
1 

~ .. , 
. •\ 

... 

" 

Submitted to Physical Review A 

COHERENCE IN MULTILEVEL SYSTEMS. II. 

LBL-3111 
Preprint ~ d--

DESCRIPTION OF A MULTILEVEL SYSTEM AS TWO 
LEVELS IN CONTACT WITH A POPULATION RESERVOIR. 

W. G. Breiland, M. D. Fayer, and C. B. Harris 

January, 1975 

Prepared for the U. S. Atomic Energy Commission 
under Contract W -7405-ENG-48 

TWO-WEEK lOAN COPY 

This is a Library Circulating Copy 

which may be borrowed for two weeks. 
For a personal retention copy, call 

Tech. Info. Division, Ext. 5545 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



... 

-iii-

COHERENCE IN MULTILEVEL SYSTEMS. II. DESCRIPTION OF A MULTILEVEL SYSTEM 

* 

AS TWO LEVELS IN CONTACT WITH A POPULATION RESERVOIR. 

W. G. Breiland, M.D. Fayer* and C. B. Harrist 

Department of Chemistry; and Inorganic Materials Research Division 
of Lawrence Berkeley Laboratory; University of California 

Berkeley, California 94720 

Permanent address: Department of Chemistry, Stanford University, 
Stanford, California 94305 

tAlfred P. Sloan Fellow 



-v-

ABSTRACT 

The effects of incoherent feeding and decay on a coherently driven 

two-level system are investigated using density matrix techniques. 

A closed form solution that includes the effects of relaxation and spon

taneous emission between the two levels is obtained for cases in which 

the sample size is both small and large compared to the wavelength of 

the coherent driving field. The steady-state solutions reveal that 

under appropriate conditions a significant coherent component can be 

maintained by the combination of driving field and incoherent feeding, · 

and should provide a useful method for the study of superradiance from 

excited states. 
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I. INTRODUCTION 

The time evolution of an ensemble of two•state systems under the 

influence of a coherent radiation field is a problem of considerable 

importance and has been treated extensively for the case in which the 

ensemble is always composed of the same members. By this we mean that 

the identity of the individual members and the number of members in the 

ensemble is constant in time. Proton nuclear magnetic resonance is an 

example of this, where for a given sample size the number of protons is 

fixed, and the individual proton maintains its identity throughout an 

1 
experiment. In many cases, such as double resonance, optical pumping, 

2,3 
chemically induced nuclear and electron spin polarization, stark 

4 shift optical coherence, and any process which involves excited states, 

the total population of the two-level ensemble is not constant in time. 

Although most of the processes mentioned above have been treated within 

their own context, little emphasis has been placed on how the creation 

and destruction of the states affect the properties of the ensemble in 

the presence of a coherent driving field. It is the aim of this paper 

to treat an idealized two-level system which is coherently coupled and 

at the same time is being inaoherentZy fed and is spontaneously decaying. 

In such a case the number and identity of the individual members of the 

ensemble does not remain constant in time, since the ensemble of excited 

states will not only evolve under the influence of the coherent radiation 

field, but will also decay to the ground state by radiative and non-radiative 

processes. In these cases the trace of the density matrix describing 

the ensemble is not constant in time, but rather decays from an initial 
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t = 0 value to zero. An additional feature is apparent when the exci-

tatlon source responsible for producing the excited states is left on after 

t = 0. Specifically, new excited states are continually created and also 

evolve under the influence of the coherent radiation field. The collection ., 

of excited state two-level systems is therefore not a ·time-independent 

collection, but rather an ensemble which constantly has members feeding 

into and decaying from it. 

In addition to providing a basis for understanding the modifications 

which occur when coherent coupling experiments are performed on systems 

undergoing feeding and decay, the mathematical formulation developed in the 

body of 'the paper predicts that an important new effect may be observed. 

This effect is the production of long-term coherence in the ensemble of 
I 

excited state two-level systems that results directly from incoherent 

feeding. We will term this "kinetic coherence" and show that it is 
,' 

possible to maintain a coherent superposition state in the ensemble for 

times greatly exceeding the lifetimes of the excited states. In fact it 

can remain as long as the radiation field remains coherent and population 

continues to be fed·into the ensemble by incoherent pumping. The magnitude 

of the coherent component is controlled by the "effective field" angle, 

the incoherent pumping rate and the decay rate constants. This type of 

effect is also manifest iri conventional magnetic.resonance systems; 

however, it is very small owing to the inability of T1 processes competing 

with the applied field to maintain a sizeable population difference. In 

a properly chosen system this is not a problem for the case we are 

considering. because the intrinsic rate constants and the rate of 
I 

incoherent pumping determine the population difference. 
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If the transition involved in producing the kinetic coherent state 

is an electric dipole transition in the optical region, the coherent 

component is a precessing macroscopic electric dipole, and the system 

will exhibit enhanced coherent spontaneous emission (superradiance). 5 

Since previous experiments dealing with the superradiant state, such as 

6 
the photon echo, can measure the manifestations of coherence only for 

very short times, the kinetic coherent state should be valuable in 

probing the nature of superradiance because this state is not transitory. 

In principle one should be able to choose any "cooperation number" 

merely by changing the angle of the effective field. 

An additional possibility exists if the kinetic coherent state can 

be maintained in the optical frequency region. Since the intensity of 

coherent light. emitted by the kinetic coherent state is determined by the 

rate of incoherent pumping and the lifetimes of the states, in pr~nciple 

a carefully chosen system could exhibit gain, and therefore it could act 

as a coherent light amplifier. This amplifier is tunable over the spectral 

region in which gain occurs. Further, if a system is found which exhibits 

gain, the amplified emission could be fed back in phase into the superradiant 

amplifier and the applied coherent field removed. If the gain is great 

enough to overcome the losses in the feedback cavity, the superradiant 

amplifier would go into a self-sustaining continuous mode, emitting 
\ 

coherent light at the wavelength of the initial applied field. 

In this paper we will present a mathematical development that 

treats coherent coupling in two-level systems which undergo feeding and 

decay. Three problems, transient nutation, spin lock and kinetic coherence, 

will be discussed in detail to illustrate the physical role that feeding 
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and decay play in the coherent coupling problem. Initially the 

problem is considered for the case in which the wavelength of the 

radiation field is large relative to the size of the sample. The equation 

of motion of the density matrix includes the Hamiltonian, a decay term 

which is analogous to adding decay to the Sch:rcxlinger equation, and 

a feeding term which is arranged to only affect the diagonal elements of 

the density matrix. T1 and T2 processes are not included at this point. 

The equation of motion for the density matrix, neglecting T1 and T2 

processes, is solved exactly using matrix algebra techniques. The 

problem is then rewritten to include T1 and T2 • It is shown that the 

qualitative results obtained in the absence of T1 and T2 are correct, 

provided that high power applied fields are used. Finally, the case 

in which the wavelength of the radiation field is small relative to the 

size of the sample (the optical case) is considered. It is shown that 

except for the usual directional properties associated with coherent 

optical problems, the results obtained for the long wavelength case also 

apply to the optical wavelength region. 
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II. DISCUSSION 

In order to discuss the role that feeding and decay play in the 

excited state two-level coherent coupling problem, we must have a well

defined model for these processes. For this purpose, the entire experi

mental system is divided into two parts. The first part consists of the 

ensemble of excited two-level systems which are coupled by the field. The 

second part is taken to be an infinite reservoir that represents both 

a source and a sink for population to enter and leave the ensemble of 

twd-level systems. At a given instant of time, the ensemble of two-level 

systems is evolving under the influence of the applied radiation field, 

it is also decaying into the reservoir at a rate which is characteristic 

of the lifetimes of the two excited.states. Population is also constantly 

being transferred from the reservoir into the ensemble. We assume that 

only the states which are affected by the radiation field are included in 

the ensemble, and that the reservoir is taken to be unaffected by the field. 

As a consequence, population which is transferred incoherently from the 

reservoir to the ensemble enters the ensemble in one of its two eigen

states, and not.in a coherent superposition state; however, once the 

population has entered the ensemble it may evolve into a coherent super~ 

position state since it is now influenced by the radiation field. In 

terms of a density matrix description of the ensemble, this implies that 

feeding only occurs to the diagonal elements of the density matrix. Off

diagonal elements occur only due to the effect of the radiation f:i.eld on the 

population which is already in the ensemble. Decay, however, affects 

both the diagonal and off-diagonal elements. Since the reservoir is 
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infinite in extent and unaffected by the two-level ensemble, the populating 

rate into the two eigenstates of the ensemble is taken to be constant. 

Thus, the model for feeding and decay processes contains the following 

features. (1) Feeding only occurs to the eigenstates of the ensemble of 

excited two-level systems and not to coherent superposition states. 

(2) The rates for feeding into the two eigenstates are constants, and are 

independent of the state of the ensemble. (3) Decay occurs from.both the 

eigenstates and superposition states of the ensemble. (4) The rate of 

decay from the ensemble will depend on the state of the ensemble and 

therefore the total population of the ensemble need not be constant in 

time. 

The above model for the feeding and decay processes is simple and 

well-defined, and closely approximates many physically realizable 
I 

experimental situations. For example, consider ESR experiments performed 

7 on molecular excited triplet states in a molecular crystal. An incoherent 

light source promotes molecules from their ground singlet state into excited 

singlet states, and some of the molecules in excited singlet states 

intersystem cross into the lowest lying excited triplet state. In this 

case two of the magnetic spin sublevels of the triplet state may be 

8 coherently coupled by the application of a microwave field of the 

appropriate frequency, and molecules in the excited triplet state decay to 

the ground singlet state with lifetimes characteristic of the individual 

magnetic spin sublevels. At a given instant of time, those molecules 

which are found to be in the spin sublevels being perturbed by the 

applied microwave field are taken to compose the ensemble discussed above, 

·and the rest of the molecules comprise the reservoir~ If the number of 
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molecules in the excited triplet state i~ small compared to the number of 

molecules in the sample, which is generally the case, then the singlet 

population is independent of the triplet state population and the 

intersystem crossing rates into the triplet spin sublevels, i.e., the 

feeding rates discussed above, will be constant provided that the light 

source responsible for the excitation remains constant in intensity. 

Furthermore, the molecules which are in singlet states are unaffected by 

the applied microwave field, and thus when intersystem crossing occurs, 

it will populate the triplet eigenstates in a manner which .is identical 

to the intersystem crossing process in the absence of a microwave 

. field coupling the triplet spin sublevels. Once population has intersystem 

crossed, it will evolve under the influence of the applied microwave 

field until it decays to the ground state which again is part of the 

reservoir. Therefore, the situation encountered in the excited triplet 

state ESR experiment is completely analogous to the model we have 

established. We have a reservoir comprised of all the states of the 

sample except those two excited triplet spin sublevels which are coupled 

by the microwave field. The reservoir is unaffected by'the field, there 

are. constant feeding rates from the reservoir into the ensemble, and 

decay occurs from the ensemble into the reservoir. 

A qualitative picture describing the examples to be discussed in the 

matehmat'ical development may be made in terms of a geometrical repre-

sentation for the two-level system. The initial population difference 

between the two levels is represented by a vector that is aligned along 

the r 3 direction of the r-space of the well-known Feynman, Vernon and 

Hellwarth (FVH) 9 model. If a coherent radiation field with frequency 
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equal to the frequency separation of the two levels is turned on, the 

vector, viewed in a reference frame rotating at the frequency of the applied 

fieid:; will begin to precess about the field, resulting in a transient 
· .. 10 

nutation. In an idealized case in which there are no T
1 

or T
2 

relaxation processes, and also 

where the composition of the ensemble remains constant in time, the 

vector will continue to precess about the applied field indefinitely. 

However, if we are dealing with an ensemble of excited states, the 

population vector which began to precess when the radiation field was 

turned on will decay with the lifetimes associated with the excited 

states. Further , population which enters the ensemble of excited 

states at times after the radiation field has been turned on will also 

precess about the field. This feeding and decay process can be 

in the geometrical model as a vector which suddenly appears along 

r 3 , immediately starts precessing about the effective field, and 

shrinks in length as it precesses. These vectors have different 

phase than the initial population vector, and have a random phase 

viewed 

relationship among themselves. In the NMR problem we merely had to 

follow the precession of a single vector, whereas in the excited s.tate 

problem, we must follow the precession of the initial vector which is 

decaying in magnitude at a rate dependent upon its location in r~space, 

and in addition follow the precession of the entering vectors which 

also are decaying. 
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Another important experimental situation which demonstrates the 

necessity of including feeding and decay processes in the analysis of 

. 11 
the experiment is spin locking. In an NHR 

experiment where there is no feeding or decay, the initial population 

difference vector is made to precess about the applied radiation field, 

as in the transient nutation experiment discussed above. After it has 

precessed 90°, the applied radiation field is turned off. If nothing else 

were done at this point, the vector, which is now in the plane normal 

to the direction it was initially pointing, would rapidly vanish due 

to fanning in the rotating frame caused by the inhomogeneous nature 

of the line undergoing the transition. However, the field is immediately 

reapplied along the direction.that the population vector is pointing· 

in the rotating frame. The vector finds itself aligned alorig the 

rotating frame static field and the fanning does not occur .• 

In such a case, the population is said to be spin-locked in a superposition 

state. The vector will remain spin-locked for a time corresponding to the 

Tlp time in the rotating frame. If the analogous experiment is performed 

on the magnetic spin sublevels of an excited molecular triplet state, the 

spin-locked vector will vanish due to both Tlp processes and relaxation 

to the ground state. Furthermore, new population is continually entering 

the ensemble of triplet states that are coupled by the radiation field. 

However, this additional population intersystem crosses into the triplet 

eigenstates, not into the spin-locked superposition state. We therefore 

encounter the situation in which the population that existed at time 

t = 0, which we will refer to as the t • 0 subensemble, is spin-locked, 
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whereas the entering population is not. The entering vectors are none

theless driven by the applied radiation field and execute transient 

nutations in the plane normal to the spin-locked vector. In the NMR 

problem we had to deal only with the single initial population vector, 

whereas in the triplet state problem, both the t • 0 subensemble and the 

entering vectors must be considered. In addition, for excited states 

there is another path for the loss of the spin-locked vector due t~ radi

ative or non-radiative decay of the excited spin-locked states to the 

ground state. 

As we will show, the kinetic coherent state is produced by essentially 

spin-locking a set of vectors along an off-resonance effective field. the 

initial population difference vector executes an off-resonance transient 

nutation about the effective field direction, and describes a cone around 

the effective field as illustrated in Figure 1. Owing either to field 

inhomogeneity or sample inhomogeneity, this inital vector will fan out 

around the conical path producing a thin cone~ of vectors precessing 

around the effective field. (Inhomogeneity is not required, for even with 

a homogeneous field and sample, the feeding process itself will cause a 

cone of vectors.) The cone of vectors has a net projection along the 

effective field direction which can be resolved into an r 3 component and 

an r 1 coherent component. The cone will 
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decay due to relaxation of the excited states to the ground state. 

However, as this initial population decays, additional population is 

fed into the system,continually forming a new cone with a colinear r 1 

component. Thus, as the r 1 vector due to the first cone decays, it 

is replaced by the r
1 

vector fromsucceedingcones through continual 

feeding. The cone, and therefore the coherent r
1 

vector, is constantly 

replenished. 
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III. MATHEMATICAL DEVELOPMENT 

We consider the situation depicted in Fig. 2 in which a two-level 

system, characterized by the states jy> and jx> is populated from 

the reservoir at a constant rate, decays back into the reservoir, and 

is also driven coherently by a sinusoidally oscillating fie!~. In 

order to isolate and examine the effects of feeding and decay, we shall 

first consider the simplest case in which the wavelength of the radiation 

is much greater than the sample size, i.e., AJ >> vol. We shall also, 

at first, neglect all relaxation processes such as T1 , homogeneous 

and inhomogeneous T2 , and driving field inhomogeneities. These 

considerations complicate the development considerably but at the same 

time do not significantly alter many of the qualitative features of 

the problem, and are thus reserved for later sections of the discussion. 

We shall use a semi-classical approach for the driving field 

Hamiltonian. Without loss of generality we assume that the driving 

field has real matrix elements and express the Hamiltonian as 

K' = K + V(t) (la) 
0 ' 

hw 
j( = __.2. 

0'3 (lb). 
0 2 

V(t) • tiw
1

a
1 

coswt (lc) 

Jf
0 

is the time-independent Hamiltonian with eigenstate& jy> and lx>, 

separated in energy by hw , and a are the Pauli spin matrices. 
' o n 

Invoking the rotating field approximation we have 

tiw 
0 

K' • -- 0' 2 3 
(2) 
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By performing a suitable transformation on the state vector It>' we can 

obtain an equation of motion in which the Hamiltonian is time 

independent. Let 

U = e 

and 

It> = ult>' 

From the Schrodinger equation 

ih L 1 t > ' = x• 1 t > • dt 

We substitute for It>' in terms of It> and obtain 

where 

The Hamiltonian in Eq. (7) is time independent for any value of the 

(3) 

(4) 

(5) 

(6) 

(7) 

driving field frequency, w, and reduces to the interaction representation 

for w = w . 
0 

The use of the unitary matrix defined by Eq. (3) is 

equivalent to transforming to a rotating framel2 in terms of the Feynman, 

Vernon, Hellwarth (FVH) geometrical representation. 

By considering a model system consisting of a reservoir, details 

of the feeding and decay processes are not considered explicitly and 

thus allow the many-body problem to become tractable. The simplest 

way to include decay of a state is to assume that the amplitude for 

being in the state decays exponentially. For the two-level system we 
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have the state vector represented as a linear combination 

It> = YIY> + xlx> (8) 

where y and ~ are the usual time-dependent coefficients~3 We now let these 

amplitudes decay exponentially14 

k 
y=-J...y 

2 

k 
X 

X=- z X 

(9a) 

(9b) 

k and k are physically observable rate constants associated with the 
y X 

decay of the states IY> and lx>, respectively. 

As discussed earlier, the populating process occurs only to the 

eigenstates IY> .. and lx> and cannot appear in a superposition state; 

thus, the equations describing the feeding process must deal only with. 

the probabilities yy* and xx* and cannot affect the terms which define 

the relative phase factor as given by xy* or yx*. The result of this 

is that the feeding cannot be added to the amplitudes y and x but only 

to the probabilities. 

At this point there are two possible ways to treat the problem. 

First, one could solve the coupled differential equations formed by 

combining Eq. (6) and Eq. (9), take products of the solutions and 

15 
form integral equations that include the feeding process. Despite 

the fact that this method is exceedingly lengthy, it provides a certain 



-15-

amount of physical insight to the problem since it is straightforward. 

The second approach is to use the density matrix formulation which 

effectively deals with the coefficient ·products from the beginning. The 

solutions are much simpler from the computational point of view, and 

the development is mathematically less clumsy. We shall use this 

method in the following development. 

A. Density Matrix Solution 

16 Equation (6) can be expressed in terms of the density matrix · as 

ihp = [X,p] (10) 

The rotating frame Hamiltonian is the same as Eq. (7). The decay terms. 

of Eq. (9) are incorporated into the equation of motion by constructing 

the imaginary operator K given in the y-x basis by 

(11) 

and the decay process is described by an anticommutator relation 

(12) 

The operator K must be imaginary in order to cause the density matrix 

to decay. Combining Eqs. (10) and (12) one obtains a description of a 

two-level system whose states can decay with or with()ut an applied 

driving field. 

(13) 

The differential equation can be solved by constructing an evolution 

operator, Q; defined by 
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(14) 

Notice that since K is real and K imaginary the adjoint of Q is not 

the inverse 

t• ' I (K K) I 1 Q = exp -i ~ t ~ Q- (15) 

and thus Q is not unitary. Equation (16) is a solution to Eq. (13) as 

can be verified by differentiation 

p(t) = Qtp(O} .Q (16) 

The operations in Eq. (16) do not result in a similarity transformation. 

This is to be expected, however, since the decay process must cause 

the trace of p(t) to vanish--a result which is not possible with a 

similarity transformation. Owing to the fact that the constant trace 

condition has been relaxed, one will need four, rather than the usual 

three, independent variables to describe the density matrix completely. 

This can be done easily by .defining the components of the density matrix 

as follows: 

These components have a geometrical significance which is only.slightly 

different from the FVH model. r is represented by a vector which 
y 

points "up" in a three dimensional r-space whereas r. points "down". They 
X 

both share the same "in-plane" components r 1 and r 2 • The FVH vector 

.. 
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component r 3 is given by ry - r . 
X 

In terms of observables, r and r 
. y X 

are proportional to the upper and lower level populations, respectively. 

The r 1 and r 2 components contain coherence information and are proportional 

to the expectation values of an induced or permanent electric or magnetic 

dipole depending on the explicit form of V(t). An explicit form for Q 
17 

is obtained from Eq. (14), using Putzer's method. 

(18) 

Q = e 

nt ~ + i6w ot 

( 

cos 2 + n sin "2 

iwl Ot 
--sin-

iwl Ot 
--sin- ) 

Qtn~ +~sin Qt. 
cos 2- n 2 n 2 

Equation (18) incorporates the following definitions 

k = kx+~ 
A 2 

~= 
~-ky 

2 

6w=w -w 
0 

In accordance with earlier discussions, feeding is allowed only to the 

r and r components. This is expressed by a feeding matrix F given by 
y X 

(19a) 

(19b) 

(l9c) 

(19d) 

(20) 

The total equation of motion which includes feeding, decay and a driving 

field is thus given by 



-18-

ihp = [X,p] - [K,p]+ + F (21) 

Before solving this equation it is worthwhile to write it explicitly 

in terms of the r-components 

(22a) 

(22b) 

(22c) 

wlr2 
r = - - 2--- - k r + F 

X X X X 
(22d) 

18 By comparing Eqs. (22) to the rotating frame Bloch Equations, one can see 

immediately that th~ average of the decay rate constants kA will have 

the same effect as a T
2 

process and the combination of feeding and 

decay will appear to be a T1 process. This is quite reasonable from 

a physical point of view since the in-plane components involve a 

superposition state which can be viewed as being "undecidedi' from which 

eigenstate it will eventually decay, thus giving rise to kA. Also, 

an incoherent T1 process will have a similar effect as decay from 

IY> or lx> into the reservoir with subsequent incoherent feeding into 

lx> and IY >. The important difference between T1 and feeding and decay, 

however, is that the final population difference in the levels is 

determined by a B~ltzmann distribution in the T1 case, as opposed to 

the feeding and decay process in which practically any polarization 

is possible, depending on the ratios of the feeding and decay constants 

and on the conditions of the experiment. 
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We now return to the solution of Eq. (21). An equation of the form 

p(t) = t Q (p(o) - A) Q + A (23) 

is indeed a solution if the undetermined time-independent matrix, A~ 

can be found. Equation (23) is of the form 

p(t) = B(t) + A (24) 

by differentiating Eq. (24) 

ihp = [:JC,B) - [K,B)+ (25} 

and also substituting Eq. (24) into Eq. (21) 

ihp = [JC,B] - [K,B]+ + [JC,A] - [K,A] + F (26) 

we see that A must satisfy the condition 

[JC,A] - [K,A]+ + F = 0 (27) 

At this point we note that since Q contains decay terms, some new 

steady-state value of the density matrix will exist at t = oo. It is 

• simple to solve for this matrix, p , by letting p = 0. We obtain s 

which is identical to Eq. (27). Thus the matrix A is merely the 

steady-state value that the density matrix approaches for a given set 

of experimental conditions. Equation (28) is solved for p
8 

by perfondng 

the commutation operations using the explicit fqrms for JC (Eq. {7)), 

K (Eq. (11)) and F (Eq. (20)) and representing Ps by 
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s s 
r - ir2 s 1 r 2 ) y 

P8 = ( s s 
rl + ir2 s 

2 r 
X 

The components are given by 

s &!l•Jl 
r = -- (F k -F k )/D 

1 k2 y X · X y 
A 

(29) 

(30a) 

(30b) 

(30c) 

(30d) 

(JOe) 

In view of the similarity between the rotating frame Bloch equations and 

Eqs. ·· (22), we cast Eqs. (30) into a more familiar form. First, noting 

that the steady-state populations in the absence of a driving field 

are given by (w
1 

= ~w = 0), 

F 
ro = ......:t.. 

y ky 
(3la) 

(3lb) 



and 

and by defining 

we obtain 
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effective relaxati.on terms, 

t 2 = 1/kA 

kA 
tl = kk 

X y 

(3lc) 

(32a)· 

(32b) 

(33a) 

(
F + F ) X y 

2 

and 

These are the familiar forms for continuous wave spectra in magnetic 

2 resonance. When the "power factor" w
1

t 2t 1 is small, the components 

(33b) 

(33c) 

(33d) 

(34) 

reduce to Lorentzian lineshapes. It is interesting that the effective 

II II 1 d . transverse re axation, t 2 , is etermined by the average .of the decay 
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rate constants whereas the effective T is determined by the average of . 1 

the decay lifetimes. The final solution to Eq. (21) is thus 

where the components of p are given by Eqs. (33). s . 

The expression for F in Eq. (20) could be generalized easily to 

situations in which the feeding occurs to a superposition state, such 

as when a triplet state is optically pumped in the p;resence of a high 

(35) 

magnetic field, and also could be made time-dependent. The solution for 

ps follows the same format. 

If one wishes to monitor the effects of feeding and decay more expli-

citly, Eq. (35) may be broken up into two parts corresponding to the "zero 

time" subensemble mentioned in the discussion and the "fed" subensemble 

p(t) = Qt p(O) Q + p 

" s 

t - Q p Q 
s 

(36) 

The first term corresponds to the zero-time subensemble. Since feeding 

into ly> and lx> are independent processes, one could separate the last two 

terms of Eq. (36) into y-fed and x-fed subensembles by setting Fx = 0 and 

F = 0, respectively. This might prove useful if one wishes to determine 
y 

only the effects of feeding oq the system. 

B. Transient Solutions: Special Cases 

The siinple form for Eq. (35) might lead one to think that it would 

be worthwhile to multiply the matrices explicitly and thereby obtain 

analytical expressions for the r-vector components. Unfortunately 
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the solutions are complicated enough to mask the physics contained 

within them so we shall restrict our attention to various special cases 

which give some insight into the effects of feeding and decay. First, 

we consider the trivial case of no driving field. Setting w1 = 6w = 0, 

we have Q = i~, and Q has a very simple form: 

Kt 

Q = e 
e - ih t 

=e = Q (37) 

0 e 

The solutions are, from Eq. (35) 

-k t 
= r 1 (o) A 

rl e (38a) 

-k t 
r

2
(o) A 

r2 = e (38b) 

(ry(o) -~) 
-k .t F 

r = e y +.J... 
y k k y y 

(38c) 

r = (r (o) _ Fx) -k t F 
X X e +-

X X k k 
X X 

(38d) 

Notice that r
1 

and r 2 are not fed, but merely decay from whatever initial 

values they had at time t = 0. Equations (38) agree with simple rate 

equations that can be written by inspection from the two-level system 

pictured in Fig. (2). 

We next consider an on-resonance transient nutation. ln this 

case, 6w • 0, Q • (w~- k~) 112 • We assume initial random phases, 

i.e., rl(o) = 0, r2(o) = 0, and let the initial values of the diagonal 
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elements be steady-state values without the coherent driving field. 

r (o) = ro, r (o) = 
y y X 

ro. We obtain from 
X 

Eq. (35) and Eq. (33) 

rl = 0 (39a) 

-k t 
A 

[ r;(k~ - w~cosnt) -
e (ro -

s . 
r2 = r 3) nw1sinQt. 

Q2 3 

0 s 0 s ~ s 
(39b) - (r r + r - r ) w

1
k

0
(1 - cosQt) + r2 y y X · X 

-k t 

[(r; s ( nt nt)
2 A e 

- ry) Qcos :2 + k0sin :z r = 
y n2 

+ ~0 -
s) 2 2 nt r w sin -

X X 1 2 

s tlt ~ Qt Qt)] s· 
(39c) - r 2w1sin :2 Qcos -z + k0sin :2 + r y 

-k t 

[(r; nt)
2 A 

s)Q nt e r = - r ncos-- k0sin :z 
X n2 X · 2 

+ (r; - r;) 2 2 nt 
w1sin 2 

s nt( nt ~sin °~)] s (39d) + r2wlsin :2 ncos 2- + r 
X 

despite the formidable appearance of these equations, the qualitative features 

are simple, since they are analogous to a damped harmonic oscillator. 

curves will be dominated by the exponential 

term and will be highly damped. When k
0 

> w1 the system behaves much 

like an overdamped oscillator. Any shifts in frequency or phase when 

w1 > k
0 

will be masked by the exponential terms. When Q ~ kA it is also 

necessarily true that w1 > k
0 

and the observable oscillations will have 

nutation frequencies close to w
1 

in magnitude. If we allow the driving 
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field to become very large, i.e., w
2
1
/k k » 1, Eqs. (39) reduce to much 

X y 

simpler forms which are easier to relate to the geometrical model 

) 

F + F 
cosw1 t + k Y + k x 

X y 

(40a) 

(40b) 

(40c) 

(40d) 

Notice that all the expressions contain the initial population polari~ 

0 0 0 zation or alignment r 3 • r - r • As expected from the geometrical 
y X 

model, the vectors precess only in the r 2 - r 3 plane. After the tran-

sient terms have died away the populations in the two levels are approx:[-

mately equal and r 2 is very small. This is to be expected from the 

vector model, since the "disc" that is ultimately formed has a vector 

sum of zero. In the absence of feeding or decay, Eqs. (39) and (40) 

reduce to the standard nutation of the Torque Equation in the rotating 

frame. As is the case in NMR, we see that the ability to do well~defined 

pulse rotations of the r-vector depends upon the relationship between 

the applied field strength and the effective relaxation kA = l/t2• For 

sufficiently high power, a Tr/2 pulse (w1t • 'fr/2) gives from Eqs. (40): 
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r (rr/2) :::!! -r 0 

2 3 
(4la) 

r (rr/2) == r (rr/2) y X 
(4lb) 

The effects -of feeding and decay on a spin-locked superposition 

state can be investigated by using Eqs. (41) as initial conditions for 

a phase-shifted transient nutation. Shifting the phase by 90° is 

tantamount to setting r 1 (o) = -r2 (rr/2) = r3 and r 2 (o) = 0. r and 
y 

r are unaffected by the phase shift. From These initial conditions, 
X 

the expression for the spin-locked component is, from Eq. (35). 

-k t 
A e 

From the vector model one would predict that feeding subsequent to 

establishing the spin-locked component would contribute only a disc 

(42) 

in the r 2 - r
3 

plane and thus could not affect the spin-locked component. 

Equation (42) shows that the spin-locked signal is indeed independent 

of feeding, and decays with the average of the decay rate constants 

for the two levels. 

C. Long Term or "Kinetic" Coherence 

Equation (42) demonstrates that a coherent component can be made . 

to last on the order of the lifetime of the levels. In this section we 

shall propose that this time is by no means an upper limit, and in fact 

it should be possible to maintain a significant .coherent component for 

long periods of time, limited only by the coherence time of the driving 

field. In many ways this is similar to dynamic equilibrium in which 

the component parts of the long term coherence are continually feeding 
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and decaying, but a steady state value is reached. The coherence is 

maintained by the driving field and is not destroyed by incoherent 

feeding or decay. 

The steady-state expressions in Eqs. (33) can be somewhat deceptive 

if one does not keep in mind the fact that the effective relaxation 

term t
1 

was constructed only to show the analogy to T1 and is not 

related to the actual thermalization of the two levels. The ratios 

of feeding and decay constants determine the initial polarization of 

the system and the population difference can thus be highly non-

Boltzmann. With this in mind we re-examine Eq. (33a). The r
1 

component 

represents the "dispersion spectrum" or the real part of the susceptibility 

in the language of NMR, and reaches a maximum "off resonance". Owing 

to the fact that r) can be significantly larger than a Boltzmann 

distribution of population, the steady-state coherent component can be 

orders of magnitude larger than the thermally populated case. From the 

vector model, one would expect the condition ~ = w
1 

to give a maximum 

inplane component. The special form of Eq. (33a) suggests that the 

problem is identical to the one treated long ago by Bloch when he 

calculated the maximum nuclear induction signal in an NMR experiment.18 

s The off-resonance value which corresponds to a maximum value of r 1 is 

~ = __!_ (1 + w2
t t )

112 
max t 2 1 1 2 

s giving a value for r 1 

(43) 

(44) 
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2 and for sufficiently high power, i.e., w1t 1t 2 >> 1, 

(45) 

The maximum value for r~, on resonance, is equal irt magnitude to the 

high power value for s r 1 given in Eq. (45 ): 

s -rj ~2 r 2(max) = - 2- t 
. 1 (46) 

If the lifetimes of the two levels are equal, the long-term coherent 

component would be half the initial polarization and !JJJJ :!! w
1

• Since max · 

r 1 in Eq. (45) is linearly dependent on rj, the coherent component 

could be doubled by doubling the feeding rates, unless, of course, this 

re'sults in a significant depletion of the "infinite" reservoir in which 

case the assumptions that lead to Eq. (45) are no longer valid. 

Of course, the expected value for r~ in Eq. (45) is not realistic 

owing to omission of the effects of relaxation. These will be dealt 

with analytically at the end of the next section. However, the similarity 

of Eq. (45 ) to the Bloch equation solution allows one to speculate 

that if the field is strong enough to "overcome" relaxation effects, i.e., 

if one can observe a transient nutation, the long-term coherent component 

will be present and can approach the value given by Eq. (45). 

D. Relaxation 

At this point we shall investigate the effects of relaxation on the 

steady-state components of the r-vector. These terms may be obtained in 

a reasonably simple analytical form if we restrict ourselves to Bloch-

type relaxation terms T
1 

and T2• The transient solutions will be dealt 
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with at the ~nd of this section. 

Relaxation is most easily incorporated into the problem by adding 

the appropriate terms to the differential forms given in Eq. (22). 

One obtains 

r y (k + 1/T ) r + r /T y y y X X 

• wlr2 
rx =- -.-2-- (k + 1/T ) r + r /T 

X X X y y 

+ F y 

+F 
X 

Here T2 is the homogeneous relaxation time, T and T are related to 
X y 

(47a) 

(47b) 

(47c) 

(47d) 

the probability per unit time for a transition from lx> to IY> and from 

IY> to lx>, respectively. Notice that this form allows for spontaneous 

emission from I y > to I x) in addition to "spin lattice relaxaq.on" terms; 

specifically, we could break T into two terms, 
y 

1/T = 1/T + l/T1 . y ys y (48) 

in which T. is related to spontaneous emission from IY> to lx> and T1 ys y 

is related to the.normal thermal probability for a transition from 

IY> to lx>. If spontaneous emission is negligible, as is the case in a 

rf region of the applied field, we have the normal spin-lattice 
I 

relaxation (SLR) time encountered in NMR. 

(49) 
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Tx and Tly are related by the Boltzmann factor 

hw 
0 ---kT 

If w is in the region of optical frequencies, spontaneous emission 
0 

could be much more important than SLR in which case T ~ T The 
Y ys. 

(50) 

steady-state solutions are readily solved by setting .the time derivatives 
. ' 

equal to zero and solving for the components. As was done earlier, 

we choose to define.relaxation terms T and T such that the functional 

forms for the components can be recognized as being similar to the NMR 

expressions. 

(Sla) 

s = 
-rjw1T 

(51 b) r2 
1 + &iT

2 + win 

2 
ro (.1 + &iT2) + wl T'r 

s = 
y kA 

(Slc) r y 
1 + ~2T2 + wiTT 

ro(l + ~2T2) w~e +F) +-- X y 
X . kA . 2 

8 
(Sld) _ r = 

X 
1 + ~2T2 + wiTT 

I 

. i 
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We have used the definitions 

T = k k + k /T + k /T 
X y y X X y 

F (k + 1/T ) + F (1/T ) 
ro = Y X X · X X 
y k k + k /T + k /T 

X y y X X y 

F x (ky + 1/T..) + F y (1/Ty) 
k k ·+ k /T + k /T 

X y y X X y 

Thus far only the homogeneous relaxation time, T2 , has been 

* 

(52 a) 

(52b) 

(52 c) 

(52 d) 

(52 e) 

considered. The inhomogeneous relaxation time, T
2
·, can be included 

by assuming some lineshape distribution, usually Lorentzian or 

Gaussian, centered about some average Larmor frequency, w . We 
0 

treat here the case for a Lorentz distribution given by the normalized 

shape function 

(53a) 

. 00 J g(w
0

) dw
0 

= 1 (53b) 
-00 

integration of the coherent components over all Larmor frequencies, 

w
0

, yields 
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s rjwl~ 

rl = ~Jw2 + [1/T; + 1/T(l +w~TT) l/2]2 (54a) 

(54b) 

where w = w - w. We are now in a position to look again at the long.,
o 

term coherent components. The off-resonance value that corresponds to 

s a maximum value of r
1 

is 

yielding 

·. s 
r 1 (max) 

(55) 

(56) 

If one has sufficient driving field strength to "exceed the linewidth", i.e., 

2 w
1

T >> 1, and w
1

TT >> 1, Eq. (56) reduces to an expression· 

similar to Eq. (45) 

_ r
0 

~ s 3 T r· (max) ::::! - -1 2 T 

under the influence of inhomogeneous broadening the maximum value of 

r; on resonance is not equal to the high power limit for r~ given i~ 

Eq. (57) in contrast to the cases treated in Eqs. (45) and (46) in 

(57) 

which relaxation .was neglected. To see this we rewrite Eq. (54b) for 

on resonance, ~ = 0 
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·(58) 

. * s Notice that any nonzero value for l/T
2 

will reduce the size of r
2

• 

Figure 3 give~ the ratio of the maximum values of r~ a~d r~ as a function 

* of the parameter T/T2 . 

As 

is seen from Fig·. 3, significant differences between the maximum values 

s s of r 1 and r 2 become observable when the inhomogeneous relaxation time 

is greater than or equal to the homogeneous relaxation time. This is 

what one would expect physically, since the high power conditions 

required to obtain Eq. (57 ) imply that all isochromats in the line· 

behave identically, whereas the low-power conditions required to obtain 

s a maximum for r 2 imply that each isochromat in the inhomogeneous line 

will have a different effective field direction and the vector sum over 

the isochromats will necessarily be less. 

An additional point can be made about Eq. (57). Bloch noted18 

that an excessively long T
1 

time could be troublesome if one attempts 

to observe the coherent component. With feeding and decay this is not 

a problem, in fact one would like to have T1 as long as possible, for 

then T 3!! t 1 , and the "recovery" of the system is due to feeding, 

decay and T2 processes. If T is short and is unaffected by the high 

fields applied to the system, the long-term coherent component can be 

reduced considerably in size •. However, in many cases, T2 is field 

dependent and can become quite long if the driving field is on the 

order of the inhomogeneous linewidth. 
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For high-:power driving fields in solids, Redfield suggested19 an 

alternative form for the Bloch equations, separating T2 into T
2
e' a 

transverse spin-lattice relaxation time applied to the driving field 

direction, and T2, the. normal transverse relaxation time. This 

distinction becomes necessary, for example, in the spin lock experiment 

in which the decay of the spin locked vector is not an energy 

conserving process and thus cannot be due to "spin-spin" relaxation. 

Using this formalism we may write an expression replacing Eq. (47a}: 

rl = -b.wr2 - (kA + l/T2e) rl 

Solving the coupled Eqs. (47) with this substitution results in the 

steady-state .values for r
1 

and r 2: 

rjw1b.wTTe 
rs = ----~~----~~-

1 1 + b.w
2

TTe + W~T'r 

We have defined T by 
e 

Expressions for the maximum values of these components are readily 

obtained for high power and on resonance, respectively 

rj~2e r (max}~- --
1 2 T 

(59) 

(60a} 

(60b} 

(61) 

(62a) 

(62b) 

·. 
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Notice that the value for r 2 is unchanged from the value it would 

have without the modified Bloch equations.· Conversely, r 1 can be 

significantly larger than r 2 owing to the fact that T
2
e ::!! T for 

sufficiently high fields. The arguments concerning inhomogeneous 

broadening apply in the same fashion and Eq. (62a) may thus be 

assumed to be an upper limit for the size of a long term coherent 

component including the effects of feeding, decay and relaxation. 

It should thus be possible to find systems that, under the proper 

conditions, satisfy Eq. (62a) and a large coherent component (compared 

to the initial polarization) can be maintained. Such a system has 

been found in the microwave region of applied field and an experimental 

report will follow in a future publication. 

A sol?tion for the transient behavior of the density matrix 

including relaxation is not simple from an operational point of view. 

One concise representation is in the form of the Liouville operator. 20 -

In this casewe treat the elements of the 2X2 density matrix as being 

the components of a four-vector. Equation (10) is then written as 

ihp = hLp (63) 

where the Liouville operator is defined by a 4x4 matrix with elements 

hL = 3C o . - o 3C 
mn,m'n' mm' nn' mm' n'n (64). 

Relaxation and decay are easily incorporated into the L matrix, owing 

to the fact that terms which multiply-only the off-diagonal or diagonal_ 

elements of P can be inserted by inspection whereas it is clumsy to 

perform this operation in the matrix representation of the density 

matrix. Explicitly, the L matrix corresponding to Eqs. (47) and (59) is given by 



-i(k + 1/T ) 
y y -w1/2 w1/2 i/T 

,· X 

I I -w/2 ~- :![( _!_ + L)+ 2k] - ~ ( T~e - i2) 
w1/2 \D 2 T2e T2 A ('I') 

I 
L = 

w1/2 
- ~ ( T~e ~ i2) 

-~-- -+- +2k . i [( 1 1 ) l 2 T2e T2 A -w1/2 

i/T 
y W/2 -w1/2 -i(k + 1/T ) 

X X 

(65) 
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and the equation of motion corresponding to Eq. (21) becomes 

(66) 

F is a feeding vector which in this case has two non-zero elements, F 
y 

and F . The solution to Eq. (66) is straightforward: 
X 

p(t) = (67) 

Arguments used earlier can be used to show that the solution can be written 

in terms of a steady-state density matrix p • 
s 

p(t) = exp(-iLt)(p(O) - p ) + p 
s s (68) 

The exponential operator can be calculated in matrix form using Putzer's 

15 method, and a closed form solution may be obtained. It might be noted 

that the characteristic equation for L yields a quartic polynomial with 

real coefficients. A strict algorithm tor calculating the eigenvalues and 

the resulting exponential matrix can be made, and one may avoid 

iterative methods that generally restrict calculations to time regions 

that lie relatively close to t • 0 • 
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.·. 3 
E. Casein Which A <<VOL 

When the wavelength of the driving field becomes much smaller than 

the sample size, the phase of the radiation field is no longer constant 

. th 
throughout the sample, and, therefore, the j molecule within the 

-+ 
sample which is at a position rj will experience an interaction 

Ha~iltonian Vj(t) given by 

(68) 

-+ 
where k is the·wavevector of the radiation with frequency w. Under 

. . ~ . . 
the rotating field approximation, the Hamiltonian for the j molecule is 

hw 
:K' = ~ (J 

j 2 3 
(69) 

which is similar to Eq. (2). For the same reasons that prompted a 

rotating frame transformation, we may perform a suitable unitary 

transformation on the density matrix which will remove the explicit . 

time and space dependence from the Hamiltonian. Defining 

io wt - k•rj 
= e 3 2 (70) 

th we transform the laboratory frame density matrix for. the j molecule 

(71) 

This leads to an equation of motion 
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(72) 

where the Hamiltonian K is identical to the·rotating frame Hamiltonian 

in Eq. (7). If we assume that we have a sample of identical, non 

interacting systems, the form of K, which is both time and space 

independent, renders the j index in Eq. (72) superfluous. The equation 

of motion is thus identical to Eq. (10) and the development follows 

the same lines. Note, however, that the unitary transformation carries 

the implicit dependence on j, r, k and w. and the laboratory frame behavior 

of the system can be obtained by·an inverse transformation. The spatial 

transformation is not as trivial as the rotating frame transformation 

and will depend strongly on the shape of the sample, how it is driven 

by the applied field, and how it is observed. This type of effect is well 

6 known theoretically and experimentally. In the photon echo experiment, 

for example, light is emitted from the sample in a direction which is 

determined by the wavevectors of the coherent exciting radiation. 

Explicitly, if the second pulse in the two-pulse sequence enters at 

an angle a from the first pulse, the superradiant echo emission is 

observed at an angle2a.. In the special case of -a·small sample which 

is observed at a large distance, the observed behavior of the system 

will be the sum of the molecular density matricies 

(73) 

If we include the spatial dependence explicitly by an inverse 

transformation,we have, assuming a quasi-continuous distribution of 

molecules, 
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k•r -ia-
3 2 e 

k•r 
-ia3 -2- 3 

p e d r 

where G(r) is the function that describes the shape of the sample. 

The form of Eq. (74) results in a three dimensional spatial Fourier 

transform of G(r) for the off-diagonal elements. The.diagonal 

elements yield simply an integration over the normalized shape 

function G(r). 

We have shown above that the position-dependent phase factor 

(74) 

introduced irito the Hamiltonian for the short wavelength case inessence 

does not alter the development of the previous sections, and, in. 

·particular, does riot hinder the production of a long term coherent 

state. Through the use of a spatially-dependent unitary transformation 

one can relate the optical case to the simple and highly useful 

geometrical picture. It must be noted, however, that for optical 

frequency energy separations, the long term coherent component will 

manifest itself as a precessing macroscopic electric dipole and, 

therefore, the sample itself will produce a coherent radiation field, 

i.e., coherent enhanced spontaneous emission. If this field becomes 

comparable to the driving field, it must be included in the 

Hamiltonian. This problem and other considerations inherent ina 

practical optical case such as specific spatial effects, noise due. 

to on-resonance spontaneous emission, non;..linear effects, and specific 

relaxation mechanisms are too involved to treat in general, and it is· 

beyond the scope or intent of this paper to deal with these points 

in detail; however, a few aspects of the induced field will be discussed 

qualitatively. 
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The radiation field emitted by the sample will be at the same 

frequency as the driving field, since this is the rotating frame 

frequency and, therefore, the frequency of the dipole precession. If 

the magnitude of the coherent component is small due to either t.he 

intrinsic rate constants of the system or the rate of incoherent 

excitation, and if the coherent driving field is reasonably large, a 

small volume element of the sample will emit a negligible amount of 

radiation relative to the magnitude of the applied 

fields and, therefore, the emitted field may be disregarded. For this 

case the development of the previous sections is quite adequate to 

treat the optical region. 

However, if the field emitted by a small volume element of the 

sample is not negligible, two cases must be distinguished. (1) If the 

'-+ 
long term coherent component is produced along the r 2 axis by the 

on-resonance method, the precessing dipole and therefore the emitted 

-+ 
E
1 

field will be 90° out of phase with the driving E field applied 

along the -;1 axis. This will cause position dependent phase and 

-+ 
amplitude shifts of the vector resultant E field throughout the sample. 

Depending upon sample details, this effect could hinder the emission 

of coherent radiation from the sample. This is probably not a serious 

problem since T2 processes will most likely inhibit the production of 

..... 
a sizable coherent component along r

2 
in any case. (2) If the long· 

term coherent component is produced along the r
1 

axis by the off 

l~E!sonance method, the emitted and applied field will be in phase. Thus 

the sample will not experience a phase shift problem but the amplitude 

-+ . 
of· the resultant E field will still vary with position in the sample. 
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This does not present a problem for either the production of a long 

term coherent component or the emission of radiation from the sample. 

+ 
Regardless of the magnitude of the E field~ i.e., the magnitude of w

1
, 

in a given volume element of the sample, a coherent component will still 

be.produced which is colinear with the coherent components produced in 

other parts _of the sample. The magnitude 

of w1 will simply determine the size of the coherent component ~eveloped 

in that volume element. Furthermore, since the maximum coherent 

component occurs for 

and since the coherent component. becomes smaller for 

values of w1 greater than this, 

the E field .will not continue to grow 

and in a sense the system will self-

regulate the magnitude of w1 inside the sample. Thus, we have the 

possibility that with an appropriate set of rate constants and for 

(75) 

high values of incoherent excitation, the sample will emit a radiation . 

field which is at the same frequency and in-phase with the coherent 

driving field. If the amplitude of the driving field is such that 

w1 is less than the valu' in Eq. (75), 

the superradiant emission of the sample itself may amplify the applied 

field to the point where w
1

, in the sample and emitted the sample, .will 



'I 

-43-

build up to the value given in Eq. (75). In this'sense, production of 

long term coherence in optical systems may be useful as a tunable coherent 

light amplifier. 
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II I. SUMMARY 

We have presented a discussion of coherence in an ensemble of excited 

state two-level systems for the case in which population is being fed into 

the ensemble at a constant rate and decay is occurring from the ensemble at 

a rate dependent upon the state of the ensemble. The problem was initially 

treated in the absence of conventional T1 and T2 processes and an exact 

solution was obtained using the density matrix formalism. Several 

examples were treated to illustrate modifications which must be considered 

when a coherent coupling experiment is performed on an excited ensemble. 

We have shown that it is possible to produce and maintain a coherent 

state in the excited ensemble for times which are only limited by ,~he 

coherence time of the driving field despite the fact that this time may 

greatly exceed the lifetimes of the excite4 states. Conventional T1 and 

r
2 

processes were added to the development and exact solutions were obtained 

for the steady-state case which is important when examining the possibility 

of producing long termor kinetic coherence. It was demonstrated that if 

the modified Bloch equations are applicable, T1 and r 2 processes do not 

modify the qualitative results obtained in their absence. Furthermore, 

even when rapid r 2 processes occur under low power conditions, itwas shown 

that for high power in some instances sizable long term coherent cotnponents 

may nonetheless be maintained since the coherent component is effectively 

"spin locked" along the rotating frame static field. 

Finally, it was shown that the development applies to the short 

wavelength optical case in addition to the long wavelength case. It was 

pointed out that the long term coherent component in optical systems 

will exhibit long term superradiant emission, i.e., continuous enhanced 
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coherent spontaneous emission, and that it may be possible to employ this 

effect as a coherent light amplifier. By choosing the proper system, 

the development of Section A should prove useful in interpreting exper

imental results. 

Experimental verfication of long term kinetic coherence has been 

established for phosphorescent excited triplet states in zero field 

and will be presented in a forthcoming publication. 
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FIGURE CAPTIONS 

Figure 1: (a) Initial population difference vector (heavy arrow) will 

precess about the effective field direction (dashed arrow in r
1
-r

3 
plane). 

(b) Feeding and dephasing processes produce a cone of vectors about the 

effective field direction. (c) Vector sum of the cone yields a vector 

aligned along the effective field .direction and hl)ving a coherent 

component. 

Figure 2: Pictorial description of the model system presented in the 

discussion. F and F are constant feeding rates, whereas k and k are y X y X 

decay rate constants. 

Figure 3: Comparison of the two in-plane coherent components under the 

influence of inhomogeneous decay. The maximum value of the r 1 component. 

is obtained under conditions of high power applied field and is thus 

independent of inhomogeneous decay. The maximum value of r 2 is·obtained 

for relatively low power and is strongly affected when the homogeneous and 

inhomogeneous relaxation times become comparable. 
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Fig. 2 
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This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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