superposition state which can be viewed as being "undécided" from which -
eigenstate it will éventgally decay, thus giving rise to kA. Also, - .

.an incoherent T, process will have a similar effect as decay from

1
Iy) or |x) inﬁo the reservoir‘with suBsequent incoherent feeding into -
|x) and |y). The imﬁortant difference between T, and'feeding ah@ decéy,
however; is that the final population difference in th; levels 1s'k :
determined by a Boltzmann distribution in the T1 case, as opposed'to

the feediné and decay process 1# which practically any polarizatioh

is possible,fdepending'on the ratios of the feeding and decay constant;

and on the conditions of the experiment.
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We now return to the solution of Eq. (21). An equation of the form |

() = Q' (p() - &) Q+ A @

is indeed a solution if the undetermined time-independent matrix, A,

can be found. 'Eqdatioﬁ (23) is of the form
e =B A e
>by differeetiating Eq. (24)
ihp = 18] - [X,B], : (25)
and also egbstituting‘Eq..(24) into Eq. (21)
ihp = [¥,B] - [1(,1_3]'+ + [9,4] - [KI,"A] +F (26)
we‘see'rhat A must satisfy the condition
GA] - [KAl +F=0 | ) <27?}

At this peint we note that since Q contains decay terms, some new
steady-state value of the density matrix will exist at t = o, It is

: simple to solve for this matrix, Pg» by letting'5‘= 0. We obtain

(o) - [Kypl, +F=0 o @8)

which is-ideﬁtical to Eq. (27). Thus the matrir A is merely the -
'steady-state value that the density matrix approaches for a given set

of experimental conditions. Equation (28) is solved for p by performing
the commutation operations using the explicit forms for ¥ (Eq. (7)),

K (Eq.-(ll)) and F (Eq. (20)) and representing Ds:by
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5 Ty " ir2
y 2
= : - (29) -
Pg s 8 _ 7
r, + ir2 8
2 X
The components are given by
g  Dwoy .
r, = —;5— (Fykx_foky)/D ' | ‘(30a)
A
.s"‘wl _ : ‘ : o o
27k, iy TP | o 6w
~ 2 \ .
sz Wy Fx + F . o .
S lrk 1+ ) + 22T/ - (30c)
y ¥y X k2 kA 2 , . N
. A |
g A2 ol [F_+F o |
B b N e B e G el N 2 ~ 0 (30d)
X Xy k2 kA 2 v : ,
[ A
2 Aw?
D=w; +k k |1 +—F ' .~ (30e)
1 Xy k2 : -
" ,

In view of the similarity between the rotating frame Bloch equations and"
Eqs. (22), we cast Egqs. (30) ihto‘a more familiar'form. First, noting. :
that the steady¥state populations in the absence of a driving field -

. are givén by (wl = Aw = 0),

o - Y | - |
T, = ' ' - (31a)

y ky :
ro = | (31b)
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and
0__0 o ’
ry = ry - | .v » (31c)
and by defining effective relaxation terms,
t, = l/kA' (32a)
. k ‘
A '
t, = * K - (32b)
Xy :
we obtain -
s _ 3“"“’1t2 | |
S 2 4 o2 o (33a)
, 1+ t, +ut,t, ' :
P OL - - ew
2 2.2 2
14+ M t2 + W tztl |
- F +F
r (1 + szti) 2: 2 (————lx ) , .
5 _ Y 2 iy 2 ,
ry = ) 2 - - (33¢)
» 1+ Aw t + wltztll '
‘ -~ [F_ 4+ F \
: r‘°(1 + sztz) + wit.t (-—’F‘-—l) :
s _ X 2 17271 2 . .
Tx 2 2 2 - (33d)
1+ Aw t2 + wltzt1 -
and
B (L + aled) - L
r, = (34)
3 1+Au)2t2+l.o2tt : ;

17271

These are the familiar forms for continuous wave spectrasin magnetic'
resonance. When the 'power factor" i 2 1 is small, the components
reduce to Lorentzian lineshapes. It is interesting that the effective

"transverse" relaxation, tys is determined by the average of the dec$y ‘
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rate constants whereas the effective Tl is determined by the average of

the decay lifetimes. The final solution to Eq. (21)'is thus’
p(t) = Q[p(0) - p 1 Q+p, (@35

where the>components of pg are given By Eqs. (33).. _

The expression for F in Eq..(20) could be generalized easily to'”
situations in which the feeding occurs to a supe?position state,'such
as when a triﬁlet state is optically pumped in the presence of a high‘ o
magnetic field, and also could be made tihé-depéndent. The solution for
| ps follows the same format. |

If one wishes to.monitor the effects of feeding #nd deéay more.expii-
citly, Eq. (35) may be broken up intoktwo parts corresponding tovthé "zero

time' subensemble mentioned in the discussion and the '"fed" subensemble

o(t) = ' p(@ q+p, - Qo0 | (36)

’ ] g
.The first term corresponds to the zero-time subensemble. Since feédiﬁg '
into |y> and |x> are independent processes, one could separate the last two
terms of Eq. (36) into y-fed and x-fed subensembles by setting Fx = 0 and

y
only the effects of feeding on the system.

F_ = 0, respectively. This might prove useful if one wishes to determine

B. 'Tfansient Solutions: Special Cases.

The simple form for Eq. (35) might lead ome to think that it would .
be worthwhile to multiply the matrices explicitly andvthereby obtain -

analytical expressions for the r-vector components. Unfortunately
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the solutions are compliéated enough to mask the physics contained
within them so we shall restrict our attention to various special cases
which give some insight into the effects of feeding and decay. First,

we consider the trivial case of no driving field. Setting wl = Ay = 0,

we have = ikD, and Q has a very simple form:

kt| = , -
A2 0 Kt
2 T + ‘
Q=e ' “k,t =e =Q : ‘ a7
A _
0 e
L J

The solutions are, from Eq. (35)

- (38¢)

. —kAt _ o L o
tl = rl(o) e ' ' ’ o _ - (38a)
-kAt , _ -
;2'= rz(o) e R : -:(38b)
r =|r (o) - e +
k k
y y y y
F -kt F
r, = rx(o) %] e + i
X X

Notice that r1 and r2 are not fed, but merely decay from whatever 1hitial*

values they had at time t = 0. Equations (38) agree with simple réte':f

equations that can be written by inspection from the_two-lével system v

pictured in Fig. (2).

We next consider an on-resonance transient nutation. In this
2)1/2 ’
D
i.e.,-rl(o) =0, rz(o) = 0, and let the initial valueskof'the'diagonal

case, M =0, 0 = (wi -k . We assume initial random phases,

(38d) -
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elements be steady-state values without the coherent driving field.

r (o) = r°, r (o) r°. We obtain from Eq. (35) and Eq. (33)
y y X x _ . _ :

r, =0 | (39a)
—kAt .
r. =% S kz - wzcoth) - (r2 ?'rs) Qw, sinQt
2 Q2 2\'D 1 _ 3 3 1
- @ - %0 - %) wk (1 - cos@t)| + 1S (39b)
y -y x -x 1D _ 2
-k, .t ' '
A . 2
e o s it Qt)
= - — + —
ry Qz [Kry ry)(gcos 2 szin 2
° S 2 2 .S}_t_
*‘@x - rx) wlsin 2
s . Qtl. Q. . Qt) s .
| - rzwlsin Y (Qcos ~ +.szin = 2] + ry k _(39c)
-k .t :
=& A r° - fs>(9cos e -k sin’g-t—)2
Tx ) (x x/\ 2~ °pf 2

° s 2 .20t
+ (ry ry) wlsin_ 2

s | Qt Qt Qe . s
+ r w sin 2(FZcos 5.~ szinv zj} +r o (39d)

despite the formidable appearance of these equations, the qualitétive féaturés

are simple, since they are analogous to a damped harmonic oscilla;ot,

If 8 < kA the . curves will be dominated by thevexponentiai

term and will be highly damped. When kD > wy

like an overdamped oscillator. Any shifts in frequency or phase_wheny

the system behaves much

w, > kD will be masked by the exponential terms. When Q 2 kA it is ‘also

1

necessarily true that w, > kD and the observable oscillations will have

1

nutation frequencies close to w

, in magnitude. If we allow the driving
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field to become very large, i.e., mi/kxk&2>>14 Egs. (39)_reduce to much

simpler forms which are easier to relate to the geometrical model

-k, t : 34
A 1 3 v v
r.=1r°e cosw,t - sinw t] - - (40Db)
2 3 wlkA | 1 1 | wlkAv- o
r; -kAt kD : F + Fx
r =—e : E—~+ cosw, t | + Ezfrjz- (40c)
7 A x0Ty
oy ke ko F_+F
~_3, A {_D_ XX _(40d)
r =5 e k, coswlt + K ¥ k v.( .):

Notice that all the expressions contain the 1nitial'popu1ation pplatie»;
zation orvalignment rg = rg - tg. As expected frdm'the'geometricel |
model, the vectors precess only in the r, - I, plane. After the ttan-.
sient terms have died away_the popu;ations in the tvo levels are anptOXi-
mately equalvand r, is very small. This is to be eipected from the |
vector modei, since the "disc" that is ultimately formed has a nectqr

sum of zero; In the absence of feeding or decay, Eds. (39) and (40)
reduce to the‘standard nutation of the Torque Equetion in the rotating-‘
frame.  As is the case in NMR, we see that the ability to do well-defined
pulse rotations of the r-vector depends upon the relationship between =

the applied field strength and the effective relaxation kA = /t2' For:.

sufficiently high power, a m/2 pnlse (wlt_- n/2) gives from Eqs.'(AO):
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rz(ﬂ/z) e -ty - (41a)
, k, F o+ F, |
ry(ﬂ/Z) = rx(ﬂ/2) =13 k—A- + —-y—-———kx T ky ‘ (41b)

The effects of feeding and decay on a épin—locked supefposition
state can be investigated by using Egs. (41) as initial conditions for
a phase-shifted transient nutation. Shifting the ﬁhase by 90° is
tantamount to setting rl(o) = —rz(ﬂ/Z) = r; And rz(o) = 0. fy and
rX are unaffected by the phase shift. From.TheSe initial conditiomns,

the expression for the spin-locked component is, from Eq. (35). .

-k, t -k, t :
. A _ o A '
r, = rl(o) e =rje o (42)

From the vector model one wouldlprédict that feeding subsequent to
estéblishing the spin-locked component would contribute only a disc
in the r, - r3 .
Equation (42) shows that the spin-locked signal is'indeed independent

plane and thus could not affect the spin-locked component.

of feeding, and decays with the average of the decéy rate constanté
for the two levels.

C. Long Term or "Kinetic" Coherence

thation (42) demonstrates that a coherentICOmponent can be made .

to last on the order of the lifetime of the levels. In this section we

shall propose that this time is by no means an upper limit, and in fact{

it should be possible to maintain a sggnificant‘cohérent component for

long beriods of time, limited only by the . coherence time of the driving

field. in many ways this is similar to dynamic équilibfium in which

the componenf parts of the long term coherence are cdﬁtinually»feeding
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andbdeéaying, but a steady state value is reached.. The cohereﬁce‘is
maintained by the driving field and is not destroyed by incoherent
feeding or décay.
‘The steady-stéte expressions in Eqs. (33) can be somewhat deceptive

if ome does:ﬁot~keep in mind the fact that the effective relaxation

term tl_ Qas constructed only to show the analogy to T1 and is not-
related to the actual thermalization of the two levels. The ratios

of feeding and decay constants determine the initial polarization of

the system and the population difference can thus be,highly non-

Boltzmann. With this in mind we re-examine Eq. (33a). The r, compbneﬁt

represents the "dispersion spectrum" or the real part of the susceptibility

in the language of NMR, and reaches.a maximum "off resonance". Owing

to thé facf that rg can be significantly larger than a Bdl;zmann |
distribution qf population, the steady~state coherent component'Cén bé
orders of magnitude larger than the ;hermally populéted case, Frdm_théi
vector model, one would expect ﬁhe condition Aw = wl to give a maximum

inplane componernit. The special form of Eq. (33a)vsﬁggests that the

problem is identical to the one treated long ago by = Bloch when he

calculated the maximum nuclear induction signal in hn NMR experiment.18
The off-resonance value which corresponds to a maximum value of-ri isﬂ ‘
_ 1 ( 2, )_1/2 o
Mgy =, W ¥ 01515 @
giving a value for r:
w,t, rd - v . .
12 '3 : ,
ri(max) = ( 2 )1/2 , . ' (44)
21 + Wt :
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_ ‘ 2 '
and for sufficiently high power, i.e., mltltz >> 1,

r (max) ——:2}- ‘I s ' : - - (45)

.. 8 ' ‘e
The maximum value for rz, on resonance, is equal in magnitude to the

high power value for r given in Eq. (45 ):

T E e
r (max) 2 . _ | o - (46)

If the 1ifetimes of the two levels are equal, the long-term coherent

component would be half the initial polarization and Amﬁé# E ml.v'Sin¢e “

r, in Eq. (45) is linearly dependent on rg, the cdherent coﬁponent
could be doubled by doubling the feeding rates, unless, of course, this
results in a significant depletion of the "infinite" reservoir in which
case the assumptions that lead to Eq. (45) are no longer valid.

0f course, the expected value for ri in Eq. (45) is ndt'realistié ‘ v
owing to omission of the effects of reiaxation. These will be déalf
with anaiytically at the end of the next sectiqn. _Howéﬁer,.the'similérity
of Eq. (45 ) to the Bloéh eQuatién solutioﬁ allows one to speculaté |
that if the field is strong enough to "overcome" rélaxation effects, 1.#.,
if one can obéerve a'transient nutation, the long-term coherent-¢6ﬁp§néﬁ£
_will be present and can approach the'valueigiven by Eq. (45). |
D. Relaxation

At this point we shall ‘investigate the effects of réiaxatioh on the
steady-state-component; of the r-Véc;or. These terms may be oﬁtaiﬁed_in

a reasonably éimple analytical form if we restrict ourselves to Bloch-

type relaxatioh terms T1 and TZ' The transient solutions will be dealt 3
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with at the end of this section,

Relaxation is most gasily incorporated into the problem by éddiﬁg

the appropriate terms to the differential forms given in Eq. (22).

One obtains
) = -Bwr, - (k, + 1/T,) r, | - (47a)
By = fwr) -e (- - (K, +»1/T2)Ar2 BN ()
wlrz - ' : . '
to= - (ky + 1/Ty) r, tr /T * Fy | (47¢) -
wlr 2 .
to= -5k + 1(Tx) r + ry/Ty +F - (479)

Here T2 is therhomogeneous relaxétion time, Tx‘and Ty are-relatgd ;o»
the probability per unit time for a transition fromn|x) tolly) and ffom 
|y) to.lx), fespectively. .Notice that this form alldﬁs'for spontaneous
emission from |y) to |x) in addition to "spin 1at£ice relaxation" terms;

specifically, &e could break Ty into tﬁo terms,
1/T = 1/T + 1/T 3 . 4
/1y = 1T, 1y _ o 7 (48)

in which TyS is related to spontaneous emission fr§m Iy) to I#) andley‘j
is related to the normal thermal probability for a transition from
Iy) to |x).'>1f spontaneous gmission is négligible, as is the case in a
rf regién of the applied field, Qe havé the normai spin-lattice‘,'

relaxation (SLR) time encountered in NMR.

Ty =‘.1/'rx + Uty - | (49) -

’
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Tx and le are rélated'by the Boltzmann factor
hw
T - -2 : _ :
ly kT : , _ : '
B | (50)
X ‘ :

If wo is in the region of optical frequencies, spontaneous emission

could be»much more impo;;ant fhan SLk in whiéhrcaée Ty 2 Tys.vahé_
steady-state solutions are readily solved bj setting the fime derivati#es
équal Eo zérq and éolving for the componeﬁts. As'wés done garlier,:» '
we choose to define.relaxétion terms T and T such that the function;l  -

forms for the components can be recognized as béing similaf to the NMR 7f

exﬁressions.
-2
o . .
PR T (sie
_ _ : a
1 1 +-szT2 + mi'l"r : '
-y @
,rs ) r3w1T g .(515)
214 sl s miT‘t | SR
Y . -
. w, Tt F +F
) r°(1 + AU.)ZTZ) + 1 X . vl
S y : kA 2 v o i
T, E ~ o (51c)
¥ 1+ Mlr? + mi'rr : I
9 9 mi'rr F +F\
r°(1 + Aw’TY) + x __Y¥) _
s x kA. -2 o
x T 2 © (514) .

1+ szT + wiTT
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We have used the definitions

| 1T =k, + /T, (52a)
k, | - .
T Xk +k /T +k /T _ - (52b)
Xy y X Xy :
o = Ex‘kx + I/Tx) +=Fx(]'/Tx) _ v »
'yT kk +kJT +k /T | . (52¢)
Xy y X X y : ‘ .'

F (k +1/T F (1/T
r=x(y v/))+y(/y)
X kk +k /T +k /T

Xy y x x 'y

_,(SZd)

3Ty T % | | - (52e)

Thus far only tﬁe homogeneous relaxation tiye, TZ’ has beenf’
considered. The inhoébgeneous relaxation time,_T;, canibe included
by assuming some 1in¢shape distributibn, uSuaily Lorentzian or
Gaussian, centered gbout some average Larmor frequency, 50. We
treat here the case for a Lorentz distribution given by the normalizgd.

shape function

*
T .
2 1 _
g(wo) = ﬂ_—_ - 2 %2 : (538)
: 1+ (mo -w ) 12 C
[ 8w du =1 | | . 53b)
J _ . :

integration of the coherent components over all Larmor frequenéies,,f 

Wy yields
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“s r°m -&; | _ . '
r =
Tom [1/T + 1/T(1 + TT)1/2]2 - (542)
gy (LT + T, ( ; 172 |
s (1+w TT) 7 v o
R 7757 (54b)

Aw™ + [1/T + 1/T(l + w TT) 1°

wo—

where Aw = ab - W. We are now in a ?ositién to look again at the long-'

term coherent components. The off-resonance value that corresponds to.

: ' s
a maximum value of r. is

1
ok a2
Awmax’% /T, + 1/T(1 + w TT) S 58)
yielding
—_— W
T G — 3% . 6
S 2(1/Ty + 1/T(L + wlTT) SRR | ‘.4,)

If one has sufficient driving field strength to "exceed the linewidth" 1 e.,

T > 1, w,T > 1 and szT >> 1, Eq. (56) reduces to an expression

1 2 1 ’ 1
similar to Eq. (45) ‘
—_ r° ) ’ . : . : e
S, . v oa_ 3 4T " ey

under the influence of inhomogeneous broadening the maximum value:of

rg on’resonahce is not equal to the high poﬁer limit forbri given in :

Eq. (57) in contrast to the caées treatéd in:Eqs.-(45) and (46) in

which-relaxation was neglected. To see this we rewrite Eq. (54b) for

on resonance, Aw = 0
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o
PR—— - W .
S = 3 1T v v .
2 1 4wl + T/t 1+ szT)l/2 ‘ , (58)
. 1 2 R :
Notice that any nonzero value for 1/T; will reduce the size'of-r;;
Figure 3 gives the ratio of the maximum values of'rg.aﬁd ;f as a function-

*
of the parameter T/Tz.
As

is seen from Fig. 3, significént'differences between the maximum values o

of ri and rz become observable when the inhomogeheous relaxation ;ime
is greater than or equal to the homogeneous relaxation time. This is
what one would expedt physically, since the high power conditions-'
required to obtain Eq. (57 ) imply that all isochrqﬁats in the line -
behave identically, whereas the low-power conditions required to oﬁﬁgin

a maximum for r; imply that each isochromat in the‘inhbmogeneous line
will have a different effective field direction and the vector suﬁ over
the isochromats will necessarily be less.

An additional point can be made aboht Eq. (57'). Bloch noted18
that an excessively long T1 time could be troubleéome if one atteﬁpts
to observe thevcoherent component. With feeding and decay this_is npt'.
a problem, in fact one would like to have Tllas_ldng as possible, for
then T = ty and the "fecovery" of the system is dﬁevto feeding,
decéy énd T2 processes. If T is short and is unaffectgd’by the high
fields applied to the system, the long-termJCOhefent component can be;”
reduced considerably in size. However, in many cases, T2 is field-

dependent and can become quite long if the dtiVing field is on the .-

order of the inhomogeneous linewidth.
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For high-power driving fields in solids, Redfield suggested]_‘9 an

alternative form for the Bléch equations, separating TZ 1ntoAT2e, a
transverse spin-lattice relaxation time applied to‘thé driving field
direction, and Tz,'the‘normal transverse relaxation time.v.This‘
distinction bécomes necessary, for example, in the spin lock experiment
in which the décay of the spin‘locked vector is not'én.energy |
conserving proéess and thus cannot be due to "spin—spin"'relaﬁa;ioh;’

Using this formalism we may write an expression replacing Eq;_(47a)3 o
By = -bury - (ky + 1/T)) £y | (59)

Solving the coupled Eqs. (47) with this substitution results in the

steady-state values for r, and T,

: ' rgwlAwTTé C : SR
T 2 ) ‘ . (60a)
1+ AW'TT + w,TT ‘ : _ L
e 1
-rw, T ' ‘
5= > 5 - (60b).
1+ M TT + w,TT . ,
, e 1
We have defined‘Té by

Expressions for the maximum values of these components are readily  

. obtained for high power and on resonance, respectively _ e et

' ‘ r? T v | | R v',. o ;

- ~ 3 ‘/ Ze S SRS
v.rl(max) =72 T - : - _ (62&)._

o | e
ry(max) o ‘E— | | | - (62b)
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Notice that the value for r, is unchanged from the value it would
have without the modified Bloch equations.  Conversely, ri can be
significantly larger than r2 owing to the fact that’T2e = T for

sufficiently high fields.  The arguments concerhing inhomogeneous

broadening apply in the same fashion and Eq. (62a) may thus be

~‘assumed to be an upper limit for the size of a long term_cbhefent

component including the effects ofvfeeding, decay and relaxation._

It shodld‘thus be possible to‘find systems tha#, under the prbper
conditions, satisfy Eq. (62a) and a large coherent component (compared
to.the initial polarization) can be maintained. Such a system haé_.‘
been féundvin the microwave region of applied field and an experimental
report will follow in a future publication. o

A solution for the transient behavior of tﬁe density matrix
including telaxation is not simple from an.operatibnéi pointlof view. .
One cbncise representation is in the form of the Liduville operator;zo'_'
In this case we treat the elements of the 2%2 density matrix as being.

the components of a four-vector. Equation (10) is then written as
iho = hLp | S (63)
where the Liouville operator is defined by a 4x4 matrix with elements

hL v =X ann'- - ‘vaxhvn

- (64)
Relaxation and decay are easily incorporated into the L mat:ix, owing

to the.fact that terms which multiply only the off-diagonal or diagomal

elements of p can be inserted by inspection whereas it is clumsy to

. perform this oﬁeratibn_in the matrix representation of the dehsity

matrix. Explicitly, the L matrix corresponding to Egs. (47) and (59) is given by
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- §
-:F(ky +‘1/Ty)

| 1
w, /2 | )

1/T_
s

' i
-wl/Z | - Aw - '2-[( _

1T
w1/2
/2

-1(k_ + _lli’x)

(65)

-l
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and the equation of motion corresﬂonding to Eq..(21) becomes
ithp = HLp + 1hF (66)

F is a feeding vector which in this case has two ndn?zero elements, Fy
and Fx; The.solution torEq. (66) is straightforward:
o ' -1 -1
p(t) = exp(-iLt)(p(0) + iL "F) - iL "F - (67)
Arguments used earlier can be used to show that the solution can_be'written-'

in terms of a steady-state density matrix ps.
p(t) = exp(-iLE)(p(0) - p ) +p_  (68)

The"exponentiél operatof can be calculated in matrix form using Putzer's
method;ls and a closed form solution may be obtained. It might be noced
that the charécteristic equation for L yields a quértic polynomial with
‘real coefficients. A‘strict algorithm for calcula;ing.the eigenvalues and
the reéulting exponential ﬁétrix can be made, andvbne'may avoid Jv
iterative methods.that generally restrict calculatibhs to time regions

that lie relativeiy close to t = 0.
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E. Case in Which A> << VOL

When the wavelength of the driving field becomes much smaller than
the sample size, the phase of the radiation field is no longer constant

throughout the sample, and, therefore, the jth molecule within the

sample which is at a position ;3 will experienée an interaction
Hamiltonian Vj(t) given by
v,(e) = hujcos (ut - K- ) - o (68)

where i is the wavevector of the rédiatidn with frequency w. Under

the fotating field‘approximation, the Hamiltonian for the jth ﬁoiééuléfis

3

Cwt - ker

G =Poite 2 P ge 22 (69)

which is similar to Eq. (2). For the same reasons thét prompted a
rotating frame transformation, we'may perform a suitable unitary .f.
‘transformation on the density matrix which willlremove the expliéit: .

time and space dependence'froﬁ the Hamiltonian. Defining

wevtransfofm the laboratory frame denaity matrix for the jth molecule. :°

@ = @Y, D

This leads to an'equa;iqn of motion
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thp, = eyl | o | (72)

where the Hamiltonian ¥ is identical to the rotating frame Hamiltonian

iﬁ Eq. (7);- If we assume that we have a sgmple'of_identical, non
interacting systems, the form of X, which is both time and space
independent, renders the j index in Eq. (72) superfluous. The equatién

of motion is tﬁus identical to Eq. (10) aﬁd the development foiiows

;he same lines. Note, however, that the unitary transformation car?ies
the implicit dependeﬁcé on j, r, k and , -and the Iaboratory ffamevbehévior
of the system can be obtained by an inverse transformation; The spatialv
transformation is nbt as trivial as the rotating frame transformation

and will'dépend strongly on the shape of the sgmple,»hqw it is driven":
by'the apblied field, and how it is observed. This.tipe of efféét is wéll
known theore£1cally an& experimentélly. In the photon echo experiment,}
for example, light is emitted from the sample in a diréétioh,which:is_:
determined by the wavevectors of the coherent exciting radiatién.i
Explicitly, if the second pulse in the two-pulSe.éequencé enters at

| an angle o from the first pulse, the superradiant echo emission is.
‘obéervéd at>an’anglé_2a. ‘In the special case of i'smalllsample thch

is observed af a large distance, the observed behavior of the systém

will be the sum of the molecular density matricies

|

i : \ | , _(755

Pobs i 3

If wevinclude the spatial dependence explicitly by an inverse
transformation ,we have; asaumiﬁg a quasi—continuoué distribution of

molecules,
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[} . .
-0, BE e BE x
Pobs ~ G(r) e o pe dr ' (74)

where G(t) is the function that describes the shape of the sample. f , _b i

The form of Eq. (74) results in a three dinensional spetial Fourier
transform of G(r) for the off-diagonél_elements. The .diagonal
elements yield-simply'anlintegration over the normalized'shane
function G(r).
We héve shown above that the position?dependent"phase factot;gvl
- introduced into the Hamiltonian for the short wavelength case in'eeeeneev.
" does not alter the development of the previous sections, and, in -
"particular, does not hinder the production of a long term coherent d
state. Through the use of a spatially-dependent unitary transformation
one can relate the optical case to the simple and highly useful_:
geometrical picture. It muet be noted, however, that for optieel
frequency energy:sepatations; the long term coherent:componentjwill"::
manifest itself as a precessing macroscopic electric dipole and, 5
therefqre, the_sample itself will produee a coherent radiation field :
vi.e., coherent enhaneed spontaneous emigsion. If this field bec0mes -
comparable to the driving field it must be included in the
Hamiltonian. This problem and other considerations inherent 1n551
praetical.optieal caee such as‘snecific apatial‘effeete, noiee duef:'fd
to on-resonance spontaneoue emigsion, nonelineat effects, andlsneeific; '
telaxation meehanisms are too involved to treat in éeneral, and itfisj}
| beyond the scope or intent of this peper.to deal with these points |
_ in_detail; however,va few aspects of'thevinduced field‘will be discussed

’ quelitatively;’
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The radiation field emitted by the saﬁple will be at the same _b
frequency as the driving field, since this is the rogating,frame
frequency and, therefore, the frequéncy of the dipolebprecéssion.v'lf
the magnitude of tﬁe coherent coﬁponenﬁ is small due to either the
intrinsic rate cons;aﬂts-of the system or the rate'éf inéoherent“ 
excitation, and if the cohérent driving field is-reasdnébly large, é
small volume element of the sample will emit a negligible.amount of |
radiation relative to the magnitude _ of the appliéd%'
fields and, therefore, ;he eﬁitted field may be diéregarded. Fbr thi§ 
casé ghe'development of the previous sectioﬁsiis?quite adéqugte té
treét the optical region.

ﬁoweve‘_r,fif the field emitted by a small volume element of the
sample is nﬁtvnegligible, two caseé must be distinguished; (1) Ifithé;

->
r

long term coherent component is produced along the 9 axis.by the

on-resonance method, the precessing dipole and therefore the»emitted

Ei’field will be 90° oﬁtAof phase with the driving.f field applied

. -»>
along the ry

amplitude shifts of the vector resultant E field'ﬁhroughout the saﬁple.‘

~axis. . This will_cau%e’positioﬁ depehden; phase and

Dépending'upon sample details, this effect could hinder the emissiqh

of cohergnt radia;ion from the.sampLe. This is pfobablygnot a sefiohs-
p;obleﬁ since T2 processes will most likely‘inhibit:the productiéﬁ;éf

a sizable coherent éomponent along ;2 in any éasé.' (2)'If the 1ohg}
term coherent comﬁénent is produced along‘the 5 éxis.bfvthe off
resonance méthod, the emittéd and appliéd field will be in phase. Thus-‘

the sample willfnof experience a phase shift problem but-the amplitude

‘of the resultant E field will still vary with position in the sample,
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Thié'does not present a problem for eithér thevproduétion of a‘long
term coherent component or the emission of radiation from the sample.
Regardless of the magnitude.ofathe'E field, i.e., the ﬁagnitude‘of,wl,
in a given volume élement of the sample, a coherent cbﬁponent will still
be‘producedehich is colinear with the coherent componenté produéed ih 
other parﬁsvdf #he sample. | o - i‘ The mégnitudé
of wy will simply determine the size of the coherent compopenti?eVelopgq

‘in that volume elemen:.» Furthermore, since the maximum coherent N

»componenf occurs for _ o - S : 
wli—‘—:Aijr—' : _ | (75)
and since the coherent component, becomes smaller for ' ’

values of wy greater than this,

the E field will not continue to grow

and in a sense the systém wili self;:f
, inside the sample. Thgé, we have fheu
Ebssibilitz that with an appropriate set of rate édnstants and for

regulate the magnitude of w

high values of incoherent excitation, the saﬁple will emit'a radiatidnf.'
field which is at the same frequency and in-phase with the coheréqt
driving field. If the amplitude of the driving field is such that .-

w, is less than the valus in Eq. (75),

the superradiant‘emiséion‘of the sample itself_may amplify the applied

-field to the boint where wl, in the samplevand emitted the_sample,,éill
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build up‘to'the value given in Eq; (75). In this sense, production of
long term coherence in optical systems may be hseful as a tunable coherent

light amplifier.
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III. SUMMARY

We have presented a discussion of coherence in an ensemble of excited
state two-level systems for the case in which bopulation 1svbe1ng fed inﬁo ‘ -
the ensemble af a constant rate and decay is occurring from the.enseﬁblé at
a rate dependent upon'fﬁé state of the ensemblé.- The problem wasuinitiallyb
treated in thé absence of cohvéntional Tl and T2 bfoégsses and an e#éc;
solution was obtained using the density matrik formalisﬁ. Several_ 
examples were treatgd to illustrate modifications Vhich muét be céngideréd'
when a coherent coupling.experiment is performed on an excited ensémble{ 

We have shown that it is possible to produce'#nd maintain a céheren;
st#te in the excited ensemble for times which are oﬁly limited by?;ﬁe o
coherence timé of the driving field deépite fhe fact that this ﬁiﬁe»mayA€
greatly exceed the lifetimes of the éxcited statég, Conventionai.T1 anéw
T2 prdcesses were added to the development and exact sdiutions»were:§§tgined
for the steady—state case which'ié important Qhen-exaﬁining thevpossibility
of producing long termor kinetic coherence. It Was:demonstrated:thét.if
the modified Bloch equations are-appliéable, Ti and T2 procésses dQ}n§t~.
modify the qualitatiﬁe results obtained in their absence. Furthérmore,  
éven when rapid T2 pfocesses occur under lowzpower.cogditIOns, iF:w;s'éhﬁwn' )
" that for highvpower in some instances sizable long term éoheren; cOmponépts
‘may nonetheless be maintained since the coherent co@fOnent is éffeéﬁiﬁel&ﬁ

"spin locked' élong the rotating frame static field. o
Finally, it was shown that the developmeﬁt applies to the sh9t£ 

wavelength optical case in addition to the long waﬁeiength case. It.was

‘pointed out that the long term_coherent component in optical systems

will exhibit long term superradiant emiasibn, i.e., continuous enhanced
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coherent spontaneous emission, and that it ma&,be'pbssible to employ this
effect as a coherent light amplifier. By choosing the proper system,
the development of Section A should prove useful in interpreting'exper-

1

imental results.
Experimental verfication of long term kinetic. coherence has been
established for phosphorescent excited triplet stetes in zero field.

and will be presented in a forthcoming publication.
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FIGURE CAPTIONS
Figure 1: (a) Initial population difference vector (heavy arrow) will

precess about the effective field direction (dashed arrow in r plane).

1773
(b) Feeding and dephasing processes produce a cone of vectors about'the_
effective,field direction. (c) Vector'sum of the.cone yields a vecforv
aligned along the effective field direCtion and hauing a.coherene
eomponent. | . |

Figure 2: Pictorial description of the modei sysﬁem_p:esentedbin gﬁéf;
discussion. .Fy and Fx are constant feeding rates;_whereas k& and.kiiare
decay rate constants. |

Figure 35 Comparison of the tuo in-plane cohereni,components under’tne.
influence of inhomogeneous decay. The maximum value of the rl.component.v
is obtained under conditions of high power applied field and 1is thus
independent of inhomogeneous decay.‘ The maximum value of r, is obtained

for relatively low power and is strongly affected when the homogeneoua and

inhomogeneous relaxation times become comparable.

i
i
|
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any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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