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Abstract 

Magnetic couplings between protons, such as through-space dipole couplings, 

and scalar J-couplings depend sensitively on the structure of the molecule. Two­

dimensional nuclear magnetic resonance experiments provide a powerful tool for 

measuring these couplings, correlating them to specific pairs of protons within the 

molecule, and calculating the structure. This work discusses the development of 

NMR methods for examining two such classes of problems - determination of the 

secondary structure of flexible molecules in anisotropic solutions, and primary struc­

ture of large biomolecules in aqueous solutions. 

The anisotropic environment of liquid crystals prevents complete averaging of 

the proton-proton dipolar interaction, leading to intractably complex spectra. Bya 

series of synthetic and spectroscopic steps, the residual dipole couplings for a series 

of alkanes (n-hexane through n-decane) are measured and assigned .. These are used 

as experimental constraints for mean field models of the solute-solvent interaction . 

Such calculations yield values for the trans-gauche energy difference for the carbon­

carbon bonds, and give a time-averaged picture of the alkane's conformation and 



orientation within the liquid cystalline environment. 

Proton J-couplings in liquid-phase molecules provide a direct measure of the 

bond connectivities within the molecule, from which a structure can be derived. 

A new heteronuclear decoupling sequence, DIPSI-2, has been employed to transfer 

polarization between coupled spins. This windowless radiofrequency pulse sequence 

generates much more efficient magnetization transfer than earlier sequences, yield­

ing twcrdimensional spectra with better cross-peak intensity and cleaner lineshapes. 

Two additional developments are also discussed: the implementation of iterative 

schemes to the generation of multiple-pulse echo techniques, and the measurement 

of the geometric component of the transition probability in a twcrlevel system. By 

phase-shifting the pulses of a Carr-Purcell echo train, its ability to preserve both 

the amplitude and phase of the magnetization is improved dramatically. These 

echo sequences find application in imaging experiments, where they are employed 

for volume selection, or improvement in signal-tcrnoise. The second topic involves 

measuring the effect of a Hamiltonian's geometry on the transition probability of 

a twcrlevel system during a near-adiabatic radiofrequency sweep. This experiment 

verifies the existence of a component of the probability that depends only on the 

shape of the sweep profile, and not the rate of passage. 
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Chapter 1 

Introduction 

1.1 The Spin Hamiltonians 

Nuclear magnetic resonance (NMR) provides a singularly powerful technique for 

determining the structure of solvated molecules. Rapid molecular motion narrows 

spectral lines enough to allow measurement of chemical shift dispersion of, and 

magnetic couplings between, the nuclei of interest. This information, quantified 

in one- and two-dimensional experiments, allows the spectroscopist to determine 

internuclear distances and hence, the molecular structure. In this chapter, we in­

troduce the evolution Hamiltonians governing the behavior of spin-! systems under 

a variety of experiments, both in anisotropic solutions (e.g. liquid crystals) and 

isotropic solutions (liquids). 

1.1.1 Zeeman Interaction 

A spin-! nucleus at equlibrium in a static magnetic field will have two quantized 

energy states, denoted la) and 1,8). The splitting in this two-level system is defined 

1 



2 

by the Zeeman interaction: 

'Hz = -,Bo . I, (1.1) 

where, is the gyromagnetic ratio of the nucleus, and Bo the strength of the mag­

netic field at the nucleus, and I is the spin angular momentum operator. For this 

Hamiltonian and subsequent ones, we work with reduced units, such that h = 1. A 

more general case of the Zeeman interaction allows for differences in the electron 

distribution (bonding environment) about the nucleus. This tensorial interaction, 

known as the chemical shift, can be expressed as follows: 

(1.2) 

where the tensor (j incorporates the shielding of the nucleus by its neighboring 

electrons. In liquid-state NMR, rapid tumbling averages the tensor elements such 

that only a single value remains - the isotropic chemical shift for that nuclear 

environment. 

1.1.2 Scalar Coupling 

Electron-nucleus coupling causes not only the chemical shift interaction, but also 

a bilinear coupling between dissimilar nuclei separated by only a few bonds. The 

tensorial J-coupling 

1iJ = II . .:T . 12 

can be divided into a traceless part 

.:T~ = .:TQfj - DQfjJ 

and a diagonal contribution 

(1.3) 

(1.4) 

(1.5) 
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where J = iTr(J'). Fast isotropic tumbling in liquids leaves only the scalar J-

coupling. In 1 H NMR studies of liquid crystalline solvents, such as those discussed 

in Chapter 2, the motional averaging is sufficient to scale the anisotropic component 

enough that it remains unresolved. 

This coupling (on the order of a few hertz) gives connectivity information (since 

it falls sharply with an increasing number of interstitial carbons) which can be used 

to solve the primary structure of large molecules. Chapter 3 describes experiments 

designed to help elucidate these coupling networks. 

1.1.3 Dipole Coupling 

In addition to the electron-mediated J-coupling, nuclei experience a direct dipole-

dipole coupling of the form: 

'1J _ 1'11'2 (I . I _ 3(11 . rI2)(12 . r I2)) 
fl,D - 3 1 2 2 • 

T12 T12 
(1.6) 

With the static magnetic field aligned along the .i-axis, we can expand the Hamil­

tonian into the familiar "dipolar alphabet" [1]: 

(1.7) 

where 

A - I lz l 2z (1 - 3 cos2 (}) 

B - ~(11z12z - 11 .12)(1 - 3cos2 (}) 

C - -~(IlzI2+ + 11+12z) sin(} cos (}e-
i4> 

D - -~(IlzI2- + 11_12z) sin (} cos (}ei4> 

E - 3 (1 I ) . 2 (} -2i4> -4 1+ 2+ sm e 

F - -~(Il_12-) sin2 (}e2i4>. (1.8) 
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Figure 1.1: The pulse sequence for the COSY experiment. 

In high field, the static field will truncate the Hamiltonian to: 

'HD - "Yl;2 (A + B) 
T12 

- "Y21~2 (1 - 3 cos2 8) (3ILz I2z - II .12). 
T12 

(1.9) 

Spectral intensities and splittings for coupled spin systems are derived in several 

references [2, 3]. 

1.2 Two-Dimensional NMR 

1.2.1 COSY 

The cross-polarization experiment follows from several earlier two-dimensional cor-

relation experiments. The first, COSY (COrrelated SpectroscopY) [4], creates co-

herences between spins through J- or dipole coupling. Figure 1.1 shows a schematic 

diagram for the simplest COSY experiment. A product operator analysis [5] traces 
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the evolution of two coupled. spins under this pulse sequence. The 90° pulse tips 

the spins into the transverse plane, 

(1.10) 

where the spins evolve under their characteristic chemical shift and the scalar J-

coupling: 

After a time t 1, a 90° mixing pulse is applied. This pulse yields the observable 

signal: 

(1.12) 

Evolution under the chemical shift and J-coupling interactions during t2 gives the 

observable magnetization: 
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Figure 1.2: Spectrum for two spins-! for a COSY experiment. The filled cir­
cles, (.), denote peaks with positive intensity, and the open circles, (0), denote 
negative intensity. The cross-peaks have an antiphase absorption structure, 
while the diagonal peaks (®) have a dispersive character. 

6 

After double Fourier transformation, the resultant spectrum has antiphase ab-



90° 90° 
l4---tl-~ ~ 

<t> x 

Figure 1.3: The traditional 90° - tl - 90° sequence for COSY is followed 
immediately by another 90° pulse to convert double-quantum coherence into 
observable magnetization. 

7 

sorption quartets (with an interpeak splitting the size of J) at the cross-peak posi­

tions (WI, W2) and (W2' wt). There are dispersive diagonal quartets at (WI, WI) and 

(W2' W2). Figure 1.2 shows the spectral pattern for the two-spin system. 

1.2.2 Double-Quantum Filtered COSY 

For complicated spin networks, it is often of value to select signal only from coupling 

networks of a certain size. Chapter 2 presents such an example - the contribution 

from mono-protonated de utero-alkanes must be removed from the COSY spectrum 

of diprotic deuterated alkanes. Double-quantum filtered correlation spectroscopy [6, 

7] allows this by filtering the signal through a double-quantum coherence, as shown 

in Figure 1.3. Considering both the observable and non-observable terms in the final 
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density matrix (Equation 1.12) for the COSY experiment treated above, gives: 

The two-spin coherence terms can be expanded into double-quantum and zero-

-12z COS(W2tt} + 12% sin(w2tt}] cos (71' J12t1) 

1 
+[2"[(211%12y + 211y12%) - (211y12% - 2lt%12Y)] COS(Wltl) 

1 
+2[(211%12y + 211y12%) + (211y12% - 211%12y )] COS(W2tl) 

+211y12z sin(w2h) + 2ftz12y sin(wltd11 sin(1I"JI2td. (1.15) 

Rather than allowing these coherences to evolve under the weak coupling Hamil-

tonian, we immediately apply another 90~ pulse. This pulse, in conjunction with 

proper phase-cycling for ¢ (¢ = O,~, 11", 3;) will convert the double-quantum coher­

ence to antiphase magnetization at the beginning of the detection period, 

! 

(1.16) 
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Under the weak coupling Hamiltonian, the system then evolves with the following 

observable magnetization during t2: 

+~Ilfl sin(1rJ12t1) sin(1rJ12t2) sin(wltl) COS(Wlt2) 

-~h:z: sin(1rJ12t1) sin(1rJ12t2) COS(Wltl) sin(wlt2) 

+~I2f1 sin(1rJ12t1) sin(1rJ12t2) sin(~ltl) COS(W2t2) 

-~I2:Z: sin(1rJ12t1) sin(1rJ12t2) cos(wltd sin(w2t2) 

+~Ilfl sin(1rJ12tt} sin(1rJ12t2) COS(W2tt} COS(Wlt2) 

1 
-"2Il:z:sin(1rJ12tt} sin(1rJ12t2) sin(w2tl) sin(wlt2) 

+~I2f1 sin(1rJ12t l) sin(1rJ12t2) sin(w2t l) COS(W2t2) 

-~ 12:z: sin( 1r J 12t1) sin( 1r J12t2) sin(w2tl) sin(w2t2). (1.17) 

Double Fourier transformation (with a hypercomple.x transform) gives a spec­

trum of the form shown in Figure 1.4. Such a spectrum does not suffer from the 

broad dispersive tails of the diagonal peaks which affiict the regular COSY (thus 

obscuring cross-peaks close to the diagonal). Also, in the case of the alkane studies 

presented in Chapter 2, the double-quantum filter will cancel the signal contribution 

from one-proton isomers. 

1.3 Topological phases 

1.3.1 Gauge Theory 

In order to define reference frames for testing physical laws, we often make reference 

to gauge transformations [8]. In quantum mechanics, these comprise unitary oper-

,. 
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Figure 1.4: In the double-quantum filtered COSY, both the diagonal and 
cross-peaks have absorptive antiphase quartet structure. 
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ations which allow one to transform coordinates for a system under examination. 

The gauge of a system is characterized by the symmetry inherent in the system, 

and the classification for the gauge is based on the underlying symmetry group 

describing the system. If, for example, we consider a one-parameter system, with 

propagators of the form exp( i(J), then successive unitary operations commute, and 

the gauge group is Abelian, since the underlying symmetry group is U(I). The 

simplest such case would be spin-!, where we can write the 2 x 2 Hermitian density 

matrix, Ps 

(1.18) 

where p is the polarization vector, and if is a vector of Pauli spin matrices. Evolution 

under the gauge transformation then gives: 

(1.19) 

In the case of rotation operators quantified by the three Euler angles, the unitary 

operations do not commute, so the non-Abelian symmetry groups, 80(3) for class i-

cal rotations, and 8U(2) for spin-angular momentum, lead to a non-Abelian gauge. 

Another feature of the gauge symmetry is that Abelian gauges, having the form 

U = exp [i(Diagonal matrix)] (1.20) 

can cause a phase shift of the wave function, but can not induce coherences. A 

non-Abelian gauge, on the other hand, has the form 

U = exp [i(Non-diagonal matrix)] (1.21) 

and can both cause phase changes and generate coherences. 



12 

1.3.2 Berry's Phase 

A quantum system evolving adiabatically under some Hamiltonian, 1i, will remain 

in an instantaneous eigenstate of that Hamiltonian. The adiabatic theorem [9] states 

that if the Hamiltonian is brought back to its original form, then a given eigenstate 

of that system will also be returned to itself, apart from some phase, 'Y. Berry has 

shown that this phase factor has contributions not only from the dynamical phase, 

but also from a term that depends only on the geometry of the Hamiltonian's path 

in parameter space [10]. This Berry phase exemplifies an anholonomy - the extent 

to which certain system variables fail to return to their original values after the 

system undergoes some evolution. 

Following the derivation of Berry, we assume a Hamiltonian of the form 1i(R(t)) 

where R(t) describe the time-dependent parametrization of the Hamiltonian (e.g. 

, R could assume the form R = (x, y, z, .. ) in cartesian space, or R = (Iz, III' Iz) 

in spin space). We allow the system to evolve over a closed path, denoted C, in 

parameter space, i.e. R(T) = R(O). To assure adiabaticity, T is chosen to be large. 

Evolution of the system is governed by the SchrOdinger equation: 

1i(R(t))I1/J(t)) = i1iI~(t)) (1.22) 

such that we can choose a basis set, In(R)), with eigenvalues, En(R), satisfying the 

equation 

1i(R)ln(R)) = En(R)ln(R)). (1.23) 

A system initially in state In(R(O))) will evolve under the influence of 1i into 

state In(R(t))) at time t. The state of the system at that time is 

11/J(t)) = exp [~i lot dt' En(R(t'))] exp(i'Yn(t))ln(R(t))). (1.24) 
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The first exponential represents the dynamical phase, and the second represents 

the geometrical, or Berry, phase. This phase, 'Yn is non-integrable, meaning it can 

not be written as a function of R, nor is 'Yn(t) = 'Yn(O). To derive an expression for 

'Yn, we substitute I'I/J(t)) from Equation 1.24 back into Equation 1.22, and get 

i'n(t) = i(n(R(t))IV Rn(R(t))) . R(t). ' (1.25) 

This gives a total geometric phase contribution for the trajectory of 

'Yn(C) = if (n(R) IV Rn(R)) . dR (1.26) 

which is dependent only on the geometry of the circuit, and contains no time in-

formation about the trajectory. This line integral can be solved more conveniently 

by applying Stokes' theorem to convert it to a surface integral, 

'Yn(C) - -1m /fc dB· V x (nIVn) 

- -1m /fc dB· (Vnl x IVn) 

- -1m /1 dB· L (Vnlm) x (mIVn). 
C m#n 

(1.27) 

The line integral over the circuit has now been replaced by a surface integral 

over the area enclosed by the circuit in parameter space. The integrand is obtained 

by substitution from Equation 1.23 as follows: 

( 1
M) = (mIV1-lln) 

m vn (En _ Em)' (1.28) 

Substituting this result into the surface integral above, gives: 

'Yn(C) = - /fc dB· Vn(R), (1.29) 

where the integrand, Vn(R), is 

V. (R) = I ~ (n(R)IV R1-l(R)lm(R)) x (m(R)IV R1-l(R)ln(R)) (1.30) 
n m ~n (Em(R) - En(R))2 . 
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Any solutions to the SchrOdinger equation (Equation 1.23) can be used to define 

Vn(R), and the value of the geometric phase depends only on the enclosed area of 

the path R(t). 

Both classical and quantum mechanics present many examples of this purely 

geometric phase [11, 12, 13]. Parallel transport (no local rotation) of a pencil, for 

example, along a path on the surface of the sphere can result in an accumulated 

phase equal to the solid angle subtended by the circuit. If a pencil at the north 

pole is brought to the equator along a line of longitude (for ~ radians), traversed 

along the equator for ~ radians, and then translated back up to the north pole, 

it will point in a direction 90° away from the original. This value equals !lC C), 

the solid angle included by the circuit on the sphere surface. The value of the 

accumulated phase depends only on the geQmetry of the circuit, and contains no 

dynamical information about how fast the circuit was traversed. 

Berry's phase has been observed in a host of physical systems. Polarized light 

passing through a coiled optical fiber will have the polarization direction rotated by 

an amount proportional to the helicity of the fiber [14, 15]. In nuclear magnetic and 

quadrupole resonance, spins evolving in a slowly varying magnetic field exhibit a 

geometric phase [16, 17, 18, 19]. The effect of the geometric phase of electronic wave 

functions upon nuclear wave functions in Jahn-Teller systems has been observed in 

molecular spectroscopy [20, 21, 22]. Classically, Berry'sphase has been applied to 

analyze systems as diverse as classical oscillators [23, 24], and the propulsion of 

deformable bodies in non-viscous media [25]. For a thorough review ofthe research 

to date, the reader is encouraged to consult Zwanziger et al. [26]. 

.. 



Figure 1.5: Zener et al. discuss adiabatic evolution in terms of the transition 
probability for a molecule to pass from one potential surface to the other. 
The states 1/Jl and 1/J2 describe the adiabatic basis where there is no exchange 
between the states. 

1.3.3 Landau-Zener Theory 

15 

Studies of the Berry phase involve the evolution of a system under an adiabatically 

changing Hamiltonian. Zener et al. [27, 28] first calculated an expression for the 

transition probability for a two-level system as a function of the adiabaticity of 

evolution. The problem was first couched in terms of molecular electronic states 

such as those pictured in Figure 1.5. The system can be described, as a function of 

internuclear separation, R, by the wave function 1/J: 

(1.31) 
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Assuming the Born-Oppenheimer separation of nuclear and electronic coordinates, 

this gives the state of the electron wave function as a function of explicit position, 

x, depending implicitly on the internuclear separation, R. We seek to develop an 

expression for the transition probability between the state 

(1.32) 

and 

(1.33) 

Zener undertook the solution of this problem by considering pure states, 4>1 and 4>2 

which can be written as linear combinations of 1/;1 and 1/;2, We can then write: 

(1.34) 

If we assume that the center-of-mass motion is negligible, we can rewrite the 

coordinate system as a function of the internuclear separation, and consider the 

difference between the eigenstates as a linear function of time 

(1.35) 

The eigenvalues of 1/;1 and 1/;2 (El and E2) fall on the nonintersecting hyperbolas. 

The states 4>1 and 4>2, on the other hand, cross at the transition point. El and E2 

approach each other only as closely as 2cI2(Ro). 

Substitution into the SchrOdinger equation then gives 

(1.36) 
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which gives: 

(1.37) 

From the initial conditions, 

el(-OO) - 0 

(1.38) 

we can write a transition probability, P 

(1.39) 

After solution of the differential equations (1.37), we get transition probability, 

(

_7rl;2 ) 
P = exp a 12 • (1.40) 

Thus, the transition probability is given in terms of the adiabaticity of the 

passage through the avoided crossing. As C12 decreases (adiabatic passage), the 

transition probability for "pI --+ "p2 becomes vanishingly small. These calculation 

assume a time-independent Hamiltonian. The discussion of non-adiabatic transi-

tion probabilities in Chapter 5 extends this treatment to the case of time-varying 

Hamiltonians. 



Chapter 2 

Conformations of Flexible 

Molecules 

2.1 Introduction 

Liquid crystals provide an excellent solvent environment for structural studies of 

flexible molecules. A reasonable first step towards determining the structure of 

such a molecule would be to measure (pairwise) the distances between all its pro­

tons. Magnetic dipole couplings between the protons allow us to do exactly this. 

The anisotropy of the solvent environment prevents complete averaging of the in­

tramolecular dipole couplings in the solute molecule, while allowing enough motion 

to yield motionally narrowed spectra. The residual dipole couplings (dependent 

both on the interproton distance and orientation) can serve as experimental con­

straints for mean field models, which allow us to develop a picture of the solute 

molecule's conformation and orientation in solution. 

Since the first narrow-line NMR spectrum of a solute dissolved in a liquid crys-

18 
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tal [29], various studies have been undertaken towards using NMR in liquid crystals 

for molecular structure determination [30,31,32,33,34,35,36]. In some cases, the 

spectrum of the fully protonated molecule was analyzed, while in others selective 

or random deuteration was used to simplify the spectra. It was quickly realized 

that conventional one-dimensional proton NMR spectra rapidly become intractable 

with increasing molecular size and number of protons, and also uninterpretable for 

anything other than small rigid or highly symmetrical molecules. 

One solution for somewhat larger molecules is to study the deuteron quadrupole 

couplings of the corresponding isotopically labeled molecules. However, the spectral 

simplicity thus achieved has a price - the quadrupole couplings· are smaller in num­

ber than the dipole couplings and they provide little information about internuclear 

distances. An alternative is to use proton NMR of randomly deuterated molecules 

to determine the proton dipole-dipole couplings [37, 38, 39]. The determination 

of dipole couplings has proved particularly convenient when random deuteration is 

combined with two-dimensional and multiple-quantum NMR techniques [40,41]. 

For flexible molecules, the observed dipole couplings between proton pairs i-

j, (Dij), are averages over complex molecular motions and cannot be interpreted 

directly in terms of molecular: structure and orientation. The averaging (indicated 

by angular brackets ( )) involves both the interproton distance rij and the angle (hj 

between the vector r ij and the external magnetic field: 

(2.1) 

A priori, a separation of the coordinates rij and Oij is not possible, and models for 

the molecular motion are required to analyze the molecular structures and orienta-

tions. Earlier studies of the dipole couplings of n-hexane assumed that the orienta-
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tiona! order is the same (the average) for all conformations of the molecule [42, 2]. 

We have used two newer models [43,44] (where the ordering in solution is different 

for each conformer) to study the solution behavior of a series of n-a!kanes. The mod­

els were originally developed for analysis of quadrupole splittings in perdeuterated 

alkyl chains [43, 45], but applying them with proton dipole couplings as experi­

mental constraints gives a more rigorous test of the theories. We anticipate that 

the full set of experimental dipole couplings presented in this work provides a more 

rigorous test of such models. 

This chapter details the spectroscopic studies of the alkanes from n-hexane 

through n-decane dissolved in a nematic liquid crystal, and the information obtained 

from these statistical mechanical models for the solvation. Section 2.2 outlines the 

synthetic and spectroscopic steps required to measure the dipole splittings in the 

alkane molecule. The assignment of the dipole splittings for the series are presented 

in Section 2.3 and its subsections. Applying the dipole couplings as experimental 

constraints for mean field calculations allows the separation of radial and angular 

contributions to the observed splitting. Furthermore, the models give information 

about the rotational energetics within the alkyl chain. Section 2.4 discusses these 

calculations. Section 2.5 conclu~es with a brief discussion of possible extensions of 

these experiments to more complicated molecules. 

2.2 Experimental dipole couplings 

One of the difficulties with high resolution NMR spectra in liquid crystals is the 

exponential rise in the number of transitions with the number (n) of coupled proton 

spins. Yet such complexity represents a vast redundancy since the unknowns in the 
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Figure 2.1: A simple Hahn echo acquisition of the spectrum of a solvated 
alkane, such as the n-hexane pictured here, is too complicated to interpret. 

spin Hamiltonian, 
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(2.2) 

are at most n averaged chemical shifts (6,) and n(n - 1)/2 dipole couplings (D'j)' 

For example, for the fourteen protons in n-hexane there are only three distinct chem-

ical shifts and sixteen dipole couplings, but there are about 60,000 one-quantum 

transitions. Figure 2.1 shows the intractably complex one-quantum spectrum of n-

hexane in a nematic liquid crystal; the proton chemical shifts and dipole couplings 

cannot be determined from such a spectrum. 

A solution to this problem is provided by a series of synthetic and spectroscopic 

steps, the first three of which are represented in the scheme of Figure 2.2. The idea 

is to replace the intractable spectrum of a many-spin system by a superposition of 

simpler spectra of two-proton systems. Non-selective (random) deuteration reduces 

the number of protons on the solute molecules from 2n + 2 to primarily one, two, or 
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three; multiple-quantum spectroscopic filtering then essentially eliminates the signal 

from all but the two-proton molecules. Two-dimensional correlation spectroscopy 

facilitates the determination and assignment of dipole splittings between the proton 

pairs by unfolding the superposed two-spin spectra along a second axis. Multiple 

quantum spectroscopy, in conjunction with the correlation spectroscopy, helps in 

assigning the splittings to specific protons on the molecule. 

2.2.1 Random Deuteration 

Since the dipole splitting we seek to measure is a two-body interaction, we can 

envision the ideal situation where our sample comprises a series of alkane molecules, 

each with only two protons remaining (with one sample representing each possible 

proton pair). As a first step towards this goal, non-selective deuteration of the 

hexane molecule yields a statistical mixture of partially protonated molecules. Non­

selective deuteration is far less synthetically demanding than specific deuteration, 

yet is satisfactory, since the success of the NMR experiments described here depend 

only on having all pairs of protons represented. 

Through spectroscopic steps, we can overcome the non-ideality of having all 

the deuterated species mixed together. The probability of finding m protons on a 

statistically deuterated molecule is: 

P(m) = d"-m(1 - d)m (:), (2.3) 

where d is the degree of deuteration (0 :5 d :5 1), n the total number of hydrogen 

sites, and m the number of unsubstituted protons. The factor (:) accounts for the 

number of ways that m distinct protons can be chosen from a pool of n protons. 

The degree of deuteration (d) is chosen so that the maximum of P( m) occurs near 
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Figure 2.2: Random deuteration reduces the complexity of the 2n + 2-proton 
spin systems to predominantly two-proton species. Multiple-quantum filtra­
tion and correlation spectroscopy select signal only from those molecules hav­
ing two protons, and spread the signal over two frequency dimensions, allowing 
the dipole splittings to be measured and assigned. 
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Figure 2.3: n-Hexane non-selectively deuterated to a level of d = 0.81 has 
predominantly two protons remaining on the molecule. There is still significant 
contribution to the signal from isomers with one proton, or more than two 
protons, remaining. The filled circles, (.), correspond to the experimentally 
determined mass spectrum. 
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m = 2. Figure 2.3 illustrates the protonation profile for a typical sample (n-hexane, 

with d = 0.81) used in our studies. Tw~ and three-proton species are the most 

abundant. 

2.2.2 Multiple-Quantum Filtration 

A one-quantum proton NMR spectrum of the non-selectively deuterated n-hexane 

yields a superposition of subspectra from the different isotopically labeled species in 

the mixture, with relative intensities determined by the symmetry-dictated isomer 
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distribution [46, 47]. Table 2.1 gives some statistical information for the series of 

n-alkanes at the optimum deuteration level (the one with the highest two-proton 

probability). Since the dipole coupling is a two-spin interaction, we are interested 

primarily in the two-proton isomers and seek to measure exclusively the NMR 

signal from these species. Two-quantum filtered spectroscopy [7, 6, 48], effected 

through coaddition of phase-shifted experiments, partially achieves this goal by se­

lecting only coherences of order two or higher for detection. This removes signal 

from one-proton isomers. Still greater selectivity in multiple-quantum filtration 

can be achieved by averaging spectra with different multiple-quantum evolution 

times. In molecules with more than two protons, two-quantum coherence will be 

modulated by couplings to other protons, and signals from molecules with an odd 

number of protons will be averaged away. Signals from higher even-order coherences 

(m = 4,6,8 ... ) still remain, but with minimal intensity, because of the low concen­

tration of molecules giving rise to such signals (molecules with four or more protons, 

cf. Table 2.1) and because the intensity is distributed over many transitions. 

2.2.3 Correlation Spectroscopy 

The combination of random deuteration and multiple-quantum filtration reduces 

signals from all but two-proton molecules. Dipole splittings in the resulting one-

dimensional spectrum can still not be assigned, though. Two-dimensional spec-

troscopy [49] is then used to separate the subspectra from different isomers by 

correlating peaks from the same subspectrum. Two-quantum-filtered correlation 

spectroscopy (COSY) [4] yields square patterns in the spectrum which elucidate 

correlated spins. The position of the square identifies the coupled spins, and the 
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Table 2.1: Distribution of isomers for optimally deuterated n-alkanes. Below 
each alkane, the deuteration level is listed in percent. P(m) gives the prob-
ability of finding m protons the a molecule at the stated deuteration level. 
For m protons, there are Z(m) NMR-distinguishable ways of arranging those 
protons. For the two-proton case, this corresponds to the number of dipole 
couplings. P(m)/Z(m) roughly indicates the attenuation in signal-to-noise as 
the chain length increases, since there is a lower probability of finding two-
proton isomers, and an increasing number of ways to distribute the signal 
from them. 

n-alkane Number of protons remaining 

(o/o-deut. ) 0 1 2 3 4 5 

n-hexane P(m) .12105 .27589 .29193 .19009 .08510 .02771 

(86%) Z(m) 1 3 16 38 86 133 

P(m)/Z(m) .12105 .09196 .01825 .00500 .00099 .00021 

n-heptane P(m) .10772 .25754 .28863 .20126 .09774 .03505 

(87%) Z(m) 1 4 22 67 172 327 

P(m)/Z(m) .10772 .06439 .01312 .00300 .00057 .00011 

n-octane P(m) .12275 .27308 .28689 .18911 .08765 .03033 

(89%) Z(m) 1 4 29 102 316 700 

P(m)/Z(m) .12275 .06827 .00989 .00185 .00028 .00004 

n-nonane P(m) .12157 .27017 .28518 .19012 .08978 .03192 

(90%) Z(m) 1 5 37 156 541 1405 

P(m)/Z(m) .12157 .05403 .00771 .00122 .00016 .00002 

n-decane P(m) .12558 .27323 .28374 .18708 .08788 .03129 

(91%) Z(m) 1 5 46 218 874 2577 

P(m)/Z(m) .12558 .05464 .00617 .00086 .00010 .00001 
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size of the square gives a measure of the strength of the coupling. 

The tw~dimensional patterns expected for tw~spin systems are depicted in 

Figure 2.4, which shows the tw~dimensional COSY patterns expected for A2 and 

AB spin systems, assuming that J couplings can be neglected. With the COSY 

experiment, an A2 system results in a square with sides of length 

(2.4) 

For a coupled AB system, the COSY patterns are more complex: the length of a 

side on the outermost square of the AB pattern is given by 

(2.5) 

The average chemical shift of the two protons of a coupled pair can be read off 

from the position of the center of the peak pattern, and the dipole coupling can be 

determined from the magnitude of the splitting., by inverting Equation 2.5 to yield: 

(2.6) 

2.2.4 Multiple-Quantum Spectroscopy 

The synthetic and spectroscopic methods described thus far yield only the mag­

nitude of the dipole couplings and average chemical shifts of the coupling part­

ners. In the next step, multiple-quantum spectroscopy [49, 50] of the n-alkane 

with perdeuterated methyl, ethyl, or propyl endgroups (an eight-spin system) [51] 

can be used to help determine the relative signs of the couplings and in assigning 

the couplings to specific pairs of protons. A solution to the assignment problem 

is obtained from a faithful simulation of the experimental six- and seven-quantum 
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Figure 2.4: Cross-peak patterns for A2 and AB dipole-coupled spins for the 
tWCHluantum filtered COSY experiment. Filled circles (.) denote peaks with 
positive intensity, and open (0) denote negative excursions. For the AB 
spectra, Ii is the average of the chemical shifts. V:i: = D /2 ± C /2 with 
C = J6v2 + (D/2)2 and tan28 =-D/(26v). The pattern in (a) and (b) 
show an A2 and AB couplings after application of the pulse sequence in Fig­
ure 2.7 without the refocussing pulse in tl' The pattern in (c) results from 
application of the sequence with the refocussing pulse to the AB system. 
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spectra. The assignment based on multiple-quantum spectroscopy is unique down 

to permutations which leave the spin-Hamiltonian invariant [52] - i. e. permu­

tations between spins which have the same chemical shift and coupling partners. 

Experimental results for 1,1,1,6,6,6-d6-n-hexane are presented later. For the larger 

alkane chains, such multiple-quantum experiments were not necessary, because the 

sign of the dipole coupling can be assigned based on assumptions about the ordering 

of the alkane derived from the hexane experiments. 

2.3 Experimental Results 

The randomly deuterated n-alkanes were synthesized by exchange of the proto­

nated alkane in the gas phase with D2 over Pd/charcoal catalyst at 190°C. The 

reaction was stopped after approximately 80 hours when an optimal deuteration 

level between 0.8 and 0.9 was attained. As shown in Figure 2.3, the mass spec­

trum of a sample (e.g. n-hexane) agrees well with the statistical distribution of 

molecules with different numbers of protons for an 0.81 deuteration level calculated 

from Equation 2.3. This agreement implies that the deuteration is essentially ran­

dom, and therefore the sample can be expected to contain a selection of all possible 

two-proton-containing isomers. Eastman Kodak 11650 (EK 11650, p-pentylphenyl-

2-chloro-(4-p-pentylbenzoyloxy)benzoate), a nematic liquid crystal, was used as the 

solvent in all the experiments. Solutions containing ",30 mole-percent of alkane 

were prepared for the NMR work. 

The NMR experiments were carried out on the 362 MHz home-built spectrom­

eter described in Chapter 6. Two-dimensional data sets, of 384 x 1024 points, 

were recorded in the time domain, and double Fourier transformed to 2048 x 2048. 
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The spectra were usually resolution-enhanced with a 45°-shifted sine-bell filter in 

each time domain. Proton spectra were observed with continuous two-quantum 

deuterium decoupling [53] over a 30 kHz bandwidth, and a Hahn spin-echo was 

employed to suppress the signal from the liquid crystal. The temperature con­

trol system described in Section 6.7 regulated the sample temperature (to within 

±O.l°C) to avoid excessive sample heating from RF power deposited by the decou­

pIer. Earlier experiments, performed with an on/off temperature controller yielded 

20°C discrepancies between the setpoint and actual temperatures. Sample heating 

caused by deuterium decoupling was calibrated in a separate test spectrum, using a 

capillary of ethylene glycol centered in a tube of EK 11650/CCI4 • The line splitting 

in the ethylene glycol spectrum served as a measure of the temperature. 

2.3.1 Two-Proton Filtering 

The result of multiple-quantum filtration is demonstrated in Figure 2.5 for n-hexane. 

Figure 2.5a shows the unfiltered spectrum displaying three prominent lines from 

the one-proton molecules. These lines provide the chemical shifts for the protons 

at the carbon sitesM, El and E2 , etc. (cf. Figure 2.6). The two-quantum filtered 

spectrum of Figure 2.5b and the two-spin filtered spectrum of Figure 2.5c were 

both measured with the pulse sequence of Figure 2.7, using a fixed tl value. The 

phase <p was incremented in 90° steps, and the receiver phase alternated between 

0° and 180° . For the spectrum with the high pass two-quantum filter (Figure 2.5b) 

'1"1 was kept constant and four scans completed the cycle, whereas the two-proton 

filtered spectrum (Figure 2.5c) was obtained by incrementing '1"1 after every 4th 

scan. Figure 2.5c is therefore a superposition of the eight A2 and eight AB spectra 

.. 
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arising from the sixteen isomers of C6H2D12• In order to separate these two-proton 

subspectra and to find the peak correlations, two-dimensional two-proton filtered 

COSY spectra were recorded. 

2.3.2 COSY Spectra 

The two-spin filtered COSY spectra were acquired with the pulse sequence of Fig­

ure 2.7, both without and (usually) with a refocusing 1r pulse in tl, and with varying 

two-quantum evolution time (71) for the two-proton filtration. The COSY spectra 

for our series of alkanes are shown in Figures 2.10 through 2.24. 

The A2 and AB patterns expected for the two types of COSY experiments were 

shown in Figures 2.4a~. In the experimental refocused COSY spectra, typically no 

more than eight of the 24 peaks predicted for the AB patterns had sufficient intensity 

to be observed. The refocused COSY experiment was easier to analyze because of 

its slightly narrower lines. For many observed AB patterns, the ratio of coupling 

constant to chemical shift difference is greater than two, so that the inner peaks 

are very small. These subspectra resemble A2 patterns, but from their chemical 

shift position they were recognized as AB patterns and interpreted according to 

Equation 2.5. J couplings are ignored because they are small (less than 10 Hz) 

relative to the (D i ;), and not resolved. 

Without a 1r pulse in tb the Hamiltonians in tl and t2 are identical, leading to 

AB patterns that are centered about the average chemical shift positions (8AB )= 

~((8A) + (8B ») along the main diagonal. In the refocused COSY experiment, the 

AB patterns are concentric about the points (VI = 0, V2 = (8AB»). The shift of 

peaks from one experiment relative to the other allows for accidental overlap of 
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Figure 2.5: One-dimensional spectra of non-selectively deuterated n-hexane. 
The one-quantum spectrum (a) is dominated by the signal from molecules 
with only one proton remaining. Applying a two-quantum filter simplifies the 
spectrum greatly, but still leaves contributions from species with more than two 
protons remaining (b). The two-proton filter averages away all contributions 
except those from molecules with only two protons (c). 
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Figure 2.6: Numbering scheme for the series of alkanes. In the all-trans confor­
mation, protons lying across the longitudinal symmetry plane of the molecule 
are referred to as "anti", and those on the same side as "syn". Methylene pro­
tons close to the methyl proton (in couplings such as MElJ etc.) are referred 
to as ''proximal'', and those at the far end as "distal". 
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Figure 2.7: Two-quantum one-dimensional spectra were acquired with fixed 
values for t 1• For two-proton filtration, the value of 7"1 was incremented every 
four scans. For two-dimensional COSY experiments, the evolution time t1 was 
incremented. 
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peaks to be resolved, although the non-refocussed spectrum is usually too poorly 

resolved to be of any use. Since each of the sites M, El, E2,· E3 , and E4 has a 

different chemical shift, the n! averaged chemical shift positions (OMM) , (OME1)' 

n! categories. This narrows down the search for the exact assignment considerably. 

2.3.3 Multiple-Quantum NMR of the Methylene Chain 

The spatial component of the dipole coupling scales as the second Legendre poly-

nomial of cos(O): 

(2.7) 

creating an amibiguity in the sign of the coupling. Without prior knowledge of the 

solute conformation and orientation, we can not determine the sign of the coupling. 
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On the other hand, assuming that the all-trans conformation predominates, and 

that its long axis aligns parallel to the static field and the liquid crystal director 

axis, certain couplings can be assigned. Geminal couplings will have a positive 

sign, while those couplings parallel to the carbon backbone will be negative. A 

multiple-quantum spectrum and simulation of the central methylene sub chain can 

verify these assignments. 

Multiple-quantum spectra were obtained and fit only for the 1,1,1,6,6,6-d6-n­

hexane and 1,1,1,2,2,7,7,8,8,8-dlO-n-octane samples. Presupposition of similar or­

dering/ conformation behavior for the other alkanes in the series obviated the need 

to perform this synthetically demanding experiment for each alkane. The six- and 

seven-quantum spectra were recorded using time-proportional phase incrementa-

tion (TPPI) [54, 55]. The pulse sequence is given in Figure 2.8. The phase 4> was 

incremented proportionately with h in 22.5° increments, allowing 16 phase sepa­

rated intervals for the 0 to ±8 quantum spectra (±8 quantum at the edge). The 

phase 1/1 was cycled through 0°, 90°, 180°, 270° for each tl point, with the receiver 

held constant to observe even-quantum transitions and alternated between 0° and 

180° to observe odd-quantum transitions. 

Figure 2.9 shows the experimental six- and seven-quantum spectra of hexane-ds, 

obtained by adding the even- and odd-order spectra. The seven-quantum spectrum 

has two pairs of lines, which correspond to the number of distinct ways of selecting 

seven out of eight protons from a spin system with C2h symmetry such as an 

n-alkane (with an even number of carbons) rapidly exchanging between different 

conformations. For the six-quantum spectrum nine of the possible pairs of lines are 

observed. 



90, 18~ 90x 180x 
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Figure 2.8: With the pictured sequence, six-, seven- and eight-quantum spectra 
of the central eight-proton methylene chain can be acquired. 
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To begin the simulations of the six- and seven-quantum spectra of hexane-t4; 

the following assumptions were made: 

1. The hexane molecules are predominantly oriented with their long axes parallel 

to the nematic director, which, for our sample, is parallel to the external 

magnetic field. Therefore (ef. equation 2.1), dipole couplings between geminal 

protons are positive, and couplings between protons which are separated by 

at least three carbon atoms are negative. 

2. The strongest dipole couplings arise from geminal protons (those on the same 

carbon). 

3. The inner methylene groups (En) have stronger couplings t~an the outer 

methylene groups (En - k ) as k increases. As the chain lengthens, the geminal 

protons in the middle will be forced to a position increasingly perpendicular 

to the liquid crystal director. 
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Figure 2.9: Six- and seven-quantum spectra of n-hexa.ne-~ acquired with the 
sequence of Figure 2.8. The twcrdimensional spectrum is plotted with the n­
quantum orders along Wl and the one-quantum spectrum along W2. 1"=11.706 
msec for the even-quantum spectra and 12.000 msec for the odd-quantum 
spectra, with the absolute values of the spectra being added. Time domain 
data sets of 8192 tl points and 1024 t2 points were collected with 6 scans per 
increment, and a recycle delay of 4.5 sec. From Ref [2]. 
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Table 2.2: Nematic-isotropic transition temperatures for the 30 mole-percent 
mixtures of the alkanes in the liquid crystal EK11650. TN _ 1 is the transition 
temperature, and Treduced is the reduced temperature characterizing an exper­
iment performed at 32°C. The following row gives the temperature, in °C at 
which each alkane should be run, inorder to be at a reduced temperature of 
0.875 (the value for decane). t:1T is the difference to be corrected. 

Number of carbons in alkane chain 

6 7 8 9 10 

TN_I 86.0 81.0 79.2 77.8 75.4 

Treduced(@32°C) 0.850 0.862 0.866 0.869 0.875 

T(OC) (@ Treduced = 0.875) 41.1 36.7 35.2 33.9 31.8 

t:1T 9.3 4.9 3.4 2.1 0.0 
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More thorough discussions of the simulations of the multiple-quantum spectra 

are presented elsewhere [56, 2]. The salient feature of the higher-order multiple-

quantum NMR and spectral simulations is that they provide a sensitive test of the 

assignments of the dipole couplings. 

2.3.4 Reduced Temperature Corrections 

The series of alkanes were all run at a constant temperature of 32°C to guarantee 

that the probe characteristics (tuning and matching) which affect power deposition 

in the sample (and the concomitant heating) remained constant for each sample. 

As the alkane chain length increases, though, the clearing point (the nematic -

isotropic transition temperature) of the alkane/liquid crystal mixture increases. 

Thus, for a constant laboratory temperature, the reduced temperature for each 

sample, Treduced = Tiab/TN_I, decreases as a function of chain length. This trend 

is evident in the data of Table 2.2. For calculating orientational distributions of 
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the solute molecules based on temperature-independent energy expressions, it is 

customary to parametrize the distribution function in terms of this reduced tem­

perature [57, 58, 59, 60]. Measuring the temperature dependence of each different 

dipole coupling with variable temperature experiments for the n-hexane/11650 sam­

ple allows us to correct the couplings for the other alkanes in the series. 

A 30 mole-percent mixture of n-hexane in 11650 displays nematic behavior over 

a temperature range of approximately 25 - 90°C. A series of COSY experiments 

were evaluated at temperatures within the nematic range: 28,38,45, 50, and 56°C. 

The dipole coupling for each different proton pair can then be plotted with respect 

to temperature. Table 2.3 shows the salient couplings at each temperature. The 

temperature dependence for each type of coupling can be fit by linear regression, 

yielding a correction of the form: 

(2.8) 

The tables of dipole couplings presented in Section 2.3.5 show couplings that have 

already been corrected for the difference in reduced temperature. By assuming 

that a given type of dipole coupling (e.g. geminal methylene or methyl-methyl) 

will scale similarly with temperature for all the alkanes, we can apply the hexane­

derived correction to all the alkanes in the series. In this fashion, both the solute 

concentration and the effective (reduced) temperature are kept constant throughout 

the series . 

. 2.3.5 Assignment of the Dipole Couplings 

The dipole couplings derived from the COSY experiments serve as constraints for 

the two-parameter fits described in Section 2.4. Spectral resolution and signal-to-



40 

Table 2.3: Temperature dependence of the dipole couplings for a 30 mole-
percent mixture of n-hexane in Kodak 11650. Linear least-squares fits for 
these data give correction functions needed to calibrate experiments for the 
series of solvated alkanes. 

Dipole coupling 28°e 38°e 45°e 500 e 56°e 

E2E2 4971.42 4729.17 4471.63 4418.05 4261.53 

EIEI 4401.02 4185.67 4009.25 _ 3907.99 3775.49 

MM (proximal) 2104.77 1987.00 1892.78 1840.67 1768.33 

EIE2 (syn) 1832.36 1713.76 1629.72 1576.70 1511.46 

EIE2 (anti) 1158.63 1094.70 1071.80 1040.88 1017.94 

MEl (proximal) 440.73 417.06 385.66 382.94 360.78 

ME2 (proximal) 1167.59 1071.86 1030.86 1000.93 962.89 

ME2 (distal) 649.40 618.93 599.95 590.14 562.02 

MEl (distal) 348.19 338.34 326.39 319.24 307.08 

MM (distal) 220.95 213.58 206.82 201.83 197.05 

noise decrease quickly as the chain length increases, and it becomes impossible to 

identify and assign all the dipole couplings. Since the fitting process is overdeter-

mined, we can operate with a reduced set of couplings. Empirically (in calculations 

for hexane and octane), it has been determined that fitting such a truncated data 

set yields a fit within 5-8% agreement with a fit performed for the full data set, 

allowing us to study complicated molecules for which a complete set of couplings is 

not resolvable. 

The next task is to identify the primary couplings. The geminal couplings 

(EnEn), between protons on the same methylene unit, are resolvable and intense. 

These couplings have the same spatial dependence (P2(cos8)) as the deuterium 

quadrupole couplings employed in similar studies of flexible chains, providing a 

convenient basis for comparison with those experiments [43, 61, 62]. Other identi-

., 
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Table 2.4: Experimental and simulated dipole couplings for n-hexane. Only 
the truncated list of couplings discussed in the text is presented here. Models 
A and B are models of Samulski et al. and Burnell et al., respectively. 

Coupling Experimental Simulation A Simulation B 

Uncorr. Corr. Uncorr. Corr. Uncorr . Corr. 

E2E2 3876 3714 3904 3742 3865 3704 

EIEI 3437 3294 3436 3290 3313 3172 

MM (proximal) 1619 1545 1533 1463 1598 1524 

EIE2 (syn) -1398 -1329 -1460 -1329 -1581 -1507 

EIE2 (anti) -921 -888 -880 -845 -999 -960 

MEl (proximal) -335 -318 -312 -297 -294 -279 

ME2 (proximal) -904 -859 -876 -837 -961 -920 

ME2 (distal) -505 -483 -514 -496 -598 -576 

MEl (distal) -253 -244 -250 -240 -287 -276 

MM (distal) -171 -165 -159 -152 -184 -176 
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fiable couplings which also provide a good measure of the molecular conformation 

are the couplings between the methyl protons, and each methylene unit (MEn), as 

well as with the distal methyl group (MM). The final class of couplings considered 

is that between protons on methylene unit separated by one carbon atom. The pro-

tons of these (EnEn+2) couplings lie either on the same side of the carbon backbone 

(syn) or on opposite sides (anti). 

Tables 2.4, 2.5, 2.6, 2.7, and 2.8 list the experimental dipole couplings selected 

for the fitting process described in Section 2.4. The dipole couplings in the first col-

umn have been measured directly from the spectrum, without compensation for the 

difference between the actual and reduced temperatures. Temperature correction 

(which contracted the splitting for all molecules except decane) gives the couplings 

listed in column two of the tables. The remainder of the table compiles the results 
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Table 2.5: Experimental and simulated values for the truncated set of dipole 
couplings for n-heptane. 

Coupling Experimental Simulation A Simulation B 

Uncorr. Corr. Uncorr. Corr. Uncorr. Corr. 

E3E3 4291 4196 4363 4268 4391 4296 

~E2 4078 3987 4079 3989 4103 4013 

ElEl 3623 3544 3515 3454 3410 3331 

MM (proximal) 1553 1516 1489 1453 1448 1413 

ElE3 (syn) -1536 -1496 -1607 -1566 -1624 -1583 

ElE3 (anti) -977 -959 -927 -908 -867 -849 

~~ (syn) -1656 -1613 -1739 -1696 -1781 -1737 

E2~ (anti) -1004 -985 -977 -957 -923 -904 

MEl (proximal) -269 -262 -273 -266 -323 -315 

M~ (proximal) -953 -928 -919 -897 -1011 -987 

ME3 -532 -520 -528 -518 -621 -609 

M~ (distal) -296 -291 -272 -267 -313 -306 

MEl (distal) -191 -188 -183 -179 -214 -209 

MM (distal) -129 -126 -115 -113 -133 -131 
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Table 2.6: Experimental and simulated dipole couplings for n-octane. 

Coupling Experimental Simulation A Simulation B 

Uncorr. Corr. Uncorr. Corr. Uncorr. Corr. 

E3E3 4503 4434 4614 4546 4611 4542 

E2E2 4284 4219 4248 4183 4232 4168 

EIEI 3685 3629 3566 3508 3511 3455 

MM (proximal) 1708 1679 1559 1532 1580 1552 

ElE3 (syn) -1618 -1589"' -1743 -1713 -1778 -1747 

EIE3 (anti) -1030 -1016 -951 -937 -947 -933 

E2E3 (syn) -1785 -1753 -1938 -1905 -1964 -1931 

E2E3 (anti) -1120 -1106 -1026 -1011 -1029 -1014 

MEl (proximal) -327 -321 -293 -288 -323 -317 

ME2 (proximal) -969 -951 -952 -936 -1010 -994 

ME3 (proximal) -558 -549 -524 -517 -572 -564 

ME3 (distal) -305 -301 -280 -276 -305 -301 

ME2 (distal) -204 -201 -191 -188 -211 -208 

MEl (distal) -154 -152 -127 -125 -142 -140 

MM (distal) -97 -96 -86 -85 -95 -94 
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Table 2.7: Experimental and simulated dipole couplings for n-nonane. 

Coupling Experimental Simulation A Simulation B 

Uncorr. Corr. Uncorr. Corr. Uncorr. Corr. 

E4E4 4557 4514 4681 4638 - 4688 4645 

E3E3 4557 4514 4590 4548 4559 4517 

E2E2 4231 4191 4118 4080 4089 4050 

EIEI 3685 3655 3460 3427 3404 3370 

MM (proximal) 1602 1585 1478 1463 1439 1424 

EIE3 (syn) -1619 -1600 -1753 -1735 -1808 -1788 

EIE3 (anti) -1012 -1004 -906 -898 -909 -901 

E2E4 (syn) -1796 -1776 -1973 -1953 -2031 -2010 

E2E4 (anti) -1079 -1070 -1005 -997 -1015 -1007 

E3E3 (syn) -1837 -1816 -2037 -2017 -2085 -2064 

E3E3 (anti) -1133 -1124 -1033 -1024 -1046 -1037 

MEl (proximal) -248 -245 -268 -265 -267 -264 

M~ (proximal) -970 -959 -932 -923 -980 -970 

ME3 (proximal) -553 -547 -488 -484 -523 -519 

ME4 -310 -308 -272 -269 -291 -288 

ME3 (distal) -207 -206 -183 -182 -199 -197 

M~ (distal) -143 -141 -125 -124 -137 -136 

MEl (distal) ? ? -89 -88 -98 -98 

MM (distal) -72 -71 -62 -62 -69 -68 
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Table 2.8: Experimental and simulated dipole couplings for n-decane. 

Coupling Experimental Simulation A Simulation B 

U neorr. / Corr. U neorr. /Corr. U neorr. / Corr. 

E4E4 4610 4733 4713 

E3E3 4494 4517 '4479 

E2E2 4208 4056 3998 

EIEI 3591 3414 3354 

MM (proximal) 1634 1492 1568 

EIE3 (anti) -1626 -1789 -1841 

EIE3 (syn) -997 -862 -897 

E2E4 (anti) -1844 -2018 -2084 

E2E4 (syn) -1045 -960 -1005 

E3E4 (anti) -1916 -2119 -2177 

E3E4 (syn) -1100 -1017 -1065 

MEl (proximal) -286 (?) -283 -300 

ME2 (proximal) -963 -925 -952 

ME3 (proximal) -549 -450 -478 

ME4 (proximal) -308 -260 -276 

ME4 (distal) -211 -173 -185 

ME3 (distal) -177 (?) -118 -129 

M~ (distal) -149 (?) -86 -94 

MEl (distal) -94 (?) -63 -70 

MM (distal) -54 -46 -50 

.. 
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of two mean field models described later in the chapter, for both the uncorrected 

and corrected couplings. From Table 2.2 we see that the decane sample has the 

lowest nematic-isotropic transition temperature, and thus its spectrum (being the 

"hotest") serves as a basis for the temperature correction. 

In the following pages, we present the two-quantum-filtered COSY spectra for 

the alkane series. Figures 2.10, 2.11, and 2.12 show successively smaller sections 

of the spectrum for hexane, in order to resolve the detail in the center region. The 

time domain data sets for this spectrum and those that follow were acquired with 

the pulse sequence of Figure 2.7. Either 384 or 416 tl experiments with 1024 points 

each were acquired. The acquisition parameters were: 

tl (initial) 

tl (increment) 

Tl (initial) 

Tl (increment) 

83.4 p.sec 

83.4 p.secj increment each tl experiment 

2 p.sec 

600 J.l.seCj 15 increments per ft experiment 

1.8 msec. 

Similarly, Figures 2.13,2.14, and 2.15 show the spectrum for heptane, Figures 2.16, 

2.17, and 2.18 for octane, Figures 2.19,2.20, and 2.21 for nonane, and Figures 2.22, 

2.23 and 2.24 for decane. 

One interesting feature to note in the experimental dipole couplings plotted in 

Figures 2.25 and 2.26 is the appearance of an even-odd oscillation in several of the 

dipole couplings. Earlier studies have described the oscillation of the nematic-iso­

tropic transition temperature and entropy as a function of alkyl chain length on 

liquid crystal molecules [63, 64]. The data of Figure 2.26 also shows that the methyl-

,. 
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Figure 2.10: View of 2-quantum-filtered COSY of rrhexane - complete spec­
trum. 384 x 1024 points were collected in the time-domain, and double Fourier 
transformed to 2048 x 2048 points with a 45°-shifted sine bell filter in each 
direction. The square patterns arising from each coupling are labeled. 
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n-hexane +895 --------_ .. _--------------------_._------ -- ------

-895 

(02 (Hz) 

Figure 2.11: View of 2-quantum-filtered COSY of rrhexane - enlarged view. 
The square patterns of all the alkane spectra are shifted in the ':'2 direction 
by the average of the chemical shift offsets of the two coupled protons. In 
WI, they are symmetrically disposed about the zero frequency, because of the 

1I"-pulse in tl' 
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Figure 2.12: View of 2-quantum-filtered COSY of n-hexane - enlarged view of 
center section. 
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Figure 2.13: View of 2-quantum-filtered COSY of n-heptane - complete spec­
trum. Experimental conditions and data processing were identical to those 
used to acquire the hexane spectrum. 
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Figure 2.14: View of 2-quantum-filtered COSY of rrheptane - enlarged view. 
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Figure 2.15: View of 2-quantum-filtered COSY of n-heptane - enlarged view 
of center section. 
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Figure 2.16: View of 2-quantum-filtered COSY of 7'roctane - complete spec­

trum. 
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Figure 2.17: View of 2-quantum-filtered COSY of ~octane - enlarged view. 
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Figure 2.18: View of 2-quantum-filtered COSY of n.-octane - enlarged view of 
center section. 
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Figure 2.19: View of 2-quantum-filtered COSY of rrnonane - complete spec­
trum. The E3E3 and E4E4 geminal peaks are too close to resolve, although 
the intensity of the combined peak was approximately twice that of the El El 
or E2E2 . 
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.. Figure 2.20: View of 2-quantum-filtered COSY of n-nonane - enlarged view . 
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Figure 2.21: View of 2-quantum-filtered COSY of rrnonane - enlarged view of 
center section. 
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Figure 2.22: View of 2-quantum-filtered COSY of n-decane - complete spec­
trum. 
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Figure 2.23: View of 2-quantum-filtered COSY of n-decane - enlarged view. 
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Figure 2.24: View of 2-quantum-filtered COSY of n-decane - enlarged view of 
center section. 
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Figure 2.25: Comparison of the geminal (EnEn) dipole couplings for the series 
of alkanes. The coupling strength, in Hertz, is plotted as a function of chain 
length. Note the even-odd oscillation for the MM couplings. 
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Figure 2.26: Comparison of the methyl-ethyl and methyl-methyl dipole cou­
plings for the alkane series. These coupling give information about distance 
along the chain axis. Note the even-odd effect for the MM and MEl couplings. 
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ethyl couplings for the chains scale similarly, suggesting a comparable ordering 

environment for the chains. 

2.4 Model Calculations 

Given the experimental average dipole couplings, (Dij), models are used in which 

these couplings serve as constraints for the determination of the model parameters. 

The models treat the liquid crystalline solvent as a uniform medium that interacts 

with the alkane solute through a mean-field potential. These calculations yield 

order parameters and conformational distributions for the solute molecules. 

As a simplifying step, we assume a fixed number of discrete conformational 

states for the alkane as prescribed by the rotational isomeric state (RIS) approxi-

mation, [65]. This restricts rotation about each carbon-carbon bond to three min­

ima: trans (the lowest energy conformation), gauche+ and gauche- (slightly higher 

energy), giving 3"-3 possible conformations for the entire chain. Thus the dipole 

couplings can be calculated from a finite sum over conformers [66], 

(Dij) = ~ LLP"S:~Dij,Q~' 
" Q,~ 

(2.9) 

P" is the probability of conformer n and S:~ its order tensor in a molecule-fixed 

coordinate frame. The order tensor is defined as 

S:~ = ~(3cosOQcosO~ - bQ~)' (2.10) 

where 0')( (X = x, y, z) is the angle between the director and the molecular X axis. 

The dipole coupling tensor components of conformer n for spin pair i - j in the 

molecular frame are 

D" - _ 1'2h ~(3 aij aij _ J: ) 
ij,Q~ - 4 2 3 COSI7Q cos 17~ uQ~' 

7r Tij 
(2.11) 

... 
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with 8~ the angle between the internuclear vector rij and the molecular X axis. 

In general, the product pn S:/J is inseparable because of the complex confor­

mational and reorientational averaging. Therefore, determining the structure of 

a flexible molecule requires the development of a parametrized model to describe 

the orientations and energies of the various conformers, and optimization of the 

parameters by least-squares minimization with respect to the experimental data. 

While to date only deuterium quadrupole couplings have -been available for any 

sizeable alkane chain, the dipole couplings from this work presents a much richer 

set of constraints. In the following we will use two models [43, 44] to analyze our 

experimental data. 

2.4.1 Parametrization of the Models 

Following the treatment by Emsley and Luckhurst [67], the total energy of a solute 

conformer n in the liquid crystal is separated into an isotropic part describing the 

internal energy of the conformer and an orientation-dependent part describing the 

solute-solvent interaction: 

(2.12) 

The internal energy is calculated using the RlS approximation: 

(2.13) 

where ng is the number of gauche bonds in the given conformer, Etg is the difference 

in energy between a trans and a gauche bond, and the second term accounts for 

the pentane effect [65] by penalizing adjacent g+ g- bonds. The gauche energy, E tg , 

is used as an adjustable parameter, while the g+g- energy, Eg +g-, whose variation 
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has only a minor effect on the results is taken as a constant of 12.55 kJ/mole [65] 

in our calculations. An alternative for the second term of Equation 2.13 is to use a 

Lennard-Jones interaction between pairs of united atoms (treating the methyl and 

methylene groups as single atoms) which are three or more bonds apart. This form 

of Ui~t was used, for example, by Samulski and coworkers [43]. 

For the external part of the energy, U:Xt, several models have been described 

in the literature (e.g. [43, 44, 68, 69, 70, 61, 62]). In some models each solute 

conformer is treated as an entity whose interaction with the liquid crystal mean 

field is based primarily on its size and shape. In other models, the interaction is 

assumed to be the sum of contributions from the various segments of the conformer. 

In the following, two realizations of the former approach are described. 

Samulski and coworkers [43] used a model (referred to hereafter as model A) in 

which each conformer is approximated by a rectangular parallelepiped with length 

L, breadth B, and width W. They used this model to simulate quadrupole couplings 

of several n-alkanes ranging in size from pentane up to hexadecane [43]. The values 

of L, B, and W are chosen equal to twice the semiaxes of the inertia ellipsoid [68] 

of the conformer, where the semiaxes Aa are aligned along the principal moments 

of inertia: 

Aa = V 2~ (-Iaa + If3f3 +1",,,,), (2.14) 

with Az II L ~ Ay II B ~ Ax II W, and m equal to the mass of the ellipsoid. The 

solute-liquid crystal interaction is described by the excluded volume interaction of 

the parallelepipeds [71]. This interaction is parametrized as 

(2.15) 

" 

.' 
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with the coefficients U2n quantifying the excluded volume: 

U2Q = ~ [6LBW + L(W2 + B2) - 2W(L2 + B2) - 2B(W2 + L2)], 

U22 = ~ (L2 - BW) (B - W), 

the reduced Wigner matrix elements describing the orientation dependence: 

d~o(,8) = ~[3COS2(.8) - 1], 

42(.8) = v:: [sin2 (.8)] , 
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(2.16) 

(2.17) 

(2.18) 

(2.19) 

and the adjustable interaction energy parameter c [43] which is varied along with 

the trans-gauche energy difference, Etg , to fit the experimental data. 

Burnell and coworkers [44,45, 72, 73, 74] modelled the liquid crystalline matrix 

as an elastic continuum which exerts an orienting force on the solute. This harmonic 

potential (referred to hereafter as model B) was originally used to simulate dipole 

and quadrupole couplings for small solutes [44, 72, 73, 74]. More recently, it was 

used to model deuterium quadrupole couplings for flexible alkyl groups on the liquid 

crystal 4-n-pentyl-4'-cyanobiphenyl [45]. Here, the interaction energy assumes the 

form: 

(2.20) 

where c is the circumference of the projection of the molecular shape, approximated 

by a group of van der Waals spheres, onto a plane perpendicular to the director 

of the liquid crystal. The "minimum circumference" shown in Figure 2.27, gives 

slightly better results than the "maximum circumference" [44], which follows the 

perimeter of the projection faithfully. The force constant, k, and the trans-gauge 

energy differential, Etg are adjusted to fit the data. 



x 

Figure 2.27: Minimum circumference projection of an alkane, used to 
parametrize the elastic tube model. The ''footprint'' of the alkane in the plane 
perpendicular to the director is traced out with the minimum path length. 
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Table 2.9: Alkane structural parameters used in the mean field model calcu­
lations. 

length of C-H bond 

length of C-C bond 

bond angle HCH of methylene group 

bond angle HCH of methyl group 

bond angle CCC 

dihedral angles for gauche conformations 

van der Waals radius of H 

van der Waals radius of C 

1.09 A 
1.53 A 
109.0° 

109.47° 

112.0° 

±112.5° 

1.2 A 
1.7 A 

With these two parametrizations for the energy, we can calculate the conformer 

probabilities, pn, and order matrices, sn, by standard statistical mechanical meth-

ods. The conformer probability is given by 

un zn 
pn = exp(- int) ~ 

kT Ztot' 

with the total partition function 

Z ~ (Ur;~t )zn tot = ~ exp - kT ext 
n 

and the orientational partition function 

zn = r27r r exp( _ U:xt (0, </» ) sin 0 dO d</>. 
ext io io kT 

The order matrix is obtained according to Equation 2.10 by 

S n 1 r27r 17r( 0 0 J:) (U:xt(O, </») . 0 dO dA.. 
afJ = 2Zn in 3 cos a cos fJ - UafJ exp - kT sm ~. 

ext 0 0 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

With the geometric parameters of the hexane molecule given in Table 2.9, the 

average dipolar couplings can be calculated from Equations 2.9, 2.11, 2.21 and 

2.22. 
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2.4.2 Results and Discussion of the Model Calculations 

Both models, each with only two adjustable parameters (Etg and e for model A 

and Etg and k for model B), were fitted to the experimental couplings from the 

COSY experiment by minimizing the root-mean-square deviation of the simulated 

couplings from the experimental 

R= (2.25) 

where the sum is performed over the n chosen dipole couplings. The least-squares 

fit was performed for both the temperature-corrected and uncorrected data, with 

the results shown in Tables 2.4, 2.5, 2.6, 2.7, and 2.8. In Table 2.10, we summarize 

the values of the adjustable parameters E tg , e, k, and the deviation R. 

The probabilities of the different conformers obtained for the best fits shown 

in Tables 2.11 and 2.12 are similar for both models. The probabilities of conform-

ers with the same number of gauche bonds are fairly insensitive to the position 

along the chain at which those gauche bonds occur. Therefore, we can simplify 

the summary of the results by grouping all the conformers with a given number 

of gauche bonds. Conformers with adjacent g+ and g- bonds have negligibly low 

(~ 0.0002) probabilities and are grouped in one category for each alkane. Our 

values of Etg (3.13 - 4.46 kJ mol- I for model A and 3.24 - 4.45 kJ mol- I for 

model B) are at the upper end of the widely varying range of Etg values previ­

ously measured for liquid alkanes (between ca. 2.0 and 3.8 kJ mol-I, see for exam-

pIe [75, 76, 77, 78, 79, 80, 81, 82, 83, 84]). (Recently, Photinos et al. [61, 62, 85] 

have given a parametrization of Uext with which good fits of experimental couplings 

can be obtained for the nominal Etg value of 2.09 kJ mol-I.) 

Table 2.13 lists the average order matrices (8) in the principal axis systems of 
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Table 2.10: Results of the least-squares fits for the temperature-corrected 
dipole couplings. 

Model Eg c k R 

(kJ mol-I) (107 J m-3) (10-3 N m- l ) (Hz) 

~hexane 

A 3.13 12.77 37.9 

B 3.24 3.71 82.1 

~heptane 

A 3.38 9.67 52.1 

B 3.37 3.14 93.8 

~octane 

A 3.74 7.48 84.7 

B 3.77 2.68 94.9 

~nonane 

A 4.03 5.68 110.7 

B 4.03 2.25 133.3 

~decane 

A 4.46 4.36 110.4 

B 4.45 1.90 125.19 
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Table 2.11: Distribution of conformers for n-hexane and n-heptane and n-
octane. The conformers are grouped by the number of gauche bonds, regardless 
of their position along the chain. Chains with adjacent gauche+ /gauche-
bonds are listed in a separate category. For each model, both the aggregate 
probability for a given number of gauche bonds, and an average probability • 
for a specific conformer, are listed. Conformers with probabilities lower than 
.01 are listed as such. 

Model A Model B 

Gauche Bonds # of Conformers Prob. Average Prob. Average 

n-hexane 

0 1 .29 .29 .27 .27 

1 6 .50 .08 .50 .08 

2 8 .20 .02 .21 .03 

3 2 .01 .01 .02 .01 

g+g- 10 <.01 <.01 <.01 <.01 

n-heptane 

0 1 .22 .22 .15 .15 

1 8 .46 .06 .47 .06 

2 18 .27 .02 .31 .02 

3 12 .05 <.01 .06 .01 

4 2 <.01 <.01 <.01 <.01 

g+g- 40 <.01 <.01 <.01 <.01 

n-octane 

0 1 .19 .19 .15 .. 15 

1 10 .42 .04 .41 .04 

2 32 .30 .01 .33 .01 

3 38 .08 <.01 .10 <.01 

4 16 .01 <.01 .01 <.01 

5 2 <.01 <.01 <.01 <.01 

g+g- 144 <.01 <.01 <.01 <.01 
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Table 2.12: Distribution of conformers for n--nonane and 1V-decane. The con-
.. formers are grouped by the number of gauche bonds, regardless of their position 

along the chain. Chains with adjacent gauche+ /gauche- bonds are listed in a 

.. ' 

separate category~ 

Model A Model B 

Gauche Bonds # of Conformers Prob. Average Prob. Average 

rv-nonane 

0 1 .16 .16 .13 .13 

1 12 .39 .03 .37 .03 

2 50 .32 .01 .34 .01 

3 88 .11 <.01 .13 <.01 

4 66 .02 <.01 .02 <.01 

5 20 <.01 <.01 <.01 <.01 

6 2 <.01 <.01 <.01 <.01 

g+g- 490 <.01 <.01 <.01 <.01 

rv-decane 

0 1 .15 .15 .13 .13 

1 14 .37 .03 .34 .02 

2 72 .32 <.01 .35 <.01 

3 170 .13 <.01 .15 <.01 

4 192 .02 <.01 .03 <.01 

5 102 <.01 <.01 <.01 <.01 

6 24 <.01 <.01 <.01 <.01 

7 2 <.01 <.01 <.01 <.01 

g+g- 1610 <.01 <.01 <.01 <.01 
• 
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Figure 2.28: Orientational potential energy surfaces predicted by the two mod­
els for two disparate n-hexane conformers, ttt and ggg. The all-trans molecule, 
with its larger aspect ratio, has a steeper orientational potential than the all­
gauche conformer. For longer chains, this difference between the two surfaces 
becomes even greater. There is a dc offset in the energy surface for Model B, 
to account for the non-zero circumference for all conformers. 
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Table 2.13: Primary components of the order parameters for the average con­
formation of each alkane (given in the principal axis system of the inertia 
tensor, the z axis corresponding to the long axis of the molecule). 

Alkane Model A Model B 

8zz 8xx - 8yy Szz 8xx - 8yy 

n-hexane 0.1693 -0.05633 0.1939 -0.01823 

n-heptane 0.1944 -0.06089 0.2158 -0.02831 

n-octane 0.2141 -0.06713 0.2317 -0.03329 

n-nonane 0.2202 -0.07170 0.2376 -0.03251 

n-decane 0.2242 -0.07624 0.2417 -0.03533 
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the inertia tensors of each molecule. While the matrices (8) are diagonal in those 

frames for model A, they have non-vanishing but small components 8xy , 8x % and 

8y % for model B, reflecting the different symmetries of the potentials. The order 

parameters of models A and B differ slightly, but both follow the same trends for 

the alkanes. As expected, the order parameter scales with chain length. 

2.5 Conclusions 

The model calculations demonstrate that both model A and model B together with 

the NMR data describe the main features of the orientation of a flexible molecule 

in a nematic liquid crystal and give reasonable estimates of the probabilities of 

the different conformers. There is some question, though, about the accuracy of 

the calculated E tg values. Raman and infrared studies of gas-phase and liquid­

phase alkanes derive Etg values of ,,-,3.8 kJ /mole for the gas, and "-'2.3 kJ /mole 

in liquids [86]. Reduction of the trans-gauche conversion energy in liquids seems 

reasonable, since we would expect the compressive forces of the liquid to stabilize 
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the higher energy gauche conformations. Our model calculations indicate that the 

anisotropic averaging in the liquid crystal leaves the alkane preferentially aligned 

(in an elongated conformation) along the director axis. Thus we expect the trans­

gauche energy differential to be higher than for isotropic liquids (cf Table 2.10). 

On the other hand, the Etg's predicted by the models climb above the gas-phase 

value. This implies that the liquid crystalline environment is extremely ordered, and 

restrictive to solute reorientation. It is more probable that the Etg values should 

climb above the liquid values, but not as dramatically as they do. Part of this 

problem may be attributable to the nature of the excluded volume model, which 

treats the solute-solvent interaction as occurring between the overall shape of the 

alkane and the mean field. A more promising model, developed recently [61, 62, 

85], treats the interaction energy as piecewise-additive local interactions between 

subunits of the alkane and the mean field. This model calculates the potential by 

summing the interaction of the mean field with the chord connecting the midpoints 

of two carbon-carbon bonds. The model considers primarily those chords connecting 

bonds separated by zero or one intermediate carbon atoms, but can be extended to 

include bonds further separated along the chain. 

An interesting question is whether the method for determining dipole couplings 

which has been presented here can be applied to larger molecules. With increasing 

size of the solute molecule, two problems arise: more lines appear in the spectrum, 

and the intensities of the individual lines decrease. The first problem is illustrated 

in Table 2.14. As the length of the alkane chain increases from six to twenty 

carbon atoms, the number of square patterns in the COSY spectrum increases 

rapidly; hence spectra will be more crowded and more difficult to interpret. The 



Table 2.14: Number of unique 2-proton isomers (number of unique dipole 
couplings), Z(2), as a function of chain length for n-alkanes. This gives a 
measure of the complexity of the spectra as chain length increases. 

Number of carbon atoms 6 8 10 12 14 16 18 20 

Z(2) 16 29 46 67 92 121 154 191 
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second problem is illustrated in Figure 2.29 showing the probability of two-proton 

isomers as a function of deuteration for various n-alkanes. The maxima in the 

curves decrease rapidly as the length of the alkane chain increases. The maxima are 

a measure of the relative intensities of the peaks in the spectrum for different chain 

lengths. For example, for n-decane one expects about three times as many lines as 

for n-hexane, each line at about one third the intensity, and for n-octadecane one 

expects a tenfold increase in complexity and a tenfold reduction in signal intensity. 

We expect that it is feasible with this method to analyze spectra for alkanes with 

up to twelve carbon atoms. 
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Figure 2.29: Isomer statistics for higher n-alkanes (N = number of carbon 
atoms). (a) Probability of each 2-proton isomer, i.e. probability of 2-proton 
molecules divided by the number of different 2-proton isomers, as a function 
of deuteration level. The arrow indicates the level of deuteration of the sample 
used for our experiments. (b) Probability of each m-proton isomer evaluated 
at the maxima of the curves in (a) as a function of the number of carbon 
atoms. 
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Chapter 3 

Homonuclear Cross-Polarization 

3 .1 Introduction 

Structural elucidation is usually a precondition to determining or predicting the 

reactive behavior of large biomolecules. Traditionally, though, chemists have relied 

on x-ray diffraction of single crystals to provide this information. Two-dimensional 

nuclear magnetic resonance [87, 49] provides a powerful technique for determining 

the structures of large molecules in their native solution state, without the need 

for single crystals. Correlation spectroscopy in liquids [4, 88] capitalizes on the J­

couplings between spins to create coherences which can be used to elucidate the spin 

coupling network iIi the molecule. This information provides a set of experimental 

constraints for determining the primary structure of the molecule. 

A variety of techniques for performing such correlation experiments has been 

demonstrated in the last decade. To catalog them here would be a prohibitively 

lengthy enterprise, and the reader is referred to several modern treatises on the 

subject [87, 49, 89, 90, 91]. We are concerned here with presenting a class of 
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experiments, known variously as rotating frame cross-polarization, homonuclear 

Hartmann-Hahn (HOHAHA), or total correlation spectroscopy (TOCSY), experi­

ments [92, 93, 94, 95, 96, 97, 98, 99, 100, 101], and specifically, the application of 

a new broadband decoupling sequence, DIPSI-2, to effect this cross-polarization. 

Unlike the COSY-type experiments, where coupled spins evolve under a weak cou­

pling Hamiltonian, in the Hartmann-Hahn experiments cancellation of the chemical 

shift terms in the spin evolution Hamiltonian allows the spin system to evolve un­

der a pure scalar coupling, and facilitates efficient magnetization exchange between 

coupled spins. 

3.2 The TOCSY Experiment 

3.2.1 The Isotropic Mixing Hamiltonian 

Homonuclear cross-polarization differs from previously described coherence transfer 

experiments, such as COSY (cf. Section 1.2.1), in that it allows net magnetization 

transfer, rather than differential transfer. The COSY experiment generates a spec­

trum of zero integrated intensity, because of its antiphase (up/down) cross-peak 

patterns and 90° phase shift between the cross peaks and the diagonal. The draw­

back of such an experiment manifests itself with closely-spaced resonances, or inho­

mogeneous Bo fields, where the anti-phase lines will interfere destructively, reducing 

the signal-to-noise. The TOCSY, or TOtal Correlation SpectroscopY, experiment 

generates a two-dimensional spectrum with both the cross peaks and diagonal peaks . 

in-phase. 

In the weak coupling regime (J-coupled spins evolving freely in a static field), 
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the evolution Hamiltonian can be written as a sum of the Zeeman interaction and 

a spin-spin coupling term 

1-ltotal = 1-lz + 1-lJ = L -w;.li.ll + 21l'L Ji.j 1i.1l 1jll (3.1) 
i. i.#j 

where the first term includes the single-spin chemical shift information, and the 

second term defines the J-coupling between the spins. To optimize the exchange of 

polarization, we seek to eliminate the chemical shift terms (linear spin operators) of 

the spin network, and allow it to evolve under a pure scalar coupling Hamiltonian 

(bilinear operators) 

1-lz - 0 1-ltotal - 21l'L Ji.j Ii. . I j 
i.#j 

(3.2) 

For the case of two spins, we can write the basis set as sum and difference terms for 

the linear and bilinear spin operators, following the derivation of Braunschweiler 

and Ernst [92]. For the three Cartesian coordinates, Q, (3 = x, y, z we have 

Ea - 4(11a + 12a) 

~a - 4(11a - 12a) 

Ea/3 - 4(11aI2/3 + 11/312a) 

~a/3 - 4(11aI2/3 - 11/312a ) (3.3) 

If we can create a purely scalar Hamiltonian, 1-lJ, during the mixing period, 

we need only consider the following commutation relations for the evolution of the 

system 
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(3.4) 

where (a.,/3,'Y) is the cyclic permutation of the Cartesian indices (x,y,z). This 

implies that the sum of the linear and bilinear terms are preserved independently, 

while the mixing Hamiltonian exchanges single-spin difference terms with two-spin 

difference terms. The consequent equations of motion during our radiofrequency 

pulse sequence are 

~Q 'HJT"{' ~Qcos(21rJ'Tm) + ~.8'Ysin(21rJ'Tm) 

~.8'Y 'HJT"{' ~.8'Ycos(21rJ'Tm) - ~Qsin(21rJ'Tm) (3.5) 

A difference in polarization between the two spins, (for example liz - 12%) will 

allow magnetization to be transferred from spin 1 to spin 2. Expressing the mag-

netization vector liz as a sum of L:Q and ~Q terms clarifies this: 

(3.6) 

During a mixing period of length, 'Tm = 1/2J, the inital magnetization component, 

11%, evolves under the purely scalar Hamiltonian, 11.J, to yield 

(3.7) 

or, more simply 

(3.8) 

where we've used the J-coupling to transfer magnetization from one spin to its 

coupling partner. During the mixing period, the initial difference magnetization, 

(liz - 12%), oscillates through a zero-quantum coherence, (Il:z l 2y - I 1y12z ) to a state 
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of (12Z - liz). For transverse initial states (11:1: or II'll)' the intermediate state is an 

antiphase coherence of the form (11Q12z - lizI2Q), where a = x, y. It is important 

to note that the total polarization (I2z + liz) is conserved by the mixing process, 

and exchange occurs only for difference states. 

3.3 Generating a Pure Scalar Evolution Operator 

An effective cross-polarization sequence seeks to eliminate the linear spin opera­

tors (chemical shift), while leaving the bilinear operators (J-coupling) unperturbed. 

Several pulse sequences have been suggested to effect this condition. The earliest, 

the Hartmann-Hahn match [102], involves continuous irradiation of the coupled 

spins. Braunschweiler and Ernst, in introducing the TOCSY experiment, suggested 

windowed trains of 1800 and 900 pulses to improve the performance [92]. Newer 

sequences, developed for use in broadband spin decoupling [103, 104, 105, 106, 107, 

108, 109, 110, 111], improve upon this performance. Recent efforts in the decou­

pling of scalar-coupled protons from a heteronucleus have resulted in a new class 

of sequences, known as the DIPSI sequences, which optimize not only the removal 

of the chemical shift, but attempt to generate as pure a scalar coupling between 

protons as possible. 

The mixing sequences needed to effect magnetization transfer are applied with 

relatively weak RF fields (a few kilohertz) for periods of several tens of milliseconds. 

In this limit, the mixing sequence does not behave as a concatenation of ideal 8-

pulses, but rather manifests imperfections such as offset effects, RF inhomogeneity, 

and tip angle misset. Coherent averaging theory [112, 113, 114] allows us to analyze 

the behavior of the sequence with respect to a variety of imperfections. 
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Consider the Hamiltonian for two coupled spins with different chemical shift 

offsets during RF irradiation: 

Assuming irradiation resonant with spin 1, we can decompose the Hamiltonian into 

an internal part, 

(3.10) 

and an external part, corresponding to the RF irradiation, 

(3.11) 

If there exists an operator, U(t) that satisfies the Schrooinger equation, 

U(t) = -i'H(t)U(t) (3.12) 

then that operator is of the form 

U(t) = Texp ( -i lot 'H(r)dr) (3.13) 

where T is the Dyson time-ordering operator. To ease numerical calculations, we 

would like a solution to the differential equation that does not involve the time-

ordering operator. Namely, we would like like to convert to a form 

U(r) = exp( -i'Hr), (3.14) 

where 'H is an average Hamiltonian. The Magnus expansion allows us to expand 

this as a sum of operators 

--- ---(0) ---(1) ---(2) 
'H=1-l +'H +'H + ... (3.15) 



.. 

where 

11.(0) _ .!. r 11. (r)dt 1 
r 10 

11.(1) _ ;: loT dtl lotl 
dt2['H(t2), 'H(tt)] 

11.(2) _ ~: loT dtl lotl 
dt2 lot2 

dt3['H(tl), ['H(t2)' 'H(t3)] 
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+['H(t3)' ['H(t2)' 'H(td11 (3.16) 

For short times, r, we often need consider only the zeroth order average Hamiltcr 

nian. Longer evolution times, or cases where Hamiltonians of different time slices 

do not commute, necessitate inclusion of higher order terms in the expansion. 

Transforming the Hamiltonian of Equation 3.9 into a reference frame defined by 

'HRF, allows decomposition of the propagator, U, into a product of two operators, 

U RF and Uinh with the chemical shift offset and J-couplings as error terms on the 

ideal transformation U RF. Writing the Hamiltonian as 

11. = 'HRF + V (3.17) 

with 

(3.18) 

The propagator for the error term, Uv(r), becomes 

Uv(r) = Texp (-i J V(t)dt) (3.19) 

where 

Vet) = Uii]:.(t)VURF(t), (3.20) 

or 

Vet) = Uii]:.(t)(-b,.w212z + 21rJI1 • 12)URF(t). (3.21) 
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For the general case, we would like to choose U RF to eliminate the chemical shift 

contribution, and leave an effective average Hamiltonian of 

(3.22) 

Several schemes for generating such Hamiltonians are discussed in Section 3.5. 

3.4 Cross-Polarization Schemes 

3.4.1 One-Dimensional Experiment 

As discussed in Section 3.2.1, in order to effect magnetization transfer between two 

coupled spins, a difference between liz and 12% must first exist. A selective 1800 

pulse applied to one of the spins will create·8; difference state, llz - 12%. Application 

of the mixing sequence will cause oscillatory transfer of magnetization between the 

two spins, as described earlier. After a period 1/2J, the sign of the difference state 

will have reversed, leaving 12% - lIz. Figures 3.1 and 3.2 show experimental inter­

ferograms for such an experiment for the two-spin system of 2,3-dibromothiophene. 

This AX spin system has a chemical shift difference, ~w, of 224 Hz (.56 ppm), and 

a J-coupling of 5.9 Hz. Selective inversion of the downfield doublet generates the 

longitudinal magnetization difference state. Subsequent irradiation with the mixing 

sequence will invert the sign of this difference, representing polarization transfer to 

the coupling partner. 

The performance of the mixing sequence can be tracked by interferometrically 

monitoring the intensity of the upfield doublet while incrementing the number of cy­

cles of the cross-polarzation sequence applied. Figure 3.1 compares the performance 

of DIPSI-2 and WALTZ-16, each applied with an RF field strength of 4.0 kHz. Such 
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Figure 3.1: Experimental interferogram showing the progress of magnetization 
transfer between the two protons on 2,3-dibromothiophene. The chemical shift 
offset is 224 Hz, and the RF field strength is 4000 Hz. 
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Figure 3.2: Experimental interferogram showing the progress of m~gnetization 
transfer between the two protons on 2,3-dibromothiophene. The chemical shift 
offset is 224 Hz, and the RF field strength is 400 Hz. 
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Table 3.1: Effective polarization transfer rates (in Hz) for WALTZ-16 and 
DIPSI-2 decay with a diminution of the Bl field strength. The cycle time 
listed (in msec) is that required to complete one RRRR cycle. 

WALTZ-16 DIPSI - 2 

RF field strength Cycle time Transfer rate Cycle time Transfer rate 

4000 Hz 6.00 5.76 7.19 5.79 

2688 Hz 8.93 5.71 10.71 5.79 

2032 Hz 11.81 5.65 14.16 5.72 

1445 Hz 16.61 5.50 19.92 5.65 

1000 Hz 24.00 5.21 28.78 5.41 

526 Hz 45.00 4.22 54.70 4.70 

371 Hz 64.f;}1 3.08 77.47 3.63 
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a field strength (nearly 20 times the chemical shift difference of 224 Hz) masks im-

perfections in the mixing sequence. DIPSI-2 more closely approximates the natural 

J-coupling, as is evidenced by the oscillation frequencies for the transfer (DIPSI-2: 

5.79 Hz, and WALTZ-16: 5.76 Hz). 
\ 

At weaker field strengths, such as the interferograms of Figure 3.2 (with Bl = 

371 Hz), imperfections in the mixing sequence degrade both the extent of magne­

tization transfer, and the rate at which it occurs (DIPSI-2: 3.62 Hz, WALTZ-16: 

3.08 Hz). Such low field strengths provide a sensitive and necessary test of the 

sequences, since application of the HOHAHA experiment to biological samples re-

quires cross-polarization over large bandwidths, with a minimimum of RF power 

deposited in the sample (to avoid excessive heating). Table 3.1 compares the effec­

tive polarization transfer rates of WALTZ-16 and DIPSI-2 for a series of RF field 

strengths. 

In order to resolve coupling partners in a complicated spectrum, the sequence 
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can be modified as a difference experiment. Subtracting an experiment of the 

form [95]: 

900 
- MIX - detect (3.23) 

from: 

180~lective - 900 
- MIX - detect (3.24) 

will yield subspectra of the selectively irradiated spin and all its coupling partners. 

3.4.2 Two-Dimensional Experiment 

Elucidation of a complicated spectrum through selective irradiation of each reso­

nance, as described in the previous section, is not generally feasible. In order to 

render such problems· more tractable, we turn to two-dimensional version of the 

cross-polarization experiment. The J-coupling, by its scalar nature, can exchange 

a magnetization difference along any axis. Braunschweiler and Ernst [92] origi­

nally proposed the exchange of transverse magnetization, with an effective spin 

lock applied along the x-axis. Figure 3.3a shows the form of this experiment. An 

initial 900 pulse tips the spins into the transverse plane, where they evolve for a 

time, t 1. The magnetization difference along x generated during tl is then mixed 

by application of the cross-polarization sequence, and an FID collected during the 

period t2' Interferometric incrementation of tl and double Fourier transformation 

yield a correlation map, with the one-dimensional spectrum along the diagonal, and 

off-diagonal cross-peaks for coupled spins only. 

The scheme presented in Figure 3.3b presents a similar approach. During the 

tl evolution period, spins will precess different amounts, depending on their chem­

ical shift offset. Applying a second flip-back 900 pulse will flip the magnetization 
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Figure 3.3: Magnetization transfer can be effected either in the transverse 
plane (a), or along the z-axis (b). 
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isochromats back along the z-axis. The phase angle accrued during precession will 

then manifest itself as a difference in z magnetization. This conversion of a chemi­

cal shift offset into a magnetization difference, L\z, frequency labels the spins. The 

mixing sequence can then transfer longitudinal polarization between coupled spins. 

A subsequent 90° pulse flips the magnetization back into the transverse plane for 

detection. Section 3.5 discusses the merits of these schemes more thoroughly. 

3.5 Comparison of Experimental Results 

The design criteria for mixing sequences closely parallel those for heteronuclear de­

coupling sequences. In both cases, we seek to flip a group of spins in synchrony, 

regardless of their resonance offset. Many such sequences have been employed, and 

we will deal here with several of the more common. Continuous wave irradiation 

provides the simplest means to effect the rotation, although Fourier theory dictates 

a narrow excitation bandwidth. For a long low-amplitude pulse, the Fourier trans­

form (frequency spectrum) will yield a sine function, the primary lobe of which 

will narrow as liT. Several heteronuclear decoupling sequences have been designed 

by iterating windowless sandwiches of phase-shifted RF pulses. Two of the more 

popular such sequences, the MLEV [106] and WALTZ [109] families, demonstrate 

substantially better resistance to pulse imperfections and demonstrate a wider band­

width. 

The DIPSI sequences were developed to decouple J-coupled protons from carbon 

nuclei. Their strength as cross-polarization sequences, vis a vis the older sequences, 

derives from the fact that the DIPSI sequences were designed not only to remove 

the chemical shift linear spin operators, but also to maximize the effective bilinear 
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scalar coupling between the protons, and preserve all three Cartesian components 

of the coupling. 

3.5.1 CW Mixing 

In their study of cross-polarization in solids, Hartmann and Hahn first proposed 

their famous condition for efficient spin energy exchange [102] 

(3.25) 

where Bl is the applied RF field for the lor S nucleus, and 'Y its gyromagnetic ratio. 

This matches the precession frequencies of the nuclei in their respective rotating 

frames, to yield the precession condition: 

WI = Ws, (3.26) 

facilitating polarization transfer. Building upon this matching condition, the cross­

polarization mediated by dipole-coupled spins in the solid state is described most 

easily by spin-thermodynamical arguments [49]. The Hartmann-Hahn matching 

condition can be relaxed [115] to: 

(3.27) 

where VIS is the coupling strength for the two nuclei. In solid-state NMR, the 

spin-spin interaction is mediated by a dipole coupling (usually of several kilohertz), 

resulting in very fast polarization transfer. Transfer of polarization in liquids is 

more difficult to achieve, since the J-coupling is only of the order of 140 Hz for 

1 H_13C couplings, and a few hertz for 1 H_l H couplings. 
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Figures 3.4, 3.5, and 3.6 show tW<rdimensional cross-polarization experiments 

performed with monochromatic irradiation on a sample of sparteine (Dodecahydr<r 

7,14-methan<r2H,6H-dipyrido[1,2-a;1',2'-e][1,5]diazocine) with RF field strengths of 

4 kHz, 1.7 kHz, and 1.2 kHz respectively. The extent of magnetization transfer 

increases with the strength of the applied RF field (all spectra were acquired with a 

mixing period of 28.0 msec), but even with a 4 kHz BI field strength, the cross peak 

intensity is sub-optimal, and cross peaks in the upfield region exhibit substantial 

lineshape distortion. 

Unfortunately, the CW spin lock rapidly dephases magnetization components 

not aligned along the applied field axis. Also, the effective tr~sfer rate achieved 

by the sequence falls far short of the J-coupling between the coupled spins. Thus, 

during the necessarily long irradiation period, significant TIp relaxation can occur, 

especially for large biomolecules with long correlation times. A phase-alternating 

spin-lock, suggested by Davis and Bax [94] can overcome the bandwidth limitation 

to some extent. 

3.5.2 MLEV Mixing 

Development of cross-polarization and heteronuclear decoupling sequences share the 

goal of creating an offset-independent 211" rotation for all the proton spins. Therefore, 

it seems reasonable that pulse sequences developed for broadband decoupling would 

be good candidates for homonuclear cross-polarization. To this end, Bax and Davis 

modified the MLEV-16 pulse sequence (cf. Table 4.2) by the concatenation of an 

additional 1800 to generate the MLEV-17 mixing sequence shown in Figure 3.7. 

The rationale behind the additional 1800 pulse is that pulse imperfections in the 

.. 
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Figure 3.4: Cross-polarization with a monochromatic 4 kHz RF field, and a 
mixing period of 28.0 msec. Data sets of 1024 x 1024 data points were collected 
in the time domain, and double Fourier-transformed with a hypercomplex 
Fourier transform (to yield phase sensitive spectra). The sweep width was 
1200 Hz, although only a 900 Hz band is shown here and in the following 
spectra. 
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Figure 3.5: Cross-polarization with a cw 1.7 kHz RF field, and a mixing period 
of 28.0 msec. 
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Figure 3.6: Cross-polarization with a cw 1.2 kHz RF field for 28.0 msec. Cross­
polarization here is very inefficient, with very . low cross-peak intensity. 
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Figure 3.7: The MLEV-17 cross-polarization sequence comprises an MLEV-16 
pulse train followed by an additional 1800 pulse. The resulting sequence is 
sandwiched between two spin-locking "trim pulses" which select for magneti­
zation along a specified axis, thereby allowing phase-sensitive representation 
of the data. 
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MLEV-16 sequence will leave some component of the magnetization away from the 

applied field axis. The 1800 pulse will invert the phase of this error term after 

each application, cancelling the error after an even number of MLEV-17 cycles. 

This amounts to an interleaved Carr-Purcell train within the MLEV-16 mixing 

sequence. The MLEV-17 sequence possesses an effective bandwidth of ±0.3VRF, 

where VRF is the applied RF field strength. 

The spin-lock trim pulses preceding and following the MLEV-17 mixing sequence 

are designed to select transverse magnetization along one axis (e.g. Itz - 12z) 

by dephasing all other coherences through RF inhomogeneity. This is to allow 

presentation of the spectrum in pure absorption-mode [116, 117]. The spin-lock 

does not select transverse magnetization with 100% efficiency, and antiphase terms 

such as 11y12% - 1l%12y remain. These residual coherences manifest themselves as 

phase distortions of the multiplet structures of the two-dimensional spectrum. 
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Sl2Jrensen et al. [118] proposed an alternative method to select a magnetization 

component. This method, referred to as a z filter, stores the magnetization along 

the z axis for a period Tz in the following fashion. A 90° pulse following the mixing 

sequence (applied along an axis perpendicular to the virtual spin-lock axis) will 

convert 1101 - 1201 (0 = x, y) to z magnetization Ib - 12z ' More importantly, it will 

convert all antiphase terms 110112z - I lzJ201 (0 = x, y) into zero-quantum coherences 

(ZQC). The zero-quantum coherences will oscillate at a frequency (WI - W2) during 

Tz , while longitudinal terms of the form Ib - 12z will decay monotonically with 

a time constant, T1. A 90° pulse after Tz will convert both the longitudinal and 

zero-quantum terms into observable magnetization. Coaddition of a series of FIDs 

with varied zero-quantum evolution periods will modulate the contributions from 

the ZQCs (averaging them to zero) while leaving the longitudinal terms unaffected, 

except for Tl relaxation. This facilitates collection of a pure absorption-mode spec­

trum. 

Ideally, one would like to co-add two FIDs (with the ZQCs 180° out of phase) 

for each coupled pair of spins in the sample. In a sample with n different couplings, 

this would require acquisitions with 2n different Tz values, so that the zero-quantum 

coherence generated by each proton pair could be coadded with 0° and 180° accu­

mulated phase. Clearly, this criterion for selecting T z values necessitates extremely 

lengthy averaging for a molecule of relevant complexity, yet in practice it is found 

that acquisition of a handful of FIDs with randomly set delays is adequate. 

Recently, another method was proposed to remove the effect of zero-quantum 

coherence generated during the mixing period [119]. Rather than applying a single 

90° pulse to flip magnetization up along the z-axis for the z filter, the magneti-
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zation along the preferred transverse axis is spin-locked with a strong RF field. 

This field is then adiabatically frequency-swept until the magnetization lies aligned 

with the z-aXis. RF inhomogeneity in the coil will dephase all those components 

not initially aligned along the preferred axis. Antiphase terms I 1a I 2z - Il%I2a are 

dephased, rather than being converted to zero-quantum coherence. With the adi-

abatic frequency sweep, the averaging involved in z filtration can be replaced by a 

single experiment. 

Figure 3.8 shows a two-dimensional cross-polarization spectrum acquired with 

MLEV-17 mixing. The element R was generated with the composite 1800 rotation: 

90~y180~90~y. The mixing period comprised 5 cycles of the MLEV-17 mixing se­

quence (20.63 msec) and two trim pulses (8.0 msec). CYCLOPS phase cycling [120] 

is applied to the MLEV train and the phase of the initial 900 pulse is cycled to al-

low for phase-sensitive acquisition of the spectrum. A sweep width of 1200 Hz was 

chosen, with 1024 points collected in each time dimension. 

The MLEV sequences were devised originally to decouple single spins from car-

bon nuclei, without regard for the proton-proton scalar coupling. Numerical calcu­

lations [97] show that effective Hamiltonian during the mixing period assumes the 

form: 

(3.28) 
a=x,Y,z a=x,Y,z a,/3=x,y,z 

For the case of perfect performance of the sequence, Ca = 0, and Cxx = Cyy = Czz. 

This represents a pure scalar isotropic mixing Hamiltonian. Similar results have 

been described as a "three-spin effect" in heteronuclear decoupling [121]. In addition 

to generation of substantial contribution from terms of the form IlxI2y-IlyI2x there 

is considerable deviation from perfect scalarity of the J coupling, as the terms Cxx , 
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Figure 3.8: Cross-polarization performed with the MLEV-17 sequence, with­
out trim pulses. 
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Table 3.2: Alternating-phase composite pulses for the rotation element R in 
the DIPSI sequences. 

Sequence Flip angles Bandwidth Length 

DIPSI-l 365 295 65 305 350 ±0.4 1380 

DIPSI-2 320 410 290 285 30 245 375 265 370 ±0.6 2590 

DIPSI-3 245 395 250 275 30 230 360 245 370 340 350 

260 270 30 225 365 255 395 ±0.8 4890 

CyY' and Czz become unequal. The DIPSI family of sequences [122] were developed 

with the goal of maintaining equality in the amplitudes of each bilinear term, Icrcr. 

3.5.3 DIPSI Mixing 

The DIPSI sequences, like the earlier WALTZ sequences [109] assume the form 

RRRR, where R denotes a composite pulse of either 00 phase (R), or 1800 phase 

(R). The constituent pulses elements for the R operators are listed in Table 3.2. 

These sequences arose from a study of decoupling in three-spin systems, where 

scalar-coupled protons are coupled to a carbon nucleus of interest. This improves 

upon the earlier MLEV and WALTZ sequence in two aspects. 

First, DIPSI minimizes non-scalar behavior. As discussed above, while the ear-

lier sequences cancel linear spin operators across a wide bandwidth, during the 

mixing cycle, they also generate bilinear zero-, single-, and double quantum oper-

ators, leading to a decay in the amplitude of polarization transfer, as exhibited in 

Figures 3.1, and 3.2. Second, DIPSI generates a larger effective J-cQupling over a 

wider bandwidth than the earlier sequences. A plot of Jeff 

(3.29) 
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Figure 3.9: Comparison of the magnetization transfer for the three sequences, 
DIPSI-2, WALTZ-16, and MLEV-16. The extent to which the sequences ap­
proximate the ideal J-coupling is plotted against the ratio of chemical shift 
offset to RF field strength. The common operating area for most experiments 
would be on the right-hand side of the plot, where a broad chemical shift range 
is to be cancelled by a weak field. 
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in Figure 3.9 shows a calculation for the effective coupling as a function of offset. 

Since Jeff averages the bilinear terms J QQ, it masks performance decay caused by 

deviations from scalarity, and thus casts MLEV and WALTZ in a more favorable 

light. The effective bandwidth increases as the DIPSI composite pulse grows in 

length. In practice, though, the mixing sequence is applied with a minimum of 

power (to avoid sample heating). The reduction in B1 field strength necessitates a 

concomitant lengthening of the mixing period; hence a shorter intrinsic sequence 

(DIPSI-2 VS. DIPSI-3) is preferable. 

Figures 3.11 and 3.12 show the results of two cross-polarization spectra acquired 

with DIPSI-2 mixing, using the pulse sequence of Figure 3.3b and an RF field 

strength of 4 kHz. In Figure 3.11, six DIPSI-2 cycles were used (for a mixing time 

of 43.16 msec), while 10 cycles were used in Figure 3.12 (for a 71.93 msec mixing 

time). In both cases, the zer~quantum removal delay periods, 6.1 and 6.2 , were 

varied randomly over a period of 10 to 30 msec. The initial 90° pulse phase, a, was 

cycled by 90° to allow for phase-sensitive acquisition. /3 was cycled to remove axial 

peaks caused by relaxation during t1, and , was cycled to select for longitudinal· 

magnetization. 

Longer mixing periods elucidate weak couplings, and can also be used to detect 

indirectly coupled spins through relayed magnetization transfer, in analogy with 

the RELAY experiment [123, 124]. With these longer mixing periods, the compli­

cated spectra do not exhibit the same oscillatory nature of magnetization transfer 

demonstrated by the 2,3-dibromothiophene sample. Complicated spin networks can 

be treated in analogy with classical systems of many coupled oscillators, where the 

energy of one mode is quickly distributed to all the coupling partners. To pre-
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Figure 3.10: Cross-polarization with 4 cycles of the DIPSI-2 mixing sequence. 
Two values for the random delays, D.l and D.2 were chosen. 
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diet rates of polarization transfer in such systems, one usually resorts to numerical 

solutions [125, 126, 127]. 

3.6 ROESY Interference 

Spin-spin relaxation during the mixing sequence can cause cross-peaks to lose in-

tensity, or even appear with a 1800 phase shift relative to the diagonal peaks 

and Hartmann-Hahn cross-peaks. Such cross-relaxation is the basis for Rotating 

frame Overhauser Enhancement SpectroscopY (ROESY) [128, 129], known also 

as CAMELS PIN (Cross-relaxation Appropriate for Mini-molecules Emulated by 

Locked SPINs) [130]. The ROESY experiment is performed with a sequence analo-

gous to that of Figure 3.3a, except that the cross-polarization sequence is replaced 

by an "inferior" spin-lock. 

After the initial 900 pulse, the spins are frequency labeled by evolution for a 

period tl' At this point, a spin-lock is applied along an axis perpendicular to the 

phase of the initial pulse. The spins are locked along this field, with the effective 

field experienced by a spin: 

(3.30) 

where (w - wa ) is the resonance offset between the carrier and spin. If we define () 

as the angle between this effective field and the spin-lock axis, then 

(3.31) 

Magnetization perpendicular to the spin-lock axis will dephase quickly due to RF 

inhomogeneity. Protons that are spatially close on the molecule can then undergo 
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dipole-dipole cross-relaxation, with a cross-peak intensity in the spectrum propor-

tional to COS
2 (Oa) COS

2 (Ob), with Oa and Ob the effective angles of the RF field for each 

spin. A typical experiment would involve a 2 kHz RF field to irradiate a proton 

spectral width of 3 kHz, with a spin-lock period of 200 msec. 

In a ROESY experiment, Hartmann-Hahn magnetization transfer creates spu-

rious peaks, since the cross-polarization peaks point up, and the cross-relaxation 

peaks point down. Oscillatory magnetization transfer occurs simultaneously during 

such experiments, with a transfer rate: 

R = ]2[1 + COS(Oa - Ob)]2 . 
4(wa - Wb)2 + J2[1 + cos(Oa - Ob))2 

(3.32) 

In the ROESY experiment, these spurious peaks can be minimized by applying a 

weak field, so that the effective fields will, have different values of 0, and setting 

the carrier frequency such that the Hartmann-Hahn condition is not inadvertently 

satisfied for any pair of spins (this latter condition being rather tedious to achieve 

in a complicated spectrum). 

The converse to spurious TOCSY peaks in the ROESY spectrum, of course, 

is caused by transverse NOEs during the isotropic mixing sequence. If poor can-

cellation of linear spin operators or a weak Jeff characterize the mixing sequence, 

then a longer mixing period will be required to effect the magnetization trans­

fer. During the longer sequence, there will necessarily be a greater opportunity for 

cross-relaxation between neighboring spins. A more insidious artifact, known as a 

combined TOCSY-ROESY cross-peak [131, 132, 133], can be pictured by consider­

ing a three-spin system AMX, where JAM =1= O. Initial HOHAHA transfer from A 

to M can cross-relax further to spin X, ultimately giving the appearance that spins 

A and X are J-coupled. The DIPSI sequences, by creating the best approximation 
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to the intrinsic J-coupling, will result in the fastest magnetization transfer, thereby 

allowing virtually no ROESY interference. 

3.7 Conclusions 

Homonuclear Hartmann-Hahn spectroscopy yields the well-resolved spectra neces­

sary to elucidate the J-coupling networks of large molecules. The application of 

DIPSI-2 as a cross-polarization sequence creates a polarization transfer rate that 

very closely resembles the natural J-coupling between the spins, because the DIPSI 

sequence not only removes the linear spin operators of the weak-coupling Hamilto­

nian, but also seeks to preserve the three components of the scalar coupling. 

Shaka et al. have recently proposed a newer family of sequences, FLOPSY-8 

and FLOPSY-16 [134, 135], developed by analyzing the evolution of liz - 12% in a 

reference frame defined by the axes liz - 12%, ltz12z + l 1y12,I' and lty12z - l 1z12y • 

By constructing an effective Hamiltonian composed of both zero-quantum and J­

coupling terms, broadband zero-quantum 1800 pulses can be generated to transfer 

polarization between coupled spins. The bandwidth of this sequence exceeds that of 

DIPSI-2, and DIPSI-3, rendering it useful for cross-pol,!U'ization between 13C nuclei. 
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Chapter 4 

Iterative Carr-Purcell Trains 

4.1 Introduction 

Many applications of NMR rely on multiple pulse experiments. These range from 

solid state experiments, where multiple pulse sequences are employed to truncate 

. line-broadening interactions, such as dipole-dipole couplings, to liquid-state struc­

tural studies and imaging experiments. Applications in imaging often require the 

collection of multiple echoes from refocusing magnetization in order to measure 

physical transport of the spins, to select volume elements, or to enhance the signal­

to-noise in an experiment. Ideally, a pulse sequence would allow the acquisition of 

an arbitrary number of echoes. Unfortunately, the number of spin echoes attainable 

is limited by the natural dephasing time for the spins (T 2) and imperfections in the 

pulses used to refocus the magnetization. 

This chapter describes a new multiple pulse echo sequence [136] developed by 

applying the iterative scheme of the MLEV decoupling sequences to the experiment 

of Carr and Purcell [137]. By modulating the phase of the radio frequency pulses 
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Figure 4.1: Schematic diagram for the Hahn echo experiment. The second 
90° pulse will recover the seemingly lost magnetization signal. 

in the echo train, the performance of the Carr-Purcell experiment can be improved 

substantially. We will consider briefly the original Carr-Purcell experiment, and the 

modifications of Meiboom and Gill [138], before discussing their weaknesses, and 

how the new series of pulse sequences can overcome them. 

4.2 Background 

The original multiple echo experiment of Carr and Purcell was based on the discov­

ery of the spin echo by Hahn [139]. The coherent oscillation of nominally identical 

spins precessing in a magnetic field will dephase in the presence of inhomogeneities 

in the field. When the spins have dephased, no signal is detected in the receiver 

coil. 

Hahn found that the decaying oscillations induced by a 90° pulse could be 

recovered if an additional 90° pulse was applied after a time, T. A~ echo formed 

at a time T later. This is shown graphically in Figure 4.1. The intensity of the 

echo varied inversely with the interpulse time delay. By performing the experiment 

for a series of T values, the natural decay envelope of the line can be measured 
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interferometrically. 

Carr and Purcell expanded upon this line of reasoning [137] and developed the 

following extension. Rather than performing the experiment repetitively, with dif­

ferent values of 1", they replaced the second 900 pulse with a train of 1800 pulses . 

The 1800 pulses refocused the spread in evolution of the isochromats caused by mag­

netic field inhomogeneities, and allowed the naturallinewidth to be determined by 

measuring the decay of the echo amplitudes. Their modification is shown schemat­

ically in Figure 4.2. The determination of the natural T 2 was extremely sensitive 

to amplitude errors in the 1800 pulses, resulting in reproducibility problems. 

Four years later, Meiboom and Gill [138] improved the performance of the Carr­

Purcell sequence immensely with two modifications. First, the successive pulses 

were coherent, unlike the Carr-Purcell experiment. Second, the phase of the echo 

train was shifted by 90 degrees relative to the initiating pulse. 

Consider the case of the echo train having the same phase as the 900 pulse. As 

the spins dephase in the xy plane, the applied 1800 pulse should flip the fanned­

out isochromats about the applied field axis. If there is an amplitude error in the 

applied pulse (corresponding to a 1750 flip angle, rather than 1800 
, for example), 

then the cluster of isochromats will be driven further and further out of the xy 

plane, because of the cumulative errors. The echo signal will alternate between 

positive and negative amplitude, and will decay quickly. If, on the other hand, the 

echo train is phase-shifted by 90 degrees relative to the initial 900 pulse, then the 

errors induced by one 1800 pulse will be cancelled by the following pulse. 

The Meiboom-Gill modification preserves the magnitude of the magnetization 

component parallel to the applied RF field during the echo train, but it does not pre-
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serve the quadrature component. Maudsley [140] has argued that in many Fourier 

imaging experiments [141, 142], where magnetic field gradients spatially encode the 

phase of the magnetization vector, the phase of any voxel is not known a priori. 

Therefore, it would be desirable (necessary) to preserve the full magnetization vec­

tor, and not merely its projection along x or y. To this end, Maudsley proposed 

employing the pulse sequence: 

(4.1) 

Through proper phase cycling of the receiver, a series of echoes of the same phase 

can be coadded to enhance the signal-to-noise of the experiment. Reference [140] 

presents simulations demonstrating the performance of this sequence in refocus sing 

both the "in-phase" and "out-of-phase" magnetization components. This can be 

tested by comparing 900 prepulses with x and y phases in separate experiments. 

4.3 Iterative Schemes 

In our experiments, we have employed an iterative scheme for generating the se­

quence of refocussing pulses. An iterative scheme defines a procedure for generat­

ing a radio-frequency pulse by concatenating phase-shifted pulse elements. This 

bears analogy to the creation of fractal-dimensional objects, where some arbi­

trary initial shape is modified repetitively by a function known as the genera­

tor [143]. The application of iterative schemes to NMR has provided a wealth 

of new pulse sequences [144, 145]. These have found use in broadband decou­

pIing [103, 146], broadband, narrowband, and passband inversion [6, 147, 148, 149], 

or excitation [150, 151], and compensation for instrumental imperfections [110, 111]. 

• 

.. 



• 

.. 

115 

In our experiments, we have capitalized on the wide bandwidth of a family of such 

sequences, known as the MLEV sequences, by interleaving the constituent pulses 

with data acquisition, thereby creating an exceptionally well-compensated echo 

train . 

4.3.1 The MLEV Sequences 

These are based on the MLEV sequences developed by Levitt et al. [105, 106] to 

extend the bandwidth of spin-flip pulse sequences used in heteronuclear decou-

pIing [152]. 

For analysis, the rotation operator for an RF pulse decomposes into the product 

of an ideal component, URF , and an error term, U,,: 

(4.2) 

The four successive pulses of the MLEV-4 sequence yield the following decomposi-

tion into ideal and error terms: 

(4.3) 

where the terms can be relabeled for easier analysis: 

(4.4) 

The treatment of errors in RF pulse sequences benefits from the grouping of all 

the ideal pulse elements and error elements into separate clusters. As a first step 

towards this goal, we can insert identity operators, represented by the underbraced 

elements, into the sequence. 



116 

Merely by shifting the braces, we can visualize the pulse train as a sequence of 

four ideal pulses, U4 through Ul , followed by a series of unitarily transformed error 

terms: 

Replacing each so transformed error term UtJ , by a term U,,, gives the following 

expression for the pulse sequence. 

- - - -
= U4U3U2UIUtJ4UtJ3UtJ2UtJl (4.7) 

In effect, we have now rearranged the MLEV -4 sequence into a series of ideal pulses 

followed by a series of error pulse elements. The error terms expand to: 

UtJ4 - UIlU;lUilUtJ4U3U2Ul 

UtJ3 - UIlU;lUtJ3U2Ul 

UtJ2 - UIlUtJ2Ul 

UtJl - UtJl (4.8) 

Table 4.1 lists the rotation operator for each of the error pulses assuming an initial 

error of E • I. The complete MLEV pulse train sums all these errors, to cancel all 

errors of first order in E. Such errors comprise, for example, flip angle missets, 

chemical shift frequency offsets, and frequency offsets due to static field gradients. 

If we consider an element, R, of the echo train as consisting of a 1r pulse sand-

wiched between two delay times, T, then the propagator can be expressed as: 

where 4> = t:::.WT, the phase evolution due to resonance offset. If we express the 

rotation operator R£ as a power series in E, then in the limit of ideal behavior for 
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Table 4.1: Compensation of pulse errors for MLEV -4 sequence. 

Element Iz Iy Iz 

UtJ4 €z -€y -€z 

UtJ3 €z €y €z 

UtJ2 -€z €11 -€z 

UtJ1 -€z -€y €z 

Table 4.2: Cycles for the MLEV family of pulse trains. 

Sequence 

MLEV-4· RRRR 

MLEV-S RRRR RRRR 

Pulse Phases 

MLEV-16 RRRR RRRR RRRR RRRR 
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MLEV-32 RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR 

MLEV-64 RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR 

RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR 

the sequence, R£ reduces to the identity operator. The MLEV-4 pulse sequence 

will cancel, error terms to first order in €. The error compensation of the MLEV 

sequence can be extended to higher orders through successive cyclic permutations 

and phase inversions of the base sequence [103]. 

By cyclically permuting one pulse in MLEV-4, another compensated cycle, 

RRRR is generated, which when concatenated with RRRR yields MLEV-S. The 

eight-pulse sequence cancels errors to second order in €. The next iteration in the 

MLEV family is generated by concatenating a phase-inverted copy of MLEV-S, gen­

erating MLEV-16. In this fashion, higher order error terms in the expansion can be 

canceled. The cost of better cancellation is an increase in the cycle time required 

for the sequence. Table 4.2 lists the phases for sequences through MLEV-64 .. 
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4.4 Simulations and Experimental Results 

The MLEV compensation schemes were tested on a sample of dilute H20 in D20. 

The experiments were performed on a Bruker AM-400 spectrometer. The probe coil 

was detuned to yield a radi<rfrequency field strength of 10 kHz at full power. A weak 

RF field provides a sensitive test of the performance of our echo pulse sequences, 

and allowed us to better compare the iterative sequences with the standard Carr­

Purcell, and Carr-Purcell-Meiboom-Gill sequences. 

The experiment is performed as follows. A 900 pulse aligns the magnetization 

vector along either the x or yaxis. A train of 1800 pulses follows, with the phase 

of each pulse either fixed (in the case of Carr-Purcell and Carr-Purcell-Meiboom­

Gill) or varied according to the phase cycle determined by the MLEV supercycle. 

Figure 4.2 shows a schematic for the experiment. The magnetization is sampled 

during a 1 microsecond window between every other pair of 1800 pulses. In this 

fashion, 64 samples are collected from a set of 128 echoes. The receiver phase is set 

carefully, . to assure that the signal falls entirely into one of the quadrature channels. 

The entire experiment is performed both on resonance, and at a resonance offset of 2 

kHz. In the off-resonance case, the initial 900 pulse does not align the magnetization 

perfectly along the y axis, causing a detectable, yet inconsequential, phase shift in 

the signal. 

Figure 4.3 shows a simulation of the magnetization signal for the case of a single 

spin with on-resonance irradiation. The simulation assumes a nominal RF field 

strength of 10 kHz (corresponding to a 50 J1.Sec 1800 pulse), and a 20 msec interpulse 

delay (1"=10 msec). Figure 4.4 shows the simulation for the same conditions except 

that here the transmitter has a resonance offset of 2 kHz. Neglecting relaxation due 
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Figure 4.2: Schematic diagram for the Carr-Purcell experiments. The phase 
(Q) of the initial 900 pulse is cycled in tandem with the receiver to select 
only magnetization originating from the first pulse. The phases, <p" for the 
1800 pulses are either fixed, in the case of the Carr-Purcell and Meiboom-Gill 
experiments, or are alternated according to the MLEV-2n iteration schemes. 

to magnetic field inhomogeneity, a single resonance offset is assumed for all of the 

spins in the sample (~=O). Due to the finite geometry of the sample and the probe 

coil, there is a measurable RF inhomogeneity over the sample volume. We have 

integrated over a distribution of RF field strengths that was modelled by the sum 

ofa Lorentzian and Lorentzian-squared field strength profile, with the distribution 

represented by 191 discrete bins. 

The simulations assume that the echo pulse train is applied with a relative RF 

phase of y. The simulations shown in Figures 4.3 and 4.4 correspond to a 900 

pulse that aligns the magnetization along the yaxis initially (the left-hand series 

of decays), and along the x axis (right-hand series). The standard Meiboom-Gill 

sequence (applied with phase y), preserves the intensity of the y-component of the 
. 

magnetization, but works very poorly for the x component. An RF pulse train 

applied with the same phase as the magnetization component to be preserved, i. e. 
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Figure 4.3: Simulated time-domain signal for echo trains applied on resonance. 
In each case, the initial magnetization (after the 900 pulse) lies along the y 
axis in the rotating frame. For the left-hand column of decays, the 1800 pulses 
were applied with a relative phase along y; for the right-hand column, they 
were applied along x. 
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Figure 4.4: Simulated time-domain signal for echo trains applied 2 kHz off 
resonance. Otherwise, the conditions are identical as Figure 4.3. -
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a pulsed spin lock, is remarkably robust with respect to resonance offset and flip 

angle misset. Its performance in preserving the quadrature component is poor under 

all conditions. 

The higher order MLEV sequences are composed of 4-pulse subsections with 

differing performance levels. That is, any four pulse section of a longer train may 

not perform as well as MLEV-4. Therefore, during the longer cycles necessary for 

MLEV-16 and higher, there are periods when the magnetization will deviate quite 

substantially from perfect refocussing. In heteronuclear decoupling, this manifests 

itself as cycling sidebands (when the heteronuclear magnetization must be sampled 

at a rate faster than the cycle time for the sequence) [111]. Here it manifests itself 

as a periodic dip in the echo envelope. 

The experimental results agree very closely with the simulations. Figures 4.5 

and 4.6 show the results for echo decays collected with the transmitter on resonance, 

and 2 kHz off resonance, respectively. The refocusing pulses were applied with a 

flip angle of 1800 
• On resonance, the spin-locked echo train refocuses very well, 

while the quadrature component dephases quickly due to RF inhomogeneity. In 

the case of off-resonance excitation, its performance is similarly disappointing. The 

MLEV -4 echo train preserves both components of the magnetization equally, but 

still decays relatively quickly. The MLEV-16 train, on the other hand, demonstrates 

substantial improvements in the length of the recorded echo train. As discussed 

above, the modulation of the MLEV-16 echo train is deeper than that for MLEV-4, 

since the propagator for the echo train deviates further from identity during the 

cycle. 

The robustness of the MLEV-based sequences relative to the Meiboom-Gill mod-
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Figure 4.5: Experimental time-domain signal for echo trains applied on reso­
nance. An initial pulse aligning the magnetization along the y axis is followed 
by an echo train of phase y (in the left column), or phase x (in the right 
column). 
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Figure 4.6: Experimental time-domain signal for echo trains applied 2 kHz 
off-resonance. Otherwise conditions are identical to those in Figure 4.5. 
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Figure 4.7: Experimental time-domain signal for echo trains applied on reso­
nance. The flip angle for the refocussing pulse has been set to 1750 
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Figure 4.8: Experimental time-domain signal for echo trains with misset refo­
cussing pulses applied 2 kHz off-resonance. Otherwise conditions are identical 
to those in Figure 4.7. 
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ification can be tested. further by missetting the ft.ip angle of the 1800 pulses. Fig-

ures 4.7 and 4.8 show the experimental decays measured with a 1750 ft.ip angle, 

rather than the nominal 1800
• For the Meiboom-Gill echo train, the spin-locked 

component of the magnetization still refocuses well, both on resonance, and off. The 

quadrature component, however, decays extremely quickly, and the refocussing of 

the magnetization is modulated by the error in pulse length. On-resonance, both 

MLEV-4 and MLEV-16 compensate both magnetization components well. Off­

resonance, MLEV-16 maintains both components of the magnetization much bet­

ter than MLEV-4. Both on-resonance and off, the MLEV trains do not display the 

modulation evident in the constant-phase echo train. 

4. 5 Conclusions 

Applying error-compensated multiple-pulse schemes to the Carr-Purcell echo se­

quence imbues the sequence with a tolerance for pulse errors, and a wide effective 

bandwidth. By phase-shifting successive pulses in the echo train according to the 

phases prescribed. by the MLEV family of decoupling sequences, much longer echo 

trains can be acquired. than was previously possible. This results from the ability of 

the MLEV sequences to preserve both the in-phase and out-of-phase components 

of the magnetization. This proves critical in imaging experiments, where phase­

encoding gradients may generate an initial magnetization vector of unknown phase. 



Chapter 5 

The Geometric Amplitude 

5 .1 Introduction 

Adiabatic rapid passage [1] has found many applications in NMR, including cross­

polarization [153, 154, 155, 115, 119] and selective excitation [156, 157, 158]. Lab­

oratory-frame and rotating-frame adiabatic rapid passage have found use in tests 

of spin thermodynamics [159, 160, 161]. This chapter describes the contribution 

of the geometry of an evolution Hamiltonian to the inversion behavior of a spin-~, 

during a frequency-swept adiabatic pulse. 

Recent work has shown that, even in few-level quantum mechanical systems, 

analysis by separation into subsystems typically involves effective interactions be­

tween the subsystems that are naturally described in terms of gauge fields [11, 26] 

(cf. Section 1.3.1). Such fields arise for subsystems consisting of dynamical variables 

(as in the Born-Oppenheimer approximation) and when one of the subsystems con­

sists of external parameters. Examples giving rise to abelian and nonabelian gauge 

fields have been treated theoretically and experimentally [11, 26]. Abelian gauge 
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fields have been shown to alter the phases of the wavefunctions they act on; in 

the adiabatic limit the phases are shifted by Berry phases [10]( cf Section 1.3.2). 

Nonabelian fields alter both phases and populations. In a significant recent de­

velopment, Berry has shown how a Berry phase in a driven tW<rlevel system fun­

damentally changes the transition probability in that system [162]. This chapter 

presents the experimental confirmation of this prediction [163]. 

We have considered the case of a tW<rlevel system (spin-~) unitarily evolving 

under a radi<rfrequency field sweep applied in the near-adiabatic limit. Effective 

abelian and nonabelian gauge potentials applicable to nonadiabatic behavior have 

been discussed from several points of view, both for unitary [164, 165, 166, 167, 168] 

and non-unitary [169, 170, 171, 172] evolution; while the nonabelian theories per­

mit both phase and population changes, th~e treatments of abelian fields describe 

population changes geometrically only in the case of non-unitary evolution. Several 

authors have also considered geometric effects on the phase of the transition am­

plitude in a unitarily evolving tW<rlevel system [173, 174, 175]. The recent work of 

Berry derives a wholly new result: it predicts a geometric component of the transi­

tion probability in a unitarily evolving two-level system. This geometric component 

depends only on the curve followed by the Hamiltonian in its space of parameters, 

and not on how fast the curve is followed. The transition probability is the product 

of the geometric factor (r g) which depends only on the shape of the magnetization 

trajectory, and a dynamic~l factor (r d), which is exponentially small in the rate of 

change of the parameters: 

p = exp( +r g) exp( -r d) (5.1) 

thus although the geometric factor is nonzero even in the adiabatic limit, the com-
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plete transition probability still goes to zero as the rate of change goes to zero. 

Section 5.2 briefly outlines the theory of Berry, showing its roots in the Landau-

Zener and Dykhne formulas for the transition probability in tw~level systems in 

order to fix notation and make our presentation more self-contained. We then 

discuss how the measurement is carried out, and the experimental significance of the 

parameters in the. theory. Sections 5.4 and 5.5 present results of these experiments 

~d indicate possible future directions and applications for this work. 

5.2 Theory 

Landau-Zener theory (cf Section 1.3.3) provides an exact expression for the nona-

diabatic transition probability in a tw~level system described by the following 

Hamiltonian: 

1l = [ Eo + a:t 

E12 

E12 1 
Eo - a:t ' 

(5.2) 

where Eo, E12 and a: are real, constant parameters, and t is the time [27, 28]. This 

Hamiltonian provides a simple model for a wide variety of phenomena, such as rapid 

passage experiments in NMR and nonadiabatic processes in atomic and molecular 

scattering. The instantaneous (adiabatic) eigenvalues of this system are 

(5.3) 

and thus represent an avoided crossing as t varies from -00 to 00. The complete 

time-dependent wavefunction for this tw~level system can be expressed in terms of 

the adiabatic eigenvalues and wavefunctions as follows (in units where;" = 1): 
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Here {4>1 (t), ¢>2 (t)} are the instantaneous eigenfunctions of the Hamiltonian of Equa-

tion 5.2, and Cl(t) and C2(t) are complex expansion coefficients. Landau-Zener 

theory provides an exact expression for the nonadiabatic transition probability P, 

where 

(5.5) 

assuming the initial condition Cl ( - 00) = 1, C2 ( - 00) = O. Physically, P is the 

probability of finding the system in state 2, given that it began in state 1 and 

was transported at a constant rate through the avoided crossing. This is shown in 

Figure 5.l. 

In terms of the matrix elements of the Hamiltonian of Equation 5.2, P = 

exp( -'/r Er2/a). Note that P is exponentially small in a; as the rate of change of the 

Hamiltonian goes to zero, P goes to zero, in accordance with the adiabatic theorem. 

Section 5.3.1 treats the application to inversion of a spin-~ more thoroughly. 

For a two-state Hamiltonian with more complicated time-dependence, Landau­

Zener theory does n~t apply. Dykhne showed, however, that in the case of a real 

two-state Hamiltonian with an avoided crossing, a Landau-Zener-like expression 

for P is valid asymptotically, as the adiabatic limit is approached [176, 177, 178]. 

In Dykhne's solution, time is analytically continued into the complex plane, and 

although the energy levels of the system do not cross for any real value of time, there 

can be some complex value of time, which we denote t c , where they do cross (c/. 

Figure 5.2). At this value of time, the energies are complex as well. Near t c , barring 

accidental cancellations of the individual matrix elements of the Hamiltonian, the 

analytic structure of the energy level splitting is determined by (t - t c ) 1/2 [179]. 

The double-valued nature of the complex square root gives rise to the transitions in 
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time -. 

Figure 5.1: For adiabatic passage in time, a system initially in state <PI will 
have zero probability of transition to state <P2 as t traverses (-00, +00). 

this picture-the eigenvectors are associated with the Riemann sheets of the square 

root, and can therefore interchange labels as they pass by the crossing point. The 

complex crossing point nearest the real axis dominates the transition probability as 

the adiabatic limit is approached; Dykhne shows that P is given asymptotically by 

(5.6) 

In this formula, scaled time, defined by T = at, is used, where a measures the 

adiabaticity, or slowness, of passage. Tc is the crossing point nearest the real time 

axis, and El and E2 are the (complex) instantaneous energies. This expression 

.. 
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Im[t] 

Re[t] 

Figure 5.2: Crossing points te(±) in the complex time plane. The closer the 
crossings lie to the real time axis, the slower the traverse needs to be performed 
to maintain adiabaticity. 

for P requires that the matrix elements of the Hamiltonian be analytic in a strip 

that includes both the real time' axis and 'fe, so that the phase integral may be 

analytically continued off the real time axis to the crossing point. Like the Landau-

Zener expression, Dykhne's formula for P is exponentially small in the rate of 

change of 'H.. 

Berry'S contribution removes the restriction to real Hamiltonians [162]. He 



considers the general Hermitian two-state Hamiltonian 

[ 

Z(r) X(r) - iY(r) ] 
'H(r) = , 

X(r) + iY(r) -Z(r) 

or, in spherical polar coordinates (H, (), c.p), 

[ 

cos ()(r) 
'H(r) = H(r) 

sin ()( r) exp[ic.p( r)] 

sin ()(r) exp[-ic.p(r)] ]. 

-cos()(r) 
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(5.7) 

(5.8) 

The expression for the full wavefunction, Equation 5.4, must be modified in this 

case by the geometric phase (Berry's phase), since here, unlike in the real case, it 

is not necessarily possible to globally choose the phase of the basis wavefunctions 

to be real [10]( cf. 1.3.2). The appropriate wavefunction is then 

'!/J(t) = Cl (t) exp [-i [00 dt' El (t')] exp(ird¢l (t) 

+c2(t)exp [-i J~oo dt'E2(t')] exp(i'Y2)¢2(t). (5.9) 

Here ri is the geometric phase of state i, and can be expressed in terms of a line 

integral over the path C followed by the parameters X, Y, Z, as ri = Ie A·dR, with 

A = (¢,IVR<Pi) and R the vector of parameters [10]. A is a vector potential (gauge 

potential), and in the two-state problem under consideration here it is abelian: it 

takes the form of a magnetic monopole vector potential located at the origin of 

parameter space [10]. 

As in the case considered by Dykhne, if the matrix elements of the Hamilto-

nian of Equation 5.7 are sufficiently analytic, an asymptotic expression for P can 

be developed, now by analytic continuation of both the energy difference and the 

geometric phase difference. We quote the result from Berry, in spherical coordi-

nates [162]: 

p = exp [-~ 1m f drH(r)] exp [-21m f drd~~) COS8(r)] (5.10) 

.. 
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(5.11) 

The first factor, exp( -f d), due to continuation of the energy difference, is the same 

as Dykhne's formula, and is exponentially small in the adiabaticity parameter. This 

factor is thus dynamical. The second factor, exp( +r g), is due to continuation of 

the geometric phase, that is, to the abelian gauge potential A defined above, and is 

independent of the adiabaticity parameter. r 9 is geometric in that it depends on the 

shape of the path followed by the Hamiltonian, but is independent of how fast the 

path is traversed. The geometric term is therefore constant, even under adiabatic 

evolution; it is multiplied, however, by a term which goes to zero in this limit so the 

adiabatic theorem is satisfied [9]. Note that the derivation of r 9 makes no reference 

to closed paths in parameter space, a feature of earlier work on geometric phases 

that was important for the unambiguous definition of phase shifts [11, 10]. 

Berry discusses several conditions on 'Ii that must be satisfied to yield a non-zero 

r 9 [162]: 

1. 'Ii must be complex Hermitian, rather than real symmetric. 

2. The Hamiltonian curve, 'Ii(r) must not lie in a plane through the origin, nor 

on a path that can be transformed to its time-reversed path through rigid 

rotation about an axis passing through the origin. 

We will examine these more closely in the discussion of the measurement of the 

geometric component. 
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5.3 Experimental Implementation 

5.3.1 Generating the Hamiltonian 

In order to measure the geometric transition probability, exp( +r g), we use a variant 

of a standard technique in NMR, adiabatic rapid passage (ARP) [1, 159]. The basic 

ARP experiment works by sweeping a radio-frequency field slowly through a Zeeman 

resonance. To describe the process thermodynamically, the inversion must proceed 

more slowly than the dephasing time, T2 , (adiabatic) to prevent the creation of 

coherences, yet faster than the longitudinal relaxation time, T1 , (rapid) to prevent 

coupling to the lattice [161, 160]. 

The adiabatic inversion can be visualized as a spin-locking radio-frequency field 

that smoothly transports magnetization aligned along the + z axis to an alignment 

along the - z axis. A condition for adiabaticity [1] 

(5.12) 

requires that the rate of change of the direction of the applied RF field be smaller 

than the square of the field strength. Violation of this condition will cause magne-

tization to precess through large angles about the applied field axis, resulting in 

incomplete inversion. This is known as the strong condition for adiabatic trans-

port. In practice, it is found that substantially faster passage through resonance 

still allows adiabatic inversion. 

This process is described by the Hamiltonian (expressed in frequency units) 

(5.13) 

where 'Y is the magnetogyric ratio of the nucleus; Bo is the static magnetic field, 
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taken along z, which determines the Larmor frequency Wo = 1'IBol; BRF is the radio-

frequency (RF) magnetic field, taken in the x direction, with amplitude 2wd1' and 

phase cp(t); and Iz and Ix are components of the nuclear spin I. In a frame of 

reference rotating about z in phase with the applied RF field, the Hamiltonian 

becomes 

(5.14) 

Here the resonance offset 6w(t) = cp(t) - Wo and the RF amplitude Wl define 

the components of an effective magnetic field Weff, that has magnitude IWeff(t) 1 = 

[6w2 (t) +wrP/2 and makes an angle with the z axis of (}(t) = arctan[-wtf 6w(t)] [1, 

159]. 

For a large, initially positive resonance offset, Weff begins along the +z axis, 

decreases in length as it sweeps down to exact resonance along the +x axis (reaching 

its minimum length WI), and then lengthens again to finish along the -z axis. For 

a sufficiently slow sweep, the magnetization will follow this field and also end up 

aligned along the - zaxis. Faster sweeps leave progressively more magnetization 

behind, causing incomplete population transfer and residual coherence. For linear 

sweeps (cp ex: t) such as is shown in Figure 5.3, the actual population transfer is 

described exactly by the Landau-Zener formula, because the Hamiltonian shown 

in Equation 5.14 has precisely the form of the Hamiltonian of Equation 5.2 in this 

case. 

It turns out that r 9 is zero for the standard Landau-Zener case. Consideration 

of the formula for r 9 shows that it is zero for a Hamiltonian curve that can be rigidly 

rotated into itself about an axis passing through zero [162], where by Hamiltonian 

curve we mean a curve in the space of parameters X, Y, Z (Ix, 1,//, Iz in the spin 
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ilro(t) 

Figure 5.3: A straight line represents the simple Landau-Zener scenario of 
Equation 5.2; the transition probability for this curve has zero geometric com­
ponent. 

.. 
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case) and parameterized by T. A Hamiltonian curve that cannot be so rotated is 

shown in Figure 5.4 (and reference [162]); this is the curve used in our experiment, 

and represents the Hamiltonian 

(5.15) 

This Hamiltonian is generated experimentally by independently varying the the 

excitation and detection frequencies. Implicit in the discussion of the simple linear 

sweep was the idea that the signal would be detected in the instantaneous rotating 

frame defined by the RF. In fact, the resonance offset term, /:::"w or AT, is defined 

by the difference between the Larmor frequency Wo and the detector frequency 

Wdet; trajectories of Weff in the xy plane of the rotating frame are generated by a 

transmitter-detector frequency offset. To g~nerate the Hamiltonian shown in Equa­

tion 5.15, then, it is necessary to sweep both the detector and the RF frequencies 

linearly ~hrough resonance, while offsetting them in a way that the offset decreases 

linearly to zero as both pass through the Larmor frequency, and then increases 

linearly again. 

A final complication lies in the time parameterization. Rather than choosing the 

time interval (-00,00), we use the closed interval t E [0, TJ, since our experiments 

have a definite beginning and end. Then it is natural to use 8 = liT as the scale of 

adiabaticity, and take scaled time in the interval T E [0, 1J. Finally, we symmetrize 

the Hamiltonian about the origin of parameter space (so that the center of the chirp 

pulse occurs at time T = 1/2), giving the final form 

(5.16) 

The procedure used to generate this Hamiltonian is illustrated in Figure 5.5. 
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Figure 5.4: The non-uniform helix of Equation 5.15, is used. in our experiments. 
The effective field, WeEr traces out a spiral that displays a non-zero geometric 
component in the transition probability. 

, 
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1 

Figure 5.5: The transmitter and detector frequencies necessary to generate 
the Hamiltonian shown in Equation 5.16 (Figure 5.4). The detector frequency 
is swept linearly through resonance, to give the proper offset behavior (wo -
Wdet = 2A(r - 1/2)); also, the RF and detector frequencies are offset by 
2B(r - 1/2)8, so that the phase of Weff in the xy plane is B(r - 1/2)2. 
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The complex crossing point is found to be 

1 ± Wt . 
Tc = 2 2A~· (5.17) 

The plot of the complex time plane (Figure 5.2) showing the crossing points, Tc(±) 

reveals two experimental constraints. First, in order to avoid edge effects due 

to starting and ending the experiment at finite times it is necessary to choose 

Wt « A, so the time integrals can be extended to ±oo. Second, in order to guarantee 

adiabatic passage, we must approach the crossing points slowly (along the real time 

axis) relative to the size of wt!2A. Then the dynamic and geometric contributions 

to the transition probability are evaluated as 

(5.18) 

4IAIA' 
(5.19) 

I t will be argued that moving the detector frequency can have no physical effect 

in an NMR experiment, a point which is certainly true. The detector frequency 

serves only to define a convenient reference frame. In the present case, by choosing 

a different detector frame, we can even make our complex Hamiltonian look real. 

Does this remove the geometric component from the transition probability? Not 

at all. By synchronizing the detector with the RF, rather than using the frame 

described above, the Hamiltonian of Equation 5.16 is transformed into 

1-£ = 2(A - B8)(T - 1/2)/% - Wt/z; (5.20) 

note the appearance of 8 in the resonance offset term. In this frame, r 9 = 0 by 

symmetry. When Landau-Zener theory is applied to this transformed Hamiltonian 

(now a valid procedure because it has the form of the Hamiltonian of Equation 5.2), 
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the transition probability for all values of 6 is obtained: 

( 
1rW2 ) 

P = exp - 46IA(1- ~6/A)1 . (5.21) 

Expansion around 6 = 0, the adiabatic limit, yields 

(5.22) 

which shows that, even though r 9 = ° in this frame, the geometric component of 

P, exp[-1rwrB/(4AIAI)], does not vanish. This expansion also gives a useful bound 

on where the asymptotic theory of Berry should be valid, namely, A/(B6) » 1. 

The above analysis demonstrates that r 9 and r d are gauge-dependent quanti­

ties, that is, that their values depend on the basis (reference frame) in use. The 

original reference frame of Equation 5.16 is conceptually convenient, because in it, 

the geometric and dynamic transition probabilities separate cleanly into r 9 and 

rd. The current reference frame, Equation 5.20, lacks this clean separation, but is 

experimentally convenient. The practical signature of the lack of a clean separa-

tion in a given frame is the appearance of 6 in the Hami~tonian expressed in that 

frame. If 6 appears explicitly, then in that frame the geometry of the curve and its 

time parameterization are entangled, and one cannot draw conclusions about the 

appearance of a geometric transition probability from the shape of such a curve 

alone. 

The existence of a real form of the Hamiltonian (Equation 5.20) is not due to any 

special features of the complex curve (Equation 5.16). Any complex Hamiltonian 

curve can be locally transformed to a real version, to which Dykhne's theory can be 

applied. The resulting transition probability will be qualitatively different, however, 

from the usual Dykhne and Landau-Zener results, if the Hamiltonian curve in a 6-

independent frame is both complex and sufficiently asymmetric. The new feature 
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in P is, of course, the 8-independent component (exprg in a 8-independent basis). 

The fact that r 9 vanishes in some frames but P retains its 8-independent factor 

is the analog of the removability of Berry's phase, that is, the fact that Berry's 

phase can always be locally transformed away but nevertheless observables still 

show the underlying geometry of the system [180]. This freedom of choice of basis 

is a manifestation of the gauge-invariance of P. We take advantage of this freedom 

by measuring P in the frame of Equation 5.20, and analyzing the data in the frame 

of Equation 5.16, for easier comparison with Berry's results. 

5.3.2 Measurement of P 

The Zeeman resonance in 13C-enriched carbon disulfide provided the two-level sys­

tem for our experiments. We used an 11.7 Tesla magnet, corresponding to a 13C 

resonance frequency of 125.6 MHz; the static magnetic field was shimmed to give a 

line of full width at half maximum of 15 Hz. This linewidth is due almost entirely to 

inhomogeneity in the static magnetic field. The NMR spectrum of this sample con­

sists of a single line, since most (99%) of the spin-l/2 l3C is bonded to spin-O sulfur. 

The longitudinal relaxation time (TI ) for our sample was 22 seconds, determined 

with an inversion-recovery experiment, which defines the time scale for rapid pas­

sage experiments: they must be short compared to TI . All results presented below 

were acquired with sweep times ~ 0.6 seconds. The data were collected on aChe­

magnetics CMX-500 NMR spectrometer, using a Sciteq direct digital synthesizer 

for control of the detector and RF frequencies. The frequency chirp is represented 

by a windowless sequence of 1792 pulses, each with the frequency incremented by 

an amount dictated by the sweep profile. 

.. 
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Measuring P amounts to measuring the diagonal elements of the density ma-

trix. The initial density matrix in our experiment is essentially III [1, 159]; after 

subjecting this to an RF sweep with an RF field strength of approximately 400 Hz, 

the component remaining along the z axis is proportional to 2P - 1. A 90° pulse, 

with a field strength of 20 kHz, following the sweep brings this component to the 

xy plane in the rotating frame, where it can be detected in the time domain. The 

90° "interrogation" pulse is applied on-resonance. The pulse sequence is shown 

schematically in Figure 5.6. A standard CYCLOPS (quadrature) phase cycle is 

applied to the 90° pulse and detector, to remove residual coherences and hard­

ware imperfections [120]. The experiment is repeated for a variety of sweep times, 

ranging from 5 to 600 msec. For each iteration, the 13C resonance is integrated to 

improve signal-to-noise, and provide immunity against lineshape distortions. The 

(signed) area of the peak in the frequency domain, S, is proportional to 2P - 1, 

and is normalized to the signal from a very slow (adiabatic) sweep, Smax, for which 

P = o. Thus P is extracted from the measured peak areas as P = ~(1 - S/Smax). 

5.4 Results 

We demonstrate generation of Hamiltonian 5.16 by showing, in Figure 5.7, the 

response of the sample magnetization to it, for b = 1.66 sec- 1 (A/(Bb) = 18.9), 

that is, nearly adiabatic evolution. For such a case, the magnetization vector tracks 

the direction of the Hamiltonian vector shown in Figure 5.4, and gives a direct 

picture of the geometry of the Hamiltonian curve. 

The experimental trajectory of Figure 5.7a was measured in a "two-dimensional" 

interferometric experiment, where the pulse sequence of Figure 5.6 was applied with 
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T 

Figure 5.6: The experimental sequence used to measure P, the nonadiabatic 
transition probability. First, the RF frequency sweep is applied over the time 
interval [0, T]. P is related to the resulting component of magnetization along 
Zj this is probed with the 900 pulse, which tips it into the xy plane in the 
rotating frame, where it is detected in the time domain during the interval t2. 
Fourier transformation to the frequency domain yields a peak whose intensity 
is proportional to 2P - 1. Four such experiments, with phase shifted probe 
pulses and detector frames (to cancel residual coherences and artifacts in the 
electronics), are co-added and integrated to yield a single data point. 
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(a) 

-y 
-x 

(b) 

Figure 5.7: (a) Response of the sample magnetization to the Hamiltonian 
of Equation 5.16 (Figure 5.4), in the adiabatic regime. (b) For clarity, an 
expanded (and truncated) theoretical curve of the magnetization is shown. 
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Transverse magnetization 

10 20 30 40 50 60 
Frequency segment 

Figure 5.8: Plot of the transverse excursion of the magnetization vector during 
the RF field sweep. 

successively longer fragments of a complete frequency chirp. It is interesting to note, 

that during the chirp pulse (composed of 1792 different frequency elements), most 

of the excursion of the magnetization vector occurs in the middle 16 frequency 

increments. The interrupted detection scheme employed to measure the trajec-

tory depicted in Figure 5.7 used the 900 read pulse to resolve the position of the 

magnetization vector at the end of each frequency segment. By integrating each 

spectrum so obtained, we are able to track the magetization as it passes through 

the transverse plane. Figure 5.8 shows such a plot. 

Figure 5.7 shows the same data, except there, a reverse phase correction has 
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been applied to each data point, to correct for the fact that the transmitter and 

receiver were locked with zero phase offset for each point in the acquisition. In 

effect, this allows us to map the data of Figure 5.8 back onto the sphere, to obtain 

the laboratory frame trajectory. 

Since the dynamical term overwhelms the geometric contribution to the transi-

tion probability in the adiabatic regime, measurement of r 9 requires nonadiabatic 

traversal of the Hamiltonian curve, for which the magnetization no longer keeps up 

with the Hamiltonian. We take advantage of the fact that we have an expression 

for P valid for all 8, by fitting the theory to our measurements of P over a range of 

sweep times. The results are shown in Figure 5.9. The experimental parameters are 

A = 50 kHz, B = ±5, 000 rad, and Wl = 393 Hz. Determination of these parame-

ters is discussed below. Changing the sign <;>f B is equivalent to the transformation 

H(7) --+ H( -7), that is, time-reversal [162]. Close agreement between the exact 

theory, Equation 5.21, and experiment is obtained over the full range of 8. We have 

performed the same experiment with different values of IBI and Wl, and the graphs 

of P (not shown) scale according to Equation 5.21. 

5.5 Discussion 

5.5.1 Determination of rg 

Using the data shown in Figure 5.9 we can extract the geometric contribution to P 

in two ways [162]. In the adiabatic limit, we can consider only the first two terms 

in the product expansion of equation 5.22: 

(5.23) 
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Adiabaticity A/(B'O) 

5 10 15 20 25 
1.0 

. 8 

.6 

P 

.4 

.2 

0.1 0.2 0.3 0.4 

lja (seconds) 

Figure 5.9: The nonadiabatic transition probability, measured as a function 
of adiabaticity parameter for the Hamiltonian of Equation 5.16. Parameters 
are A = 50 kHz, B = ±5, 000 rad, and WI = 393 Hz. Changing the sign of 
B amounts to traversing the curve in time-reversed fashion. The filled circles 
are for B = +5,000 rad, and the open circles for B = -5,000 rad. The solid 
curves show the theory for this case, Equation 5.21, which is exact, describing 
both the adiabatic and nonadiabatic limits. A/(B8), shown on the top axis, is 
a dimensionless adiabaticity parameter (see text), which scales out the specific 
values of the constants used in the experiment. 

.. 
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(5.24) 

Taking the logarithm of each side yields 

(5.25) 

(5.26) 

First we plot log( 1 / P) versus 1/6, (i. e. versus sweep time). In the nearly adiabatic 

regime, such a plot should be linear, with slope 6rd and intercept -rg • The non-zero 

intercept reflects the fact that the geometric component persists into the adiabatic 

limit, although P -+ 0 in this limit so it cannot be measured there. The data are 

plotted this way in Figure 5.10, and three regimes can be identified. At short sweep 

times the data are non-linear, as expected; the asymptotic theory should not apply 

here. Also, at the shortest times, P -+ 1, and 10g(1/ P) -+ 0 as shown in Figure 5.11. 

At very long times, P ~ 0, and we cannot measure it accurately due to our signal-

to-noise constraints. The intermediate regime, however, shows the expected linear 

behavior, with offset. Equation 5.22 shows that Berry's theory should hold, for the 

present Hamiltonian, when A/(B6) » 1. The data show linearity for A/(B6) ~ 4. 

As mentioned in Section 5.3.1, theoretical requirements for adiabatic evolution are 

frequently harsher than those encountered experimentally. Finally, note that the 

intercepts in Figure 5.9 are positive and negative, as B is changed in sign; this is 

due to the fact that r 9 changes sign under time-reversal, but r d does not [162]. 

Berry'S theory predicts, for the values of A, B, and WI listed abqve, that Ir gl = 

0.243 and 6rd = 15.3 sec-I. These lines are plotted in Figures 5.10 and 5.11. Least-

squares fits to our data give r 9 = 0.26 and 6r d = 16 sec-I, for B = -5,000 rad, and 

r 9 = -0.23, 6r d = 15 sec-I, for B = +5,000 rad. Quantitative agreement, while 
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Figure 5.10: The same data as shown in Figure 5.9, now plotted as log(l/ P) 
versus 1/6 in order to extract the geometric transition probability. At small 
values of 1/6 the dynamics are strongly nonadiabatic, and the asymptotic 
theory of Berry is not valid here. For large 1/0, the adiabatic limit, P is 
too small to measure accurately in our experiment, as is evidenced by the 
increased scatter in the data at long sweep times. The intermediate regime, 
however, is accessible to experiment and is described by Berry's theory. The 
figure also shows the theory of Berry, which appears as straight lines of slope 
or d = 15.3 sec- 1 and intercept r 9 = ±O.243. The sign-change in r 9 is due to 
its behavior under time-reversal. 
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Figure 5.11: The intercepts from Figure 5.10 are shown more clearly in this 
figure, which also shows the behavior for small 1/8; both experimental curves 
go to zero here, since P --+ 1 in this limit. 
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not perfect, is reasonable, given the amplification of errors at small P introduced 

by the logarithmic plot and the difficulty of precisely measuring Wl, the amplitude 

of the RF field, in our apparatus. Section 5.5.3 discusses this difficulty. 

The above-stated time-reversal behavior affords a second way to extract r g. 

Plotting! 10g(PB>o/ PB<o) versus sweep time should give a line of zero slope with 

intercept r g; the data plotted this way are shown in Figure 5.12. This determination 

yields r 9 = -0.26 ± 0.01, to be compared with the theoretical value of r 9 = -0.243. 

The same three regimes observed in Figure 5.10 can be identified, as 1/8 changes 

from small to large values. 

5.5.2 Behavior with Respect to Time-Reversal 

In the previous section we used the behavior of P under time-reversal to extract 

r g . Near the adiabatic limit, where the asymptotic theory is valid, this behavior 

is expressed simply by the sign change in r g' Figure 5.9 shows that, farther from 

this limit, the behavior of P for B > 0 differs qualitatively from that for B < 0: 

for B > 0 an inversion notch is observed, where P - O,even though B8/A is 

not small, while no such notch is observed for B < O. Though this feature occurs 

outside the regime of validity of Berry'S asymptotic theory, its sensitivity to time­

reversal and the fact that no such behavior occurs in the conventional Landau-Zener 

Hamiltonian (Equation 5.2) merit attention. 

We first consider how the RF frequency depends on the sweep time 1/8. As 

discussed above, the shape of the Hamiltonian curve of Figure 5.4 will be indepen­

dent of sweep rate for fixed parameters A and B. However, the situation is quite 

different in the frame defined by the RF (Equation 5.20): Figure 5.5 indicates that 

.. 
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Figure 5.12: The data of Figure 5.9, plotted as ~ log(Ps>o/ Ps<o) versus l/e. 
Due to the behavior under time-reversal, r 9 adds, while r d cancels; the asymp­
totic ~heory thus predicts a line of slope zero and intercept r 9 for this plot. 
The theory is confirmed, and the same three regions of Figure 5.10 can be 
identified. 
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the RF field sweeps through a total range of 2(A - B6) as it crosses the Larmor 

frequency. For B > 0, the range is swept from negative to positive offsets for small 

6, and positive to negative for large 6; when 6 = A/ B, the range is not swept at 

all. For B < 0, all sweeps are negative to positive. Physically, 6 = A/ B "sweeps" 

correspond to continuous resonant irradiation. This condition represents a patho­

logical solution to the Landau-Zener problem, in that P becomes an oscillatory 

function of time at this point. Experimentally, this pathology is easy to avoid, 

because it is very narrow: the transition occurs while the resonance offset is in a 

range around zero of order Wt. Thus the data of Figure 5.9 near the notch satisfy 

the condition that the initial and final resonance offsets are large on the scale of the 

transition itself, so for these points one may still think in terms of an inversion of 

the magnetization. The reason that the inversion becomes nearly perfect here, even 

though A/(B6) ~ 1, is that the rate of change of the sweeping field, compared to 

the effective field strength, is very small. Thus while Weff is in the transition region 

it changes slowly, and adiabatic behavior is observed. 

It is also instructive to consider the origin of the notch in the frame of Equa­

tion 5.16, that is, the frame of Figure 5.4. In this frame, the curves corresponding 

to the two signs of B can be ~erived from each other by inversion through the' 

origin, the main effect of which is to reverse their helicities. Thus for B > 0, 

the helicity is decreasingly positive as the crossing is approached, and increasingly 

negative afterwards, while the opposite holds for B < o. As is well-known from 

conventional NMR theory, only one sense of circularly polarized irradiation can ef­

fect a transtion, that sense being defined relative to the sign of the applied static 

field [1, 159]. Therefore, we expect transitions when the sense and rate ofhelicity are 

.. 
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properly correlated with swept resonance offsets as defined by the detector frame. 

This immediately explains why the notch appears only for B > o. Furthermore, 

the spin inversion to which the notch corresponds appears here as a rather intri­

cate spin trajectory, quite unlike the smooth adiabatic inversion of the conventional . 

Landau-Zener picture (Equation 5.20) . 

In the context of the helical Hamiltonian, the crossing point when Aj(B6) ~ 1 is 

decidedly nonadiabatic. This is acceptable: the description of a transition as adia­

batic is frame-dependent. We see that by viewing the Hamiltonian of Equation 5.16 

as a simple Landau-Zener problem, by using the frame of Equation 5.20, we arrive 

at a simple· picture of the inversion process, for which, however, the geometrical 

component of the transition probability comes out only after a complete analysis. 

In the original frame, the geometry is evideJlt, but description of the transition itself 

becomes more difficult. Each frame has advantages, and of course the same result 

is obtained for P in either case. 

5.5.3 Determination of WI 

The results shown above provide a simple determination of the geometric comp~ 

nent of the transition probability. We encountered one difficulty in making the 

measurements, which we now discuss in some detail. The various expressions for 

P, whether exact or asymptotic, are quite sensitive to .Wb the RF field amplitude, 

as they depend exponentially on w~. The other parameters in these expressions, 

A and B, are offsets that are programmed into the digital synthesizer and'hence 

are known. W.1 must be measured independently, however. Such a measurement is 

typically accomplished by determining the length of time needed for a 3600 pulse 
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on resonance, t360, because Wit360 = 211'. Measuring the null generated by a 1800 

pulse would proivide an alternative method, but the 1800 pulse is extremely sensi­

tive to resonance offset. Since we needed to measure a relatively weak RF field (,..., 

400 Hz) relative to a broad line (,..., 15 Hz FWHM), the inherent ability of the 3600 

pulse to compensate for offset effects favored this method for measuring the null. 

Furthermore, in the presence of radiation damping, the 1800 "inversion" (unlike a 

3600 pulse) will yield an abnormally low value for the field strength. We found 

that our data could be fit precisely by the theory only when the value of Wi used in 

the formulas for P was adjusted to a lower value from the value given by 211' /t360, 

typically about 10% lower. This discrepancy does not seriously undermine our con­

fidence in our test of the theory, however, primarily because of Figure 5.9. In this 

figure P is plotted for a wide range of 0, and should be fit by Equation 5.21. By 

using a non-linear least-squares fitting procedure with this formula, and Wi as the 

only adjustable parameter, very good agreement with the data is obtained. The 

goodness of fit suggests that Wi as obtained from t360 is slightly high, but that 

other features of the experiment work as expected, because the functional form for 

P agrees closely with the theory. We describe below several possible mechanisms 

that might account for this discrepancy in the value of Wi. 

One likely source of error is inhomogeneity in the magnetic· fields. There are 

two possibilities: inhomogeneity in the static field and in the RF field. We rule out 

the former as a source of error, because experiments carried out with a range of 

shim settings, corresponding to resonance linewidths ranging from 2. Hz to 30 Hz, 

gave no change in the discrepancy in Wi values. This is not surprising, since in our 

experiments the initial and final resonance offsets (which are ,..., 50 kHz) are much 
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greater than this small spread. in Woo Thus all spins in the system will be affected 

equally by the sweep, though possibly at slightly different times during the sweep. 

We now turn to RF inhomogeneity. Our experiments were performed with a 

Chemagnetics broadband 1 H-,X-nuc1eus magic angle spinning (MAS) probe. Sev­

eral features of this setup conspired to yield a rather nonuniform RF field profile. 

The size of the coil ("" 8 mm diameter, "" 2 cm length) was comparable to the 

size of the sample. Furthermore, the CS2 did not fill the sample holder completely. 

Since the coil and sample vessel are inclined at an angle of 54.70
, we expect the 

non-uniform distribution of the CS2 to exacerbate the effects of the inhomogeneity 

inherent in the coil design. The observable consequence of RF inhomogeneity is to 

give a distribution of Wl field strengths over the sample volume, rather than a single 

value. We were able to measure this distribution approXimately, and average the 

theory with respect to it; this procedure does not significantly change the functional 

form predicted for P, and could account for 10-30% of the discrepancy in Wl values. 

The RF homogeneity can be measured by applying a train of 900 pulses with 

windowed acquisitions-during which the position of the magnetization is determined· 

(cf. Figure 5.13). The short interpulse delay (.001 sec) prevents significant spin-spin 

relaxation. For a train of 256 pulses, the sole cause of signal decay is dephasing 

caused by the distribution of Wl field strengths, and a Fourier transform of the 

resultant echo train yields the profile of this distribution. Figure 5.14 shows the 

spread for our experimental setup, determined with sequence 5.13. By symmetrizing 

about the distribution peak, and fitting each so-generated data set with the sum 

of a Lorentzian and a Lorentzian-squared profile, a functional form for the field 

distribution can be generated. Then for each appearance of Wl in the transition 

... 
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Figure 5.13: A train of 90° pulses can be interleaved with acquisitions of single 
data points. A Fourier transform of the resultant data set yields a distribution 
of Wl field strengths over the sample volume as a function of tip angle. 

probability expression, an integation over the weighting function is performed. As 

mentioned earlier, this procedure reduces the Wl discrepancy by approximately 10-

30%. 

Radiation damping, that is, secondary effects due to the re-radiation of the RF 

field generated in the coil by the relaxing magnetization [1], is another possible 

source of error. This mechanism has already been considered in the context of 

ARP experiments [181, 182]. Numerical integration of the Bloch equations in the 

presence of a small (3 Hz) amount of radiation damping shows that the form of the 

graph of P is essentially unchanged, but is shifted to an effective value of Wl about 

3% smaller than the nominal value. Thus the correction is in the same direction 

.. 
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Figure 5.14: The experimental distribution of WI field strengths over the sam­
ple volume. 

as our observed discrepancy, but it is likely that the amount of radiation damping 

present in our system is substantially less than 3 Hz. 

Other possible sources of error are the digital generation of the frequency sweeps, 

and changing probe response as a function of resonance offset. We were able to show 

experimentally and by simulation that the number of digitization steps we used 

(1792) was sufficiently large to leave the results unaffected, and that the relatively 

low probe Q of 230 yielded fiat response within 2% over the frequency range used. 

While we could not quantitatively account for the entire difference between the 

independent measurement of WI and the fit to measured values of P, RF inhomo-

geneity seems the most likely mechanism to cause the observed discrepancy. This 

conjecture could be checked by performing a more quantitative independent mea-

surement of the coil characteristics than we were able to, or possibly by using a very 
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small, symmetrically constructed sample container. As an aside, the sensitivity of 

this experiment to the value of Wl might provide a very precise way to calibrate 

small RF field strengths in other NMR measurements. 

5.6 Conclusions 

These studies provide the first experimental verification of the geometric transition 

probability recently described by Berry [162]. Various features of the theory were 

tested, including the independence of the geometric factor to the rate of change of 

the Hamiltonian; the theory is confirmed in all respects. 

We anticipate that the geometric transition probability will prove to be an im­

portant consideration in a wide variety of experiments. Observing the probability 

is quite straight-forward-no complicated intereference experiments are necessary, 

nor are closed loops in parameter space needed, as they are in the case of Berry's 

phase, for unambiguous determination. In chemical physics, Landau-Zener treat­

ments are frequently used in the study of scattering and dissociation processes; 

when fields or other mechanisms which break time-reversal symmetry are present, 

we expect that the geometric term will playa role. 

A simple extension of this work is a modification of the experiment used to 

generate the data shown in Figure 5.7, to measure the population change as a 

function of 'T du.ring the sweep-a simple formula for this is derived in another 

recent paper by Berry [183]. 

At this point an important theoretical problem is to extend the treatment of 

Berry to the case of multiple avoided crossings. This has been considered for real 

Hamiltonians by Pechukas and co-workers [177, 178], and the difficulties increase 
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much faster than the number of avoided crossings (degeneracies in the complex time 

plane). The effect of multiple degeneracies is not simply additive. Such problems 

will also apply to the geometric case, but must be addressed in order to apply the 

theory to many realistic molecular systems. A general geometric framework for r 9' 

analogous to the type developed by Simon for Berry's phase [184], could be helpful 

here, but it is not clear to us how to develop one for open paths parameterized by 

complex time. 



Chapter 6 

Two-Channel Spectrometer 

6.1 Introduction 

This chapter describes the revision of a two-channel spectrometer, designated the 

Delta, whose original construction was described in the thesis of Drobny [185]. It is 

a proton/heteronucleus system based on a narrowbore (52mm) 360 MHz magnet, 

and was used for the liquid crystal experiments described in this thesis. Irradia­

tion and detection are performed with a superheterodyne architecture, employing 

a 30 MHz intermediate frequency. A 392.12 MHz local oscillator for protons, and 

an 85.588 MHz LO for deuterons, mixed with the IF yield the radio frequencies of 

362.12 MHz and 55.588 MHz for proton and deuterium irradiation, respectively. All 

phase shifting is performed at 30 MHz. The primary modification of the spectrome­

ter comprises the implementation of a new pulse programmer (designed by Tecmag, 

Inc. [186]) based on a Digital Equipment Corporation VAXStation II minicomputer. 

Section 6.2 presents the geometry and field specifications for the magnet. Fig­

ure 6.1 provides a schematic overview of the spectrometer electronics. The first three 
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sections of the chapter introduce the intermediate and radio frequency generation 

hardware, and the local oscillator generation. Section 6.6 gives a brief introduction 

to the sample probe used in the experiments, and Section 6.8 describes the receiver. 

6.2 Superconducting Magnet 

The superconducting magnet solenoid (Bruker SN BZH-01840070 [187]), originally 

housed in an Oxford Instruments dewar [188], has been redewared by Nalorac Cryo­

genics Corporation [189]. The new ultra-low loss dewar (Type: ULL/2.0V, SN V-

117) has a helium hold time of 100 days, and a nitrogen hold time of 16 days. An 

American Magnetics, Inc. [190] platinum resistor level sensor coupled to a Model 

110A level meter measures the helium level in the dewar. 

The field center lies 59.4 cm below the top flange of the new dewar. Figure 6.2 

shows a profile of the magnetic field along the z axis obtained by measuring the 1 H 

resonance frequency for a 25 p.L sphere of water at various positions along the field 

axis. With only the superconducting shims, the field is homogeneous to within 7 

parts per million over a 2 cm section at the field center. 

6.3 Intermediate Frequency 

The 30 MHz intermediate frequency (IF) is generated (in the frequency tripler 

chassis) by tripling the 10 MHz reference signal generated by the PTS 160 [191]. 

This scheme does not differ from that described in Figure 53 of Drobny's thesis [185]. 

Proton channel quadrature phase generation differs substantially from the earlier 

design. Two-dimensional NMR experiments, as well as most multiple-pulse solid 
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Figure 6.1: Schematic diagram of the Delta spectrometer. 
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state NMR experiments, rely on extremely stable RF electronics [192, 193, 87, 

49]. A new quadrature phase generator, described earlier [194, 195], was added 

to provide accurate and stable quadrature phases for the proton channel. The 

deuterium decoupling necessary for the liquid crystal experiments does not depend 

on the RF phase, and therefore, no effort was undertaken to improve upon earlier 

designs. For phase-coherent double resonance experiments, this would certainly be 

a consideration. 

Briefly, the proton quadrature phase generator employs extremely stable dc volt­

age references to bias the IF port of a double balanced mixer (DBM). This design, 

depicted schematically in Figure 6.3 allows accurate setting of phase and amplitude, 

and also provides for independent adjustment of the phase and amplitude. The 

30 MHz input to the quad box is split into in-phase and quadrature components. 

These are then recombined in the output mixer, with coefficients determined by the 

reference voltages biasing the switching mixers. Phase incrementation in steps as 

small as 1.4° is performed with a digital phase shifter (built around a Daico phase 

shifter Model 100D0898) described previously [185]. 

6.4 Local Oscillator 

The PTS 160 generates the local oscillator (LO) for the X channel (with an LO 

range of .1- 160 MHz), with a deuterium LO of 85.59 MHz. For the proton channel, 

the PTS 500 provides a range of 1-500 MHz, with an LO of 392.1 MHz. For better 

stability, the proton LO is no longer generated by tripling a 130 MHz signal, as in 

the prior design [185]. The synthesizer outputs (approximately 1.2 Vpp) are routed 

to the RF generators, where they are mixed with the phase-shifted IF, in order to 

" 
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Figure 6.3: Schematic diagram of the quadrature phase generation box. For 
the x and x phases, the upper arm forms the in-phase component, and the 
lower arm provides the trim. For the y and y phases, the roles are reversed. 
There are a total of eight voltage references: four for the phases, and four for 
the amplitudes. 
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generate the RF Larmor frequency. 

The PTS 500 can be frequency-switched to perform selective irradiation exper­

iments, or difference spectroscopy. The digital interface encodes the frequency in 

a relatively inefficient binary coded decimal (BCD) representation. The PULSkit 

does not have a sufficiently wide micro control word to allow for arbitrary frequency 

encoding, but a hop between two frequencies, requiring only one bit, was facilitated 

by a digital board designed to connect to the rear of the- PTS 500 via a 50-pin 

ribbon cable. Figure 6.4 provides the mask for the printed circuit board. Settings 

on eight-element DIP switches determine the synthesizer's alternate frequency. 

6.5 Radiofrequency Generation 

The phase-shifted 30 MHz intermediate frequency signal is filtered and mixed with 

the 392 MHz local oscillator in the rado frequency generator box. Figure 6.5 shows a 

block diagram schematic for the RF generator stage. The resultant sidebands at 362 

and 422 MHz are filtered and amplified to yield the 362 MHz proton signal. A single 

pole two-throw gallium arsenide switch (Anzac SW-231) can switch the output 

through either a 64 dB attenuator, or through two serially connected Watkins­

Johnson S11 RF switches. The attenuator output level can be adjusted (with a 

switching time of 6 milliseconds) either by front panel switches, or with TTL signal 

lines from the signal distribution box (cf. Figure 6.12) buffered by a pair of 74LS06 

open~collector hex inverter buffer drivers 

For optimum performance, the transmitter should have a very high on/off ratio 

(of at least 60 dB), to prevent amplifier leakage into the receiver during the acqui­

sition period. The higher power RF channel has at least two RF switches in line 
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Figure 6.4: Printed circuit board mask (at 100%) for the PTS 500 frequency 
switching card. 
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to provide the necessary isolation. Furthermore, crossed microwave diodes lie in 

the signal path between the EN! 5100L-NMR high power amplifier and the probe, 

to block noise injection. Unfortunately, the junction capacitance of the diodes pre-

eludes absolute attenuation of the noise, and several sets of diodes are traditionally 

required, attenuating the high power pulse amplitudes. By tuning the junction ca­

pacitance with a small parallel inductance (three to four .3-inch turns of 18 gauge 

copper wire), the parasitic capacitance can be lowered sufficiently to necessitate 

only three sets of crossed diodes. 

A critical feature in SIN improvement is the ability to blank the output of the 
,. 

EN! amplifier. A TTL gating pulse from AUX gate B2 -(bit 7 of the microcontrol 

word) enables the dc supply voltage for the power amplifier modules within the 

ENI, and remains active during pulsing. Since the transition time for blanking 

requires 10 microseconds, it is switched during the receiver dead time, so that the 

output is blanked only during acquisition. 

6.6 Sample Probe 

The alkane/liquid crystal experiments suffer from a low concentration of protons. 

Therefore, the geometry of the RF probe must optimize detection of the available 

signal. To this end, a probe (designed by Cryomagnet Systems [196]) featuring 

an inverse detection scheme was used. The inverse probe has a proton detection 

coil coaxial with, and inside of, a broadband decoupling coil, in contrast to most 

broadband heteronuclear probes. The circuit diagram for the probe is shown in 

Figure 6.6. 
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Figure 6.6: Circuit diagram for the inverse detection probe. Schematic (a) 
shows the proton and deuterium lock channels. C6 through C lO are trimmable 
capacitors with a range of 0.4-6pF. C6 and C7 have a tuning range of 1-30pF. 
Cs and C9 , the tuning capacitors for the proton channel should be adjusted 
in tandem. For the wide band decoupler channel, the tuning can be adjusted 
with C1 and C3 , and two removable capacitors, C2 and C4 (51pF). With the 
capacitors in place the range is 54-64 MHz, and with them removed, the range 
covers 84-220 MHz. 
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6.7 Temperature Controller 

In thermotropic liquid crystals, the phase behavior of the molecule is determined 

by temperature [57]. Often, the range over which a molecule or molecular mixture 

displays mesophasic behavior is extremely narrow. In studies of flexible alkanes in 

liquid crystalline solutions, an accurate measurement of the temperature is neces­

sary to determine the conversion energy between different conformers. Therefore, 

stable and precise temperature control of the sample is critical to the reproducibility 

of nmr measurements in these solutions [197]. 

Stabilizing the sample temperature is hindered by fluctuations in room temper­

ature, and by periodic deposition of radiofrequency power into the sample. Deu­

terium decoupling in our experiments irradiates the sample with 85 millisecond 

pulses of 50 watts of rf power. This section discusses the construction of a tempera­

ture controller designed to stabilize the sample temperature by directing compressed 

air (heated with a resistive coil) in a tube coaxial with the sample. 

Figure 6.7 shows a schematic diagram for the controller. An Omega [198] 

CN9000 microprocessor-based temperature controller allows the user to set time 

constants for derivative and integral control of the set point temperature. This 

allows the IRF631 1rchannel enhancement mode MOSFET to adjust the heater 

current with minimum response time and minimum overshoot. The supply current 

for the probe heater coil is provided from an external power supply capable of sup­

plying at least 2 Amperes into a 3.5n load. The heater coil requires a maximum 

of approximately 12.5 Watts to heat the sample to 60°C with a compressed air 

pressure of 8 lbs. 

A Copper-Constantan thermocouple located 1 em below the probe meaSures 
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the temperature of the sample. The controller box is designed to accept input 

from either Copper-Constantan or Chromel-Alumel thermocouples. The CN9000 

compares the measured temperature to the setpoint, and adjusts its output (the 

gate voltage for the IRF631) accordingly. A Newport digital panel voltmeter [199] 

measures the heater current (across a IS1 sensing resistor, and displays the value on 

the front panel. This controller setup stabilizes the temperature to within a range 

of ±O.l°C, for the duration of the experiment (usually as long as two days), despite 

fluctuations in room temperature as large as ±7°C. 

6.8 Receiver 

To optimize the signal-t~noise, the receiver preamps reside in an aluminum chassis 

at the base of the magnet, minimizing the path length for the unamplified signal. 

Furthermore, noise immunity is improved by routing all analog signals through 

Belden 9310 coaxial cable (which has an aluminum foil-clad dielectric with 100% 

coverage). For the Delta, three BNC-selectable preamps, covered in Table 6.1, 

currently cover the spectrometer's bandwidth. In the receiver chassis, a Motorola 

MHW590-based cable television amplifier further boosts the signal before its down­

conversion to the IF. Beyond this point, the analog signal processing remains that 

described in Sections 4.4 and 4.5 of Drobny's thesis. 
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Table 6.1: Preamp specifications for the Delta spectrometer. 

Model number Bandwidth (MHz) Gain (dB) Noise figure (dB) 

AMC-147 5-500 17 1.8(55), 2.4(362) 

PB-CM 

PK 
51-60 

344-380 

6.9 Digital Section 

6.9.1 Computer 

19.25 

17.35 

1.95 

1.13 

178 

A VAXStation II minicomputer controls the operation of the spectrometer. The 

system is configured with 16MB of RAM and 410MB of hard disk storage. A 

95MB cartridge tape drive provides backup capability, and the system is linked by 

Ethernet (operating with the DECNET protocol) to several other computers in the 

laboratory. 

Two MDB Systems [200] DR-llW parallel interface cards link the VAXStation 

to the pulse programmer and the signal averager. These cards provide a 16-bit 

parallel bus for loading microcode into the pulse programmer and uploading data 

from the signal averager. The data transfer rate for the cards is 100 kB/second. 

6.9.2 Pulse Programmer 

The pulse programmer, also known as the PULSkit (designed by Tecmag), is a 128-

bit word generator based on an AMD 2910 instruction sequencer. Of these 128 lines, 

76 are user-definable, with the remainder used for internal control functions. The 

pulse programmer operates with a clock speed of 10 MHz provided as an external 

reference by the PTS 160 synthesizer. 
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The memory provided in the PULSkit allows pulse programs up to 2048 lines 

long. With the PULSkit in LOAD mode, the pulse programs are downloaded 

in 8 16-bit sections, until each 128-bit word is complete. During execution, the 

microsequencer clocks out the 128 bits in parallel. 

Figure 6.8 shows the assignments for the 128 bits in the microcontrol word. The 

time length for each event, in 100 nsec increments, is encoded in 2's complement 

notation, and requires bits 48-79 in the microcontrol word. Five loop counters, 

controlled by an AMD 9513 are available, with the loop counter selection defined 

by bits 112-116, and the loop branch address defined by bits 96-106. Bit 117 allows 

the pulse programmer execution to be triggered by an external TTL pulse. In this 

fashion, the PULSkit can be employed to generate an asynchronous decoupling se­

quence under the control of a master pulse programmer. The sequencer instruction 

(E - continue, 3 - conditional jump, 2 - unconditional jump) occupies bits 108-111. 

The PULSkit controls the signal averager (SAkit) timing and coaddition through 

bits 80-95 of the microcontrol word. Bit 87, set true during the initial delay of each 

pulse sequence, resets the signal averager address to the first word in memory. In 

order to perform phase cycling, it is necessary to be able to swap buffers (bit 90), 

and change the sign of addition for each buffer (bits 91 and 92 for boards 1 and 2, 

respectively). Bit 93 triggers the ADC. 

6.9.3 Software 

The software operating environment comprises three separate programs, TEC­

MAG.EXE located in the directory DUBO:[TECMAG], which controls real-time 

acquisition functions, and NMR1D.EXE and NMR2D.EXE in the subdirectory 
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[TECMAG.DATA], which provide data processing and visualization facilities in 

separate windows on the display. For faster computation, the data can be trans­

mitted by ethernet to a Stellar GS-1000 graphics workstation. On the VAXStation, 

two-dimensional Fourier transformation and processing are performed by the pro-

gram 2DFT.EXE. 

TECMAG, to be described in greater detail elsewhere [201], allows the user to 

load pulse program microcode into the pulse programmer (PULSkit), and dynami­

cally change event times and acquisition parameters. The files of microcode follow 

the naming convention *.MIC, and reside in the subdirectory [TECMAG.MIC]. 

Appendix A lists several of the most common pulse programs used to perform the 

liquid crystal experiments. Each line in the program represents a timing event 

(such as an RF pulse, an evolution delay, or an acquisition dwell time) in the pulse 

sequence. The output states of the pulse programmer gates are defined by a 128-bit 

micro control word, with the bit assignments listed in Figure 6.8. For convenience, 

a hexadecimal digit represents each four-bit nibble in the microcontrol word. 

The TECMAG program allows delay and pulse widths to be changed after the 

microcode is loaded into the PULSkit. To effect this, each timing event is given a 

two-digit alphanumeric mnemonic, listed to the right of the four-digit hexadecimal 

line number. PO .. P9,PA .. PZ denote rf pulses, and DO .. D9,DA .. DZ denote evolution 

delay' periods. The mnemonics A and AL are codes used for the data acquisition 

lines, to be discussed later . 

The mnemonics are followed by three columns of numbers defining RF phase 

tables for the proton and heteronucleus channels and for the receiver, respec-

tively. These tables reside in the [TECMAG.PHASE] directory in files l.PHASE, 
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2.PHASE, etc. Each table appears as a column of numbers 0,1,2,3 repersenting 

the four quadrature phases 00
, 900

, 1800
, 2700

• A fourth column can contain an 

optional character, I to increment the digital phase shifter, or R to reset it. A 

comment field begins ten spaces to the right of the phase shifter control digit. 

Execution of a pulse program writes four files to the [TECMAG.DATA] di­

rectory: *.DATA containing data, *.ACQ and *END.ACQ storing a copy of the 

microcode and a list of the acquisition parameters, and * .PAR containing process-

ing parameters for NMR1D and NMR2D. The data is written as a concatenation of 

the real data and the imaginary, each as four-byte integers. A sample * .ACQ file is 

shown here, with the acquisition parameters listed below the microcode, and four 

lines of loop counter information. Figure 6.9 explains the acquisition parameters, 

and lists some additional commands for loading and executing pulse programs. 

0000 EOOO 0080 FC20 2DCO 0000 0000 0080 
0000 EOOO 0000 FFFF FFD2 0001 0110 0091 
0000 EOOO 0000 FFFF FE5F 0000 0000 0091 
0000 EOOO 0000 FFFF FFA5 0001 0110 0091 
0000 EOOO 0000 FFFF FE5F 0000 0000 0091 
0000 EOOO 0000 FFFF FF02 0001 0110 0091 
0000 EOOO 0000 FFFF FFEC 0000 0000 0091 
0000 EOOO 0000 FFFF FFA5 0001 0110 0091 
0000 EOOO 0000 FFFF FFEC 0000 0000 0091 
0000 EOOO 0000 FFFF FFD2 0001 0110 0091 
0000 EOOO 0000 FFFF 8980 0000 0000 0091 
0000 EOOO 0000 FFFF FFA5 0001 0110 0091 
0000 EOOO 0000 FFFF 8980 0000 0400 0091 
0000 EOOO 2COO FFFF FFFA 0000 0000 0031 
0000 EOOO OCOO FFFF FCC5 0000 0000 0031 
0000 EOOO 2C40 FFFF FFFE 0000 0000 0031 
0000 EOOO OCOO FFFF FFFE 0000 0000 0031 
0000 EOOO OC20 FFFF FFFE 0000 0000 0031 
0002 300F OCOO FFFF FCC5 0000 0000 0031 
0000 EBOO 0000 FFFF FF9C 0000 0000 0000 
0000 2000 0000 FFFF 08FO 0000 0200 0000 
87E8 8301 8221 82Al 8309 823C 8200 8302 
8221 82A2 830A 8200 8204 8303 8221 82A3 
830B 82AO 8201 8304 8221 82A4 830C 8201 
8200 8305 8221 82A5 8300 8201 8200 835F 

NF - 416 SW - 12000.0 
NA - 60 OW - 83.3 
NB - 1024 AT - 85333.3 
Pl - 4.6 Pl INC. - 0.0 

0000 00 
0001 Pl 1 
0002 01 
0003 P2 1 
0004 01 
0005 Pl 1 
0006 04 
0007 P2 2 
0008 04 
0009 Pl 2 
OOOA 06 
OOOB P2 2 
000C06 
0000 A 3 
OOOE AL 3 
OOOF A 3 
0010 A 3 
0011 A 3 
0012 AL 3 
0013 03 
0014 05 

PI1NA - 0 PI1NF - o 



'. 

183 

P2 • 9.1 P2 INC. • 0.0 PI2NA • 0 PI2NF • 0 
DO • 6500000.0 DO INC. - 0.0 DIONA • 0 OIONF • 0 
01 • 41. 7 01 INC. - 41.7 OI1NA • 0 OI1NF • 1 
03 • 10.0 03 INC. - 0.0 OI3NA - 0 OI3NF • 0 
04- 2.0 04 INC. - 600.0 OI4NA - 4 OI4NF • 0 
05 - 1000.0 05 INC. - 0.0 OI5NA - 0 OI5NF - 0 
06 - 1800.0 06 INC. - 0.0 OI6NA - 0 OI6NF - 0 
FSNA - 0 FSNF - 0 PSRNA - 0 PSRNF - 0 PSINA - 0 PSINF- 0 
PH1 0 1 2 3 
PH2 0 
PH3 : 0 2 

6.9.4 Signal Distribution Box 

The output lines of the PUL8kit are latched with 74L8244 high impedance line 

drivers. In order to interface these latches with the TTL gates throughout the 

spectrometer, and to provide noise immunity for the gating pulses, it is advanta-

geoU8 to buffer them with 50n line drivers, and distribute them through coaxial 

cable. To this end, a signal distribution box was constructed, which accepts 40-pin 

ribbon cable inputs from the PUL8kit, buffers the signals with 74L8128 50n line 

drivers, and outputs them through a series of BNC connectors. 

Each printed circuit board in the signal distribution box conditions 4 separate 

signal lines. Figure 6.10 shows the schematic for this circuit, and Figure 6.11 

provides the mask (at 100%) for creating the printed circuit board. 

An incoming pulse from the PULSkit is buffered and inverted twice. A solderable 

jumper selects either positive- (tap the second output) or negative-true (tap the first 

output) logic for the output pulse (which is routed to a BNC bulkhead connector at 

the rear of the ch~sis). A copy of the positive-true pulse triggers a dual retriggerable 

monostable (74L8123) with a 10 msec time constant. Its output, Q, and a copy of 

the original pulse are NOR'd to light a front panel LED for either the duration of 

the pulse, or 10 msec, whichever is longer. In this fashion, the progress of a pulse 
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quit TECMAG program 
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zero SAleit memory 
zero SAleit memory and start pulse program 
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Figure 6.9: Commands for pulse program loading/execution for the PULSkit, 
and data acquisition with the SAkit. 
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OUTPUT 

INPUT 

e 
+5V 

74LS123 
+5V 

74LS128 74LS128 

74LSl28 

Figure 6.10: Functional schematic diagram for the signal distribution box 
buffer fLED circuit. 

sequence can be tracked visually. 

6.9.5 Signal Averager 

The signal averager (SAkit), based on a pair of Analog Devices HAS-1201 analog-

to-digital converters, simultaneously samples two channels with up to a 1 MHz 

sampling rate, and digitizes the signal with 12 bits of dynamic range. The PULSkit 

resides in the same chassis as the SAkit, and generates all the data acquisition 

pulses and triggers. 

The PULSkit generates the "start conversion" (CONY) and "end conversion" 

(EO C) pulses which control sampling by the HAS-1201's. A 32-bit multiplexer, 

controlled by bit 90 of the microcontrol word, performs buffer swapping, and routes 
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• • Vee 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • LED DRIVER. 
• • G. C. CHINGAS 

S. P. RUCKER 
GND 14 JULY 1988 

o • ..-
~ 

Figure 6.11: Printed circuit board mask (at 100% scale) for the signal distri­
bution box buffer/LED circuit. U1 is the input/ouput connector for the TTL 
signals, and U12 connects to the front panel LEDs. U2 is a parallel resistor 
pack that ties each input to ground with a 330!} resistor. U3, U4, and U11 are 
the 74LS128 inverting NOR chips, and U7 and UB the 74LS123 monostables. 
U9 and UlO hold header packs containing the timing elements for the monos­
tables. Solderable jumpers on headers in sockets in US and U6 allow selection 
of positive- or negative-true logic for the board output. 
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Figure 6.12: Assignment of bits in the microcontrol word to distribution box 
gates. 
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the signal to two 32-bit adder/subtracters (controlled by bits 91 and 92) which 

determine the sign for coaddition of the scan with data already resident in memory. 

The digital boards in the SAkit allow collection of up to 128K words of 32-bit data 

for the real and imaginary buffers. Under computer control, the data is uploaded 

in 16-bit increments after the completion of each tl experiment. 



Appendix A 

Pulse Programs 

The pulse programmer (PULSkit) outputs a 128-bit micro control word of which 76 

bits are user-definable, with the bit assignments listed in Figures 6.8 and 6.12. It 

is convenient to represent the microcode with each four-bit nibble represented by a 

hexadecimal digit. This appendix lists the microcode in this fashion for several of 

the most common sequences used to acquire the data presented in Chapter 2, and 

also to tune up the spectrometer. 

A.I Pulse-acquire 

The simplest experiment, pulse-acquire, is performed with the following sequence 

(H-ACQ...D.MIC): 

0000 EOOO 0080 FFFF FFFB 0000 0200 0080 
0000 EOOO 0000 FFFF FFFB 0001 0310 0091 
0000 EOOO 0000 FFFF FFFB 0000 0200 0011 
0000 EOOO 2COO FFFF FFFA 0000 0400 0031 
0000 EOOO OCOO FFFF FFFC 0000 0000 0031 
0000 EOOO 2040 FFFF FFFE 0000 0000 0031 
0000 EOOO OCOO FFFF FFFE 0000 0000 0031 
0000 EOOO 0C20 FFFF FFFE 0000 0000 0031 
0002 3005 OCOO FFFF FFFC 0000 0000 0031 
0000 ESOO 0000 FFFF FFFB 0000 0000 0031 
0000 2000 0000 FFFF FFFB 0000 0200 0000 
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0000 01 
0001 Pl 1 
0002 02 
0003 A 3 
0004 AL 3 
0005 A 3 
0006 A 3 
0007 A 3 
0008 AL 3 
0009 03 
OOOA 05 

PPG3 

Rep Oelay 
Idle 
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As with all the pulse programs executed with the PULSkit, the first line in the pulse 

program must have a duration of at least 0.01 seconds to avoid a fatal controller 

error. 

The ENI 5100L-NMR power amplifier has a TTlrgated deblanking option, 

whereby the dc voltage to the amplifier modules can be switched off. The transi­

tion time for this deblanking is 10 microseconds - too long to shut off the amplifier 

between pulses, but short enough to permit amplifier blanking during the detection 

period. In this fashion, we can reduce noise injection into the receiver. Bit 7 of the 

microcontrol word enables the ENI output (positive-true logic)and is switched off 

during the dead time, D2. Bits 0 and 4 are active during pulsing and acquisition 

in order to decouple deuterium. 

Lines 0003-0004 provide the timing for the data acquistion. Figure A.l shows 

the sequences for these pulses. The ADC command in line 0003 digitizes the first 

point, and line 0004 defines the dwell time delay. Line 0005 digitizes the second 

point, while adding the prior point with the first datum in memory. After a 200 

nsec settling period, that sum is written back to memory by line 0007. Line 0008 

provides the remainder of the dwell period, and loops back to line 0005 for the 

remainder of the acquisition. 

To measure the ninety degree pulse width for a given field strength, the pulse­

acquire sequence can be run as a tW<rdimensional experiment. In the acquisition 

parameter list, DIl can be set to increment by a fixed amount after each tl experi-

ment. 

.• 



.. 

DWELL TIME 

/ 

CONVERT SECOND DATA POINT 

" (bit 93) 
ADC ~ __ ~n n~ __ _ 
(bit 86) 
CONVERT/READ 

(bit 85) 
WRITE 

SAMPLE FIRST DATA POINT SEND FIRST DATA POINT TO ADDER 
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AND READ IN FIRST DATA POINT FROM MEMORY 

Figure A.1: Timing diagram for data acquisition with the SAkit. All pulses 
are generated by the PULSkit. 

A.2 Hahn Echo 

The Hahn echo pulse sequence (HAHNECHO..D.MIC): 

0000 EOOO 0080 FFFF FFFB 0000 0000 0080 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 
0000 EooO 0000 FFFF FFFB 0000 0000 0091 
0000 EooO 0000 FFFF FFFB 0001 0110 0091 
0000 EOOO 0000 FFFF FFFB 0000 0400 0011 
0000 EOOO 2000 FFFF FFFA 0000 0000 0031 
0000 EooO 0000 FFFF FFFC 0000 0000 0031 
0000 EOOO 2040 FFFF FFFE 0000 0000 0031 
0000 EOOO 0000 FFFF FFFE 0000 0000 0031 
0000 EOOO 0020 FFFF FFFE 0000 0000 0031 
0002 3007 0000 FFFF FFFC 0000 0000 0031 
0000 E800 0000 FFFF FFFB 0000 0000 0000 
0000 2000 0000 FFFF FFFB 0000 0200 0000 

0000 Dl 
0001 PI 1 
0002 D2 
0003 P2 2 
0004 D4 
0005 A 3 
0006 AL 3 
0007 A 3 
0008 A 3 
0009 A 3 
OOOA AL 3 
OOOB D3 
OOOC D5 

PPG3 

Rep Delay 
Idle 

bears an obvious similarity to the simpler pulse-acquire sequence. The delay peri-

ods, D2 and D4 are independently set table to allow for acquisition for the entire 

echo. Independent phase tables, declared after the event mnemonic, govern each 

pulse, to allow for either a 902: - 1802: or 902: - 90y echo. Note that the ENI am­

plifier remains enabled through the 90 - T - 90 period, while decoupling is active 

during the entire pulsing and acquisition period. This sequence can be modified 
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to yield a tw~dimensional sequence for inversion-recovery or saturation-recovery 

experiments by setting the DI2 parameter in TECMAG.EXE to increment D2 after 

each tl experiment. 

A.3 2-Quantum Filter 

The tw~quantum filter described in Figure 2.7 is effected with the following mi-

crocode (2QT J).MIC): 

0000 EOOO 0080 FFFF FFFB 0000 0000 0080 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 
0000 EOOO 0000 FFFF FFFB 0000 0400 0091 
0000 EOOO 2000 FFFF FFFA 0000 0000 0031 
0000 EOOO 0000 FFFF FFFC 0000 0000 0031 
0000 EOOO 2040 FFFF FFFE 0000 0000 0031 
0000 EOOO 0000 FFFF FFFE 0000 0000 0031 
0000 EOOO 0020 FFFF FFFE 0000 0000 0031 
0002 300F 0000 FFFF FFFC 0000 0000 0031 
0000 E800 0000 FFFF FFFB 0000 0000 0000 
0000 2000 0000 FFFF FFFB 0000 0200 0000 

0000 00 
0001 P1 1 
0002 01 
0003 P2 1 
0004 01 
0005 P1 1 
0006 04 
0007 P2 2 
0008 04 
0009 P1 2 
OOOA 06 
OOOB P2 2 
OOOC 06 
0000 A 3 
OOOE AL 3 
OOOF A 3 
0010 A 3 
0011 A 3 
0012 AL 3 
0013 03 
0014 05 

PPG3 

Rep Oelay 
Idle 

The initial j - 7r - j and second 7r - j - 7r sections have the independently set table 

phases needed to generate the tw~quantum filter. The ENI remains enabled during 

pulsing, and decoupling occurs for all times exclusive of the reccycle delay, D3 + 

DO. 
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A.4 Multiple-Quantum NMR 

The multiple-quantum excitation sequence, MQT -I).MIC: 

0000 EOOO 0000 FFFF FFFB 0000 0000 0000 0000 DA I PPG3 
0000 EOOO 0080 FFFF FFFB 0000 2000 0080 0001 DO R PPG3 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 0002 Pl 1 90 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 0003 D4 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 0004 P2 1 180 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 0005 D4 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 0006 Pl 1 90 
0000 EOOO 0000 FFFF FFFB 0000 4000 0091 0007 Dl 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 0008 P2 2 180 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 0009 Dl 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 OOOA Pl 1 90 
0000 EOOO 0000 FFFF FFFB 0000 0000 0091 OOOB D6 
0000 EOOO 0000 FFFF FFFB 0001 0110 0091 OOOC P2 1 180 
0000 EOOO 0000 FFFF FFFB 0000 4400 0011 OOOD D6 
0000 EOOO 2000 FFFF FFFA 0000 0000 0031 OOOE A 3 Point 1 
0000 EOOO 0000 FFFF FFFC 0000 0000 0031 OOOF AL 3 
0000 EOOO 2040 FFFF FFFE 0000 0000 0031 0010 A 3 Points 2 .. N 
0000 EOOO 0000 FFFF FFFE 0000 0000 0031 0011 A 3 
0000 EOOO 0020 FFFF FFFE 0000 0000 0031 0012 A -3 
0002 300F 0000 FFFF FFFC 0000 0000 0031 0013 AL 3 
0000 E800 0000 FFFF FFFB 0000 0000 0000 0014 D3 Rep Delay 
0000 2015 0000 FFFF FFFB 0000 0200 0000 0015 D5 Idle 

differs from the two-quantum sequence in that the phase shifts of the constituent 

pulses are no longer necessarily quadrature multiples. The phases for the first three 

pulses of the sequence shown in Figure 2.8 are incremented in steps of 4> by the 

digital phase shifter. The toggle bit (30) allows the second 1f' - ~ - 1f' sequence to 

be applied with the unincremented quadrature phase. 

After each tl experiment (for time-proportional phase incrementation [50]) the 

phase shifter can be controlled during the delay, DA.lncrementation is controlled 

by the PSINA and PSINF parameters. Also, the phase shifter can be reset to 

its starting phase (bit 29 high during the delay, DO) as dictated by PSRNA and 

PSRNF. The I and R mnemonics tag their respective lines of code to alert the 

TECMAG program to set those optional bits true when the increment or reset 

counter condition is satisfied. 
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A.5 Quadrature Phase Test 

The quadrature phases can be adjusted for amplitude and phase with the QBOX­

TEST.MIC sequence: 

0000 EOOO 0080 FFFF FF9C 0000 0800 0080 0 
0000 EOOO 0000 FFFF FF9C 0000 0000 0000 0 
0000 EOOO 0000 FFFF FF9C 0001 0510 0091 0 
0000 EOOO 0000 FFFF FF38 0000 0000 0000 0 
0000 EOOO 0000 FFFF FF9C 0001 0120 0092 0 
0000 EOOO 0000 FFFF FF38 0000 0000 0000 0 
0000 EOOO 0000 FFFF FF9C 0001 0140 0094 0 
0000 EOOO 0000 FFFF FF38 0000 0000 0000 0 
0000 EOOO 0000 FFFF FF9C 0001 0180 0098 0 
0000 ESOO 0000 FFFF FF9C 0000 0000 0000 0 
0000 2000 0000 FFFO BOCO 0000 0000 0000 0 

0000 01 
0001 P5 
0002 P1 
0003 P5 
0004 P2 
0005 P5 
0006 P3 
0007 P5 
0008 P4 
0009 P4 
OOOA 05 

Customarily, the sequence is run with different pulse lengths (1 - 4 msec) for each 

RF pulse, so that the output levels and switching times can be monitored easily 

on an oscilloscope. For longer times (on the order of seconds or minutes), the 

quadrature phase and amplitude can be adjusted with a vector voltmeter. 

.. 

, 
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