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Studies of Nonlinear Electrodynamics of High-Temperature Superconductors.
by
Quan-chiu Harry Lam

ABSTRACT

Nonlinear electrodynamics of high-T superconductors are studied both theoreti-
cally and experimentally. For powdered samples, a novel model is presented in which
the metallographically observed superconducting grains in the powder are modeled as
superconducting current loops of various areas with weak links. Surprising harmonic
generation behavior in an ac field, H, cos(wt) , is predicted by the model; the power at
high harmonics show sharp dips- almost periodic in a superposing dc magnetic field,
revealing flux quantization in the prototype loops in the model. Such oscillation of the
harmonic power in dc magnetic field, P,s(H,.), is indeed experimentally observed in
powdered YBa,Cu,0,. Other experimental aspects also agree with model predictions.
For bulk sintered cylindrical samples, a generalized critical state model is presented. In
this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to
low-temperature type-II superconductors, but with a more generalized critical current
densities’ dependence on magnetic field — J,.(H )~H,;fa,, with B being an adjustable
parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of
YBa,Cu,0, yield unambiguous evidence of independent inter- and intragranular contri-
butions to the complex harmonic permeability p, = W', —in”,. For example, two
peaks in u” (H,) are clearly observed, which signify ac absorption by the inter- and
intragranular supercurrents, respectively. These data, together with P(Hy) , are
explained very well quantitatively by the generalized critical state model, yielding a
dependence on magnetic field of J.(H) ~ H,;_?a, for the intergranular component, a

steeper field dependence than for conventional type-II superconductors. Temperature-



dependence measurements reveal that, while the intragranular supercurrents disappear at
T_291.2 K, the intergranular supercurrents disappear at T2 86.6 K. This result is, to our
knowledge, the first clear measurement of the phase-locking temperature of the 3-D
matrix formed by YBa,Cu,U), grains, which are in electrical contact with one another

through weak links.

Similar experimental data on a YBa,Cu,O, thin-film and a Bi,Sr,CaCu,O, single
crystal are also presented. In both samples, only one supercurrent component is
observed. The data are explained by the generalized critical state model and estmates of

critical current densities are obtained.

Professor Carson D! Jeffries
Chairman, Dissertadon Committee
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Chapter 1 Introduction

The discovery of high-temperature copper-oxide superconductors by Bednorz and
Miiller [1] triggered an enormous amount of international research effort to understand
the materials’ nature and properties, and to put the materials into application. However,
for application purposes the efforts have encountered many difficulties, including unusu-
ally small critical current densities in ceramic samples [2], and high sensitivity of the
critical current to small magnetic fields. These unusual properties have been ascribed by
many to the granular nature of the materials, and they bear some resemblance to those
of the low-temperature granular superconductors. The latter granular materials, thougb,
have usually been intentionally fabricated to exhibit granularity for the sake of exper-
imental studies. For these materials, granularity is usually only of academic interests.
But for high-temperature superconductors, granularity may well be something we will

have to deal with, and live with, in practical applications.

To help understand these unusual properties of high-temperature superconductors,
we study the nonlinear electrodynamics of the materials. The nonlinearity may be
due to the granularity of the materials, such as Josephson weak links in the samples
[31{4][5][6], or, from the point of view of conventional type-II superconductors, magnetic
hysteresis [7]{8][9]. To be more specific, we experimentally study the materials through
the harmonics they generate when they are driven by a low-frequency ac magnetic field,
while being in a superconducting state. High harmonics are particularly interesting
because they are extremely sensitive to the details of the materials’ electrodynamical
properties such as the dependence of the critical currents on magnetic field. Thus they
provide very severe tests to the theoretical models which we will use to help understand
the experimental data. But before we go into details of the theoretical models and the

experiments, let us review some background information in this chapter.



i

1.1 High-Temperature Superconductors

Since much has been published in the literature about the high-temperature copper-
oxide type of superconductors [10][11][12], we will only briefly go over some of the
general properties of the two particular compounds reievant to us in this thesis, namely,

YBagCu307_s5 and BisSroCaCug0s;.

Y-Ba-Cu-O. Y-Ba-Cu-O compounds were first reported by M.K. Wu ez al [13] to
be superconducting at an amazingly high temperature: 92 K. The relevant compound
responsible wag later identified as YBasCu3zO7_s. The crystallographic structure of
this compound is of the perovskite type. The structure of a prototypical perovskite

compound BaTiOj3 is shown in Figure 1.1.1.

The compound YBasCuzO7_;s exists in tetragonal and orthorhombic phases [12].
The tetragonal YBasCu3O;_s ( Figure 1.1.2(a) ) is stable above about 650°C with § >
0.5. The unit cell dimensions are @ = b = 3.90 A and ¢ = 11.94 A; the structure may be
visualized as being derived from three prototype perovskite unit cells stacked one above
the other along the c-axis. This tetragonal phase can also be obtained at room temperature
by quenching from above ~ 700°C, and it is found to be semiconducting. However,
if instead the temperature is slowly lowered from above ~ 700°C, the compound
will undergo a second order phase transition from the tetragonal to an orthorhombic
phase ( Figure 1.1.2(b) ). It is the orthorhombic phase of YBasCu3QO;_s which can
supercoaduct. This phase has lattice constants @ = 3.80 A, b = 3.86 A and ¢ = 11.55
A. The a and b axes alternate across an anti-phase boundary which runs parallel to the
[110] direction. Because the magnitudes of the a and b dimensions are so similar, with
2(b—a)/(a+b) = 0.01, the a and b occasionally interchange directions during sample
preparation, crystal growth, or cooling down through the tetragonal to orthorhombic
transition. This phenomenon is called twinning, and the twin-planes are the (110) planes.

Because most single crystal and thin-film samples of YBayCu3O7_;s are extensively

2



twinned, they act as though they were symmetric about the c-axis; the anisotropy on
the ab-plane is mostly averaged out. However, the material is very anisotropic in the c-
direction; the effective mass anisotropy parameter v = (m./ mab)l/ 2 has been measured
to have a value between 5 and 10 [14][15], where m. and m,; are the Ginzburg-Landau
superconducting effective masses for pair motion along the c-direction and in the ab-
plane respectively. The lower critical field along the ab-plane H, | (T = 0) has been
measured to be 250 + 20 Oe, while along the c-axis H. 3 (T = 0) = 850 + 40 Oe
[16], while the upper critical fields have been derived to be H., | (T = 0) = 140 T and
H., | (T =0) =29 T [17]. The penetration depth A, (7 = 0) has been measured to be
1400 A [18], while £ (T =0) ~ 34 A and £, (T =0) ~ 3.8 — 7 A [19][17], where ¢
and £, are the ab-plane and c-direction coherence lengths respectively, so the material

is strongly type-II, with k = A/ > 1.

Bi-Sr-Ca-Cu-O. Among the copper-oxide superconductors, BisSroCaCugQOj is one

with the most anisotropic in properties. For instance, using torque magnetometry, Farrell
et al [20] found the effective mass anisotropy parameter 4 to have a value of 55 + 5,
substantially larger than that of Y-Ba-Cu-O. That means the effective mass in the c-
direction is about 3x 10? times as large as that in the ab-plane. The coherence lengths

also show larger anisotropy than Y-Ba-Cu-O, with §; ~ 42 A and £, ~ 1 A [21].

The compound BiySrpCaCug03 has a critical temperature of about 85 K. It crystal-
lizes in tetragonal structure, with two formula units per unit cell and lattice parameters
a =b=3.817 A and ¢ = 30.6 A [12]. The crystallographic structure is shown in
Figure 1.1.3. Because of the tetragonal structure, there is no twinning in the single
crystals or thin-films. This absence of twin bounciries in BisSroCaCu2Oj naturally
aroused interests in the flux-pinning capability of the compound, since in the case of Y-
Ba-Cu-O, the pinning force in the crystals is often ascribed to the twin boundaries. R.B.
van Dover et al, [22] using I-V measurements, find that at above ~ 35 K, the effective

flux-pinning force in BiySryCaCuj0y, is extremely small. Because of this, the critical
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current density at above 35 K also becomes very small, due to the dissipation caused
by the flux line motion; below ~ 20 K, the critical current density is high and only
weakly field-dependent. These authors attribute this behavior to two possible reasons.
The first one is that at above 35 K the pinning force itself may be small, leading to a high
flux-creep rate; the resulting movement of the flux vortices due to the “creep” causes
dissipation and thus reduces the critical current density. The second possible reason is
that the Abrikosov flux lattice may melt at above 35 K, causing its shear modulus to
vanish, so that the few pinned vortices do not prevent motion of the rest of the vortices.
In Chapter 4, we will find that in our BigSroCaCusOj3 single crystal sample, the critical
current density at 77 K, measured by ac susceptibility experiments, is extremely small,

in agreement with the picture of a small effective pinning force.

1.2 Granularity of High-T, Superconductors

Soon after the discovery of the first high-temperature copper-oxide superconductors,
the materials were suspected to have a granular nature. For instance, transport critical
current densites of ceramic Y-Ba-Cu-O were found to drop by an order of magnitude
when a small dc magnetic field of about 25 Oe was applied to the sample [23]. Many
authors thought the fact that the critical current densities were unusually sensitive to
small magnetic fields was because they were the averaged critical current densities
of the Josephson weak links which existed inside the ceramics and possibly formed
a 3-dimensional matrix. In this marrix is, presumably, formed an array of highly
superconducting grains coupled together through the weak links [2][24]. In support
of this, Esteve et al [25] found that the I-V curves of a nonsuperconducting aluminum
tip and a superconducting ceramic La) 35Srg 3CuQO4 showed the characteristics of a
Josephson junction, including Shapiro steps upon microwave irradiation, thus proving

the existence of Josephson junctions inside their ceramic La, 35Srq 1;CuO4 sample.
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From susceptibility and magnetic-moment r.::asurements on ceramic and powder
samples of (La;_xBay), CuO4_y, Miiller, Takashige and Bednorz [26] found a quasi
de Almeida-Thouless line [27], D (H,T*), in the H-T space, separating the mag-
netically reversible and irreversible regimes, and obeying empirically the expression
H =117 [1-T*(H)/T(0)]*?, where T(0) = 23 K is the critical temperature of
the samples and H is measured in teslas. Since from a theoretical point of view, de
Almeida and Thouless first derived the line separating ergodic and nonergodic regions
from the spin-glass model, Miiller, Takashige and Bednorz concluded the existence of
superconductive glass state [28] in their (La,;_xBax), CuO4_, samples. Moreover, by
equating H.; of the superconductive glass to /25, where @, is the flux quantum, and
finding that the homogeneous superconducting area S was smaller than the grain size,

they concluded that the superconductive glass state existed within the metallographically

observed grain size.

This conclusion sparked debates about whether the weak links in the ceramics are
located between the metallographically observed grains or within them, or both ( see, for
example, Ref [29] ). While it is not too difficult conceptually to visualize the existence
of weak links between individual highly-superconducting grains pressed and sintered
together into a ceramic, iuragranular weak links are not as simple to explain. One
reason often cited for the possible existence of intra-granular weak links is the smallness
of the coherence lengths in the oxide superconductors. The short coherence lengths
cause weakening of the pair potential at surtaces, interfaces, and possibly even at twin

boundaries between domains of differemi crystalline orientations.

Some microwave experiments seem to indicate that Josephson junctions do indeed
exist at twin boundaries. For example, narrow absorption lines periodic in static magnetic
field were observed by Blazey er al [30][31][32][10] at microwave frequencies in thin
single crystals of micro-twinned Y-Ba-Cu-O. The static field in these experiments is in

the ab-plane, while the microwave field is normal to the plane. The periodic absorption
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lines are believed to be due to microwave-current induced fluxon nucleation in rf-SQUID
structures which naturally existed in the Y-Ba-Cu-O single crystals, probably with the

twin-boundaries acting as Josephson junctions.

In short, according to the superconductive glass picture, Josephson weak links that
exist in the high-temperature superconductors, either inter- or intragranular, together with
the relatively high temperatures at which the oxide superconductors are usually subject

to in experiments, account for the glassy or granular behavior of the materials.

Later, Yeshurun and Malozemoff [33] observed the quasi de Almeida-Thouless line
in single crystals of Y-Ba-Cu-O and thus showed that the line is not only characteristic
of ceramic samples. Also, instead of invoking the more novel superconductiv glass
model, they argued that the conventional flux-pinning and flux-creep models [34][35]
were able to explain the “glassy” behavior of the crystals, including the empirical fact
that the quasi de Almeida-Thouless irreversibility line obeys (1 — T/T.) « H?2/3, using
simple scaling arguments. They cited the direct flux-line decoration in crystals and the
observation of conventional hysteresis loops interpretable in the Bean critical-state model

[36] as supports for the conventional theories.

However, even in this “conventional” picture, the smallness of the coherence lengths
and the high temperatures also play an important role. This makes one wonder if the
two pictures — superconducting glass and conventional flux-pinning/flux-creep — are
really mutually exclusive. Later in Chapter 4 of this thesis, we will show experimental
evidence that, at least for the intergranular medium of ceramic Y-Ba-Cu-O, both the
superconducting glass model and the critical state model are valid and applicable to

describe different aspects of the same system.

In Chapter 2, several models regarding the nonlinear nature of the electrodynamical
behavior of granular and type-II superconductors are developed. These models predict

novel properties including extensive harmonic generation by an applied ac magnetic
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field, with dips in the harmonic power as a function of an applied dc magnetic field.
The models also provide methods to quantitatively deduce the critical current densities,
both intrinsic and intergranular in the case of ceramic samples, and to tell experimentally
if there is more than one supercurrent component in a sample. Details about the actual
model calculations are given in Appendices A and B.

Details about the experimental procedures are presented in Chapter 3. The samples
relevant to the data presented in this thesis are listed and described. Actual data
acquisition programs using an AT-compatible computer will be presented in Appendix C.

Experimental 1esults, analyses, and comparison to models are presented in Chapter 4.
Extensive harmonic generation by the high-T. compounds is obsezved. The dependence
of the harmonic power on dc and ac magnetic iields, and temperature, are measured and
compared to model calculations. The question raised earlier about the novel supercon-
ducting glass model versus conventional critical state model will also be addressed for
the ceramic Y-Ba-Cu-O. Experimental evidence supporting both models simultaneously
will be presented. Evidence proving the coexistence of inter- and intragranular supercur-
rents in a single ceramic sample are given, together with quantitative estimates oi their
respective critical current densities. The separate transition temperatures for the inter-

and intragranular superconductivity in a ceramic sample are measured and presented. A

summary is given in Chapter 5.



1.3 Figure Captions and Figures of Chapter 1

Figure 1.1.1. Perovskite cubic unit cell showing titanium on the apices and oxygen
in the edge-centered positions. Barium, which is in the body center, is not shown. [12]
Figure 1.1.2. Sketches of the (a) tetragonal and (b) orthorhombic yttrium-barium-
copper oxide unit cells. Oxygens are randornly dispersed over the basal plane sites in

the tetragonal structure. Thermal vibration ellipsoids are shown for the atoms. [12]

Figure 1.1.3. The structure of Bi3SroCaCugQ3, sometimes called Bi(2212). [11]
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Chapter 2 Models

In this chapter we introduce two classes of models by which we shall explain our
experimental data in Chapter 4. The first class of models, presented in Section 2.1,
is designed to explain the nonlinear electrodynamical behavior of powdered high-T,
samples. It assumes that each grain inside the sample behaves as a superconducting loop.
Due to flux quantization of the loops, interesting properties of the powdered samples,
which is modeled to be an ensemble of loops with different areas, are predicted.

The second class of model, presented in Section 2.2, is based on and modified
from the cri.ical-state model designed originally by C. P. Bean [36] back in the 1960’s
to explain flux trapping and dc magnetization hysteresis in low-temperature type-II
superconductors. The model is generalized in this section and will be used later in
Chapter 4 to explain data taken on a bulk cylindrical ceramic YBayCu3O;_s sample, a

YBasCu3zO7_5 thin-film and a BisSreCaCuyOsp single crystal.

21 Superconducting Loop Models

In this section, a novel class of models is presented which predicts interesting nonlin-
ear electrodynamical behavior from an ensemble of superconducting current loops with
a wide distribution of loop areas. These models are later used to explain experimental
data of high harmonic generation taken on powdered YBayCu3O;_s sample.

The idea of the models is shown schematically in Figure 2.1.1. The metallograph-
ically observed grains in a powdered superconducting sample, Figure 2.1.1(a), are as-
sumed to contain Josephsor weak links. Such weak links may be due to twin boundaries,
cracks in the crystal structures introduced during the various grinding processes, or that
the grains themselves are composed of subgrains which are in electrical contact with one
another through weak links, such as shown in Figure 2.1.1(c). In this class of models, we

concentrate on the junction current density j; which flows through these “intragranular”
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junctions, which for low fields ( < 50 Oe ) will usually dominate the intrinsic currents.
We assume that this intragranular junction current 7; can be represented prototypically
by an rf-SQUID-like superconducting current loop, Figure 2.1.1(d); the Josephson junc-
tion in the prototype rf-SQUID represents the weakest link among the possibly many
links in Figure 2.1.1(c).

In the “zero-order model,” a prototype j; loop in the ensemble is assumed to
behave as a lossless rf-SQUID; the normal current component of the two-fluid model
is ignored. The current-phase relationship of the Josephson junction is assumed to be

purely sinusoidal. Also ignored is the self-field generated by the loop-current which

tends to reduce the flux through the loop.

In the “loop model,” the possibility and effects of a non-sinusoidal, periodic current-

phase relationship are considered. However, loss is still ignored in this model.

In the “first-order model,” loss is introduced into the medel by adding a shunt-
resistance across the Josephson junction in the prototype rf-SQUID-like loop. Hysteretic
loss is also made possible by introducing a self-inductance to the loop. This model may

account for some of the loss mechanisms which manifest themselves in the data.

2.1.1 Zero-order model

A superconducting powdered sample is considered to be subjected to parallel and
uniform dc and ac fields, the total applied field being H = Hy. + Hjsin(wt). The
sample is assumed to have no electrical contacts but is surrounded by a solenoid; all
measurements are made from the voltage induced into this “receiver” coil. Each current
loop j; of the powdered sample is assumed to behave as an idealized superconducting
current lqop, with a weak link in its current path, Figure 2.1.1(d). The weak link may
be a Josephson tunnel junction or a point contact. For low fields H < H,; of the
intrinsic material, the situation will be modeled by an ensemble of superconducting

paths intersected by weak links, the specific prototype being a thin ring-shaped loop of

12



area Sy in series with a junction of area sg, such that the flux due to the applied field is
SoH cos 8 and sgH cos ¢, respectively. Note that this geometry is similar to that used
to model rf superconducting quantum interference devices (SQUID’s). In the zero-order
model we neglect the flux due to the loop current itself, but reconsider it below in the
first order model. The electromagnetic properties of the sample are then predicted by
taking suitable averages over a distribution of areas Sy , so and orientations 6, ¢. Let

us define the dimensionless quantities

_ 2nS0H . cos@ by = 21 SoH, cos 8
de — q)O ) 1 = @0 3 (2 | 1)
_ wsoH cos ¢ o
= % ,

where @, is the flux quantum and hg, / 27 is just the number of flux quanta in the loop
due to Hy., etc. The applied field induces current in the prototype loop, which, for a

tunnel junction is given by the Josephson current-phase relation

sin

I(t):Ic( n”

) sin (v (t)) , (2.1.2)

where v (t) = hy. + h; sinwt, and I, is the junction critical current. We assume that the
junction area sq is sufficiently small that the diffraction term [sin7/n] =~ 1, and consider

only the Fourier components of sin +, arising from flux quantization of the loop:

Iiy = I.Jo(h1)sin(hgc) ,
! { 2I.Jn (h1)sin(hg.) cos(nwt), n even, (2.1.3)
In =

21.Jp (hy)cos (hg.)sin (nwt), n odd,
where J, (h1) is the Bessel function of integer order n.

We assume that each superconducting loop with area Sy induces a receiver coil
harmonic signal voltage v, (t) proportional to Spycos6dI,/dt. If the sample were
composed of only one loop the signal power P (nw) « v> for all harmonics would
be periodic in Hy. due to flux quantization, with period Ahy, = 7, ie., AHy =
@/ (2S5, cos §) between dips, corresponding to the period of cos? hy, or sin® hy.. We

characterize the ensemble of current loops by a uniform distribution »f orientation angles
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and an area distribution function F'(A4), with A = §/S5p. All the loops are assumed to
be coherently driven, so that the total signal voltage V}, (¢) at some harmonic nw can
be represented by the algebraic sum of all v, (¢). The sample-average signal amplitude

(V) is computed by the expression,

fore) 1

(n):%" / dA / Ae J, (Ahy) cos (Ahg.) F(A)de, oddn;  (2.1.4a)
A=6 e=0
oo 1

(Vo) =% / dA / Ae J, (Ahy)sin (Ahg.) F(A) de, evenn;  (2.1.4b)
A=6 e=0

where ¢ = cosé and G is the normalizing factor [ [ F(A) sinf dAdf . For later
reference we also include the average sample magnetization (M,) computed under the

same averaging assurrptions, using the dc current term [ in Eqn. (2.1.3)

oo 1
(M,) = =< / dA / €A sin (Ahy.) F(A) de, 2.15)
GVire

A=6§

=0

where V},; is the total volume of the sample.

To examine the effects of averaging on P(nw) vs hy., we take as an example a

Gaussian distribution function for loop areas

F(A) = exp {—(—4———1)- } (2.1.6)

202
peaked at A = 1, or § = Sy, with standard deviation o. First, to represent a single loop
we take 0 = 0, and cos § = 1 in Eqn. (2.1.4) and compute P(mw), plotted in Figure
2.1.2(a), which shows the expected periodicity Ahy, = ; this plot is valid for all values
of ac field amplitude h; and odd n. Next, for standard deviation o = 2, h; = 5, and
n = 1 we compute P(nw), plotted in Figure 2.1.2(b). We see that the periodicity is
“averaged out” for a distribution of areas and orientations. However, for large values of
n the result is different. For 0 = 2. h; = 5, and n = 15, we compute and plot P(15w)
in Figure 2.1.2(c), finding deep and almost periodic dips, with an average dip spacing

Ahge = 1.03. If we omit the averaging over § in Eqn. (2.1.4) the plot is essentially
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the same as Figure 2.1.2(c), with Ahy. smaller by 1.5 %. For increased o, the plots
are very similar, with decreased Ahgy,; the pattern converges for o > 2. Essentially,
the same behavior is found for other values of n, with Ahy. o« n~! forn > 1. If we
include the [sinn / 7] term in Eqn. (2.1.2), the computed shapes of P(nw) for small n
are modified to an extent depending on the distributions of S and s. However, for large
n, the shapes are not sensitive to the details of either S and s distributions, as long as

they are monotonically decreasing at large areas.

The principal result of the rf-SQUID model is that this model of powdered high-
temperature superconductors, even with a broad distribution of areas and grain orienta-
tions, predicts sharp and almost periodic dips in the harmonic power as the dc field is
varied, perhaps giving evidence of an effective flux quantization arising from the loop
of the model. One would have naively expected the periodic flux quantization of the
individual loops to be generally averaged out by the wide distribution of loop areas, this
is not so for high harmonics. Other distribution functions F" (4) also yield sharp dips in
P(nw) vs. hgy for large n. At this point it is instructive to observe that the distribution
function F'(A), assumed to be a Gaussian for illustrative purposes in Eqn. (2.1.6), can
instead be experimentally determined by a second independent measurement: the dc
magnetization M (H); this quantity is predicted by the model in Eqn. (2.1.5). It is gen-
erally found by many observers ( see, for example, [23][37] ) that M (H) in low fields
( H < 25 Oe ) shows initially a linear behavior and then saturates. We approximate
this behavior by the simple analytic expression

AI(Hdc) ~ Hdc
M, = tanh ( 7 ) . (2.1.7)

where H' is the field where saturation begins. In order to get an analytical Fourier sine

transform from this dc magnetization expression, Eqn. (2.1.7) is further approximated as

M(Hy) _ sinh((Hy/H')
My * cosh(Hy/H") '

(2.1.8)
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with ¢ smaller than but close to one. If we equate this “empirical” result with Eqn.

(2.1.5), the function F (A4), with { < 1, is determined [38]; in the limit of ( — 1_,

sinh (An/2)
A [cosh (Ar) —1]

F(4) = (2.1.9)

This distribution function will be used in Chapter 4 to fit the experimental data.

2.1.2 Loop model

We now explore the possibility that the current-flux relation of the individual
prototype current loop is not sinusoidal, as in Egn. (2.1.2), but still periodic with period
&g . There are several conceivable cases in which this occurs: (i) The current-phase
relation of the weak links may deviate from the pure sinusoidal form of Eq. (2.1.2),
which was derived by Josephson for the case of a weakly coupled tunnel junction; (ii)
the prototype loop has a large number of identical junctions, and the change in the loop
current is then controlled by the change in phase-winding nuinber of the loop rather
than by the curreat-phase relation of individual junctions; (iii) screening by the loop
current effectively gives a skewed periodic current-applied flux relation, as in the case
of rf-SQUIDs; and (iv) there may be current loops which simply are superconducting
without any junction or weak link in their paths. We now consider this last special
case, although the results should be applicable to the others. Fluxoid quantization in

a loop requires that

/H-dS + (’f’);) / v.dl = ndy. n=0.1.2,.... (2.1.10)
S - l}

which, for a thin ring of radius R, yields the velocity v of the superconducting electrons

and, hence, the current density I; ~ v = h (n — ®/®;) / (m* R) , where ® = HxR?
is the applied flux through the ring. The kinetic energy is proportional to (n — &/ <I>0)2 .
As the flux @/®, is increased we allow n to switch from n = 0 to 1, etc., maintaining

the system in a minimum kinetic energy state. The current ; is then a sawtooth function
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of &/®, which we write as the Fourier series

oo +1
(=)™ . [(m27®
= E — 2.1.11
Il m sin @0 ) ( )

m=1

with 27®/®, to be identified with hy, + hysin(wt) in Eqn. (2.1.1). Following the
same procedure used to obtain Eqn. (2.1.4), we use Eqn. (2.1.11) to find, for odd =,

the sample-average signal voltage components

ol i Pl
V) = 2 Zl [ as [ 4con s, (man 2112
. m= 0 0

x cos (mAhg.) F(A)sin6df ,

where for convergence we have replaced 1/m in the summation in Eqn. (2.1.12) by
exp (—m + 1) to round cff the high harmonics of an otherwise infinitely sharp sawtooth.
From Eqn. (2.1.4), one can see that the zero-order model is merely the first term of Eqn.
(2.1.12). Plots of P(nw) vs. hg., computed from Eqn. (2.1.12) are found to be quite
similar to the zero-order model; however, at small values of k; the loop model predicts
additional structures. Shown in Figure 2.1.2(d) is P(2w) vs. hg4. computed from Eqn.
(2.1.12) for hy = 0.5. This is to be compared to P(2w) for the zero-order model, Figure
2.1.2(e), computed for h; = 0.5 and the same F (A) as Figure 2.1.2(d).

2.13 First-order model

Note that the models in Section 2.1.1 and 2.1.2 do not contain any source of
dissipation. For n = 1 the model signal voltage ( ~ coswt ) is just in phase with
the leakage signal dH,./dt ~ coswt; these models do not yield an imaginary part of
the complex susceptibility, which is neither realistic nor in agreement with the data.

So far we have made the assumption that the self-induced flux due to the current
circulating in the loop could be neglected. We have also neglected the resistive current
flowing in the loop. However, these assumptions ignore dissipation in the sample which
can be caused by either the resistive current or bulk-pinning hysteresis. A result of these

assumptions is that Eqns. (2.1.3) only give the inductive components in the receiver
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coil signal. As an attempt to describe the system more realistically, we generalize the
zero-order model by assigning a self-inductance to the loop and adding a resistance R in
shunt with the junction. The loop current is then given by I (¢) = I. sinv(t) + V/R
where V' = (h/2e) dy/dt and v = hg, + hi sin(wt) — 27 LI/®,. Combining these

expressions one obtains

1dI 1 : ;
w dtl = —~ {sin[hgc + hisin(wt) — Loh} = I}
- h 2.1.13)
+ (ﬁ;) cos (wt) ,

where Iy = I/I.,x = hw [2eRI., Ly = 2wLI. / ®y. For given values of parameters
hdc s h1, K, and Lo and loop area S = ASp, Eqn. (2.1.13) is nomerically iterated to yield
dI,/dt. This quantity is averaged over a Gaussian distribution of areas, Eqn. (2.1.6),
with Lo assumed to vary as A!/?| to obtain (V (t)) 4» then the spectral components
of which are computed using a fast Fourier transform algorithm, yielding real and
imaginary components V..o (nw) and Vineg (nw) . The corresponding power P (nw)
is plotted versus hy. in Figure 2.1.2(f) for n = 15, h; = 5. Although there is a clear
correspondence with Figure 2.1.2(c), one sees that now the inductive and dissipative

terms have a different dependence on hy. so that the dips have a more complex pattern.

2.2 Generalized Critical State Model

In this section, we review the critical state model which was proposed originally by
C. P. Bean [36] to explain flux trapping and dc magnetization hysteresis in conventional
type-II superconductors. We also introduce a generalized version of the model which
will be more suitable to explain the experimental data on high-T, superconductors.

Let us suppose a type-II superconductor penetrated by a magnetic field H > H,;.
When this magnetic field is first applied, it induces a bulk screening current in the

superconductor. This current will be given by

J = (-C—) V x H (2.2.1)
471'

1
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and it will try to prevent the flux lines nucleated at the surface from moving into the
superconductor. The magnetic field will penetrate in the form of Abrikosov flux lines,
ie. “vortices” or “fluxons”; the flux density in the sample is clearly not spatially uniform
because of the current. The magnetic energy per unit volume, or the magnetic pressure
exerted by the flux lines on one another, is HB /8x. In the case when the distances
becween flux lines are small compared to the penetration depth, A, this magnetic energy
HB /8~ is equal to the interaction free energy density of the flux lines. This would
mean that the force on the flux lines per unit volume would be given by the gradient of
the interaction free energy density VF;,; = —B xV x H/4m =J x B/c¢, ie, the
Lorentz force; the force per flux line is then J x @ / ¢ per unit length, where @ has
a magnitude of the flux quantum hc / 2e and the same direction as that of the flux line.
Throughout this thesis, we will assume a linear relation between B and H: p.¢y = B/H.

For an intrinsically nonmagnetic homogeneous material, p.sy = 1.

The interaction between flux lines is relatively long-ranged. Because of this, local
perturbations of the line density are very unfavorable energetically; simply putting in
locally one extra flux line costs an energy of the order of H®( per unit length, much
greater than the energy available from any reasonable pinning centers [34]. Thus on
a length scale smaller than the penetration depth, the density of the flux lines is well-
defined. In the case of a granular superconductor, it will then be reasonable that if the
intergranular medium’s penetration depth A ; is greater than the typical grain dimension,
a, then the local flux line density, or magnetic induction, B_(T)' should be well-defired
in spite of the granularity and the intergranular medium can be treated as a continuum

type-II superconductor with an effective permeability

Heff = (2.2.2)

Here the overline stands for an average over a volume scale larger than a3, but much

smaller than the sample volume. This effective permeability reflects the ratio of the
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volume of the intergranular weak link region to the total volume of the sample. The
intergranular weak link region’s volume is dependent on temperatare because it includes
the London penetration depth of the highly superconducting grains. Thus for a granular

superconductor [39],

R
T) = fo + fo [1—F<—2—)] : (2.2.3)
pefs (T) % (T)
where f, and f, are the nonsuperconducting ( including voids ) and superconducting
volume fractions, respectively, and f, + f, = 1. Ry and A, are the grains’ (averaged)
radius and London penetration depth respectively, and F'(Ry/) ) is the factor by which
the magnetic flux penewration suppresses a grain’s magnetization below that expected

for complete Meissner-state flux exclusion.

If the flux lines are not pinned, the Lorentz force, J®, / ¢, acting on them will cause
them to flow. In the steady state of the flux flow, the Lorentz force on the flux lines
will be balanced by the viscous drag exerted by the material of the superconductor on
the vortices, and a constant flow velocity will be attained. The work done against the
viscosity will appear as an emf against the current. This is the origin of the flux-flow

resistivity in type-II superconductors.

If, however, the flux lines are somehow immobilized in the superconductor, zero
resistance will be allowed. Defects and other pinning centers in the material, for instance,
may be able to trap the flux lines and thus fix them in their positions. When a transport
current (as distinct from the supercurrents around the flux vortices) is flowing in the
superconductor, the resulting Lorentz force will try to depin the flux lines from their
pinning sites. Thus the Lorentz force density being smaller than the pinning force
density a, JB /¢ < a, is the requirement for dissipationless current flow in the type-II
superconductors. Note that for simplicity, we have ignored all possible thermal effects in

our discussion such as thermally activated flux creep, which is still an unresolved issue.
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In the critical state model, it is assumed that when the external magnetic field
applied on the type-II superconductor is changed, a current will be induced in such a
way as to oppose a corresponding change in the density of the magnetic flux through the
superconductor. For instance, if the superconductor has been cooled in zero magnetic
field (“zero-field-cooled) and the external field is subsequently increased from zero to a
certain positive value larger than the lower critical field H.;, current will be induced to
reduce the amount of flux vortices, which are nucleated at the surface, penetrating into
the material. On the other hand, if flux vortices already exist inside the superconductor
due to previous application of magnetic field, reducing the external field, say to zero,
will not cause all the penetrated flux to exit the superconductor, because current will be

induced to prevent some of the flux from getting out.

Another assumption of the critical state model is that the current density induced by
a changing field will be equal to the (local) critical current density of the material. That
is to say, the current is induced to such a value that the Lorentz force density on the

flux lines is equal to the flux pinning force density a:

JB/c = a. 2.2.4)

This value of current density is the maximum value at which a dissipationless current
flow is still allowed; beyond that is the resistive flux-flow regime. Hence, this maximum

supercurrent density J. is called the critical current density. Eqn. (2.2.1) can then be

rewritten as

V xH = (ic.’i) J.. 2.2.5)

Because of this finite value of critical current density, the type-II superconductor has a
limited ability to screen or trap flux. For instance, in case of an increasing external
field applied on a zero-field-cooled sample, it can only screen the penetrating flux

up to a certain depth into the material; the flux density will, in this case, decrease
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from a maximum value at the surface, to zero after penetrating a certain depth. When
the external field is further increased, the supercurrent already flowing in the surface
layer, being at its critical value, cannot prevent more flux lines from penetrating further.
However, supercurrent will then be induced in a region deeper into the sample which
has previously been unexposed to the flux vortices, and will stop the penetration of the
flux vortices at this deeper level. At some point in increasing the external field, the
penetrated flux front will reach the center of the sample, and supercurrent will begin
to flow throughout the sample. The external field at this point is of significance in
experiments prc;,sented later and 1s denoted by H*. As will be mentioned in more detail
later, in an ac susceptibility experiment, the dissipative component x” of the complex
susceptibility x = x' — 7x” will attain a peak at H* when measured as a function of

ac field amplitude H,. For convenience, we will refer to H* as the “penetration field.”

In the original Bean version of the critical state model, the critical current density
is assumed to be independent of the magnetic field. For a cylindrical geometry, Eqn.

(2.2.5) can then be written as

d
—H = :i:ézJC = constant, (2.2.6)
dr c

where the sign is determined by the direction of the supercurrent flow in the local region,
or, in other words, by whether the local current is trying to screen out or to trap in flux
vortices. Because J, is taken to be constant, both the magnetic field A and the flux
density B are linear as a function of the radius. In Figure 2.2.1(a), the field profile
is plotted across the sample for several values of increasing external field. Note that
when H.,y = H*, the flux front reaches the center. In Figure 2.2.1(b), the external
field is assumed to have been reduced back to zero from a non-zero maximum field
value Hyo.. Flux is trapped in the sample, indicated by the shaded area. Flux trapping
such as this would account for hysteretic behavior in dc magnetization measurements

of type-II superconductors.
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The critical state model was later extended from the Bean version by Kim and
Anderson to cases in which the critical current density is dependent on the local
magnetic field. They, instead of taking J. as a constant, assume a constant flux
pinning force density, a, in the sample. Thus the critical current density can be
written as J. (H) = ac/ (pess |H|). To prevent the singularity of J. at H = 0.

a phenomenological parameter Hy is added to the J. expression:

ac
J(H) = . (2.2.7)
() pess (1H| + Ho)
The critical state equation in the cylindrical geometry then becomes
dH (r) 4o
= =+ - (2.2.8)
dr pess (|H (r)| + Ho)

For a conventional type-II superconductor, Anderson [34] estimates that the positive
parameter Hj is of the order of ®o/ (pesy /\2), and its appearance in Eqn. (2.2.7) is due
to the discreteness of quantized flux; any movement of flux must involve a minimum
value of ®;. When applied to the intergranular medium of a granular superconductor,
presumably containing Josephson weak links between the grains, Hj is estimated to be
of the order of ®q/ (pess so), where sg is a characteristic area for the weak links [40].

While Egns. (2.2.7) and (2.2.8) have been rather satisfactory in explaining dc
magnetization measurements on conventional type-II superconductors, there has been
evidence that Eqn. (2.2.7) may not be an accurate enough description for the transport
critical current density measured in ceramic high-temperature superconductors. For
example, in Ref. [41], it is found that the critical current density J. measured by
transport experiment on a ceramic Y-Ba-Cu-O drops as ~ H 2 upon the application
of a dc magnetic field. In terms of Eqn. (2.2.7), it would seem that the flux pinning
force density «a is itself a function of magnetic field. In order to generalize the critical
state model to accommodate this possibility of the H-dependence of «, and to include

the Bean version, Kim-Anderson version and the empirical J. ~ H~? relation with a
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minimum of parameters, Eqn. (2.2.7) is generalized to [42][9][43]

a(H) c o c
J(H) = . = , (2.29)
() pess (IH| + Ho)  (|H| + Ho)®

with 3 an adjustable parameter, and where o' is taken to be a field-independent parameter.
Eqn. (2.2.8) will then become

dH (r)
dr

4o

. 2.2.10
(|H ()| + Ho)® @210

Note that when 3 = 0, Eqn. (2.2.10) will become the original Bean version, Eqn.

(2.2.6); when g = 1, it will be the Kim-Anderson version, Eqgn. (2.2.8). From Eqn.
(2.2.10), the penetration field H* can be derived as

i
H* = |H{*' + 4r (B+1) o'R]™ - H,. 2.2.11)

The full details of the calculation will be given in Appendix A. For the special case
of the Bean-version,

47

H* = — J.R; 2.2.12)
C
and for the Kim-Anderson version,
%
H* = [Hg + SMR] — Hy. (2.2.13)
Heff

To illustrate the differences from the Bean version introduced by the H-dependence
of J,, field profiles for several values of external magnetic field are plotted for the Kim-

Anderson model in Figure 2.2.2(a) and (b), and for the generalized model with 3 = 1.8,
and Hy = 3 in Figure 2.2.2(c) and (d).

According to the critical state model, when a type-II superconductor is subject to a
purely sinusoidal ac magnetic field [44], say

H,.(t) = Hjcos(wt) , (2.2.14)
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the magnetization of the sample will traverse a minor hysteresis loop. Because of this
hysteretic behavior, the dependence of the total flux in the superconductor on time
is nonsinusoidal. In Ref. [36], Bean predicts from Eqn. (2.2.6) generation of odd
harmonics of the driving frequency in the voltage signal picked up by a secondary coil

tightly wound on a cylindrical specimen with a constant J,:

V(t) = Vicos(wt —v) + V3cos(3wt) + Vscos(dwt) + ..., (2.2.15)
where

V1 = 1.088V3 (2.2.16a)

D) 2
Vi = — [M] x 1078 volts (2.2.16b)

nJe
Vo = [ > ] Vi, (2.2.16¢)

(n—-2)(n+2)

where, in Bean’s particular derivation, H; < H*, and where N is the number of turns of
the secondary coil and R is the radius of the sample. That the Bean version predicts only
odd harmonic generation is due to the assumption that J, is independent of H. For the
Kim-Anderson version [35][45], Eqn. (2.2.8), or our generalized model, Eqn. (2.2.10),
even harmonics are also predicted in addition to the odd ones when the dc magnetic

field superposed on the ac field is non-zero.

In order to clearly explain how we are going to use the generalized critical state
model to explain our experiments, let’s for the moment take an experimental viewpoint.
For a long cylindrical sample of radius R in a coil of N turns, in general one can write

the pick-up voltage signal as

NeR= 4 By . 2.2.17)

V(t) = — =

where (B (t)) is the flux density averaged over the cross-section area of the sample,

R
(B(t)) = %% / H(rt) 2nrdr . (2.2.18)
0
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Note that the field value H (r,t) itself already represents a spatial average of the

microscopic magnetic field values over a volume greater than the average grain size

but much smaller than the sample.

One can write Eqn. (2.2.18) as a Fourier expansion

(B(t)) = (Bac) + pesrHi fj [ uncos(nwt) + ppsin(nwt) ], (22.19)
where " T
o = = [ B0y cos ()
° (2.2.20)
i = g [ (B sin (o) at

0
are the components of the complex harmonic permeability; in most previous experiments

only the n = 1 components were considered. From Eqns. (2.2.17) and (2.2.19), one

obtains
V(t) = pesr Vo Z n [,u'n sin (nwt) — u! cos(nwt)] , (2.2.21)
n=1
and
1 2
Vo = zNﬂ'R'le (2.2.22)

is the amplitude to the pick-up signal in the absence of the sample. We note that
the complex permeability i, = pu; — iu) is related to the complex susceptibility
Xn = Xp — i\ by the relations i, = 1 4 471, and /i, = 471\, for n > 1.

To compare the experimental data with the model, Eqn. (2.2.10) is solved analyti-
cally to find H (r) as a function of the instantaneous applied magnetic field

Hopp(t) = H(r = R,t) = Hy + H; cos(wt) , (2.2.23)

for 0 <r < R, 0 <t < 27/w. From this we derive the analytical expressions for the

magnetic flux in the sample

® (Hupy (t),t) = 7R (B (Hypp (t),1)) , (2.2.24)

26



and its time-derivative d®/dt, where (B (t)) = (B (Happ(t),t)) is defined by Eqn.
(2.2.18). From a discrete time series (number of points = 2048) of d®/dt we used
a fast Fourier transform [46][47] to compute the Fourier components yu; and y) in
Egns. (2.2.19) and (2.2.21), as functions of the experimentally known parameters
(Hg4., Hy, R). However, because H* is readily measured experimentally as the peak
position of u! (Hy), this leaves only two independent parameters, 3 and Hy in Eqn.
(2.2.10) to be selected by fitting the computed /i, to the data. The analytical expressions
relevant for the model calculations will be presented in Appendix A.

Details of the harmonic signals predicted by the generalized critical state model as a
function of dc and ac magnetic fields will be given in Chapter 4 as fits to experimental
data. In essence, the harmonics contain information on the details of the penetrated
flux profile in the sample and, hence, the critical current dependence on magnetic field,
Je. (H).

As for the fundamental mode signal, the in-phase signal Vou) (“in-phase” defined
to be sin(wt), which is the phase of the leakage signal induced by dHg(t) /dt) is
proportional to the flux in the sample when the applied ac field is at the peaks, as
illustrated by the shaded area in Figure 2.2.3(a) [48]. The out-of-phase signal Vjuf,
though, is proportional to the flux trapped in the sample as the ac field crosses zero, as
in Figure 2.2.3(b). In fact, the out-of-phase component of the fundamental permeability

py is related to the ac loss in the sample per unit volume per cycle of ac magnetic field

[49], denoted by W, by

N %f . (2.2.25)
It will then not be difficult to see that when the ac magnetic field amplitude is larger
than the penetration field, H; > H*, the rate of increase of 1V, as a function of H; is
not as fast as when H; < H*. In fact, according to the critical state model, x| shows

a peak at H* when calculated as a function of the ac field amplitude H,, regardless of
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the different versions. This peak of u} is directly measurable in experiments and thus
reduces the number of unmeasurable fitting parameters in our generalized critical state
equation, Egn. (2.2.10), frum three to two, namely S5 and H,.

Finally, we mention that while the generalized critical state model will likely be
appropriate for dense sintered samples, thin films and crystals, it is not expected to be

valid for tke intergranular component for ( loosely pucked ) powdered samples, which

cannot support buix, macroscopic circulating curreats.



2.3 Figure Captions and Figures of Chapter 2

Figure 2.1.1. (a) The metallographically observed grains in a powdered copper-
oxide superconductor are modelled to behave as (b) an ensemble of superconducting
loops with different loop areas and orientations. (c) Metallographically observed grains
may be composed of subgrains in electrical contact with each other through weak links.

(d) A prototype superconducting loop in the ensemble (b), modeling the grain (c). The

loop has area Sy and junction area sgp.

Figure 2.1.2. (a) Harmonic power P (nw) versus hg., computed from Eqns. (2.1.4)
and (2.1.6) with ¢ = 0, corresponding to a single loop, with no averaging; figure is
valid for all values of h; and odd n, and shows periodicity Ahy, = 7 due to flux
quantization of the loop. (b) Harmonic power P (nw) versus hy. computed from Eqgns.
(2.1.4) and (2.1.6) with ¢ = 2, hy = 5, and n = 1; sample averaging washes out
the sharp dips of (a). (c) Harmonic power P (15w) versus hy. computed from Eqns.
(2.1.4) and (2.1.6) for 0 = 2, hy = 5, and n = 15; sample averaging does not wash out
the sharp dips. (d) Harmonic power P (2w) versus hy., computed from Eqn. (2.1.12)
for n = 2, hy = 0.5, and a monotonically decreasing distribution function F'(4). (e)
Harmonic power P (2w) versus hy., computed from Eqn. (2.1.4) for n = 2, h; = 0.5,
and same F'(A) as in (d). (f) Harmonic power P (15w) versus hy., computed for the
first-order model, Eqn. (2.1.13), with h; = 3, kK = 0.3, and Ly = 0.35, using F (A)
from Eqn. (2.1.6) and ¢ = 2.

Figure 2.2.1. (a) A plot of local magnetic fields H (r) for a long cylinder of radius
R according to the Bean model, Eqns. (2.2.6) and (2.2.12), for applied magnetic field
equal to 0, 0.5H*, H*, 1.5H* and 2.0H*. (b) A plot of local magnetic fields H (r)
according to the Bean model after an external magnetic field of Hy,,, has been applied

and then removed. The shaded area represents the fact that magnetic flux is trapped

after the field is removed.
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according to the Kim-Anderson model, Eqns. (2.2.8) and (2.2.13), for applied magnetic
field equal to 0, 0.5H*, H*, 1.5H* and 2.0H*. (b) A plot of local magnetic fields
H (r) according to the Kim-Anderson model after an external magnetic field of Hp,,
has been applied and then removed. The shaded area represents the fact that magnetic
flux is trapped after the field is removed. (c) Same as (a), except that the generalized
critical state model, Eqns. (2.2.10) and (2.2.11), is used, with 8 = 1.8, Hy = 3.0. (d)
Same as (b), except that the generalized critical state model, Eqn. (2.2.10), is used,
with 3 = 1.8, Hy = 3.0.

Figure 2.2.3. (a) The instantaneous flux distribution in a cylindrical specimen at the
time the ac field H,. (¢) = H; cos (wt) is at its peak. (b) Instantaneous flux distribution
at the ime when H, (t) = 0. The signal from the detector is proportional to the shaded

area whether the flux profile is linear or not. [48]
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Chapter 3 Experimental Procedures

In this chapter, details of the experimental procedures will be presented. In Section
3.1, the samples used in the experiments presented in this thesis and relevant publications
will be listed and described. In Section 3.2, details about the experimental setup and
apparatus will be presented. A table will be given which provides information about the
magnetic coils used in the experiments. The data acquisition system will be described
in Section 3.3. Actual computer codes written for automated data acqusition will be

presented in Appendix C.

3.1 Samples

In Table 3.1.1, the various samples used in the experiments are listed by sample

numbers.
Table 3.1.1 Samples used in the experiments.
Sample Type of sample Dimensions Source
number
C-15 YBCO powder Grain radii range Zettl Group at
from below 1 to 10 Berkeley
microns.
C-46N YBCO ceramic cylinder | 3.07 mm diameter x National
density = 146 g/c.c. 22.9 mm length Superconductor Inc.
(Catalog No.
B-4015C)
C-48B 1 volume of YBCO powder | Grain radii range | Same original batch as
mixed with 1 volume of 1 from 1 to 60 C-46N
micron grit and 1 volume | microns, with rough
of 0.1 micron grit alumina | average of about 10
powder microns.
C-50 BSCCO(2212) single (approx.) 2.8 mm x Zettl Group
crystal 3.3 mm x 10
microns thickness
C-51 pulsed-laser ablated YBCO | (approx.) 3 mm x 3 | Paul Berdahl Group at
thin-film deposited on mm X .5 micron Lawrence Berkeley
strontium titanate thickness Laboratory
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The YBaoCu3zO;_s ceramics and powdered samples were produced either by Pro-
fessor Alex Zettl, Dr. Lincoln Bourne, and Mr. C. M. Kim here at Berkeley, or by
National Superconductor Inc. The ceramics were made by standard procedures [50]
of grinding together stoichiometric mixture of Y203, BaCO3 and CuO, calcinating in
oxygen, sintering, and finally annealing in oxygen. The powdered samples, C-15 and
C-48B, were made from the ceramic by grinding the latter in an agate mortar. Ceramic
samples in cylindrical forms, such as C-46N, were made by cutting them first into rect-
angular shape of appropriate dimensions, and then rolling them on fine Al,O3 paper

into cylindrical shape of the desired radii.

The Y-Ba-Cu-O thin-film C-51 was made by pulsed laser ablation on SrTiOj3 by Dr.
Paul Berdahl, Dr. Richard Russo and Mr. Ron Reade at Lawrence Berkeley Laboratory.
It is about .5 um thick and its diameter is ~ 3 mm, and is oriented with the c-axis

perpendicular to the plane of the film. It has a critical temperature of 87 K.

The Bi-Sr-Ca-Cu-O single crystal C-50 was made by Professor Alex Zettl, Mr.
Gabriel Bricefio, and Dr. Angelica Behrooz at Berkeley. The crystal-growing procedure
is described in detail in Ref. [S51]. The crystal size is about 2.8 x 3.3 mm?, with a

thickness of ~ 10 pm. Its transition temperature, both by four-probe dc resistance and

dc magnetic susceptibility measurements, is approximately 88 K; full resistive transition

width is of order 2-3 K.

3.2 Experimental Setup

The method we use to study nonlinear electrodynamical behavior consists essentially
of subjecting a high-temperature superconducting sample to an ac magnetic field gener-
ated by a copper solenoid, and observing and investigating the responses of the sample
through the voltage which the sample induces into a surrounding copper “receiver” coil.

A dc magnetic field and a slowly scanning magnetic field may be added coaxially onto
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the ac magnetic field. The total applied field is thus
Happ(t) = Hye + Hy coswt + Hgean (1) . 3.2.1)

All the fields are produced by coaxial copper solenoids immersed in liquid nitrogen
and thus kept at 77 K for temperature stability. The nitrogen Dewar is encased in
an annealed hypernom magnetic shield, which reduces the residual Earth’s field to the

milliOersted range.

A diagram of the experimental setup is shown in Figure 3.2.1. Specifications of the

magnetic coils used are listed in Tables 3.2.1 and 3.2.2.

Table 3.2.1 Coils used in the experimcnts (I).
Coil Purpose Wire size No. of layers

1 AC magnetic field No. 32 4
("Transmittor coil”)

2 Slow scanning magnetic field No. 36 32
3 DC bias magnetic field No. 32
4 Additional DC magnetic field No. 36
5 Signal pick-up coil No. 36
(Top "receiver coil")
6 Balancing coil No. 36 4+

(Bottom "receiver coil")

The ac magnetic field [44], H,:(t) = H; cos(wt) , has a frequency range of
f = w/2r = 10% to 10° Hz. The field is produced by a copper solenoid 10.2
cm long and 1.74 cm diameter; its number of turns is 1667, divided into four layers
and its inductance is about 8.2 mH (Coil #1 in Tables 3.2.1 and 3.2.2). The drive-coil
is driven by a very stable, synthesized function generator (HP model 3325A). In case a
high ac field (30 < H; < 600 Oe) is required, the function generator will drive the
solenoid through a very linear NAD ac power amplifier ( model number 2100 ), which
has residual harmonic power at about 80 dB below the fundamental mode. In order

to prevent overheating or even burning the ac-drive-coil when high ac field is being
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Table 3.2.2

Coils used in the experiments (II).

Coil Length Diameter Coil constant Resistance No. of
(inner) at room turns
temp
B e ——— v a——
1 10.2 cm 1.75 cm 186.3 Oe/A 52 ohms 1667
(4.00 inches) (0.687 inches) (at 85 Hz)
2 11.0 cm 3.56 cm 2508.6 Oe/A 3.89 22661
(4.35 inches) (1.40 inches) kilo-ohms
3 11.0 cm 3.31 cm 328.5 Oe/A 166 ohms 2938
(4.35 inches) (1.30 inches)
4 11.0 cm 3.18 cm 318.9 Oe/A 404 ohms 2892
(4.35 inches) (1.25 inches)
5 1.25 cm 1.1 cm N/A 17.5 ohms 324
(0.5 inch) (* 0.45 inch)
6 1.25 cm 1.1 cm N/A 17.9 ohms 341
(0.5 inch) (" 0.45 inch)

generated, special attention has been paid to ensure proper circulation of liquid nitrogen

around the coil, since the cryogen is constantiy being boiled into gaseous form by the

coil when it is generating high ac fields.

For measurements of harmonic power versus superposing dc magnetic field, the
“dc” field is scanned at a cycle time larger than or equal to 100 seconds, using Coil
#2 in Tables 3.2.1 and 3.2.2 . This scanning field H,,, (t) is produced by another
HP3325A synthesizer, which can produce a sawtooth waveform. The maximum span of
the scanning dc field is about £100 Oe. If more dc field is required, it can be provided

at a fixed value by solenoids Coil #3 and #4.

The signal voltage induced by the superconducting samples into the receiver coil is
of the form V' (t) = 3 V5, (t), where 1, (t) = A4, sin(nwt) + By cos(nwt), n =
1,2, ... . The signal voltage can be processed by an anaiog spectrum analyzer with
a 100-dB dynamic range (HP model 3585A) , to yield the power spectral components

P(nf) = (A2 + BZ2) . The signal can also be processed by a lock-in amplifier (PARC
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model 5209), which can distinguish the individual phase components, A, and B,, at n
= 1land n = 2.

Two arrangements of receiver coil are used in our experiments. In the rwo-coil
method, the superconducting sample is located in a solenoid of length 1.25 cm and
diameter 1.15 cm ( coil no. 5 ). Voltage signal from the sample picked up by this
solenoid is subtracted externally by that of a similar but empty solenoid, coil no. 6, which
is being driven by the same ac field. Because of the slight differences in dimensions
of Coil #5 and #6 due to machining precision, the number of turns in the two coils
are intentionally set to different values. When both coils are empty, and connected in
opposition, their total signal voltage is balanced out to within 0.5% of their individual
values without additional aid of circuit balancing. In case a better balance is desired, a
simple balancing circuit, shown in Figure 3.2.2, is used. This circuit can balance both the
in-phase and in-quadrature components to within 100 ppm of the individual coils’ pick-
up voltage values. The resulting voltage signal from the “two-coil” receiver is equal to
the time-derivative of the sample magnetization dM /dt. The fundamental mode in-phase
and in-quadrature components of the lock-in output voltage, when normalized by the ac
field amplitude H;, are proportional to x and x{, respectively, where X1 = x| — ix7,
is the fundamental mode complex susceptibility of the sample.

In the one-coil method, a cylindrical bar of ceramic superconducting sample is closely
wound directly with a single receiver coil of no. 40 copper wire. The receiver (cross-
sectional area A, number of turns = N = 78) generates a signal voltage V' (¢) proportional
to the time-derivative of the instantaneous induction field (B (¢)) averaged over the whole

sample. The signal voltage can be expanded in a Fourier series

V() = [NAle}

Heff Z [ nyp, sin(nwt) — nul cos (nwt)] , (3.2.2)
n=|1

where the bracketed term outside the summation is the signal amplitude when the sample

is normal. For ceramic samples, p. ¢ is the effective permeability of the polycrystalline
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sample, given by ( Eqn. (2.2.3) )

R
peff (T) = fn + fs [1 - F(z\,(?[’))] ) (3.2.3)

where f,, and f; are the intergranular ( including voids ) and intragranular volume fractions
and f, + fs = 1. Ry and ), are the grains’ (averaged) radius and London penetration
depth respectively, and F (Ry/);) is the factor by which the magnetic flux penetration
suppresses a grain’s magnetization below that expected for complete Meissner-state flux
exclusion. More discussion about this will be given later in Chapter 4. The Fourier
components are the real and imaginary parts of a complex ac permeability g, = pul, — ipl
for the n'™ harmonic; they are related to the ac susceptibility ¥, = x, — ix! by
g1 = 1+44mwx;, and 4, = 4nx, forall n > 1.

Most data presented in this thesis are taken on samples immersed in liquid nitrogen
and kept at T = 77 K. The only exception are the data for the ceramic YBayCu3O7
cylinder C-46N, in which clear signals of inter- and intragranular supercurrents are

detected. For this sample, the temperature is varied from 77 K to above T, ~ 92 K.

To do this a simple temperature-control system is made, as follows.

Temperature control system. A schematic diagram of the temperature control
system is shown in Figure 3.2.3. The sample C-46N is placed in a 5 mm o.d., 4 mm i.d.
quartz sample tube, free of magnetic impurities, produced by Wilmad Co for use in an
EPR spectrometer. Warm nitrogen gas (I' ~ 160 K) is generated from a separate liquid
nitrogen storage dewar with a controlled resistive heater and forced through a teflon
tube into the sample tube. Because the diameter of the sample is about 1 mm smaller
than the i.d. of the sample tube, the whole sample will be in thermal contact with the
warm nitrogen gas. The 5 mm o.d. sample tube is then sealed and inserted into a 9
mm od. and 7 mm id. quartz tube. The space between the two quartz tubes is packed
with thermally insulating materials. Such a double-tube with insulating packing prevents

direct heat-sinking from taking place when the whoi: Jouble-tube is immersed in liquid
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nitrogen. However, the double-sample-tube-complex is intentionally designed to have a
less-than-perfect thermal insulation to allow the originally 160 K, warm nitrcgen gas to
be cooled by the outside liqaid nitrogen to the desired ambient temperature for the sample
within a convenient time-scale. The final temperature of the sample will be determined
by the flow-rate of the gas — the higher the flow-rate, the warmer the temperature of
the sample. The coarse control of the flow-rate of the gas is managed by means of a
needle-valve at the outlet of the gas. The fine control is provided by the heater in the
liquid nitrogen storage dewar which supplies the warm nitrogen gas. The heater boils
the liquid nitrogen and builds a pressure in the storage dewar; by controlling the power
of the heater, one controls the pressure inside the storage dewar and thus the flow-rate of
the warm gas. Such a simple system manages to control the temperature of the sample
from 77 K to well above T, =~ 92 K, and is stable to within 0.2 K. Temperature is
monitored by a copper-constantan ( 3 mil diameter ) thermocouple with the tip attached
by stycast to the bottom of the sample. It is so located to avoid direct blowing by the
warm gas onto the couple junction, which may cause a higher-than-actual temperature
reading. The reference junction of the thermocouple is licuid nitrogen and the voltage is
read by a digital multimeter (Keithley 197) which is monitored through GPIB ( General
Purpose Interface Bus ) by the computer.

Due to the size of the sample, though, it takes about 20 minutes for the sample and
the thermocouple to come to equilibrium every time the temperature is changed. Also
note that while the temperature of the sample is varied, all the magnetic field coils in
the system are stably maintained at 77 K. At a set temperature, desired data are taken

rapidly by the following GPIB computer system.

33 Data Acquisition

The data presented in this thesis are either taken in the analog mode by an x-

y TeCorder, of in the digiial mode by an AT-compaiibic compuier made by Fountain
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Technologies Inc.

A block diagram for the analog mode is shown in Figure 3.3.1. This mode is used
mainly for measuring the harmonic power P (nf) generated by the superconducting
samples as a function of the “dc” field superposed on the ac magnetic field. The “dc”
field is actually Hy. + Hcan (t), a slowly scanning field at a frequency foean < 0.01
Hz, plus a small true dc field preset to balance out any residual Earth’s magnetic field.
The scanning is provided by a synthesizer with a sawtooth output waveform. The output
voltage from the scanning synthesizer is used to drive both the scanning dc-coil and the

x-axis of the x-y recorder.

The y-axis of the x-y iecorder is driven by the “video-output” of the spectrum
analyzer. This output produces a voltage signal proportional to the power of the harmonic
chosen to be measured. So as the dc field is varied by the scanning synthesizer, P (nf)

as a function of Hy. can be plotted.

An analog spectrum, P (nf) versus frequency, of the sample’s signal can also be
easily taken by the x-y recorder. In this case, with the dc field being fixed at a desired
value, the x- and y-input of the x-y recorder are driven respectively by the “x-output”
and “y-output” of the spectrum analyzer. The recorder will then generate a hard-copy

of the spectrum currently on the CRT of the spectrum analyzer.

A block diagram for the digital mode is shown in Figure 3.3.2. This mode is used
mainly for measuring either the harmonic power P (nf) using the spectrum analyzer
or the two components of the complex permeability using the lock-in amplifier as a
function of the ac magnetic field amplitude H;. In this mode, the computer automates
the data acquisition by means of a National Instrument GPIB-PCII card. Among the
electronic apparatus, the Keithley 197 DMM’s, the lock-in amplifier, the synthesizers

and the spectrum analyzer all have built-in GPIB capability. This system reads and

ioin . AR X7 . .
digitizes these parameters: H,  H;, Voo Vu s P{nf), and the thermocoupl
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These can be read essentially simultaneously into data files. Control programs and file

structures are described in Appendix C.

When the harmonic power P (nf) is to be measured as a function of H;, the
computer program can systematically step up the voltage output of the synthesizer
which is driving the ac-coil, probably through the NAD ac amplifier, and thus step
up H,. The current through the precalibrated ac-coil is monitored by the voltage across
a monitoring resistor which is immersed in liquid nitrogen for stability. This ac-field-
monitoring voltage is measured by a Keithley DMM and read by the computer through
GPIB. The power of the chosen harmonics P (nf) is also read by the program from
the spectrum analyzer through its GPIB. Caution should be exercised to avoid driving
the NAD amplifier to nonlinearity. The program checks and decides if the output of the
driving synthesizer is exceeding the maximum tolerance of the NAD amplifier; if so, it
will pause and let the experimenter manually step down the synthesizer output and, to

ccmpensate, step up the amplification factor of the NAD.

When the complex permeability components y; and pf are to be measured as a
functon of H;, a little more caution is needed. Correct measurements of the components,
especially uY, are sensitive to the correct phase-setting of the lock-in amplifier. In this
thesis, the phase of the measured 4 is first determined, in the case of 2-coil receiver, by
setting the lock-in to be in phase with the induced voltage ( & Hjw sinwt ) of the empty
and unbalanced upper receiver coil. In the case of the 1-coil receiver wound directly
on the cylindrical ceramic superconducting sample, the sample is brought to well above
its cnirical temperature and the resulting phase at maximum voltage is defined to be the
phase of u.

There is actually another complication about correct phase-setting which is rather
unexpected. As it turns out, if one is using a fixed output of the HP3325A synthesizer, the
relative phase between the “SIGNAL” output and the “SYNC OUT” of the synthesizer

is fixed to a value close to but not equal to 0°. However, this relative phase changes
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when the “SIGNAL” value is changed, up to as much as +5°. In other words, in a
phase-sensitive measurement of 4 and Y as a function of Hy, the “SYNC OUT” of the
ac-drive synthesizer cannot be used as the reference to the lock-in, because the phases of
the measured 4} and u{ would be constantly changed as H; is being stepped up. This
behavior of the synthesizer causes some inconvenience in automating the data-taking
process because, to make sure that the phases of the two measured components are still
correct, one would have to check the phases after every data point of a different H,
value. This of course could be done by using a Lissajous figure on an oscilloscope.

It is fortunate that the changes in the phase of the synthesizer with changes in its
output are quite systematic within a particular decade of output voltage. I found that
this relative phase between the “SIGNAL” output and the “SYNC OUT” has about the
same value when the “SIGNAL” is at, say, 0.02 Vpp, 0.20 Vg, and 20 Vp,. Also, the
unit to unit difference in this relative phase change does not vary much, at least at low
frequencies (~ 100 — 500 Hz). So, to automate the system and to eliminate constant
checking of the phases, a second synthesizer set to the same frequency is phase-locked
to the ac-drive synthesizer and its output, which is set to vary according to that of the ac-
drive synthesizer, is used as the lock-in reference. The output of this second synthesizer
is set to vary within the input-voltage tolerance of the lock-in reference. For instance,
when the ac-drive synthesizer’s output is 20 Vpp, the phase-locked reference synthesizer
output will be set to 2.0 V. This compensation method enables the full-automation of

the data-taking process of the 4 and x{ measurements as a function of H;.
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3.4 Figure Captions and Figures of Chapter 3

Figure 3.2.1. Diagram of the experimental mutual inductance bridge apparatus.

Details of the magnetic coils are given in Tables 3.2.1 and 3.2.2.

Figure 3.2.2. Balancing circuit for the receiver coils ( Coils #5 and #6 in Figure
3.2.1 ). The circuit can balance the in-phase and in-quadrature signals to within 100
ppm of the individual coils’ pick-up voltage values.

Figure 3.2.3. Temperature control system ( for ceramic Y-Ba-Cu-O sample, no.
C-46N ). The temperature is controlled by the rate of flow of the warm nitrogen gas; the
temperature increases as the rate of flow is increased. The rate is coarsely controlled by
the needle valve and finely controlled by the power resistor in the storage dewar.

Figure 3.3.1. Block diagram for the analog data acquisition system. The coils and
the sample are immersed in liquid nitrogen dewar, represented by the dashed lines.

Figure 3.3.2. Block diagram for the digital data acquisition system: GPIB ( General
Purpose Interface Bus ). The coils and the sample are immersed in liquid nitrogen
dewar, represented by the dashed lines. The copper-constantan thermocouple, however,
is not directly immersed in liquid nitrogen; details about temperature control are shown

in Figure 3.2.3. The GPIB control programs are described in Appendix C.
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Chapter 4 Results and Analysis

In this chapter we present the results of a series of experimental investigation on
the nonlinear electrodynamics of high-temperature superconductors in both powdered
and bulk form. The samples and their properties are summarized in Table 3.1.1. In
these experiments, investigation of high harmonic power generation by the samples
plays an important role. These high harmonics are generated by the nonlinearity in
electrodynamical behavior of the samples. Other than being an interesting subject of
their own, thé high harmonics provide a severe test of the models that we are going to
use to explain the experimental results. As described in Chapter 3, the signal of the
experiments come from a receiver coil in which a superconducting sample is located.
The signal is of a form V (t) = > Vo (t) = 3. Apsin(nwt) + By cos(nwt) and
is processed by either an analog sp;ctrum analyzenr or, for phase-sensitive detection, a
lock-in amplifier.

In Section 4.1, all of the data presented are taken on a powdered Y-Ba-Cu-O sample
(C-15) at T = 77 K. The data are best explained by the zero-order model as described
in Section 2.1.1, owing to the fact that bulk critical currents cannot flow in the powders.

In Section 4.2, the data are mainly taken on a Y-Ba-Cu-O bulk ceramic cylinder.
Here, both harmonic power data and the fundamental mode (n = 1) complex permeabil-
ity will emphasized. In these data, one can see unambiguous evidence of the coexistence
of the inter- and intragranular supercurrent components in a ceramic cylindrical sample
of Y-Ba-Cu-O. Estimates of the respective supercurrent critical densities can also be

made on these data. The data are explained by the generalized critical state model as

described in Section 2.2.

Data taken on the ceramic Y-Ba-Cu-O cylindrical sample at various temperatures
will also be presented in Section 4.2. From these data at different temperatures, the

phase-locking temperature of the bulk ceramic sample, as separate from the intrinsic
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critical temperature of the material, is measured. This measurement gives support to
the “gauge-glass” model of describing the superconducting ceramic as a 3-dimensional

superconducting array as described in Shih, Ebner and Stroud [52].

Measurements on a pulsed-laser ablated Y-Ba-Cu-O thin film, and on a Bi-Sr-Ca-
Cu-O single crystal will be presented in Sections 4.3 and 4.4, respectively. All the
measurements are done at 77 K. These data will be compared to the generalized critical
state model calculations. In contrast to the Y-Ba-Cu-O ceramic in Section 4.2, both the
Y-Ba-Cu-O thin film and the Bi-Sr-Ca-Cu-O single crystal show only one supercurrent
component. Estimates of the critical current densities will be presented and suggestions

for further work will be made.

4.1 Measurements and models on Powdered Y-Ba-Cu-0O

Extensive harmonic generation. When a powdered sample of Y-Ba-Cu-O is cooled

in liquid nitrogen in “zero” magnetic field (H;. < 1 mOQOe) and driven by an ac magnetic
field, signals with harmonic components of the driving frequency will be generated and
can be picked up by a receiver coil surrounding the sample. For instance, Figure 4.1.1
shows the harmonic power spectra P (nf) versus the harmonic number n of Y-Ba-Cu-O
powder sample C-15 at T = 77 K, taken by the two-coil method, with H; = 2.3 Qe,
and Hy. = 0 and 1 Oe, respectively. Note the symmetry of the even harmonics — at
Hy. = 0, only odd harmonics are generated by the sample; when Hy. # 0, symmetry
is broken and even harmonics also appear. We shall discuss more in detail about this
symmetry later. Figure 4.1.2 shows the harmonic power P (nf) versus the harmonic
number n for sample C-15, also at T = 77 K, with H; = 23 Oe, and Hy. ~ 1 mOe.

The power falls off slowly with n; all odd harmonics up to at least n = 41 are clearly

observed, superposed on a broad receiver coil resonance at 363 kHz.

Figure 4.1.3 shows the P (nf) versus n data of Figure 4.1.2, corrected for the

receiver coil resonance; the slope for large n is 1.9 dB/harmonic. The broken line is that
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computed for the zero-order model, Eqn. (2.1.4) with the area distribution

sinh (A7 /2)
A [cosh (Am) — 1]

F(A) = (4.1.1)

which was previously discussed in Section 2.1.1; the slope for large n is 2.4 kB/harmonic;
this model thus gives a reasonable explanation of the slow falloff of the harmonic power.
The dotted line, computed for the first-order model, Eqn. (2.1.13), does not fit the data
owing to a resonance near n = 17 due to the choice of the parameters Ly and « in

Eq. (2.1.13).

Plots of P (nf) versus Hy for n = 3, 5, and 7 show a roughly cubic dependence
on H; in the intermediate-H; region, for which we have no numerical model, and
more complex behavior in the high-H, region. We also note that Xia and Stroud [6]

have developed a model of superconducting clusters by which they explain the power

dependence on n.

Symmetry of harmonic power. The symmetry of the even and odd harmonics with

respect to Hy. that we mentioned above when describing Figure 4.1.1 can be best
illustrated by plotting the harmonic power P (nf) versus Hy.. Figure 4.1.4(a) shows
the second harmonic power P (2f) generated by sample C-15 as a function of Hy,
obtained by slowly scanning from Hy, = +20 to —20 Oe. As pointed out earlier, the
second harmonic power becomes essentially nonexistent at Hy. = 0. The dip in P (2f)
at Hyc = 0 is so sharp that, when shown in expanded scale in Figure 4.1.4(b), one
finds that it changes by about 30 dB with a superposition of only 1 mOe, and increases
by 85 dB for a dc field change of ~ 1 QOe. This is qualitatively in agreement with
the prediction of the zero-order model, based on the symmetry of Eqn. (2.1.4), that
P(nf) — 0 as Hy. — O for even n. To observe this very narrow dip it is necessary
to both use H; > 2 Oe and to cool in zero field to reduce the remanent local fields
due to pinned fluxons. Moreover, there is some experimental evidence that this very

narrow dip is an unstable state. If the dc field is scanned up to Hy. > 5 Oe and back,
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the narrow dip cannot be recovered without zero field cooling, possibly the result of
pinned fluxons. The system appears to be somewhat unstable, probably at localized

sites, against self-symmetry-breaking.

Periodic dips in P, {(Hg.). Yet another aspect of the nonlinear electrodynamics
observable in YBaoCu3O; powder is shown in Figure 4.1.5, the relative harmonic power
for selected harmonics, versus Hy., scanned at a uniform rate for field increasing and
then decreasing; the ac field has the relatively large value H; = 23 Oe. For n = 2
the trace is similar to Figure 4.1.4 except for a broader dip at zero field and a larger
hysteresis. For higher even harmonics, the same symmetry with respect to H;. = 0 as
P (2f) holds; the harmonic power goes to a minimum at Hy. = 0. For odd harmonics,
the power has a peak at H;. = 0. However, for the higher harmonics, both even and odd,
a series of sharp dips in P, (H4.) is observed, approximately equally spaced, with the
average spacing AH,, inversely proportional to n. The spacing is given empirically by
AHy. =~ 3H,/n, which also is qualitatively : redicted by the model as discussed below.
These dips are interpreted as evidence for a pseudo flux quantization of superconducting
loops in the powdered sample and are a confirmation of the predictions of the model
in Section 2.1. For example, Figure 4.1.6 shows P (nf) versus hy., computed for the
zero-order model, Eqns. (2.1.4) and (2.1.9), for the same harmonic numbers as Figure
4.1.5. Since kg, is just proportional to Hy. a strong correspondence between experiment
and model is readily apparent for all harmonics. The small hysteresis in the data is

believed to have an origin in pinning and depinning of fluxons, as discussed by Blazey

et al [53], and many others.

In the computation for Figure 4.1.6 we used the loop area distribution function Eqn.
(2.1.9). As discussed in Section 2.1.1, this monotonically decreasing expression was
not chosen arbitrarily, but rather empirically, in order to yield from the integral in Eqn.
(2.1.4), for n = 0, a dc magnetization of the form M (Hy.) ~ tanh (Hy. / H'), which is

an approximate representation of the low-field data reported for granular YBayCus0-
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at 77 K for which H' ~ 10 Oe. Equation (2.1.4) was numerically integrated, with
Eqn. (2.1.9), and with limits of integration chosen as 6 = 0.005 and A, = 30.0 .
Even though Eqn. (2.1.9) is singular at A = 0, it was found that these limits yielded a
magnetization within a few percent of the hyperbolic tangent function. Furthermore, we
only use Eqgns. (2.1.4) and (2.1.9) to compare the relative power for various harmonics,
or, for a given n, variation of the harmonic signal with hg,; these results are not sensitive
to the limits of integration as long as the singularity of F(A4) at A = 0 is avoided.
Equation (2.1.4) with Eq. (2.1.9) also qualitatively predicts the observed shapes of the
lock-in voltage signals V. versus Hy., for n = 1 and 2, and the falloff of P (2f) in

Ficure 4.1.4(a), as H;. moves away from zero.

‘Ve also vsed Eqn. (2.1.4) to compute P(nf) ve ', for a Gaussian distributior.

functon

20°

F(4) = exp {_(_i_—l_)'} . 4.1.2)

finding predictions similar to Eqn. (2.1.9) for large n. However, for small n, predictions
do not agree well with experiment. From data like that of Figure 4.1.5, we plot ‘. rigure
4.1.7(a) the average spacing AH,. between dips versus harmonic numbers n = 3, 4,
..., 30. Except for small n the data are well fit by the expression AHy. < n=%%. In a
similar fashion we compute from Eqns. (2.1.4) and (2.1.6) the average spacing between
dips Ahg., plotted in Figure 4.1.7(b) for several values of the standard deviation o of
the Gaussian distribution. We find that the slope converges to —0.98 for ¢ 2 2. Using
Egns. (2.1.4) and (2.1.9), we also find a very good linear fit for Zh_d; versus n with
slope —0.97. So both caiculation and experiment suggest that as n increases, the slope
asymptotically approaches —1, ie. AHg. x n~!. We thus conclude that the decrease in
spacing of the dips with n in Figure 4.1.5 can be semiquantitatively understood by the
zero-order model, and that it is not sensitively dependent on the assumed distribution

functon F'(A4), other than that it should monotonically decrease for large loop areas
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A; however, the area distribution function Eqn. (2.1.9) fits the data better than Eqn.

(2.1.6) for small n.

Figure 4.1.8 shows P (nf; versus hy. computed from the first-order model, Eqn.
(2.1.13). This model provides a mechanism for dissipation, and creates both the inductive
and dissipative phases for each harmonic, so it is not surprising that the dips are broader
and less rr.ulved, e.g., n = 15 and 30, because of the interference between the two
phases. In other words, the Fourier transform of (V; (¢)) now contains both real and
imaginary components, and both must vanish to give a deep power dip. The pattern is
more complex, and, in fact, this feature is qualitatively observed, e.g., in Figure 4.1.5(f),
if the hysteresis is ignored. In principle this model is superior to the zero-order model,
but it was unfortunately not evaluated in detail owing to the long times required for the

computation ( roughly a factor of 10° greater than the zero-order model ).

Why does a random sample show pseudo “flux quantizaton”? Recognizing that

various versions of the superconducting loop model can explain the experimental finding
of deep dips in the harmonic power, almost periodic in the dc field, an interesting
question can be asked: How does it come about mathematically that all this structure
is not averaged out in, say, Eqn. (2.1.4). Or, to put the question in physical terms,
why does a random powder sample of YBasCu3O; show sharp dips, eg., as in Figure
4.1.5(e), quite similar to those observed in fabricated thin film arrays of superconducting
wires, or arrays of identical Josephson junctions? It will be easier to first answer this

question mathematically by examining Eqn. (2.1.4).

The general behavior of the harmonic voltage signal, as modeled by Eqn. (2.1.4),
1s clearly determined by the integral in the equation. To understand the structure
of the signal as a function of h,., one can separate the integrand, say that for odd
n, into two factors: the periodic factor cos(Ahy.) and the amplitude Q, (h;,4) =

A Jn (Ahy) F(A). We have neglected the average over orientations; so one can interpret

A as the dimensionless projection area. One recognizes that Q, (k;, 4) is, within a
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constant factor, the Fourier cosine transform of (1% (h4.)), for odd n; for even n, it
is the sine transform. For n 2 1, the Bessel function J, (z) initially increases rapidly
as J,(z) = (z/2)" /(n!), and then behaves like a damped oscillation. If the area
distribution F'(A) is a sufficiently rapidly decreasing function, at least for large enough
values of A, then Q, (h;, A) will be a rapidly decreasing oscillating function of A, with
a well-defined peak at A;, , , and with the value of A , dependent on 7 and h;.

For example, in Figure 4.1.9(a), we have used I (A) from Eqn. (2.1.9) and computed
|Qn (h1.A)| versus A for the parameters n = 10 and h; = 5.0. It indeed shows
successive decreasing peaks with the dominant peak at A = A; , = 2.09, larger by

a factor of 6.7 than the next peak. Thus the integral could roughly be evaluated at only

the dominant value of A:

(Vah, ) ~ AL p In (An g, h1) F(Ay,,) sin (An , hac) (4.1.3)

giving a harmonic power P, (hg.) with hy.-dependence roughly in the form of
sin? (.4,‘1',11 hdc), and hence with periodic spacing between dips Ahg. = 7/ A}, =
1.50, in good agreement with the directly calculated value of Ahy. = 1.52 using the
full expression Eq. (2.1.4). To show the dependence on n, we plot, in Figure 4.1.9(b),
|@Qn (h1,A)| versus A for n = 5, hy = 5.0, also using Eq. (2.1.9) for F(A). In this case
the location of the dominant peak decreases approximately by a factor of 2, to Avn =
1.10, corresponding to dip spacing of Ahy = 7/4;, , = 2.86, again in good agreement
with Ahy, = 2.80, directly calculated {rom Eq. (2.1.4). Additional computation shows
that 4} , is approximately proportional to n, in agreement with the full integral and
also with the data, where AH, x n~!, as in Figure 4.1.7, for large enough n.

One can take the view that 47 , is an “effective loop area” in the sense that the dip
spacing Ahy. x (A;_hl)_l x n~1 is, for large n, determined by the larger areas A in
the distribution and for small »n by the small areas. In some sense Q, (hl,A;‘hl) is a

“sensidvity factor™: out of the wide dismibution of supercurrent ioop areas, observation
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of the n'* harmonic selects out only areas near A}, »,- In other words, it means that in
an ensemble of superconducting loops with a distribution of loop areas, for a given ac
magnetic field amplitude, each generated harmonic is dominantly contributed by loops

within a relatively narrow range of loop areas, thus manifesting their flux quantization

phenomena in the harmonic.

To examine the dependence of Ahy. on the ac field h;, we show in Figure 4.1.9(c),
|@r (h1, A)| versus A for n = 5, hy = 10.0. The dominant peak of |Q, (h;,A4)| is now
located at A7, , = 0.58, corresponding to dip spacing Ahky. = 5.45, in good agreement
with that computed directly from Eq. (2.1.4), Ahg, = 5.39. Additional calculation
shows that approximately Ahy. « hy, ie., AHy. o< H,, for large enough values of H;.
The overall result is AH,;. = 3H;/n. We show below that this behavior is observed
experimentally.

To summarize, the unexpected observation of sharp, almost periodic dips in the
nth harmonic power with dc field for a distribution of loop areas A can be understood
semiquantitatively as the consequence of the folding of a decreasing function F'(4) and
the rapidly increasing part of the Bessel function J, (z). However, it should be noted
that even though the Bessel functions arise from the properties of Josephson junctions,
we have not shown that it is necessary as well as sufficient to ascribe the phenomena to

Joseuhson junctions and hence to flux quantization.

Structure in the intermediate-H; region. Figure 4.1.10 shows what happens to

P(16f) versus Hy. as the ac field is reduced from H; = 23 to0 2 Oe. The spacing
AHgy. decreases, initially linearly with H, as expected from the argument in the previous
paragraph. Then structure develops, which seems irregular, and depends on the sense of
the H,, scan, e.g., Figures 4.1.10(c) and (e). However, if the leftward trace is reversed,
shown as the dotted line in Figure 4.1.10(d), it superposes exactly on the rightward

trace. This is the same property shown by the traces in Figure 4.1.5 and is possibly

a consequence of fluxon pinning and de



enhanced effect. In Figures 4.1.10(i) and (j) there are many resolved and reproducible
sharp dips not uniformly spaced but with average spacing still roughly proportional to
H,. This behavior in the intermediate-H; region is similar to the flux jumps observed

in nonresonant microwave absorption in low fields.

A set of P (nf) versus H,, traces taken as in Figure 4.1.10 but for odd harmonics
shows similar behavior for large H;, with AHy, linearly proportional to H;, but with
the dips decreasing in amplitude as H; becomes small. The sharp spikes in Figures
4.1.10(1) and (j) are not observed for odd harmonics.

Figure 4.1.11 summarizes the experimental results in a plot of the values of Hg4. for
the dips versus the magnitude of H;. The circles denote positions of well-resolved dips,
the diamonds regions of unresolved and more closely spaced dips. The solid lines are
plots of the dip positions hy. versus the ac field h;, computed for the zero-order model,
Eqgs. (2.1.4) and (2.1.9). This figure shows graphically the general agreement between

experiment and theory for large H,;, with poor agreement for H; < 5 Oe.

Structure in the second harmonic. The smooth deep narrow dip in P (2f) versus

H,., Figure 4.1.4, are observed only in the moderately high-H, region ( H; > 2 Qe).
Figure 4.1.12 shows the behavior in the same sample as the ac field is reduced to the
intermediate region: at H; = 1 Oe the dip has broadened; at H; = 0.5 Oe there is a fairly
abrupt transition to a wide dip with more hysteresis; at 0.4 the pattern is seen to consist
of three dips, which broaden and change shape at 0.2 Oe. Although this structure is not
predicted by the zero-order model, we find the loop model does predict similar behavior,
shown in Figure 4.1.13, computed from Egs. (2.1.12) and (2.1.9). Although this model
does not predict the hysteresis, whose origin is noted above, the abrupt onset of the
structure is reasonably related to the experimental behavior. However, this phenomenon

has not been explored in detail in other samples.
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4.2 Measurements and models on a Ceramic
Y-Ba-Cu-O Cylinder

In this section, experimental data taken on a bulk ceramic YBaoCu3O5 cylinder are
presented. In this case, extensive harmonics are also generated when the sample is driven
by an ac magnetic field. Like in the case of powdered YBasCu3O7, the harmonics show
the same symmetry with respect to Hy. = 0; when plotted versus the dc magnetic field
superposing on the ac field, even harmonics show a sharp dip in power at H;. = 0, while
the odd harmonics have a peak in power. Also, as in the case of powdered YBasCu3O7,
there are modulations in harmonic power when the dc magnetic field is varied, and dips

and peaks in P, (H,.) are observed for both even and odd harmonics.

However, there are important qualitative differences between the harmonic data of
bulk ceramic cylinder and the powdered sample. The most obvious one is that when
the harmonics are plotted versus dc magnetic field, the dips in power are no longer
as regularly spaced and as sharp as in the case of powdered YBaoCu3O;. We found
that there is no way to fit the harmonic data of the bulk ceramic YBayCu3O7 cylinder
with the zero-order model. Another obvious question one has to ask oneself in the
present experiment is where the supercurrent, which is giving rise to these harmonics,
is flowing. For the powdered sample case, there is no doubt that the currents are
flowing within the physical grains of the powder, with the “grains” themselves possibly
composed of subgrains or cracks that give rise to the rf-SQUID-like behavior. But
in the case of a bulk ceramic, one has to consider also the possibility that large
supercurrents may be flowing between the grains and throughout the bulk volume of
the sample. In fact, the ceramic superconductors have been suggested by many papers
in the literature to be “natural” 3-dimensional superconducting array systems formed by
highly superconducting grains coupled by Josephson junctions [54][55][56](57]. They
are “natural” in the sense that they are not intentionally designed and fabricated arrays

such as those 2-dimensional regular arrays of low-temperature superconducting wires
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and Josephson junctions which had been fabricated and experimented on even before
the high-temperature superconducting materials were discovered [58][59][60]. Instead,
the 3-dimensional arrays as suggested are formed naturally during the process of high
compression and sintering in the making the earliest high-T. materials, before single-

crystals and thin-films became available.

This suggestion that the high-T, ceramics are 3-dimensional superconducting arrays
also brings up the conjecture that the ceramic should also behave as a “gauge-glass,”
which is in a sense the superconductivity version of spin-glasses. In this picture, the
individual highly superconducting grains are coupled by Josephson effects to give phase
coherence and hence superconductivity to the overall, macroscopic system. However,
at high enough temperatures thermal fluctuations may be strong enough to disrupt the
coupling, and the phases of the individual grains’ pairing order parameters will fail to
remain coherent over the whole sample. So, at these temperatures, which are between the
intrinsic critical temperature of the intragranular material and the 3-dimensional array’s
phase-locking temperature, the sample as a whole is not superconducting, even though
Cooper pairs exist within individual grains. Monte-Carlo simulations have suggested

that at the phase-locking temperature of the overall array, there is indeed a real phase

transition occurring [52].

However, physically reasonable as these suggestions are, there has not been, to
my knowledge, any unambiguous experimental evidence about the coexistence of the
intergranular Josephson supercurrent in the ceramic YBasCu3O; together with the
intrinsic supercurrents inside the individual grains. The question of the existence of
the 3-dimensional superconducting array’s phase-locking temperature in the high-T,
ceramic has also been rarely addressed exper'mentally. In the present section, one of our
objectives is to present unambiguous experimental evidence for the existence of both the
intergranular Josephson supercurrent and the intrinsic intragranular supercurrents within

the same piece of ceramic sample. Another objective is to show that the generalized
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critical state model presented in Chapter 2 describes the intergranular superconducting
medium of the ceramic quantitatively. Lastly, experimental measurement of the phase-
locking temperature of the 3-dimensional array formed by the superconducting grains,
as separate from the intrinsic critical temperature of the grains, will be presented.

The bulk ceramic YBayCu3zO7 sample that we used in this experiment is in the
form of a cylinder ( sample no.: C-46N ), 2.3 cm long and 3.1 mm diameter. When
this sample is cooled in liquid nitrogen in zero magnetic field, extensive harmonic
components picked up by the receiver coil can be detected by the spectrum analyzer. In
this case, the receiver coil, which is made up of gauge 40 wire, is wound tightly and
directly on the sample itself, covering the middle of the sample’s length ( 78 turns in

two layers; cross-sectional area = .074 cm? ).

Harmonic power versus Hj.; measurements and initial modeling. As mentioned

above, the harmonics generated by the bulk ceramic sample show the same symmetry
with respect to Hy. as the powder samples — cven harmonics have a dip in power at
Hgy. = 0, while odd harmonics have a peak. In Figure 4.2.1(a), harmonic power plotted
as a function of dc magnetic field superposed on the ac field is shown for harmonic
numbers n = 2, 5, 6 and 10. The ac magnetic field amplitude H; is 13.5 Oe in this
case, while the temperature is 77 K. The arrows indicate the direction in which the dc

magnetic field is scanned. Figure 4.2.1(c) shows data at H; = 4.5 Oe.

Because of the bulk nature of the sample, in an attempt to explain the data we
ignore for the moment the granular nature of the sample and assume that supercurrent
is flowing throughout the sample as if it were a continuous medium, as in Section 2.2.
Since the materials are known to be type-II superconductors, the modified critical-state
model would seem appropriate to describe the system. In fact, using Eqns. (2.2.9) and
(2.2.10) with # = 1.8 and Hy = 3.0 Oe, the model calculation fits the harmonic power
versus H,, data very well up to the 10 harmonic; these values of B and H, were

empirically determined by model fitting. Beyond the 10" harmonic the cal¢ ulation no
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longer gives a very satisfactory fit (not shown). In Figures 4.2.1(b) and (d), these model
calculations are compared side by side with the data, with the same corresponding ac
field amplitude H;, harmonic numbers n and dc magnetic field range Hy.. The fit is
quite good. To highlight this significant improvement in data-fitting by the introduction
of the parameter 3 to the original Kim-Anderson model, the model calculation of the
10* harmonic power with H; = 4.5 Oe is repeated using § = 1.0, in accordance with
the Kim-Anderson model, and is plotted as the dotted line in Figure 4.2.1(d). One can

readily see that the original model calculation fails to explain crucial features of the data.

One can observe that the Kim-Anderson model, and its modification, does predict
the observed symmetry of P (n f) with Hy, as pointed out by Ji et a/ [8]: the addition of
a dc field breaks the symmetry, in a mathematically analogous manner to the symmetry

breaking in the Josephson junction models of Section 2.1.

From the data-fitting parameters, we deduced that the critcal current density J, of the
supercurrent is equal to 790 A/cm? at zero magnetic field, and it drops to 80 A/cm? by
the application of only 7 Oe of magnetic field. Both the low value of the critical current
density J. and its sensitivity to low magnetic fields indicate that the supercurrent that
we are dealing with in these harmonic data is most likely the intergranular Josephson
current. This is consistent with our earlier assumption that the supercurrent mainly

responsible for the present harmonic data is flowing throughout the sample as if the

sample were a continuous medium.

However, if the harmonic data here are really mainly contributed by the intergranular
supercurrent, then one has to ask what the contributions, if any, from the intragranular
supercurrents are. As a matter of fact, one can even ask if there really are supercurrents
flowing within the grains; is there any solid evidence of their existence inside a bulk

ceramic sample when the grains are all coupled together?

Observation of both inter- and intragranular components of the complex permeability.
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Our next objective is to find unambiguous experimental evidence for the coexistence
of both the inter- and intragranular supercurrent components, and to measure the
corresponding critical current densities J, inside the same ceramic YBayCu3O7 sample.
In order to do this, we take advantage of the knowledge that, in the critical state model,
when the superposing dc magnetic field is zero, the value of uf, which is proportional
to the ac hysteretic absorption by the sample normalized by the square of the ac field
amplitude H?, is at a maximum if H; = H*, where H* is the value of the external
field at which the penetrated flux front reaches the center of the sample (see Section 2.2

and Appendix A). As described in Eqn. (2.2.11), the value H* increases as a function

of increasing critical current density J. as

4 (,B 1) B+1
H* = H, { [1 + 7r—i—JcoR] _ 1} , (4.2.1)
cHp

where J = J. (H = 0). To see through this expression for H*, one can take 8 = 0, as
in the original Bean version of the critical-state model, and find that H* = 47 J.R/c.
The idea is that if intragranular supercurrent exists in the ceramic sample, itc critical
current density J. , should be of about the same order of magnitude as those measured
in single crystals and thin films, ie. J. 4 ~ 10° — 107 A/cm? This value is many
orders of magnitude larger than the critical current density, presumed at this point to
be intergranular J, ;, that we deduced above, namely 790 A/cm? at H = 0. Thus if
one applies the critical-state model separately to the macroscop ¢ bulk ceramic sample
and to the individual grains, the values of H,,. and H,,,, shou'd be very different in
magnitude. So when the ac absorption is measured as a function of ac field amplitude
Hj, with H; covering u large enough range, the two normalized absorption peaks at

H .. and H , . if they exist, should be detected.

Experimentally this is achieved by noting that from Eqn. (2.2.21) for n = 1 one
can measure with a lock-in detector an in-phase signal voltage V! « u}H,, and an

out-of-phase signal voltage V{' o pfH;. In Figure 4.2.2(a), we plot as circles the

66



experimentally measured uf versus log;o (H1) over a wide range 0.1 < H; < 400 Oe
at f = 85 Hz, T = 77 K, Hy. = 0. In this case, two u{ peaks are observed, the lower
one at H; = 15 Oe and the much higher one at H; = 250 Oe, which we ascribe to
the inter- and intragranular contributions, respectively. The lower peak was found to be
independent of frequency in the range 85 — 10* Hz, but apparatus limitations of |H|
at high frequencies did not allow a similar conclusion for the high-field peak. Figure
4.2.2(b) is a plot of the inductive component g’ of the fundamental mode complex
permeability versus log;o (H;) which also shows, but less distinctly, two components:
(i) the flat plateau region 15 < H; < 80 Oe, due to full vortex penetration of the
intergranular medium, corresponds to x' = 0.17 which is the effective permeability ¢
for this medium at 77 K; (ii) a ‘steeply rising second region which does not reach a

plateau at this temperature owing to insufficient H; field availability.

To find out for sure which uY peak is really due to which supercurrent component,
the same YBaoCu3O+7 sintered bar material was ground in an agate mortar to a fine
powder (sample No. C-48A); optical microscope examination showed grains of sizes 1
< Ry £ 60 pum, with rough average E ~ 10 pm. To further isolate the grains from
one another, one volume of this powder was mixed with one volume of 1 um grit plus
one volume of 0.1 um grit Al,O3 powder (sample No. C-48B). Both powder samples
display similar behavior. The data in Figure 4.2.2(c) are for sample C-48B. Here, the
dissipative component ! of the complex permeability is plotted versus log;o (H;),
showing essentially no evidence for the previous peak at low H, field, while the high-
field peak at H; = 250 Oe remains. This high-field peak is therefore ascribed to the
collective contributions of the intragranular supercurrents within individual grains, and
the low-field peak at H; = 15 Oe of the ceramic sample is ascribed to the intergranular
Josephson current. We conclude that powdered samples do not allow significant circular
shielding currents on the scale of R, but only on the scale of R, thus invalidating the

above critical-state model for the intergranular medium,.
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The measurements of H} ,., and H/ ., also enable one to get a quick estimate of
the intra- and intergranular critical current densities respectively. For the intragranular
current, taking the rough estimate of R_g to be 10 um as above and using the simple
Bean version of the critical-state model, ie. J, taken to be independent of field, one

. _ *
gets from the expression J., = cH},,,

/4t Ry = 2 x 10° A/cm? However,
using the generalized critical state model with fitting parameters 3, = 1, Hoy = 5 Oe
and H},,, = 250 Oe, as discussed later in this Section, one gets J.,(H =0) =
5 x 108 A/cm?. Similarly, using the same method, one gets an estimate of 78 A/cm?
for J. ;. The 1étter estimate agrees with the value 80 A/cm? of J. (H = 7 Oe) deduced
earlier from fitting the high harmonic power versus dc magnetic field data with the
generalized critical-state model using 3 = 1.8 and Hy = 3. This should be expected;
the Bean version assumes J, to be independent of H, and hence the flux density profile to
be linear as a function of depth into the sample, it should only give an estimate of J,. (H)
at H ~ 0.5 H*. As mentioned earlier, model calculations yields for the intergranular

component J.(H = 0) = 790 A/cm?.

Harmonic power versus ac magnetic field measurements. Similarly clear distinction

of the inter- and intragranular supercurrents in the ceramic sample is also manifested
in the harmonics. In Figure 4.2.3(a), with H4. = 0, the third harmonic power (in dB)
generated by the ceramic sample is measured as a function of log,, (H;) for almost
five orders of magnitude and is plotted as circles. These data were obtained by plot-
ting the video readout (dB) of the HP spectrum analyzer : 10log,, (V,;)z + (V,f’)2 =
10log, [(N;)Q + (1)’ + 10log, [ H?] + constant, which does not measure sepa-
rately u;, and g;,. When this plot is compared to similar data taken on the powdered
sample C-48B in Figure 4.2.3(b), it can be readily seen that the steep slope of P (3f)
for Hy > 100 Oe is mostly due to the intragranular supercurrents, whereas the “hump”
located in the range 0.4 < H; < 100 Oe, and broadly peaked at H; ~ 25 Oe is due

to the intergranular supercurrents.
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Similar features can also be observed for higher harmonic data. In Figures 4.2.3(c)
and (d) the fifth harmonic power data taken at zero dc field on the ceramic and powdered
samples respectively are plotted as a function of log,, (H) as circles. Again, the steep
slope of the ceramic data for H; > 100 Oe is due to the intragranular supercurrents,
while the “hump” at H; < 100 Oe is due to the intergranular current. For completeness,
the seventh and the ninth harmonic power data taken at zero dc field on the ceramic
are also plotted as a function of log;q (H;) in Figures 4.2.4(a) and (b), respectively.

The modeling of P (nf) versus log,, (H;) will be presented after the ), p} data are
discussed.

Modeling ¢} and pf versus log,o(H;). Now that we have distinguished experi-
mentally the separate contributions of the inter- and intragranular supercurrents to the
fundamental mode complex permeability versus log;, (H1) as well as harmonic power
versus log,o (H1) data, it is desirable to ask if the fitting parameters ( Hy = 3 Oe,
3 =18, H* = 15 Oe ) acquired earlier by means of model fitting the high harmonic
power versus dc field data are corsistent with the log,, (H; ) data. As asserted above, the
earlier P (nf) versus Hy. data should be due mainly to the intergranular supercurrent.
Since in the fundamental mode complex permeability 2 and P (nf) versus log, (H))
data, the inter- and intragranular components are so well distinguished, we are now in

a unique position to test the assertion.

In Figure 4.2.2(d), the circles are measurements of u} as a function of log;, (H;),
with a superposing dc magnetic field of 10.2 Oe. The low-field ./ peak splits into two,
one at about 7.5 Oe and the other at about 25 Oe. While the latter field value (25 Oe) is
equal to H* + Hg,, the former (7.5 Oe) is approximately equal to the ac field amplitude at
which the ac flux front reaches the axis at Hy. = 10.2 Oe, ie. when the right-hand-side
expression of Eqn. (A.2.1) (see Appendix A) goes to zero. In fact, this splitting of the
low-field peak is fit very well quantitatively by the generalized critical-state model using

the same model parameters as used above, namely 3 = 1.8, Hy = 3 Oe and H* = 15
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Oe. The solid lines in Figure 4.2.2 represents these model calculation results for the
intergranular component. The dashed lines in Figure 4.2.2 are model calculations for

the intragranular component, using 8y = 1.0, Hog = 5 Oe and H

intra

= 250 Oe, fitting
the data semi-quantitatively.

As it turns out, applying a small Hy to split the 4! peak provides a more convenient
way for model fitting. The heights of the split peaks, together with their positions are
good criteria for determining the best fitting parameters # and Hy . This is less time-
consuming than fitting the previous P (n f) versus H . data, although those data provide
valuable cross-checking.

As the dc magnetic field gets higher, both the inter- and intragranular u{ peak
positions shift to lower H, values. This reflects the decrease of both the inter- and
intragranular supercurrents as a function of increasing magnetic fields. In Figures 4.2.5
to 4.2.8, the measured dissipative and inductive components of complex permeability
f11 are plotted as a function of log;, (H1), with superposing dc magnetic field H;, =
51.4, 60.3, 70.2 and 90.4 Oe. As indicated by the low-field uY peak, the intergranular
current is sustained in a relatively high dc magnetic field of 90.4 Oe. The intragranular
absorption peak surprisingly increases in amplitude with the application of dc magnetic
field. This is not explained by ihe generalized critical-state model for a wide range
of Hy and 3 values. In fact, the generalized critical-state model can only give semi-

quantitative fit (see the dashed lines) to the intragranular component of all the data.

This is not understood at present.

Modeling P (nf) versus log;o (H1). Having first discussed the i versus log,, (H;)
data we now return to the power data for the C-46N sample, Figures 4.2.3 and 4.2.4, for
which Hy. = 0. The solid lines are model calculations for the intergranular components,
using the same set of parameters as above: 3 = 1.8, Hy = 3 Oe and H* = 15 Qe.
The dot-dashed line is the model calculation for the intragranular component, using

parameters 3, = 1.0, Hoy = 5 Oe and H}, . = 250 Oe, while the dashed line is a

inira
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similar calculation using 3, = 2.0, Hoy = 5 Oe and H},,,, = 250 Oe, plotted for
comparison. We see that for » = 3, 5, 7 and 9, this set of model parameters gives a
surprisingly good fit to the data over 5 decades of H, and about 10 decades of P (nf),
especially for the intergranciar component. In particular the broad saturation of P (nf)
versus log,, (H;) at H; > 20 Oe is well explained. as is the rapid rise at H; = 10 Oe for

n = 7,9. Ve note that for H; < 1 Oe the data are limited by the apparatus sensitivity.

Harmonic power versus log;, (H1) data also show up interesting features with the
application of dc magnetic fields which can provide further cross-checking of our model
calculation fits. In Figure 4.2.9(a), P (7f) taken on the ceramic sample C-46N in a dc
field of 10.1 Oe is measured as a function of log;, (H;). This is to be compared to
Figure 4.2.4(a), for Hy. = 0. The circles are experimental data, while the solid line
is the generalized critical-state model calculation for the intergranular component, with
3 = 1.8, Hy = 3 Oe and H* = 15 Oe. The extra features in the intergranular “hump”
introduced experimentally by the small dc field are remarkably well explained by the
model calculation. The dip in P (7f) at about H; = 120 Oe is probably formed by

out-of-phase cancelling of the inter- and intragranular contributions.

The circles in Figures 4.2.9(b), (c¢) and (d) show P (5f) data taken on the sample C-
46N versus log,, (H;) in dc fields Hy. = 30, 60 and 90 Oe; the lines are corresponding

model calculaton results similar to those described above.

Measurements and modeling of P(nf) versus frequency. Another severe test of

the generalized critical state model is the measurement of the harmonic power spectra
of the signal generated by the ceramic sample, C-46N. In Figur. 4.2.10, such spectra
are measured at Hy. = 0 for H; = 5, 10, 20 and 40 Oe, and are shown as solid lines.
The fundamental driving frequency is 1000 Hz and the temperature of the sample is at
78.5 K. The squares are the theoretical spectra. normalized to the experimental P (3f),
predicted by model ¢

lenlaninng r the inrtoraranulaor romnanont amhy neine 3 — 1 8
culanong T 1ne Interoran r component only 2 1.5,

Hy = 3 Oe and the experimentally measured value of H* = 13 Oe at 78.5 K. The good
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fits indicate again that up to H; = 40 Oe, the dominant contributions to the harmonic

power are due to the intergranular supercurrent.

Temperature dependence of the inter- and intragranular components of the complex

permeability: two transition temperatures. Now that we can detect the inter- and

intragranular supercurrent components separately by measuring the complex permeability

versus log;, (H1), it is interesting to monitor their behavior as a function of temperature.

Figures 4.2.11 to 4.2.15 show for C-46N and Hy. = 0 measured values of y} and
1Y, plotted versus log,, (H;) over about five decades at 78.8, 83.7, 86.0, 87.5, and 89.5
K. The peak positions of Y, corresponding to H},

inter

and H?

inira?

both decrease as the

temperature increases. This is due to the decrease of both the inter- and intragranular
cr tical current densities as the critical temperature is approached. Another feature to
notice is the increase of the effective permeability of the intergranular medium of the
ceramic as a function of temperature. This effective permeability is determined by the
plateau in the 4 versus log,y (H,) plots for H},,., < H; < H¢y . In Figure 4.2.16 are
plotted p.sy versus temperature. This increase is due to the fact that as the temperature
rises, the London penetration depth of the superconducting grains become larger, thus
increasing the portion of the sample volume into which flux can penetrate without the
magnetic field exceeding the lower critical field H.;, of the grains. At sufficiently
low temperature, the London penetration depth is much smaller than the grain sizes:
Ag < R,y In this limit, Eqn. (2.2.3) in Chapter 2 will become ucs; ~ fn, where
fn is the volume fraction of the normal region. If one simple-mindedly ignores the

demagnetization effects of the grains also, the lowest order correction of 4, 77 in powers
of A\g/ Ry is:

Heff = fn + [Qfs/\g(T)/ Fg] . (422)

From this expression, one can understand how the increase of the London penetration

depth can increase pu.ss. The dashed line in Figure 4.2.16 is the calculatdon of Egn.
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(4.2.2), using fp, = 0.144, Ay (T = 0) = 1400 A [18], T. = 91.2 K (see Figure 4.2.17
below), Eg_ = 10 um and the empirical “two-fluid” approximation of the temperature-

dependent penetration depth [61]:

A (T)
A (0)

_ [1 - (T/Tc)“}_o'5 . (4.2.3)

Note that the value of f, has been chosen to be the ratio of the measured density of this
sample ( 5.46 g/cm?) to the dersity p = 6.38 g/cm® computed from x-ray structure [12].

When the inter- and intragranular penetration fields, H , . and H

inter intra’

are plotted

as a functon of temperature, as in Figure 4.2.17, one interesting feature of this sample

becomes obvious — the intergranular penetration field H; ,., extrapolates to zero at 4.6

degrees below the temperature at which the intragranular one does. Remembering that
the penetration field H* is a measure of the critical current, this means thai the ceramic
sample as a whole does not go superconducting until at 4.6 degrees below the intrinsic
critical temperature of the intragranular superconducting material. The critical current
densites are deduced from H

mter and H: . . using the criacal state model, and are

plotted in Figure 4.2.18; the specific equation used is, from Eqns. (2.2.9) and (2.2.11),

1
J(H=0) = 0 = | (H™ + Ho)?+! Hg’“] , (4.2.4)
47 (3+ 1) RH

where J. is in A/cm?, R is in cm, and H*, as well as Hy, are in Oersted. J. j (H = 0)
is calculated wsing parameters 3 = 1.8 and Hg = 3, while J.,(H = 0) is calculated
using parameters 3, = 1.0 and Hgy = 5.

One explanation of the lower overall transition temperature for the ceramic sample
as a whoi is that the sample is essentially a random 3-dimensional matrix of highly
superconducting grains pressed into contact with one another through Josephson weak
links. According to this picture [52][39], each superconducting grain acquires a gap, or
paining order parameter, as the temperature is lowered below the single-grain transition

temperature 7. The amplitude of this order parameter || is fixed by the characteristics
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of the single grain, so is the intragranular condensation energy E, = (HZ,/87) Vg,
which is proportional to ||® to the lowest order correction in |1/|. However, the phase
of the order parameter is not fixed if there were no intergrain Josephson coupling, which
is characterized by the Josephson coupling energy E; = (h/8me) Iy, where I is the
maximum Josephson current I;. The order parameter thus behaves as a two-component
(*x-y”) spin and the matrix of grains may be represented by a set of vectors in the
complex plane. The weak Josephson coupling bciween grains acts like a ferromagnetic
interaction between the “spins” in the absence of an applied magnetic field. The phases of
the grains are thus “locked” by the coupling, phase coherence across the whole junction

matrix is established, and the whole ceramic sample becomes superconducting.

However, thermal fluctuations become significant when kgT > Ej, which is pro-
portional to (7o — 7'). In this temperature range thermally activated phase slippage
readily occurs in the junctions and so a time-averaged voltage appears across any junc-
tion that carries current. The sample as a whole becomes resistive, even though all
individual grains may still be strongly superconducting. This state has been referred
to as a “paracoherent” state by some authors on granular low-temperature supercon-
ductors [62][63][64]. This picture of granular superconductors is analogous to the
superparamagnetic-ferromagnetic transition in granular ferromagnetic thin films [65][66].
The cross-over between phase-locked (coherent) and phase-fluctuation-dominated (para-
coherent) behavior occurs at a Josephson phase-locking temperature T.; given roughly

by the equation Ej (7T.5) =~ kgT.;. In Ref. [39], it is derived that
To — Ty = (1.57x 1078 A/K) T2 / I, (0) . (4.2.5)

Simple-mindedly assuming Iy (0) = J.; a® and taking J.; ~ 700 A /cm?, and a =~ 2 ym,
and Teo = 92 K, one gets T.o—T.; = 4.7 K. More theoretical studies on disordered arrays
of weakly-coupled superconducting grains have been done. For example, Monte Carlo

simulations done by Shih, Ebner and Stroud [52] predicted that in such a random network,
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there is indeed a thermodynamic superconducting phase transition for the overall system
at the phase-locking temperature. Relevant experimental works have also been done on
related systems of conventional superconductors. In 2-dimensional networks of niobium
Josephson junctions, it was found that the superconducting transition temperature of
the network is lower than that of the niobium islands. In essence, according to
this explanation, the lower intergranular transition temperature in Figures 4.2.17 and
4.2.18 is the phase-locking temperature of the ceramic sample. Between this and the
intrinsic critical temperature of Y-Ba-Cu-O, the individual grains in the sample are
superconducting with pairing order parameter of non-zero amplitude. However, due to
thermal fluctuations, the phases of the order parameters of the grains are not coherent,
so the ceramic as a whole is not superconducting. However, below the phase-locking

temperature, phase coherence exist among the grains and the whole ceramic becomes

superconducting.

Another picture for the lower intergranular temperature is in terms of the flux-creep
picture. In the discussion of the critical state model in Chapter 2, we have omitted the
possibility of thermal effects for simplicity. Actually Anderson has managed to explain

a lot of phenomena in conventional type-II superconductors by his flux-creep theory.

In the flux creep theory [35][34](67], the pinning centers in type-1I superconductors
trap Abrikosov flux lines by means of potential wells. By means of thermal activation
and aided by the Lorentz force J x B/ ¢, the flu~ lines hop over free energy barriers
in the form of bundles.

In the absence of this thermally activated motion, the flux lines are held in free
energy potential wells of depth U7 and width w. The Lorentz force on a flux bundle
of volume V" is JBV/c. Hence the potential well is reduced to an effective height
(U = JBVuw/c) by the Lorentz force. If there is no thermal activation, flux flow will

occur when J = Jo = ¢U'/BVw as discussed in Chapter 2. The effective well depth

can then be written as U (1 — J/Je).
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However, in the presence of thermal activation, the net diffusion velocity on a flux
lineis Qd exp[ U (1 - J/Jw) / kT ], where d is the distance between pinning centers
and (2 is the frequency of oscillation. This may be regarded as expressing the probability
that a flux line has enough energy to cross the barrier, in which case 2 would be the

frequency of flux line oscillation.

From this mean diffusion velocity the electric field is given by

5 _ B?dexp[_if_ (1_i)] _ (4.2.6)

Thus the voltage-current curve is exponential and the critical current determined in an

experiment depends on the lowest voltage which can be measured. If this is E. then
kT BQd
- — : 427
g < E. )] @27

In other words, the value of the critical current density is depressed by the presence

Jc = JcO

of thermally activated flux creep and will go to zero at a temperature lower than the
critical temperature, defined to be the temperature when J.o — 0 in the absence of

thermal activation.

In the author’s opinion, these two superficially different pictures may only be two
different “languages™ describing the same physical process taking place in the system.
The fa‘cts that they both involve thermal activation and that in the random matrix picture,
phase-slippage also involves motion of flux lines highlight the similarity of the two
pictures. There may yet be other possible explanations for the intergranular transitior
temperature; for example, the vortex-glass model of M. P. A. Fisher’s [68][69](70].
However, most of the experiments and theoretical works to date describe the model in
terms of a system with a high dc magnetic field of the order of teslas applied to it, which
is not the case in our experiments. Therefore the direct relevance of the vortex-glass
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4.3 Measurements and Model on Y-Ba-Cu-O Thin-film

From the previous section, we have seen that by measuring the inductive and
dissipative components of the fundamental mode (n = 1) complex permeability as a
function of ac magnetic field amplitude H; over a large enough range, one can distinguish
very clearly the inter- and intragranular supercurrents inside a bulk ceramic Y-Ba-Cu-O

sample. From the peak positions of 4 in Hj, called H}

snter

and H!

nire TESPECHVElY in

Section 4.2, one can even get a quick estimate of both the inter- and intragranular critical
current d ‘= -ies. In this section, similar measurements are reported on a pulsed-laser-
ablated Y-Ba-Cu-O thin-film (sample no. C-51) deposited on SrTiO3, with the c-axis

oriented perpendicular to the film surface.

The circles in Figure 4.3.1 are the experimentally measured inductive and dissipative
components of the complex permeability, 4} and 4Y, of this Y-Ba-Cu-O thin-film shown
over four decades of H;. In these measurements, the 2-coil receiver is used, well
balanced with the balancing-circuit described in Chapter 3. Without a superconducting
sample, the balanced signal is within 100 ppm of the incluced voltage of the ‘ndividual
coils. Only one peak in u{ is observed, located at H; = H* ~ 95 Oe. Again, this peak’s
location is at about the same position as the inflection point of 4. From the fact that 4,
for H; greater than H*, approaches a plateau at value 1 ( corresponding to the normalized
in-phase pick-up signal voltage V{/H; decreasing to zero ), no more dissipation peaks
are expected beyond the H; fields achievable by this apparatus. Thus, this absorption

peak at H; ~ 95 Oe is ascribed to the “one and only intrinsic” supercurrent of the

superconducting film.

Can we get an estimate of J, of this sample, as we did earlier for the ceramic Y-Ba-
Cu-O cylinder? This question is a little more complicated due to the geometrical shape
of this sample. For the cylinder, the dimensions of the sample ( length / diameter ~ 7 )

was intentionally chosen to justify, tolerating some error. the neglect of demagnetization,
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at least for the intergranular medium. For the disk-shaped thin-film, however, the
demagnetization effect is very significant. The large demagnetization factor in this
case approaches one: D = 1 — (d/R) where d is the thickness and R is the radius
of the disk. A tempting approach to deal with this effect would be simply to use
the conventional treatment of demagnetization for ellipsoidal samples, and correct the
internal field by the demagnetization field — Hinternat = Hgpplied — 47 DM, where
M is the magnetization of the sample. However, the critical state actually generates
a nonuniform magnetization through the sample, thus violating the conditions for a
conventional tfcatmcnt. Even taking the average magnetization, assuming it to be
uniform and calculating self-consistently the internal field H,,iernai predicts effects

which disagree with experimental data [71][72].

Daeumling and Larbalestier [73] treat this demagnetization problem for critical state
in disk-shaped superconductors. They divide the disk into ring segments and calculate
self-consistently the current distributions and magnetic field vectors due to the combined
contributions of the ring-current segments, in addition to the applied magnetic fields.
They find that the field shielded (or trapped) in the center of the disk ( they call it h*
) is roughly equal to 4nJ.d/ ¢ , where d is the thickness of the disk! Note that in the
absence of demagnetization the shielded (or trapped) field would be 47 J.R / ¢ where R
is the radius of the disk. The shielding currents also create radial fields which are of
order 27 J.d / c on the disk surface. For low applied fields Hoppiiea < h* these self-field
effects dominate, leading to substantial deviation of the local field from the applied field.
They also find that the demagnetization field does not depend on the applied field, but

rather on J.. So if Hypyiieq > h*, a demagnetization correction is not necessary.

Associating the position of our u” peak of the Y-Ba-Cu-O thin-film with h*, we

can still get an estimate of J, of the film J. = 10 H*/ 4nd ~ 1.5 x 10® A/cm?, where

the film thickness d ~ 0.5 pm.
Simple-mindedly adopting the critical state model calculation for a cylindrical
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geometry, but merely reinterpreting the penetration field H* as ~ J.d rather than ~ J.R,
we find that the 1’ and y” data on the Y-Ba-Cu-O thin film is fit quantitatively by the
Bean-version of the critical state model, ie. J, is taken to be independent of the local
field. In Figure 4.3.1, the circles represent data points, "vhereas the solid lines are the

Bean model calculations represented on the same scale as the data.

Experimental harmonic spectra of the signals taken at several H;’s are shown as
solid lines in Figures 4.3.2. These spectra are all taken at zero dc magnetic field and
77 K. The squares are the harmonic power spectra, normalized to have the same third
harmonic power as the data, calculated for the Bean version critical state model J. =

constant which, for H; < H*, can be represented as ( please also refer to Eqns. (2.2.16)

and Ref. [36]):

5 2
P(nf) = [(n—2)(n+2)] P(3f) . 4.3.1)

One sees that the Bean spectrum fits the low H,; experimental data quite well, and that
the fit gradually fails as H; gets larger. This is not too surprising since as H; gets larger,
the effects of the magnetic field dependence, albeit small, of J. may start to show up.

For completeness, odd harmonic power measurements were taken at 77 K versus
log;o (H1) are shown as circles in Figures 4.3.3 for n = 3, 5, 7, 9. These data are taken
at zero dc field. However, application of H;. up to 90 Oe does not cause significant
change in the data. For example, Figure 4.3.3(c) also shows, as diamonds, a plot of
P (7f) versus log;, (H;) at Hy. = 100 Oe, showing only little change; the two sets
of data lie almost on top of each other, as expected from the Bean assumption that J,
i1s independent of H.

The solid lines in Figure 4.3.3 are calculations according to the Bean model, with
H* = 95 Oe and “R” = d = 0.5 um. The calculations give the correct slopes of
the P (nf) versus log,q (H;) data and aiso the correct relative amplitudes. However,

they could not explain some of the fine details in the data, such as the small “bump”
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in the third harmonic in Figure 4.3.3(a). Also, for the 5%, 7% and 9* harmonics, the
wiggling behavior occurs at lower applied H; values and has smaller amplitudes in
the experimental data than in the calculations. Moreover, the amount of displacements
both in H; and power amplitudes are consistent among all three harmonics. This is not
understood at present, and we believe that the geometrical shape of the sample, hence
the complicated demagnetization effects involved, is at least one of the majbr reasons
for this effect. We also note that the flat regions in P (nf) for H; <1 Qe are due to

insufficient signal to noise ratio, and represent the background spectrum analyzer noise

level at ~ —125 dBm.

As a last remark of this section, we would like to comment on the single peak

observed in u'

versus H; data on this sample. This peak, as suggested earlier, is due
to the ac absorption of the intrinsic supercurrent in the thin-film. However, it has been
suggested in the literature that twin-boundaries in Y-Ba-Cu-O crytals and thin-films may
behave like weak-links. So in principle thin-films like ours should also have both inter-
(weak) and intragranular (strong) supercurrent components. One possible reason that
we have not seen a second ac absorption peak in our u" versus H; data may be that
at 77 K, the different domains of the thin-films are very well coupled across the twin
boundaries, and thus the intergranular effects are not prominent enough to be detected.
An interesting experiment to try is to measure »'' versus H, at higher temperatures, just
as what has been done for ceramic Y-Ba-Cu-O cylinder C-46N in the previous section.
At high temperatures, the coupling across twin boundaries may become weaker and the

intergranular effect may thus show up in experiments.

4.4 Measurements and Model on Bi-Sr-Ca-
Cu-O Single Crystal

In the this section, we present experimental daia taken on a BisSroCaCugQj single

crystal ( sample number C-50 ). All the data are taken at 77 K with both the ac and dc
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magnetic fields perpendicular to the a-b plane of the crystal.

The inductive and dissipative components of the complex permeability, x| and 4],
of this Bi-Sr-Ca-Cu-O single crystal are measured over four decades of H, at 77 K
and are plotted as circles in Figure 4.4.1. As in Section 4.3, the 2-coil receiver is
used to pick up the signal from the sample. The receiver is well-balanced with the
balancing circuit described in Chapter 3. Again, as in the Y-Ba-Cu-O thin-film sample,
only one peak in the absorptive component u} is observed. However, the value of the
peak position H* is much smaller than that of the Y-Ba-Cu-O thin-film: H* =~ 5.2
Oe. Since no more absorption peak is expected beyond the maximum achievable H;,
by the same reasoning as in Section 4.3, this absorption peak at H; = H* = 5.2
Oe is ascribed to the intrinsic supercurrent of the superconducting material. Using
Daeumling and Larbalestier’s results, we can get an estimate of J. of this single crystal
as J. = 10H*/4nd ~ 4.1 x 10% A/cm?, taking the thickness of the crystal to be 10 ym.
This small value of J. is most likely due to a small flux pinning force density in the
sample. The dashed lines in Figure 4.4.1 are calculations according to the generalized
critical state model, Eqn. (2.2.10), using 8 = 1.3, Hy = 3 Oe and H* = 5.2 Oe.
The fits are satisfactory but definitely not as good as those for the ceramic Y-Ba-Cu-O
cylinder in Section 4.2 and Y-Ba-Cu-O thin-film in Section 4.3. These fits are obtained
by simple-mindedly using the generalized critical state model for cylindrical geometry.
but replacing the lateral dimension of the sample by the thickness, “R” — d = 10 um.
For comparison, corresponding Bean model calculations are also plotted in Figure 4.4.1,
as solid lines. The generalized critical state model best fits the data for H; < H*,

whereas the Bean model is best for H, > H*.

Experimental harmonic power spectra of the pick-up signals at H; = 10, 21 and 40
Oe are shown as solid lines in Figures 4.4.2(a), 4.4.3(a) and 4.4.4(a), respectively. These
spectra are all taken at zero dc magnetic field and 77 K. Unlike the Y-Ba-Cu-O thin-film

spectra, the Bi-Sr-Ca-Cu-O single crystal spectra change significantly as a dc magnetic
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field is added. In Figures 4.4.2(b), 4.4.3(b) and 4.4.4(b), data similar to Figures 4.4.2(a),
4.4.3(a) and 4.4.4(a), respectively, are taken, but at a dc magnetic field equal to 4 Oe.
This means that the critical current is sensitive to small magnetic field. The dot-circles
in Figures 4.4.2, 4.4.3 and 4.4.4 represent the calculated harmonic spectra according to
the generalized critical state model, using § = 1.3, Hy = 3 Oe and H* = 5.2 Oe, while
the dot-squares r:present the Bean model calculation results. Surprisingly, although the
generalized critical state model calculations give « more satisfactory fit for u} and uf
versus log,q (H7) in Figure 4.4.1, the Bean model calculations fit the power spectra
better in Figures 4.4.2, 4.4.3 and 4.4.4. This is not understood at present.

Odd harmonic power taken experimentally at 77 K as a function of log,, (H;) are
shown as circles in Figures 4.4.5 for n = 3, 5, 7, 9. These data are taken at zero dc
field. Since J. is dependent on H, application of dc magnetic field has a significant
effect on the harmonics. For example, Figure 4.4.6 is a plot of P (7f) versus log;, (H;)
at Hy. = 10.2 Oe. The solid and dashed lines ar', respectively, calculations according to
the Bean and generalized critical state model, using 8 = 1.3, Hy == 3 Oe and H* = 5.2
Oe. As for the Y-Ba-Cu-O thin-film in Section 4.3, model calculations give about
the correct slopes and relative amplitudes but do not fit the . 2tails of the harmonic
power versus ac field amplitude data satisfactorily. Presumably, the demagnetization
effects of this geometry complicate the modeling problem significantly, especially in

high harmonics because of their sensitivity to differences between the physical systems

and the models.

For completeness, some harmonic power versus dc magnetic field data are shown
in Figure 4.4.7. The representative harmonic numbers are 2, 8, 15 and 19; the ac
driving frequency is 1 kHz, the amplitude is 30 Oe and the temperature is 77 K. The
corresponding generalized critical state model calculations, with 3 = 1.3, Hy = 3 Oe
and H* = 5.2 Oe, are shown in Figure 4.4.8. The high harmonics do not fit the data

very well, probably because the higher the harmonic number, the more sensitive the
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harmonic signal is to the fine details in the model. Like the P (nf) versus log;, (H1)
data, and harmonic generation in disk-shaped superconductors in general, more work,
both experimental and theoretical, will have to be done to understand the nonlinear

electrodynamics of this sample.
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4.5 Figure Captions and Figures of Chapter 4

Figure 4.1.1. Power spectra for powdered YBaoCu3O;_s (sample no. C-15) at
T = 77 K, driven by an ac field at frequency 7.7 kHz, of amplitude H; = 2.3 Oe.
(Bottom) Dc field Hy. = 0.0 Oe. Odd harmonics n = 3, 5, ... are generated. (Top) In
a parallel dc field Hg. = 1.0 Oe, even harmonics n = 2, 4, ... also appear, owing to

symmetry breaking by the dc field. The vertical scale is 10 dBm per division.

Figure 4.1.2. Power spectrum for powdered YBa;Cu3zO;_s (sample no. C-15) at
T = 77 K, driven by an ac field at frequency 28 kHz, of amplitude H; = 23 Oe, in
a dc field Hy. = 1 mOe. Odd harmonics up to n = 41 are clearly observed, as well
as much weaker even harmonics. The broad background resonance at f ~ 363 kHz is

that of the receiver coil itself.

Figure 4.1.3. Circles: P (nf) versus harmonic number n from Figure 4.1.2; crossed
circles: data from Figure 4.1.2 corrected for receiver coil resonance. Broken line:
relative P (nf) computed from the model Eqns. (2.1.4) and (2.1.9), h; = 5.0, adjusted
to fit data at n = 3. Dotted line: P (nf) computed for first-order model, Eqn. (2.1.13),
with hy = 5.0, Ly = 0.35, « = 0.3, as in Figure 4.1.8.

Figure 4.14. (a) Second harmonic power P (2f) versus dc field H,. for
YBasCu3O;_4 (sample no. C-15) at T = 77 K, H; = 2.3 Oe, f = 52.5 kHz. (b)
Expansion of the scan resolution by 2000x, showing narrow dip at Hy. = 0, of width

AHg ~ 0.1 mOe.

Figure 4.1.5. Relative harmonic power ( 10 dB per division ) of P (nf) versus Hy,,
scanned at a uniform rate, for powdered YBasCu3zO;_s (sample no. C-15), at T = 77
K, Hy =23 Oe, f = 28 kHz. (1) to (f) show data for selected representative harmonics
n. Shown are two scans, the arrows denoting the direction of time increase. There is a

small hysteresis with this property: if a leftward trace is reversed, it superposes exactly
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on the rightward trace. The sharp dips are interpreted as evidence for a pseudo flux

quantization of an ensemble of supercurrent loops in the granular sample.

Figure 4.1.6. Relative harmonic power ( 10 dB per division ) of P (nf) versus hy,
computed from zero-order model Eqn. (2.1.4), using h; = 5.0 and F (A) from Eqn.

(2.1.9). (a) to (f) show the same harmonic numbers as for the data, Figure 4.1.5.

Figure 4.1.7. (a) Average spacing A H, . between dips from the data of Figure 4.1.5,
versus harmonic number n. (b) Average spacing Ahg4. between dips versus harmonic
number n, computed from Eqns. (2.1.4) and (2.1.6) for various values of the standard

deviation o of the assumed Gaussian distribution.

Figure 4.1.8. Relative harmonic power ( 10 dB per division ) of P(nf) versus
hge, computed from the first-order model, Eqn. (2.1.13), using parameters hy, = 35,

Ly = 0.35, x = 0.30, and F (A) from Eqn. (2.1.9).

Figure 4.1.9. |Q.(h1,A)| = |A Jn (Ahy) F (A)| versus A, in dimensionless units;
F(A) from Eqn. (2.19). (@) n = 10, h; = 5.0; (b) n = 5, h; = 5.0; (c) n =35,
h; = 10.0.

Figure 4.1.10. Relative harmonic power ( 10 dB/div ) P (16f) versus H,. for
powdered Y-Ba-Cu-O sample, no. C-15, at T = 77 K, f = 28 kHz, for a series of
values of the ac field H;; the arrows denote the direction of increasing time in the scan.

If leftward trace (c) is reversed and plotted (d), it superposes exactly on the rightward

trace (e).

Figure 4.1.11. Circles: Measured values of the dc field H,. for a sharp dip in

P(15f) as a function of the ac field H,; taken for sample no. C-15 at 77 K. Diamonds
denote less well defined dips. Solid lines: h; versus hg., where hy. o Hyg. is the

computed position of a sharp dip as a function ¢f h; x H;. Computation is made from

Egns. (2.1.4) and (2.1.9).

Figure 4.1.12. Relative harmonic power ( 10 dB/div ) for P (2f) versus Hy. for
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sample no. C-15, powdered Y-Ba-Cu-O, at T = 77 K, showing well-defined transition,

with structure, as H; field is reduced. Similar behavior is observed for n = 4.

Figure 4.1.13. Relative harmonic power ( 10 dB/div ) for P(2f) versus hg.,

computed from the “loop” model, Eqns. (2.1.12) and (2.1.9). An abrupt transition

to structure is observed as h; is reduced; cf. Figure 4.1.12.

Figure 4.2.1. (a) Measured harmonic power P (nf) versus Hy, for YBasCu307_;
sintered rod (sample no. C-46N). T = 77 K, H; = 13.5 Oe, and f = 10.5 kHz. Vertical
scale division equals to 10 dB. (b) Modified critical state model predictions with 3 =
1.8, Hy = 3 Oe and H* = 15 Oe. (c) Same as (a) except H; = 4.5 Oe. (d) Solid
lines: Same as (b), except H; = 4.5 Oe; for n = 10 the dashed line is that predicted

for 3 = 1.0, and does not t:t the data.

Figure 4.2.2. (a). {b) Open circles: measured (Gaussian units) fi;,44; versus H; for
YBayCu3O;_s sintered rod (sample no. C-46N), Hy. =0, T = 77 K, f = 85 Hz. Solid
line: modified critical state model predictions with 3 = 1.8, Hp = 3 Oe and H* = 15
Oe, for intergranular component . Dashed line: model calculation for intragranular
component i, (reduced by a factor of 3 for ,u’g’) using parameters 3, = 1.0, Ho, = 5
Oe, H},,,, = 250 Oe, Ry = 10 pm. (c) Measured u!/, , versus H; for powdered
YBayCu3zO7_s (sample no. C-48B), Hy. =0, T = 77 K, f = 85 Hz. The intergranular
component is absent; cf. (a). (d) Same as (a) but with Hy. = 10.2 Oe, which splits

the intergranular component.

Figure 4.2.3. (a) Circles: Third harmonic power (10 dB/div) versus log,, (H;)
experimentally measured on YBaoCu3zO7_; sintered rod (sample no. C-46N), Hy. = 0,
T =77K, f =1.0 kHz. The balanced signal from Coils #5 and #6 has been amplified
100x ( +40 dB ) by the PARC 113 preamplifier before going to the spectrum analyzer.
Solid line: generalized critical state model predictions with 3 = 1.8, Hy = 3 Oe and

H* =15 Oe. Dot-dashed line: generalized critical model predictions with 3, = 1.0,
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Hyy = 5Oe and H},,,, = 250 Oe. Dashed line: generalized critical model predictions

with 3, = 2.0, Hyy = 5 Oe and H},, ., = 250 Oe. (b) Third harmonic power (10
dB/div) versus log,, (H;) experimentally measured on YBayCu3O;_s powder (sample
no. C-48B), Hy. = 0, T = 77 K, f = 1.0 kHz. The balanced signal from Coils
#5 and #6 has been amplified 10x ( +20 dB ) by the PARC 113 preamplifier before
going to the spectrum analyzer. (c) Circles: Fifth harmonic power (10 dB/div) versus
log,o (H;) experimentally measured on YBaoCu3O+7_s sintered rod (sample no. C-
46N), Hye =0, T = 77 K, f = 1.0 kHz. The balanced signal from Coils #5 and #6
goes to the spectrum analyzer without preamplification. Solid line: generalized critical
state model predictions with 3 = 1.8, Hy = 3 Oe and H* = 15 Oe. Dot-dashed line:
generalized critical state model predictions with 3, = 1.0, Hyy = 50e and H},, , = 250
Oe. Dashed line: generalized critical state model predictions with 8, = 2.0, Hgg = 5
Oe and H;,, , = 250 Oe. (d) Fifth harmonic power (10 dB/div) versus log;, (H;)
experimentally measured on YBagCu3O;_s powder (sample no. C-48B), H;. = O,
T = 77K, f = 1.0 kHz. The balanced signal from Coils #5 and #6 goes to the

spectrum analyzer without preamplification.

Figure 4.2.4. (a) Circles: Seventh harmonic power (10 dB/div) versus log,, (H)
experimentally measured on YBayCu3O;_s sintered rod (sample no. C-46N), Hy. = 0,
T = 77 K, f = 1.0 kHz. The balanced signal from Coils #5 and #6 goes to the
spectrum analyzer without preamplification. Solid line: generalized critical state model
predictions with 8 = 1.8, Hy = 3 Oe and H* = 15 Oe. Dot-dashed line: generalized

critical state model predictions with 3, = 1.0, Hoy = 5 Oe and H,

tnira

= 250 Oe.
Dashed line: generalized critical state model predictions with 8, = 2.0, Hoy = 5

Oe and H,,, , = 250 Oe. (b) Corresponding experimental measurements and model

calculations for the ninth harmonic power. Specifications are the same as (a).

Figure 4.2.5. Open circles: Experimentally measurements (Gaussian units) of (a)

py and (b) pf versus log,, (H;) for YBayCu3O;_s sintered rod (sample no. C-46N),
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Hy. = 51.4 Oe, T — 77 K, f = 85 Hz. Solid line: modified critical state model
predictions with 3 = 1.8, Hy =3 Oe and H* = 15 Oe, for intergranular component .
Dashed line: model calculation for intragranular component j, (reduced by a factor of

3 for uj) using parameters 8, = 1.0, Hog = 5 QOe, H:, . = 250 Oe, R_g =10 pm.

intra

Figure 4.2.6. Same as Figure 4.2.5, except that Hy, = 60.3 Oe.
Figure 4.2.7. Same as Figure 4.2.5, except that Hy. = 70.2 Oe.
Figure 4.2.8. Same as Figure 4.2.5, except that Hy. = 90.4 Oe.

Figure Qi (a) Circles: Seventh harmonic power (10 dB/div) versus log;o (H1)
experimentally measured on YBaoCu3O5_; sintered rod (sample no. C46N), Hy =
10.1 Oe, T = 77 K, f = 1.0 kHz. The balanced signal from Coils #5 and #6 goes to the
spectrur: analyzer without preamplification. Solid line: generalized critical state model
predictions with 3 = 1.8, Hp = 3 Oe and H* = 15 Oe. Dot-dashed line: generalized
critical state model predictions with 3, = 1.0, Hoy = 5 Oe and H/,,,, = 250 Oe.
Dashed line: generalized critical state model predictions with 8, = 2.0, Hoy = 5
Oe and H},,, = 250 Oe. (b) Circles: Fifth harmonic power (10 dB/div) versus
log,o (Hy) experimentally measured on YBayCu3O7_s sintered rod (sample no. C-
46N), Hy. = 30.2 Oe, T = 77 K, f = 1.0 kHz. The balanced signal from Coils #5
and #6 goes to the spectrum analyzer without preamplification. Solid line: generalized
critical state model predictions with 8 = 1.8, Hy = 3 Oe and H* = 15 Oe. Dot-
dashed line: generalized critical state model predictions with 8, = 1.0, Hoy = 5 Oe
and H?,,, = 250 Oe. Dashed line: generalized critical state model predictions with
3, = 2.0, Hyy = 5 Oe and H},,,, = 250 Oe. (c) Same as (b), except that Hy. = 60.4
Oe. (d) Same as (b), except that Hy. = 91.5 Oe.

Figure 4.2.10. Harmonic spectra generated by YBasCu3zO7_; sintered rod (sample
no. C-46N) taken at 78.5 K anc Hy. = 0. The ac magnetic field amplitudes H, are
(a) 5.0 Oe, (b) 10.0 Oe, (c) 20.0 Oe and (d) 40.0 Oe. The squares are the harmonic
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spectra predicted by the generalized critical state model calculations for the intergranular

component only: 3 = 1.8, Hy = 3 Oe and H* = 15 Oe.

Figure 4.2.11. Experimental measurements (Gaussian units) of (a) xj and (b) uf

versus log;q (Hy) for YBaCu3Oy;_;s sintered rod (sample no. C-46N), Hy. = 0,
T = 78.8 K, f = 85 Hz. The experimental value of the effective permeability of the

macroscopic polycrystalline medium u. ¢ is indicated. H,,,, and H

tnter tntra’

respectively,
are the external field at which the flux penetrates to the centers of the sintered rod

(intergranular medium) and the individual superconducting grains in the ceramic.

Figure 4.2.12. Same as Figure 4.2.11, except that T = 83.7 K.

Figure 4.2.13. Same as Figure 4.2.11, except that T = 86.0 K.

Figure 4.2.14. Same as Figure 4.2.11, except that T = 87.5 K.

Figure 4.2.15. Same as Figure 4.2.11, except that T = 89.5 K.

Figure 4.2.16. The measured effective permeability, u.ss, of the intergranular

medium of the sintered YBasCu3O7_; cylinder (sample no. C-46N), is plotted as a
funcdon of temperature for the data of Figures 4.2.11 to 4.2.15, plus 13 other temperature
values in the range 77 to 91.5 K. The dashed line is the calculation of . s¢ according
to Eqns. (4.2.2) and (4.2.3), with f, = 0.144, ), (T =0) = 1400 A, T. = 91.2 K,
and -R_g = 10 pum.

Figure 4.2.17. The inter- and intragranular penetration fields, A, , ( multiplied by
10 ) and H;,,,,. are plotted versus temperature. The solid lines are linear regression
fits to the measured data, and yield the intrinsic critical temperature of 91.2 K and
the intergranular phase-locking temperature of 86.6 K. The data set is the same as for

Figure 4.2.16.

Figure 4.2.18. The zero-field inter- and intragranlar critical current densities,

Jeyg(H=0)and J.,(H =0), as derived from the H

inter

and H*

intra

data in Fig-

ure 4.2.17 using the generalized critical state model result, Eqn. (4.2.4), are plotted
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versus temperature. The solid lines are only guides to the eyes. The specific parameters

used in the derivations are: 3; = 1.8, Hy ; = 3 Oe and 8, = 1.0, Ho,y = 5 Oe.

Figure 4.3.1. Open circles: Experimental measurements (Gaussian units) of (a) y}
and (b) uY versus log;o (f) for YBayCu3O7_s thin-film (sample no. C-51), Hy. = 0,
T =77 K, f = 85 Hz. Solid line: Bean model predictions, Eqn. (2.2.6), with H* = 95
Oe and “R” = 0.5 ym, the film thickness.

Figure 4.3.2. Harmonic spectra generated by YBagsCu3O7_s thin-film (sample no.
C-51) taken at 77 K and Hy. = 0. The ac magnetic field amplitudes H; are (a) 5.0
Qe, (b) 12.0 Oe, (c) 50.0 Oe and (d) 100.0 Oe. The squares are the harmonic spectra

predicted by the Bean critical state model calculations with H* = 95 Oe.

Figure 4.3.3. (a) Circles: Third harmonic power (10 dB/div) versus log,(H)
experimentally measured on YBa9Cu3O7_s thin-film (sample no. C-51), Hy. = 0,
T = 77K, f = 1.0 kHz. The balanced signal from Coils #5 and #6 has been amplified by
50x (+34 dB) by a PARC 113 preamplifier before going to the spectrum analyzer. Solid
line: Bean critical state model predictions with H* = 95 Oe. (b) Circles: Fifth harmonic
power (10 dB/div) versus log,, (H, ) experimentally measured on YBayCu3O7_s thin-
film (sample no. C-51), Hy. =0, T = 77 K, f = 1.0 kHz. The balanced signal from
Coils #5 and #6 goes to the spectrum analyzer without preamplification. Solid line:
Bean critical state model predictions with H* = 95 QOe. (c) and (d) Circles and solid
lines: corresponding experimental measurements and Bean model calculations for the
seventh and the ninth harmonic power. Other details are the same as (b). The diamonds

in (c) are experimental data taken at Hy. = 100 Oe; there is little change from the data

taken at Hy. = 0 (circles).

Figure 4.4.1. Open circles: Experimental measurements (Gaussian units) of (a)
¢y and (b) uf versus log;, (H;) for BisSroCaCuy05 single crystal (sample no. C-

50), Hye = 0, T = 77 K, f = 85 Hz. Dashed line: generalized critical state model
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calculations, with 3 = 1.3, Hy = 3 Oe, and H* = 5.2 Oe. Solid line: Bean model
predictions, Eqn. (2.2.6), with H* = 5.2 Oe.

Figure 4.4.2. Harmonic spectra generated by BiaSraCaCu;Cs single crystal (sample
no. C-50) taken at T = 77 K, f = 1.0 kHz, and ac field amplitude H; = 10.0 Oe. The
dc magnetic fields H,. are (a) 0.0 Oe, (b) 4.0 Oe. The circles are the harmonic spectra
predicted by the generalized critical state model calculations with 8 = 1.3, Hy = 3
Oe, and H* = 5.2 Oe. The squares are the Bean critical state model calculations with
H* = 5.2 Oe. Note that since the Bean model, J. is independent of the magnetic field,

no even harmonics are generated even when Hy. # 0.
Figure 4.4.3. Same as Figure 4.4.2, except that H; = 21.0 Oe.
Figure 4.4.4. Same as Figure 4.4.2, except that H; = 40.0 Oe.

Figure 4.4.5. (a) Circles: Third harmonic power (10 dB/div) versus log,, (H;)
experimentally measured on BisSroCaCu9QOj single crystal (sample no. C-50), Hy. = 0,
T = 77 K, f = 1.0 kHz. The balanced signal from Coils #5 and #6 goes to the
spectrum analyzer without preamplification. Dashed line: generalized critical state
model calculations, with 3 = 1.3, Hy = 3 Oe, and H* = 5.2 Oe. Solid line: Bean
critical state model predictions with H* = 5.2 Oe. (b) Corresponding measurements and
calculations for the fifth harmonic power. Specifics the same as (a). (c) Corresponding
measurements and calculatons for the seventh harmonic power. Specifics the same as

(a). (d) Corresponding measurements and calculations for the ninth harmonic power.

Specifics the same as (a).
Figure 4.4.6. Same as Figure 4.4.5(c), except that Hy. = 10.2 Oe.

Figure 4.4.7. Relative harmonic power (10 dB per division) of P (nf) versus Hy,,
scanned at a uniform rate, for BipSroCaCuQjy single crystal (sample no. C-50), at
T =T77K, H =300e, f =1.0 kHz. (a) to (d) show data for selected representative

harmonics: n = 2, 8, 15, 19. Shown are two scans, the arrows denoting the direction
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of time increase. There is a small hysteresis with this property: if a leftward trace is

reversed, it superposes exactly on the rightward trace.

Figure 4.4.8. Generalized critical state model calculations corresponding to the
harmonic numbers and ac magnetic field amplitude used in Figure 4.4.7. The parameters

used in the calculations are: 8 = 1.3, Hy = 3 Oe, and H* = 5.2 Oe.
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Chapter 5 Summary and Conclusion

We will briefly summarize in this chapter the most important results of this thesis

on nonlinear electrodynamics of high-temperature superconductors.

We presented in Chapter 2 two classes of models of superconducting systems which
were found to behave nonlinearly in electrodynamical behavior. The first class of models
was suitable for describing superconducting samples in powdered form. In this model,
each grain is assumed to behave like a superconducting loop with a Josephson junction,
similar to an rf-SQUID. Due to the nonlinear relationship between the loop current and
the magnetic flux through the loop, such a prototype superconducting loop was found to
generate odd harmonics when driven by an ac magnetic field; if a dc magnetic field is
added, even harmonics are also generated. This symmetry of harmonic generation is in
agreement with experimental observations. The most surprising result predicted by this
model is that, in an ensemble of such prototype superconducting loops, the loop areas
0. which vary broadly, oscillatory dependence on an applied dc magnetic field due to
flux quantization in the loops still manifest itself in high enough harmonic response of
the system. Naively, one would have expected the wide distribution of loop areas in
such an ensemble would smear out the oscillatory behavior of the individual loops; our
superconducting loop models predict that the smearing does not occur in the harmonics.
Such prediction of pseudo flux quantization behavior is in semi-quantitative agreement
with experimental observations.

The second class of models presented in Chapter 2 is based on the Bean-Anderson-
Kim critical state model which was originally proposed in the 1960’s to explain the
dc magnetization hysteresis and flux trapping in conventional low-temperature type-
IT superconductors. This model, due to its intrinsic hysteretic behavior, is nonlinear
in nature and predicts odd harmonic generation when the superconducting sample is

driven by an ac magnetic field, with additional even harmonics when a dc field is
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added; this is the same as for the first class of models. The original model proposed
was generalized here with the addition of one parameter 3, essentially amounting to
allowing the flux-pinning force density in a superconductor to vary as a power law
of magnetic field, o ~ |H [“ﬂ *1 This model was then used to explain experimental
results on high-temperature superconducting bulk samples and was found, in the case
of ceramic Y-Ba-Cu-O, to fit a variety of data very well quantitatively up to the 10%
harmonic, approximately. The essence of the modification is to assume a critical current
density of the form J. ~ H~? for the intergranular medium, which turns out to be close

to that measured by transport experiments.

In Chapter 3, details of the experimental apparatus and data acquisition system were
given. A table of all the samples involved was also given in this chapter. Relevant
software that the author has written to control the experiments was, however, presented

in the Appendices.

In Chapter 4, the main results of our experiments on nonlinear electrodynamics
and harmonic generation are presented for four different samples. In powdered Y-Ba-
Cu-0, as predicted by the superconducting-loop models in Chapter 2, approximately
periodic oscillations of harmonic power in dc magnetic field were observed. According
to the model, the oscillations were due to a pseudo flux quantization of the individual
supercurrent loops in the large collection. The dependences of the oscillation “periods”
on both the driving ac magnetic field and the harmonic numbers were both found to be
as predicted quantitatively by the model. The mathematical and physical reasons that
the flux quantization oscillations were not “smeared” out in a collection of loops with a

broad area distribution were also presented in this chapter.

Next in Chapter 4 were presented the experimental result” on a ceramic Y-Ba-
Cu-O cylinder. Extensive harmonic generation was also observed in this sample.
Generalized critical state model calculations as presented in Chapter 2 were found to

fit the harmonic data very well up to the 10" harmonic. Unambiguous experimental
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evidence for the coexistence of the intergranular and intragranular supercurrents in the
same ceramic sample was also presented, together with an estimate of the critical
current densities of both supercurrents. The intergranular critical current density was
estimated to be about 790 A/cm?, while the intragranular one was estimated to be
about ~ 10 A/cm?. When the temperature of the sample was increased while the
inter- and intragranular supercurrents were monitored, the intergranular supercurrent was
found to go to zero at 86.6 K, while the intragranular one went to zero at 91.2 K. The
latter temperature agreed with the critical temperature of the intrinsic superconducting
material (Y-Ba-Cu-O), while the former was ascribed to the phase-locking temperature
of the 3-dimensional matrix formed by the superconducting grains. Between the phase-
locking temperature and the critical-temperature, the individual grains have gone through
the superconducting transition, and possess pairing order parameters with non-zero
amplitudes. However, due to thermal fluctuations, the phases of their order parameters
are randomly oriented and thus incoherent. The result is that even though the grains
are individually superconducting, the ceramic as a whole is not; this state is called the
paracoherent state. Below the phase-locking temperature, the phases of different grains
becomes coherent with one another because now the Josephson coupling energy E;
between the grains is larger than the thermal energy kgT. So, in this coherent state, the

whole ceramic becomes superconducting.

Experimental data taken on a pulsed-laser-ablated Y-Ba-Cu-O thin-film were pre-
sented next in Chapter 4. Only one supercurrent component was observed; no convincing
experimental evidence for intergranular supercurrent was found. The data are reason-

ably fit by a Bean critical state model in which the critical current is not dependent on

magnetic fields.

Experimental data on a Bi-Sr-Ca-Cu-O thin single crystal were next presented; only
one type or supercurrent was found. No model was found that could well explain the

harmonic data. Among other possible reasons, this may be due to the geometrical shape
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of the sample, giving rise to complicated demagnetization effects.
In conclusion, high-temperature superconductors manifest rich nonlinear electrody-
namical behavior. Investigating them through both low-frequency harmonic generation

and complex ac permeability provide very severe tests to models and reveals information

which would be difficult to acquire with other experimental techniques.
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Appendix A Details of Generalized
Critical State Model

In this appendix, we describe some of the important points in the analysis of the

generalized critical state model described in Chapter 2.
We start from the generalized critical state equation, Eqn. (2.2.10):

dH () 4o’
= + , (A.1)
dr [1H (r) |+ Ho)’

where the geometry of the sample is assumed to be long and cylindrical, with radius R

> 0. The external applied magnetic field is assumed to be of the form
H(R) = Hy, + H; cos(wt) . (A.2)

in the following analysis, we always assume that Hy. > 0; the results for H;. < 0 can
always be obtained by symmetry arguments.

We will provide the mathematical expressions for both the field profiles inside the
sample, H (r), at various instants of the ac magnetic field cycle, and the time derivative
of the total magnetic flux, d®/dt, in the sample.

First of all, for later notational and computational convenience, we define some

variables as follows:

A = [Hy+HR))PT +4rd' (3+ )R (A.3a)
Ay = [Ho+ Hye+ H )PP — 470’ 3+ DR (A.3b)
A3 = [Hi—-H(R))°T' —4rd'(3+1)R (A.3¢)
Ay = 2H3T — 44 (A.3d)
As = [Ho— (Hge — H))P™' —4md (3+ 1R (A.3e)
Ap = 2H T — 4 (A.30)
Ar = [Ho- H(R))" 4+ 47d'(3+1)R (A.3g)
Ay = [Ho+ H(R))P —4ra' (3+ )R (A.3h)
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Ao = 2H ! - Aq (A.30)

A = [Ho+ (Hg — H))’" +47a' (3+ DR (A.3))
Ay = 2HT - 4, (A.3K)
and
B, = By = By = B; = By = Bjy = B;; = —4ma' (3 +1) (A.4a)
By =B;=B;s=Bs= 4ma' (3+1) . (A.4b)

From these variables, we further define

Gy(r) = A, + B,r. (A.5)

and
1

Fir) = E
1

(Bir —(3+1) A, ) [Gy(r)]F7 (A.6)

where i = 1, 2, ... , 1.

Let us also define: (a) ro designates the depth of ac field penetration as measured
from the axis of the cylindrical sample; (b) r; designates the instantaneous location
of the moving ac flux front; (c) r, designates the instantaneous location at which the
local magnetic field crosses zero and thus changes sign; (d) rg is the value of ro when
H i Ry = Hy. — H;. These variables must of course have values that are greater than or
equal to zero. So it is important to note that if the equations provided for them in the
following vield negative values for any of these variables, the corresponding variable(s)

should be set to zero. ie. the corresponding location concerned have reached the axis

of the sample.

A1 Casel: H > Hy. > 0.

For H, > Hy. 2 O:

1
4
ro = R — X
a3 —1,

o
INA

{ij, —Hy - H 7 < Ho~ Hy - H T - og)”) } . (AL
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If this expression yields a negative value, then ro = 0, as mentioned above. Note that
in the case of a purely ac applied field, ie. Hy. = 0, one can derive the penetration field

H* from Eqn. (A.1.7) by setting the right-hand-side expression to zero:

1 «18+1 B+1
S _ , 1.
0 =ro =R~ s {{Ho + H') HYt (A.1.8)

where the ac field amplitude H, has already been replaced in notation by H*. Eqn.
(A.1.8) expresses the fact that when H; = H*, the ac flux front reaches the axis of
the cylindrical sample. From Eqn. (A.1.8), the expression for H*, Eqn. (2.2.11), is
readily derived.

Al.l First half-cycle : = > «t > 0.

In the first half-cycle of Case I, there are two subcases which have to be considered

separately : (i) H(R) > 0; and (ii) H(R) < 0

(i) H(R)>0. For H(R) > 0,

1

_ s B+1_ B+1
0Sn=R-gers {[Ho+(Hdc+H1)] (Ho + H (R)) } (A.1.9)

Again, if the above expression yields a negative value, then r; = 0.

Then for R >r > r; > rg > 0:

H(r) = —Hy +[G:1 (r)]7 . (A.1.10)

Forry 2 r > rg:

1

H(r) = —Ho+ [Ga(r)]5+7 . (A.1.1D

-

The time-derivative of the magnetic flux is

1d® (j+ 5 .
27 dt (j+ [HO‘*‘H(R)} Hijwsin(wt) x
LA (R’ - B} (A.1.12)



(ii) H(R) < 0. For H(R) <0,

1
B 8ra' (B+1) x

{{Ho + (Hae + HD)™ + [Ho— H (R) " - eJ: A SNV BE)

OS’I‘]:R

and

0<r =R T (- H®RPP-BT) AL

T 4ma' (B+1

If either of these two expressions yields a negative value, the corresponding variable

1S set to zero.

Then for R > r >

H(r) = Ho—[G3(r)]7 . (A.1.15)
Forro > »r 2> ry:

H(r) = —Hy+ [Gy(r)]5 . (A.1.16)
Forry > r > ry:

H(r) = —Hg+[Ga(r)]57 . (A.1.17)

The time-derivative of the magnetic flux is

1 dd (3+1) s
ST ——(3+2)[H0—-H(R)] Hiwsin(wt) x

{F3(R) = F3(r2) + Fy(r2) — Fi(r1) }. (A.1.18)
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A.1.2 Second half-cycle : 27 > ot > =

In the second half-cycle, there are three subcases which have to be considered

separately: (i) H(R) <0; (i) 0 < H(R) < H, — Hy; (i) 0 < H; — Hy. < H(R).

(i) H(R)<0. For H(R) €9,

1
<r =R - —m—
0_7‘1 R 87ra”(ﬁ+1)x
{{Ho— (Hie - HO)™V - (Ho - HR)PT} . (A119)
and
0 <18 =R {[Ho— (Hee — H)P"" - HJM} . (A120)
—_ .Z 47TO,(B+1) O dC 1 0 . I
Then for R > r > ry:
H(r) = Ho—[G1(r)]5 . (A.1.21)
Forrqy > r > r?
H(r) = Hy—[Gs(r)]5 . (A.1.22)
For rg > 271y
H(r) = —‘HO‘F[GG(")]# _ (A.1.23)

The time-derivative of the magnetic flux is

N G ) E] L
2% dt _(;3+2)[HU*H(R)] Hjwsin (wt) x

{F:(R) — F:(r))} . (A.1.24)
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(ii)

and

0< H(R)< Hy—Hy. For0< H(R) < Hy - Hye,

1
"~ 8ra'(B+1) X

{(Ho + B ()™ + (Ho - (Hae - )P - 280}

1 B+1 B+1
< 5 = — —— H _ .
0< =R o {[H0+ (R)] H }
Then for R > r > ra
H(r) = —Ho+ [Gg(r)]?+
For ro > r > r;:
H(r) = Ho—[Go(r)]?
Forr, > r > rg
H(r) = Ho—[Gs(r)]5
For rg >r 2>,

m}
:

H(r) = —Hg+ [Ge (r)]?+

The time-derivative of the magnetic flux is

1 do (6’+1)

ox dt (B
{F(R FS(T) +F9(T‘))—F9(T])}.

[H0+H )] Hjwsin (wt) x
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(A.1.26)

(A.1.27)

(A.1.28)

(A.1.29)

(A.1.30)

(A.1.31)



(iii) 0 < Hy — Hy. < H(R). For0 < Hy — Hq. < H(R),

! X
)

<r=R- ——
0=mn 8ra' (B +1

{Ho+ B (R)P* + (Ho - (Ha— H)IPT - 28]}

Then for R > r

Vv

ry.

|,

H(r) = —Ho+ [Gs(r)]

w,

+1

Forry > r > rg:

H(r) = —Ho+[Gs(r)]7 .

The time-derivative of the magnetic flux is

1de __(B+1)

or dt (B +2)
{Fg(R) - Fg(‘r‘l)} .

[Ho + H(R))? Hywsin (wt) X

A.2 Casell : H;, > H > 0.

For Case II :

1
B 8ra' (B +1) x

{[HO +(Hdc+H1)]B+l —_ [H0+ (HdC_Hl)]H-H} )

OST‘():R

(A.1.32)

(A.1.33)

(A.1.34)

(A.1.35)

(A2.1)

Note that unlike Eqn. (A.1.7), Eqn. (A.2.1) cannot be used to derive H* by the very

fact of a non-zero H,. in Case II; ¢ denotes the location of the ac flux front. However,

for a given Hy., eg. Hy. = 10.2 Oe as in Figure 4.2.2(d), a peak in p} versus

log;o (H1) will occur approximately when the right-hand-side of Eqn. (A.2.1) goes to

zero: rq (H;) — 04. This corresponds to the broad peak of x at H; = 7.5 Oe in

Figure 4.4.2(d).
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A.2.1 First half-cycle : = > .t > Q.

For Case II, H (R) is always greater than or equal to zero. In the first half-cycle,

1

< = R - —m— -
0=n 87ra’(B+1)x

{{Ho+ (Hae + H))P™ = (Ho + H(R) '}

Then for R > r

Y

Ty

H(r) = —Ho+[G1(r)]7 .

Forry > r > rq:

1

H(r) = —Ho+ [Ga(r)]3+T .

The time-derivative of the magnetic flux is

1 do (3+1) .
Cy “(3+,,)[H0+H(R)}” Hywsin(wt) x
{Fy(R) - Fi(r1)} .
A.2.2 Second half-cycle : 27 > .t > =.

In the second half-cvcle,

{{H[, ~H(R))’ - Hy+ (Hy, - Hl)}"“} ‘

Then for R > r > ry:

PR
Hir) = —Hy+|Gyx(r) 5 .
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(A.2.3)

(A2.4)
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For r >r 2T

1

+

1

H(r) = —Hy+ [G1o(7)]?

The time-derivative of the magnetic flux is

1 dd (8+1)

ordt  (B+2)
{Fs(R) — Fs(r1)} .

[Ho + H(R)]ﬂ Hiwsin (wt) x
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Appendix B

Theoretical Calculations

Computer Programs for

In this appendix, we provide some of the more important computer programs which

the author has written and actually used to calculate the various model predictions

presented earlier in Chapters 2 and 4.

A list of ine main programs used for the “Superconducting Loop Models” presented

in Section 2.1 is given in Table B.1. Programs for the generalized critical state model,

presented in Section 2.2, are listed in Table B.2. In Table B.3, some general purpose

routines that are needed for the some of the programs listed in Tables B.1 and B.2 are

also listed. All these programs are given in their complete form later in the appendix.

Table B.1

Programs for “Superconducting Loop Models.”

Program name

hpjnsincos_avsq_tanh.c

Model

Zero-Order Model

Purpose(s)

Computes the harmonics
generated by an ensemble of
superconducting loops as
predicted by the "zero-order
model" presented in Chapter 2.
The results are calculated as a
function of the dc magnetic field
and plotted immediately by an
HP7475A or an HP 7470A
plotter.

hp_loop_avsq_tanh.c

Loop Model

The "loop model” version of
hpjnsincos_avsq_tanh.c.

RSJ_nr_fftvshQ_avearea.c

First Order Model

Computes the harmonics
generated by an ensemble of
superconducting loops as
predicted by the "first order
model” presented in Chapter 2.
The results are stored in a data
file.
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Table B.2

Programs for generalized critical stale model.

Program name
genKA _spect.c

Purpose(s)

Computes the harmonic power as predicted by the generalized
critical state model ac a function of frequency ( or harmonic
number ). The results are given immediately by an HP 7475A
or HP 7470A ploter.

genKA _fftvsHa.c

Computes the harmonics generated by a type-II superconductor
as predicted by the generalized critical state model presented in
Section 2.2. The harmonics are calculated as a function of the

ac magnetic field amplitude. The results are stored in a data file.

genKA _fftvsHd.c

Same as genKA_fftvsHa.c, except that the harmonics are
calculated as a function of the dc magnetic field.

Table B.3

General purpose routines used for model calculations.

Program name
odeintl.c

Purpose(s)
A Runge-Kutta routine with adaptive stepsize control
("quality-controlled” Runge-Kutta). This routine is needed for the

calculations of the loop current’s dynamical equation of the "first
order model" in program RSJ_nr_fftvshQ_avearea.c.

rkqcrkd.c

A stepper program that takes one "quality-controlled”
Runge-Kutta step. This subroutine is needed for odeintl.c.

fftcompon.c

An FFT routine which calculates the harmonic components of the
signal voltage as predicted by the "first order model" and, later,
the generalized critical state model.
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Program hpjnsincos_avsq_tanh.c

This program calculates the harmonics generated by

an ensemble of loop/junctions driven by ac magneuc
field ("Zero-order model™), and then output the results
on an HP plotter. It multiplies Bessel functions Jn with
sine or cosine, average over areas of the loops, and then
square.

The averaging is done such that the corresponding

dc magnetization has the functional form tanh(x).

hhd Ie., the distribution function of the loop areas
% lS _—
= sinh(pi.A/(2.sigma)] / {A.[cosh(pi.A/sigma) - 1]}

This is a oreliminary model to see how coupling
between Hdc and H1 comes about in the harmonic experiments.
The output z-axis is in dB.

This program was originally written on SUN 3/50 -- UNIX.
The graphics routines were originally written by James P. Crutchfield.

*/

#include <math.h>

#define MAXO0 SO1

#define XSPAN1 1.1364 /* size of output graphics */
#define XSPAN2 1.1242 /* size of output graphics */
#define YSPAN 0.94  /* size of output graphics */
#define MAXNUMA 1001

#define PI 3.1415926

main(argc.argv)

int argc;
char *argv(];

{
double hO{MAXO0]1,hOmin,hOmax.hOstep,.h1; /* h0 is dc field in this program */
double In,dcterm acterm{MAXNUMAYJ;
double ymin,ymax,yshift_step,sh.ch;
double yshift xshift hOspan;
double h1span,inpiot.hOplot,cutoff;
double posx,posy,xtic,ytic;
double invsigsq,pAdeltaA{MAXNUMA],norm,Ah0,Ahl;
double A,probA[MAXNUMA ). aveln,Amin Amax. Ainterv sigma;
int hh1,hb0,NO,order.evenodd.aa xtraweight NUMA ,plotter;
int choice,yscale;
char string[100];

/* hOmin and hOmax specify the dc magneuc field range;
sigma provides a scaling to the charactenistic area.
*/

if (arge !=95)
printf("Usage\: Command hOmin hOmax no_of_hO sigma");
exit(0);
)

sscanf(argv(1]," %If" ,&hOmin);

sscanf(argv{2]," %If" ,&hOmax);
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sscant(argv(3],"%d".&NO);
if (NO > MAXO0)

{
printf("Max. no. of points is % 5d.\n" MAXO0).
exit(0);
}
sscanf(argv(4],"%If" .&sigma);
prindf("Enter Amin, Amax, and no. of A\ ");
scanf("%If %lf %d",& Amin.& Amax.&NUMA);
if NUMA > MAXNUMA)
(
printf("Too many points in A’s requested.\n");
exit(0);

)
if (Amin = 0.)
{
printf(" Amin must be positive, but can be small.\n");
exit(0);
)
Ainterv = (Amax - Amin) / (double)(NUMA - 1);

prindf("Harmonics that you want. X0,1,2,..\\n™);
scanf("%d".&order);

evenodd = order % 2;

printf("Do you want extra weighting of A?");
printf(" Enter '1" if you do.\n");
scanf("%d" & xtraweight);

/* The following prepares a look-up table for averaging
weighting and normalizing factors. */

A = Amin;

norm = (.;

for (aa = 0; aa < NUMA ++aa)

{

sh=A*Pl*0.5/sigma; sh=sinh(sh),
ch = A * PI/sigma; ch = cosh(ch);

probA(aa] =sh/(ch- 1.);

pAdeltaA(aa) = probA[aa] * Ainterv;
A += Ainterv;

norm += pAdeltaA(aaj;

}

norm = 1./norm; /*normalizing factor, lookup table done*/
hOstep = (hOmax - hOmin) / (double)(NO-1);

/* Graphics preparation */

printf("Which plotter? 1. HP7475A ; 2. HP7470A \ ");

scanf("%d" ,&plotter);

initgraph("/devAtya");

if (plotter == 1)

window(0.1,0.02 XSPAN1+.1,YSPAN+.02); /™ Set size of hardcopy output */

else
window(.08,0.0,XSPAN2+.08, YSPAN);

color(1); /* Choose pen of plouer */

printf("1. Powerin dB or 2. Amplitude \(linear\) \: ");
scanf("%d" .&yscale);
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if (yscale = 1)
printt("** If you want vert. scale 1o be 10 dB/inch. "):

prand("then \(ymax - vmin\) must be 75. **\n");
printf("Enter ymmn. ymax, xtic., yuc.\n");

scanf("%lf %lf %lIf %1, &ymin.& vmax.&xtic,&vtic);
cutoff = /* ymin */ -500.;

cleant);

hOspan = hOmax - hOmin;

scale(hOmin.hOmax,ymin,ymax); /* Set user’s scales w.r.t plotter’s coordinates. */
axes(hOnﬁn.ymin.xLE:,yﬁc,l.l); /* Draw axes and tick marks. */
axes(hOmax,ymax xuc.ytc.1.1);

border();

posx = hOmin + hOspan * .10;

pPOSY = ymin + (ymax - ymin) * .95;

spant(string,'h0 = N %6.21.%6.210\), n = %2d. sig = 4217,
hOmin.hOmax.order sigmaj;

move(posx.posy).

label{string);  penupy);

D0SY = v + {ymax - vmimn) * .90:

if (xtraweight = 1)
spnntf(stng,"A = N %531, %3.11\), wid, tanh”
Amin.Amax);
else
sprintf(stmng,” A = \(%5.31f, %3.11\), unwid, tanh”
,LAmin, Amax);

move(posx,posy);
label(string); penup(;

for (hh0 = 0: hh0 < NO: ++hh0)

{
if (hhO=0) hO{0] = hOmin:
clse hO[hhO} = hQ[hhO-1] + hOstep:

!

vshuft = 0.;
for(: )
(
if (yscale = 1)
{
prntf("Enter another) hl and y-shiftNin dB\), "j:
prind("or ~C if you're done.\n");
scanf("%1f %If",&hl.&yshift_step);
yshift += vshift_step:
)
else
{
prnntf("Enter \another\) hl, and magnificauon
printf("or AC if you're done\n");
scanf("% U FIf" . &hl.&yshift_step);
}

A = Amin;
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for (aa = 0; aa < NUMA: ++aa)

Ahl=A*hl:
switch(order)
{
case O:
actermi{aa] = jO(Ahl); break:
case 1:
acterm(aa] = j1(Ahl); break:
default:

}
A += Ainterv:

}

for (hhO = 0; hhO < NO: ++hh()
{
A = Amin:
aveln=0.;
for (aa = 0: aa < NUMA: ++aa)

actermfaa) = jn(order.Ahl); /* Built-in Bessel functions in SUN-Unix */

{
AhO = A * hO[hhO];
if (evenodd == 0)
dcterm = sin(AhQ); /* even */
else
dcterm = cos(AhQ); /* odd */

In = acterm{aa] * dcterm;

In *= pAdeltaA(aa);

if (xtraweight = 1)
In*=A; /* weighting due to more coupling o coil */

aveln += In;
A += Ainterv;
)

aveln *= norm;
if (yscale==1)

aveln *= aveln;
aveln = 10. * log10(aveln);
Inplot = aveln + yshift;
if (Inplot < (yshift + cutoff))
Inplot = yshift + cutoff;
}
else

aveln *= yshift_step;
Inplot = aveln;
}

hOplot = hO[hhO);

move(hkOplot.Inplot);
if (hhO=0) pendown();
i

penup(;

}
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Program hp_loop_avsq_tanh.c

This program muitiplies Bessel functions Jn with

sine or cosine, average, and then square.

This is a preliminary model to see how coupling

between Hdc and H1 comes about in the harmonic experiments.

This program is the "Loop Model" version of the program
hpjnsincos_avsq_tanh.c; the later is for the "zero-order
model.”

The ensemble averaging is done such that the corresponding
dc magnetization has the functional form tanh(x).

Ie.. the distribution functon of the loop areas

1S

sinh{pi.A/(2.sigma)] / { A.[cosh(pi.A/sigma) - 1]}

The model assumed is a purely superconducting loop without
Josephson juncuon.

#include <math.h>
#define MAX0 501
#define XSPAN1 1.1364 /* size of output graphics */

#define XSPAN2 1.1242 /* size of output graphics */

#define YSPAN 0.94  /* size of output graphics */
#define MAXNUMA 1001

#define PI 3.1415926

#define MAXEXP 30

main(argc.argv)

int argc;
char *argv(];

{

/ h0 is the dc field in this program:
hOmin and hOmax set the dc field range.

double expm[MAXEXP],hO[MAX0],hOmin.hOmax.hOstep,h1:
double In.dcterm.acterm{MAXNUMAYJ;

double ymin,ymax,yshift_step,sh.ch;

double yshift. xshift. hOspan;

double hlspan.Inplot{MAXO0],hOplot.cuoff;

double posx,posy,xtic,yuc,

double invsigsq,pAdeltaA[MAXNUMA] norm AhO,Ahl:

double A, probA(MAXNUMA].avein, Amin. Amax Ainterv,
int hh1,hh0,NO.order evenodd.aa xtraweight NUMA plotier:
int choice,yscale.no_expan.nn;

char stning{100];

if (argc '=4)

(

printf("Usage\: Command hOmin hOmax no_of_hOwn");
exit(0);

J

sscanf(argv(1],"%If",&hOmin);
sscanf(argv(2],"%If" . &hOmax);
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sscanf(argv{3],"%d".&NO):
if (NO > MAX0)

printf("Max. no. of points is Z5d\n".MAXO0);
exit(0);
}
printf("Enter Amin, Amax, and no. of A\ ");
scanf("%if %lf %d" . & Amin, & Amax.&NUMA);
if NUMA > MAXINUMA)
{
printf("Too many points in A’s requested.\n");
exit(0);
)
if (Amin = 0.)

printf(" Amin must be positive, but can be small.\n");
exit(0);
}

Alnterv = (Amax - Amin) / (double)}(NUMA - 1);

printf("No. of expansion terms to be included \: ");
scanf("%d".&no_expan),

printf("Harmonics that you want. \(C,1,2,..\)\n"):
scanf("%d",&order);

evenodd = order % 2;

printf("Do you want extra weighting of A?");
printf(" Enter '1° if you do.\n");

scanf("%d" & xtraweight);

/* The following prepares a look-up table for averaging
weighting and normalizing factors. */
norm = (.; A= Amin;
for (aa = 0; aa < NUMA; ++aa)
{
sh=A*PI*0.5; sh=sinh(sh);
ch=A*PIl ch = cosh{ch);

probAfaa)l =sh/(ch- 1.);

pAdeltaA(aa] = probAf[aa] * Ainterv;
A += Ainterv;

norm += pAdeltaA(aa);

)

norm = 1/norm; /*normalizing factor, lookup table done*/

for (nn = 1; nn <= no_expan; ++nn)
{
expm{nn] = -1. * (double)nn;
expminn] += 1.;
expm{nn] = exp{(expm(nn]);

hOstep = (hOmax - hOmin) / (double)(NO-1);
/™ Graphics preparaucn */

pantf("Which plotter? 1. HP747SA . 2. HP7470A \ "),
scani("%d".&piotuer);
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initgraph("/dev/ttya");

if (plotter == 1)

window(0.1,0.02, XSPAN1+.1,YSPAN+.02); /* Set s1ze of hardcopy output. */

else
window(.08,0.0, XSPAN2+.08.YSPAN);

color(1); /* Choose pen of plotters. */

printf("1. PowerindB or 2. Amplitude \(linear\) \: ");
scanf("%d",&yscale);

if (yscale = 1)

( _
printf("** If you want vert. scale to be 10 dB/inch, "),

printf("then \(ymax - ymin\) must be 75. **\n");
)

printf("Enter ymin, ymax, xtic, ytic.\n");

scanf("%If %lf %If %If" ,&ymin & ymax,&xtic,&YUC),

cutoff = /* ymin */ -2000.;

clear();

hOspan = hOmax - hOmin;

scale(hOmin,hOmax,ymin,ymax); /* Set user’s scale w.r.t. plotter’s coordinate. */
axes(hOmin,ymin xtic,ytic,1,1); /* Draw axes and tick marks. */
axes(hOmax,ymax xtic,ytic,1,1);

border(;

posx = hOmin + hOspan * .10;

posy = ymin + (ymax - ymin) * 95;

sprintf(string,"h0 = \(%5.21f,%5.2If\), n = %2d, no_expan = %2d",
hOmin hOmax,order.no_expan);

move(posx,posy);

/* label(string); */ penupQ;

posy = ymin + (ymax - ymin) * .90;

if (xtraweight == 1)

sprintf(string,"A = \(%S5.31f, %3.1I0\), wid",Amin,Amax);
eise

sprintf(string," A = \(%5.31f, %3.11{\), unwid".Amin. Amax);

move(pPosx,posy);
f* label(string); */ penup();

for (hh0 = 0; hh0 < NO; ++hh0)
{

if (hhO==0) hO[0] = hOmin;
else hO(hh0] = hO[hhO-11 + hOstep;
)

yshift = 0.;

for(;.

)
{
Uf (yscale = 1)
{
printf("Enter \(another\) hl and y-shift\(in dBY), ");
printf("or AC if you're done\n");
scanf("%lf %I, &hl,&yshift_siep);
yshift += yshift_step;
|

else
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{
printf("Enter \(another\) hl, and magnificauon ");

printf("or AC if you're done.\n");
scanf("%If %If",&hl,&yshift_step);
)

for (hh0 = 0. hhO < NO; ++hh0) Inplot{hh0] = 0.;

for (nn = 1; nn <= no_expan; ++nn)
(
A = Amin;
for (aa = 0; aa < NUMA; ++aa)
(
Ahl = A * hl * (double)nn;
switch(order)
(
case O:
acterm[aa) = jO(Ahl); break:
case 1:
acterm(aa] = j1(Ahl); break:

default , }
acterm{aa) = jn(order,Ah1); /* Built-in Bessel functions in SUN-Unix */

)
A += Ainterv;

)

for (hhO = 0; hh0 < NO; ++hh0)

{

A = Amin; aveln=0.;

for (aa = 0; aa < NUMA,; ++aa)
{
AhO = A * hO[hhQ] * (double)nn;
if (evenodd == 0) dcterm = sin(AhQ); /* even */
else dcterm = cos(AhQ); /* odd */

In = acterm{aa] * dcterm * pAdeltaA(aa];
if (xtraweight == 1)
In *= A/* weighting due 1o more coupling to coil */

aveln += In; A += Ainterv:

J

aveln *= norm;
aveln *=expmi{nn]; /* approx. sawtooth expan */
if ((nn % 2) =0) aveln*=-1;

Inplot[hhO] += aveln;
)
)

for (hhO = 0; hhO < NO; ++hh0)

{

if (yscale == 1)
{
Inplot[hhO] *= Inplot(hhO];
Inplot(hh0] = 10. * l1og 10(Inplot{hh0]);
Inplot(hh0] = Inplot[hh0] + yshift;
if (Inplot{hhO] < (yshift + cutoff))
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Inplot{hh0] = yshift + cutoff:

J
{

else

Inplot(hhQ] *= yshift_step:

)
hOplot = hOfhhO];

move(hOplot,Inplot[hh0]);
if (hh0=0) pendown();
}

I}JCHUDO:
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= Program RSJ_nr_fftvshO_avearea.c (First-order model)
=*  This is to calculate the AVERAGED (OVER

b AREAS) time-derivative of the currents in an

ensemble of resistance-shunted rf-squids in response 10

==  an ac-magnetic field with frequency w=1.

=*  Loop areas are distributed as a Gaussian fashion, or as

the "sine-ransform” of tanh(x):

- F(A) = sinh(APL2) / ( A.[cosh(AP) - 1] )

FFT is done on the time-derivative of the current average,
»*  which would be proporuonal to the 'emf” induced on the

==  pickup coil surrounding the ensemble. 2nd the real and
imaginary components are saved. -inally, these
harmonics can be plotted versus HO (dc magnetic field).

Additional parameters are the dc-magneuc field,
loop inductance and shunt reststance.
The model is a single resistance-shunted rf-squid.

Ac field(dimensioniess): hl sin(wt)

ke Dcfield( " ). hO

ke Loop inductance{ " ). L

i Shunt conductance( " ): kap

= Normmal mag. field : h=H

*> w (angular frequency): defined to be 1.

E 2

b d/dt[Josephson current (normalized hy ic)]

> = dl/dt

ke = (sin(hOhlsin - L) - 1} / (L.del) + (h1.w/L)cos(wt)
L 2 ]

s Has to0 be linked to odeintl.o, rkqcrk4.o, fficompon.o.
= Parameters of ode. are given thru external vanables.
*/

#include <math.h>

#include <stdio.h>

#include "swgraph.h"

#define MAX 2048 /*1024 limits N to be <= 10*/

#define N 11  /*No. of data = 2 o the Nth power*/

#define JUMP 20 /*N=10 -> JUMP=10; N=9 -> JUMP=S:
JUMP = w/ winterv= 1 / winterv */

#define PI 3.14159265

#define HPI 1.570796327 /* half Pi */

#define PI2 6.283185307 r*Pix2™*/

#define SAFETY1 0.6

#define SAFETY2 0.6

#define OMEGA 1.

#define MAXNUMA 501

#define N_HARM 30 /* No. of harmonics 1o be available */

#define MAX_HO 300 /* Max. no. of hO within (hOmin.hOmaxj*/

double hO,h1.L kap.invL.invkap;
int ch;

main(argc,argv)
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int argc;
char *argvil;

(
/* h0 is the dc magnetic field in this program.
HOmin and HOmax set the dc field range.

>

/

extern double h0,h1,L kap,invkapanvL.

extern int ch;

register double *Ij,*Ijdot;

double ttmin.tmax,tnterv,t2 snh.cnh;

double ymin,ymaxzicy ticx EPS .dhtry, HO,H1,LO;

double posx,posy, OMEGAMAX xmin xmax:

double * Avemf Amin,Amax,Ainterv;

double *ptr_ri[MAX],*ptr_im[MAX];

double fft_comp(MAX][2],wmin,wmax,*freq,winterv;

doubie *weich,inv_Wss,dummyimag = 0.,norm;

double sigma.,A,probA[MAXNUMA ], invsigsq,pAdeltaA[MAXNUMA];
double HOmin, HOmax,HOstep;

double comp_ri{N_HARM}[MAX_HO0].comp_im(N_HARM][MAX_HO];
double w_har_minfN_HARM],w_har_max(N_HARM],w_harmonic [N_HARM]J;
register int ii,aa iil;

int no_data,nodatal .hh1 choice RSInrfunc();

int no_data2.no_data21,AA,no_HO0.hh kk NUMA rlorim;

int wifunc xtrawt, AAmin;

char string{50] filename[20];

FILE *file_ptr;

if (arge < 8)

{

printf("Usagex Command HOmin HOmax no_of_points_in_HOs");
printf(" hl L kap sigma\n");

exit(9);

)

sscanf(argv(1]," %If" & HOmin);
sscanf(argv(2]," %If",& HOmax);
sscanf(argv{3],"%d".&no_HO);
sscanf(argvi4],"%If" . &H1);
sscanf(argv{S},"%If".&LO);
sscanf(argv(6],” %If" . &kap);
sscanf(argv{7]," %If" &sigma);

if (no_HO0 > MAX_HO0)
{
printf("Max value of no_H0 = %4d\n" MAX_HO);
exit(0);
)

/* Back-up storage of data */

printf("Give a name for storage file of results\: ");
scanf("%s",filename);

file_ptr = fopen(filename,"w");

prind("Which weighting funcdon? 1. Gaussian 2. Tanh\ ")
scanf("%d" & wtfunc);

prinf("Want extra weighting? Enter \'1\’ for yes\: "y;
scanf("%d" & xtrawt);
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printf("Enter Amin. Amax. and no. of AVs\: "u
scanf("%If %I %d".&Amin,& Amax,&NUMA X
if NUMA > MAXNUMA)
{
printf("Too many points in A’s requested.\n");
exit(0);
J
Ainterv = (Amax - Amin) / (double)(NUMA - 1);

if LO==0. Il kap =0.)

printf(™*\* Have to use small kap version. \*\*\n");
printf("1. Large kap Version; 2. Small kap version\n");
scanf("%d",&ch);
if (kap!=0.) invkap=1./kap;
tmin=0.;
wmin = 0.; wmax = 51.2; /* Nyqust frequency */
no_data = int_pow(2,NY);
nodatal = no_data - 1;
no_data2 =no_data/2; no_data2l =no_dawa2 + |;
tinterv = PI / wmax;
tmax = unterv * (double)nodatal;
winterv = 2.*PI / ((double)no_data*tinterv);
HOstep = (HOmax - HOmin) / ((double)no_HO - 1.);

Ij = (double *)calloc(no_data,sizeof(double));
Ijdot = (double *)calloc(no_data sizeof(double));
Avemf = (double *)calloc(no_data.sizeof(double)),
freq = (double *)calloc(no_data2?1,sizeof(doubie));

/* The following loop prepares for searching the correct peak
values at various harmonics of the FFT spectrum for each h0.*/
for (kk = 0; kk < N_HARM; ++kk)
{
w_harmcnic[kk] = (double)(kk+1);
/* Window to search for harmonics is set below.*/
w_har_min{kk] = w_harmonic(kk] - winterv * 2;
w_har_max(kk] = w_harmonic{kk] + winterv * .2;

J

for (1i = 0: ii < no_data: ++1i)
{
pr_riii} = Avemf+ii;  ptr_im(ii] = &dummyimag;
if (i <= no_data2) *(freq+1i) = winterv * (dounle)ii:

/* Welch window, "Numerical Recipes” pp.425. */
inv_Wss =0.;
welch = (double *)calloc(no_data sizeof(double));
for (ii = 0; i < no_data: ++ii)
(
*(welch+ii) = (double)ii - .5*((double)no_data-1.);
*(welch+ii) = *(welch+ii) / (.5*((double)no_data+1.));
*(welch+ii) = *(welch+ii) * (*(welch+1i))*(-1.);
*(welch+ii) +=1.;
inv_Wss += (*(welch+ii) * (*(welch+1i)));
)
inv__Wss *= (double)no_data;
inv_Wss = 1. /inv_Wss;



> The followings are for making a look-up table of
probability value of A and calculaung the normal-
1zing factor. This is done for the averaging. */

«f (wifunc == 1) invsigsq = 0.5/(sigma*sigma).
norm = 0.; A = Amin;

for (AA =0: AA < NUMA; ++AA)

if (wifunc == 1)
{
probA[AA]=A-1.; /* Gaussian distribution */
probA(AA] *= probA[AA];
probA[AA] *="(-1. * invsigsq);
probA{AA] = exp(probA[AA}); /*unnormalized probability*/
)
else
(
/* "Sine-transform" of hyperbolic tangent */
snh= A * Pl * 0.5; snh = sinh(snh);
cnh=A* Pl cnh = cosh(cnh);

probA[(AA] = snh/(cnh - 1.);
}

pAdeltaA{AA] = probA[AA] * Ainterv:
norm += pAdeltaA[AA];
A += Ainterv;
J
norm = 1./norm; /*normalizing factor*/

HO = HOmin;
for (hh = 0; hh < no_HO: ++hh)
(

for (1i=0; 1i < no_data; ++1ii) *(Avemt+ii) = 0.:

if (Amin = 0.)
{
A = Ainterv: AAmin=1;
}

else
{
A = Amin; AAmin=0;
)

for (AA = AAmin; AA < NUMA: ++AA) /* average over areas */
{
hO= A * HO: hl = A * HI;
L = sqri(A) * LO; /*self-induct assumed proportional to sqrt(A)*/
if(L!'=0) invL=1./L;

dhtry = kap * SAFETY; /* Time scale of the ode. */
f(L<1l) dhay=*=L;
if (dhtry > unterv il dhtory == 0. lich == 2) dhtry = tinterv;

EPS = kap * SAFETY2 /(L + 1.); /* So that error of Ijdot */
f(L<1) EPS*=L; /* is comparable to that of Ij. */
if (EPS > .01 I EPS==0. I ch==2

EPS = 01; /* Max. relative error. */

-—
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t=tmin; *1j=0.; /*arbit inital condition*/
for (ii = 0; il < nodatal; ++i)
(
il=i1+1; 12 = t + unterv;
*(Lj+iil) = *(Ij+ii);

/* Adaptive step-size controlled Runge-Kutta step driver. */
odeint1([j+iil,1,t,12 EPS, dhuy, RSJnrfunc,ljdot+1i);

if (ii1 = nodatal) RSJnrfunc(12,Jj+iil,Jjdot+iil);
t += unterv;

] _
for (ii = 0; ii < no_data; ++ii)

(
if (xtrawt = 1) /*due to mutual induct. bet. loop & coil*/
*(Tjdot+ii) *= A;
*(ljdot+ii) *= pAdeltaA[AA); /*mult. weighting factor*/
*(Avemf+ii) += *(Ijdot+ii);
}
A += Ainterv;

}
for (ii = 0; ii < no_data: ++ii)  *ptr_rl[ii] *= (*(welch+ii) * norm);

/* fft_comp contains real & imag. components for both
positive and negative frequencies */
fficcompon(ptr_rl,ptr_im N,fft_comp);

/* See Numerical Recipes Fig.12.2.2 for ranges of ii below.
See also eqt (i2.0.14) of the same book.*/
for (ii = 0; ii <= no_data2; ii += JUMP)
{
for (kk = 0; kk < N_HARM; ++kk)
{
/* if within the "window" of the harmonics,...*/
if (*(freq+ii) >= w_har_min(kk] && *(freq+ii) <= w_har_max(kk])
(

comp_ri(kk][hh] = fft_comp[ii]{0];
comp_im(kk][hh] = fft_compl(ii][1];

break; /*The right harmonics is found; no need for
further testing of posiuon of freq */
)

}
)
HO += HOstep;
)

fprintf(file_ptr,"%6.2lf %4 .21f %4 .21f %4.21f %5.31f %3.11f %4.21f\n"
,H1 Xkap,L.0.sigma, Amin Amax,Ainterv);

if (wtfunc == 1)
{
if (xtrawt == 1) fprintf(file_ptr,"Wtd_Gaussian\n");
else fprintf(file_ptr,"unwitd_Gaussian\n");
}
else

{
if (xtrawt == 1) fprintf(file_ptr,"Wtd, Tanh\n");
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else fprintf(file_ptr,"unwtd, Tanh\n");

J

fprintf(file_ptr," %d %d\n" ,no_HON_HARM);

HO = HOmin:
for (hh = 0; hh < no_HO; ++hh)

{
fprintf(file_ptr,"%If ",HO);
HO += HOstep;

} —

for (kk = 0; kk < N_HARM; ++kk)
{
for (hh=0; hh < no_HO; ++hh)
fprintf(file_ptr,\n");
)

for (kk = 0; kk < N_HARM; ++kk)
{
for (hh=0; hh < no_HO; ++hh)
fprinif(file_ptr,"™\n");
}

fclose(file_ptr);

fprinif(file_ptr,"%1f ",comp_ri[kk]{hh]);

fprinif(file_ptr,"%If ".comp_im(kk][hh]);

printf("Data stored\"); /* Data stored in file. */

for (;:)

/* SUN monitor as immediate graphics output */
initgraph(setdisplaydevice(0,(char **)0));

printf("Choose the harmonic you want to see\\n");
printf("1. Fundamental; 2. 2nd harmonic; ...\n");

scanf("%d",&choice);
if (choice > N_HARM)

(
printf("Choice not available.\n");
continue;

}

printf("Real or imaginary? \(’0’ for real\) -- ");

scanf("%d" ,&rlorim);

printf("Input xmin, xmax, ymin, ymax, ticx, Licy resp.\n");
scanf(" Blf %If Folf Flf Flf Flf”" & xmin,&xmax,&ymin,&ymax,

&ticx,&tcy);

clear(); /* Clear the graphics window. */

window(0.,0.,1.,.8634);
scale{xmin.xmax,ymin,ymax);

/* Set size of graphic window. */
/* Set user’s scale w.r.t. window coordinates. */

axcs(xm'in.O..ticx.ticy..Ol..01); /* Draw axes and tick marks. */

axes(xmax,0.,100000.,ticy,.01,.01);
POSX = xmin + (xmax - xmin)*.20;
posy = ymin + (ymax - ymin)*.96;

sprnu(string,"'n = %2d, h0 = \(%4.11f,%4.11f\), h1 = %6.210\n",

choice xminxmax.H1);
move(posX,posy); label(string);
penup(;
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posy = ymin + (ymax - ymin)*.92:
if (rlorim == 0)
sprintf(string, 'real comp., kap=54 21, L=%4 21f, sig=%4.2f"
kap,L.O,sigma);
else
sprintf(string,"imag. comp., kap=%4 21f, L=%4 2If, sig=%4.21{"
Jkap.L0O.sigma);

move(posx,posy); label(string);

penup();

posy = ymin + (ymax - ymin)*.88;
if (wifunc ==1)

if (xtrawt = 1)
{
sprintf(string," A\ %3.11f 10 %3.11f, dA = %4.2lf, Wtd Gaussian”
,Amin, Amax,Ainterv);
}

(

sprntf(string," A\ %3.11f to %3.11f, dA = %4.2!f, unwid Gaussian”
,LAmin. Amax.Ainterv);

}

else

)
else
{
if (xtrawt = 1)

{
sprintf(string,"A \: %5.31f to %3.11f, dA = %4.21f, Wtd Tanh"

J/Amin. Amax,Ainterv);
else ]
iprimf(sm’ng."A\ %5.31f 1o %3.11f, dA = %4.2If, unwid Tanh”
,LAmin, Amax.Ainterv);
} )
move(posX,posy); label(string); penup();
HO = HOmin;

for (hh=0; hh < no_HO0; ++hh)
{

if (rloim ==0)  move(HO,comp_rl(choice-1][hh]);
else move(HO,comp_im(choice-1][hh});

if (hh==0) pendown();
HO += HOstep;
}
peaup(;
printf("Hit <return> to complete this output. "),

getchar(); getchar();
exitgraph(Q);
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Function RSJarfunc(). {"First-order model™)
This is the differenual eguation derived for the
time-derivative of the Jusephson juncuon current

in a resistance-shuntea rf-squid with self-inductance.
No approximation has been made for the magnitude

of the (dimensionless) inductance.

dl/dt = (sin(hOhlsin - LI) - I}/(L.del) + (hl.w/L)cos(wt)

where L is the dimensionless inductance
kap is the dimensionless shunt-conductance.
hOhlsin = hQ + hl.sin{wt)
w (angular frequency) is defined to be 1.

RSInrfunc(t.l,Idot)

dol

{

uble t.*1,*1dow:

extern double hQ.h1 L kapinvkapinvLl;
extern int ch; /*Externs’ values won’t change®/
double LI costsint.durnmy1,S,C.1LC1.hOhlsinLI:

cost = cos(t); sint = sin(t);
LI=L*(*D);

hOhlsinLI = hO + hl*sint - LI;

S = sin(hOhlsinLI);

f(ch=1)

{

*Idot = (S - *I) * invkap;
*Idot += (hl * cost);
*Idot *= invL;

)

else
{

L

C == cos(hOh1sinLD);
LCl1=1.+L*C
dummyl =hl *S*L *cost* cost/LCL:
dummyl -= (sint * LC1);
dummyl *=kap;
dummyl += (C * cost * LC1 * LC1);
*Idot =hl * dummyl:
*Idot /= (LC1 = LC1*LCl}):

{
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e Program genKA_spect.c

This program calculates the harmonic power spectrum of the
nonlinear signal generated by a hard superconductor when 1t
is driven by an ac magnetic field, with possibly a superposing

- dc field -- Hd + Ha.cos(wt), according to the generalized
== critical-state model. The critical current density

- is assumed to take the generalized Anderson-Kim form
- Jc = alpha x ¢ / pow( [[HI + Ho] , beta)

where alpha = flux-pinning force density when beta = 1.
i ¢ = speed of light,
Ho = sample dependent parameter.

== In the ungeneralized Kim-Anderson model, beta = 1.
-; HR = k- R) = Hd + Ha.cos(wt).

hekd w= 1.

*/' Has to be linked with fficompon.o.

#include <math.h>

#include <stdio.h>

#define MAX 4096 /* 4096 limits N to be <= 12%/
#defme N 12 /*No.ofdata= 2 to the Nth power*/
#define XSPAN1 1.1364 /* size of output graphics */
#define XSPAN2 1.1242 /* size of output graphics */
#define YSPAN 7.94  /* size of output graphics */
#define PI 3.14159265

#define HPI 1.570796327 /* half Pi*/

#define QPI 0.785398163 /= quarter Pi */

#define PI2 6283185307 /* Pix2*/

#define ROOT2 1.414213562

#define G(NN x) (A[NN] + B[NN] * x )
#define Br2A(NN,x) ( B[NN] * x - betal * A[NN])

double pHdHa.mHdHa: /* pHdHa = Hd + Hz; mHdHa =Hd - Ha */
double A[11],B[11]; /* A[O] and B[O} not used */

double pi8al.pidal.inv_pi8al.inv_pidal,pi4alRbetal;

double Hlstar Ho,Hd . Ha R;

double beta,betal.inv_betal,beta2l;

main(argc.argv)
int arge;
char *argv(};

{
extern double B[11],pi8al,pidal.inv_pi8al.inv_pidal;
extern double Hlstar,Ho Ha Hd.R . mHdHa pHdHa,pi4alRbetal.
extern double beta.betal inv_betal,beta2l;

double cycles,time[MAX] signal[MAX],*ptr_rl{MAX],*ptr_im{MAX] fft_comp(MAX][2];
double half1 _tseries(),haif2_tseries()remain();
double tmin tmax,wmin,wmax linterv, winterv,t.* freq;
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double ymin.ymax.xmin.xmax.ytc.xtic,posx.posy:

double *welch.inv_Wss,dummyimag = 0..sqri_inv_Wss.p1l6al.alpha:
char string[507;

int no_data.nodatal.no_data2,no_data21.tt kk.plotter labelornot;

/* Hd = dc magnetic field; Ha = ac field amplitude:
Ho = free parameter; H* = penetraton field. */

if (argc < 7)
(
printf("Usagex Command Ho Hd Ha H* R beta\n");
exit(9);
)

sscanf(argv(1],"%1f" & Ho);
sscanf(argv(2]," %If" & Hd):
sscanf(argv(3],"%If" . & Ha);
sscanf(argv([4],"%1f" & H1star);
sscanf(argv(5]," %lf" &R);
sscanf(argv(6]," %If" .&beta);

if (Hd <0.)
{
printf("Hdc must be positive.\n");
exit(7);
)

betal =beta + 1.; inv_betal = 1./ betal;
beta2l = ( beta + 2.) / betal;

tmin = 0.;

wmin=0.; wmax = 102.4; /*Nyquist freq.*/
no_data = int_pow(2,N);

nodatal = no_data - 1;

no_data2 = no_data /2; no_data2l =no_data2 + 1.
tnterv = PI / wmax;

tmax = tinterv * (double)nodatal;

winterv = 2.*P1/((double)no_data*tinterv);

freq = (double *)calloc(no_data21,sizeof(doubl~));
for (it = 0; tt < no_data; ++it)

{
pu_ri[t] = signal+ty
ptr_im{tt] = &dummyimag;
if (it <= no_data2)
*(freq+tt) = winterv * (double)tt;
)

/* Hanning window, Numerical Recipes pp.425 */
inv_Wss =0.;
welch = (double *)calloc(no_data sizeof(double));
for (1t = 0; &t < no_data; ++tt)
{
*(welch+tt) = ( PI2 * (double)tt ) / ( (double)no_data-1. ),
*(welch+1t) = cos(*(welch+tt));
={weich+it) = 0.5 * ( 1. - *{weich+ii) ),

inv_Wss += (*(welch+tt) * (*(welch+it)));

}
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inv_Wss *= (double)no_data:
inv_Wss = 1./inv_Wss:
sqri_inv_Wss = sqri(inv_Wss);

alpha = Hlstar + Ho: alpha = pow(alpha.betal);
alpha -= pow(Ho.,betal); alpha/=(4.* betal * PI" R);

piBal = PI * 8. * alpha; pidal = 0.5 * pi8al:
pi4alRbetal = pidal * R * betal:
inv_pi8al = 1./ piBal; inv_pidal = 1./ pidal:

B[10]) = B(9] = B[7T= B(6] = B[4] = B[1] = -pidal * beiai;
B(8] = B[5] = B[3] = B[2] =-B[1];

pHdHa = Hd + Ha: mHdHa = Hd - Ha:

for (it = 0; it < no_data: ++tt)

(

if (tt=10)
time(Q] = tmin;
else

ume(tt}) = ume(u-1) + unterv;

if (timeftt) < PI2) /* first cycle */
{
t = umejtt];
if (time{tt] < PI) /* first HALF of cycie */

{
signal{tt] = halfl_tsenes(t);
)
else /* second HALF of cycle */
{
signal{u] = half2_tseries(t);
}
)

else /* Beyond the first full cycle */
t{= remain(ume{u) PI2); /*fold back to ist full cycle*/
if (t<PD /* first HALF of cycie */
éignal[u] = halfl_tseres(t);
else | /* second HALF of cycle */

(
signai(u] = half2_tsenes(t);
}

)
}

for (tt = 0; it < no_data: ++tt) =ptr_ri[u] *= (*(welch+l));
~ fft_comp contains real & imag. components for both
posiuve and neganve frequencies */

fitcompon(ptr_rl,ptr_im N fft_comp);

prind("xmin, xmax, ymin, ymax, xuc, yuc\n");
scanf("%lf %lf %lf %l Flf %l &xmin.&xmax,&ymin.&ymax,&xtic.&yuc),
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™ Graphics preparauon */

printf("Which plotter? 1. HP7475A : 2. HP7470A \ ")

scanf("%d",&ploter);

nitgraph("/dev/ttya"™);

if (plotter == 1) /* Set hardcopy output size. */
window(0.16571,0.18524 XSPAN1+0.16571.YSPAN+0.18524):

else

window(.08,0.0,.XSPAN2+.08.YSPAN);
color(1); /* Choose pen of plotter. */

printf("1. Label: 2. Do not label \: ");
scanf("%d".&labelomot);

clear();

scale(xmin,xmax,ymin,ymax); /* Set user’s scale w.r.L. plotter’s coordinates. ~/
axes(xmin,ymin.xtc,ytic,1,1); /* Draw axes and tick marks. */
axes(xmax,ymax.xtc,ytc,1,1);

border(); /* Draw border. */

sprindf(string, "Ho=%35.2lf, Ha=%6.2lf, alpha=%5.2If, R=%5.21{"
.Ho.Ha.alpha.R);
posx = xmin + (xmax - wmin) * 0.05;
posy = ymin + (ymax - ymin) * 0.95;
if (labelomot = 1)
(
move(posx.posy); label(string),
)

/* See Numerical Recipes Fig.12.2.2 for ranges of ii below.
See also eqt (12.0.14) of the same book.*/
for (tt=0; t <= no_data/2; ++1t)

{
signal{t] = fft_comp(tu]{0] * fft_comp(tt]{0];
signal(tt] += (fft_comp(tt}(1] * fft_compl[ut](1])

if (0!'=0 && u'=(no_data/2)) signal{u] *=2.;

signal(tt] *= inv_Wss:
signal(t, = 10. * log10(signal[u});

if (signal[tt] < ymin) signai{tt] = ymn;

move(*(freq+tt),signal[tu]);
if (1==0) pendown();
}

penup();
exitgraph();
1

double halfl_tseries(t) /* first halfcycle: 0 <t<PI*/

double t;

{
extern double A[11],B[11],pHdHa.betal:
extern double Ho, Hd.Ha R pi8al,pidal,pi4alRbetal;

double halft_p_sigQ.halfl_m_sig(,signal;

double pHoHP. . mHoHR ;sinwt,coswt HR ,HRdot.Hacoswt,
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coswt = cos(l); sinwt = sin(t);

Hacoswt = Ha * coswt;

HR = Hd + Hacoswt; HRdot = -Ha * sinwt.
pHoHR = Ho + HR; mHoHR = Ho - HR:

A[l] = pow(pHoHR ,betal) + pidalRbetal;

A[2] = (Ho + pHdHa);

A[2] = pow(A[2],betal) - pidalRbetal:

A[3] = pow(mHoHR betal) - pi4alRbetal;

A[(4] = 2.* pow(Ho.betal) - pow(mHoHR ,betal) + pidalRbetal;

if (HR >=0.) -

signal = half1_p_sig(HR ,HRdot,pHoHR.mHoHR);
else

signal = halfl_m_sig(HR,HRdot,pHoHR .mHoHR);

return(signal);

Jouble half2_tseries(t) /* second half-cycle: PI <t < 2.P1 */

Jdouble t;
{
extern double pHdHa,mHdHa pi8al,pidal,pi4alRbetal betal:
extern double A[11],B[11],H1star,Ho,Hd,Ha.R:
double haif2_m(),half2_p(),half2_p_lIIQ,signal;
double half2_ITI(),coswt,sinwt,pHoHR .mHoHR ,Hacoswt,HRdot, HR

coswt = cos(t); sinwt = sin(t);

Hacoswt = Ha * coswt;

HR = Hd + Hacoswt; HRdot = -Ha * sinwt;
pHoHR = Ho + HR; mHoHR = Ho - HR:

A[5] = (Ho - mHdHa);

A[5] = pow(A[S],betal) - pi4alRbetal:

A[6) - Ho - mHdHa; A[6] = pow(A[6],betal);
Al6] = 2.* pow(Ho.betal) - A[6];

A(6] += pidalRbetal;

A[7] = pow(mHoHR betal) + pi4alRbetal:

A{8] = pow(pHoHR ,betal) - pidalRbetal;

A[9] = 2.* pow(Ho.betal) - pow(pHoHR ,betal) + pidalRbetal;

A[10] = (Ho + mHdHa); A[10] = pow(A[10]},betal) + pi4alRbetal;
if ( Hd <= (Ha - Hlstar) )
{
if (HR <= 0.)
signal = half2_m(HR . HRdot.pHoHR,mHoHR);
else

signal = half2_p(HR .HRdot pHoHR . mHoHR);
)

clse if (Hd<=Ha)
{
if (HR <=0.)
signal = half2_m(HR.HRdot.pHoHR . mHoHRY;
else if (HR <= (Ha - Hd))
signal = half2_p(HR HRdot pHoHR .mHoHR);
else
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\

signal = half2_p_II(HR.HRdot.pHoHR.mHoHR);
}

signai = half2_III(HR ,HRdot,pHoHR.mHoHR);

clse

return(signal);

double remain(u,d)

double u,d; -

{

)

double remain,quot;

quot=u/d;

quot = (int)quot;

- main = u - (d * quot);
:turmn(remain);

double halfl_p_sig(HR ,HRdot,pHoHR mHoHR) /* first half-cycle, HR >=0*/

double HR HRdot,pHoHR ,mHoHR;

{

extern double Ho,Hd, Ha,A[11],B[11],
extern double R,inv_pi8al,beta,betal.inv_betal beta2l;
double r1,r2,Girl,G1R,signal;

rl = Ho + pHdHa; rl = pow(rl,betal);
r1 -= pow(pHoHR ,betal);

rl *= (inv_pi8al * inv_betal);

rl=R-rl;

if (r1 <0.) rl=0.;

else if (r1 > 1.0001 * R)

{
printf("Error\ rl > R in the first quadrant.\n");

exit(3);
Glrl = G(1,r1); Glirl = pow(Glrl.inv_betal);
GIR =G(1,R); GIR = pow(G1R,inv_betal);

signal = GIR * Br2A(1,R) - GIrl * Br2A(L.r1);
signal *= (pow(pHOHR ,beta) * HRdot);
signal /= (B[1] * B[1] * beta21);

return(signal);

double halfl_m_sig(HR ,HRdot,pHoHR .mHoHR) /* first half-cycie, HR < 0 */

doubie HR HRdot,pHoHR ,mHoHR;

extern double Ho,Ha,A[11}],B[11],pHdHa;
extern double R.inv_pi8al,inv_pidal betabetal.inv_betal beta2l;
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double rl.r2.dummyl.dummy2, signai:
double G3R.G3r2.G4r2.G4rl:

rl = Ho + pHdHa: rl = pow(rl betal):
rl += powtmHoHR betal); rl-=« 2.* pow(Ho,betal) )

rl *=( -inv_pi8al * inv_betal );
rl +=R;
f(r1 >0

{

if (r1 > 1.0001 * R)

{
printf("Error\ rl > R in 2nd quadrant\n”);

exit(4);
}
)

else rl=0.

r2 = pow(mHoHR.betal) - pow(Ho.betal);
r2 *= (-inv_pidal * inv_betal);

r2 +=R;

if(r2<0) r2=0;

f(rl>r211r2 > 1.0001 *R)
{

prind("Errory rl > r2 or r2 > R in 2nd quadrant.\n™);

ex1t(s);
}
if (2==20.) dummy2 =0.;
else
(
G4r2 =G@4,r2); G4r2 = pow(G4r2.inv_betal);
Gdarl =G@4.,rl),; G4rl = pow(Gdrl,inv_betal),

dummy2 = (Br2A(4.r2) * G4r2 - Br2A(4,r1) * Gdrl) / (B[4] * B[+]);

]
G3R =G@3,R); G3r2 =G{3.r2),

if (G3R<0.1G3r2<0)
{

prindf("Errorx Imaginary number in G3R, or G3r2\n");

exiy6);
)

(
G3R = pow(G3R.inv betal);
}

else

G3r2 = pow{G3r2.inv_betal ).

dummy!l = (Br2A(3,R) * G3R - Br2A(3.r2) * G3r2) / (B[3] * B(3]),
signal = (dummy! + dummy2) * pow(mHoHR ,beta) * HRdot;

signal /= beta21;

rewm(signal);

double half2_m(HR,HRdot,pHoHR .mHoHR)

/* second half-cycle, HR <=0 */
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double HR HRdot,pHoHR . mHoHR;

{
extern double A[11],B[11],Ho.Hd Ha;
extern double R.inv_pi8al.beta.betal inv_betal bera2l:
double r1,12,G7r1,G7R,signal;

rl = Ho - mHdHa: rl = pow(rl,betal);

rl -= pow(mHoHR ,betal); rl *= (inv_pi8al * inv_betal);
rl=R-rl;

if (r1 <0.) r1=0;

else if (r1 > 1.0001-* R)

printf("Error\: rl > R in the first quadrant\n®);

exit(3);
G7rl =G(7.r1); G7rl = pow(G7rl.inv_betal);
G7R = G(7.R); G7R = pow(G7R.inv_betal);

signal = GTR * Br2A(7R) - G7r1 * Br2A(7.r1);
signal *= ( pow(mHoHR .beta) * HRdot );
signal /= (B[7] * B[7] * beta21);

return(signal);
}

/* second half-cycle; for cases:

(a) if Hd <= (Ha - Hlstar), HR > 0;

(b) if Hd <= Ha, HR > 0 AND HR <= (Ha - Hd).
*/

double half2_p(HR HRdot,pHoHR ,mHoHR)
double HR ,HRdot,pHoHR , mHoHR;

{
extern double Ho,Ha.A[11},B{11],mHdHa:

extern double R.inv_pi8al.inv_pidal beta.betal inv_betal beta2l;
double dummy1,dummy2 signal:
double r1.r2,G8R,G8r2,G9r2,Gor1;

rl = Ho - mHdHa; rl = pow(rl,betal);

rl += pow(pHOHR ,betal); rl -= (2.* pow(Ho,betal));
rl *= (-inv_pi8al * inv_betal);

rl +=R;

if (r1 >0.)

{
if (r1 > 1.0001 * R)
{
printf("Errorx ri > R in 2nd half-cycle.\n™);
exit(4);
}
}

else rl=0.

r2 = pow(Ho.betal) - pow(pHoHR betal);
r2 *= (inv_pidal * inv_betal).

r2 +=R;

if (r2<0.) n”=0;
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if (r1 >r211r2> 1.0001 *R)

(
printf("Errory rl1 > r2 or r2 > R in 2nd half-cycle.\n");

exit(5);
}
if (2 ==0.) dummy?2 = 0.;
else
(
G9r2 = G(9.12); G9r2 = pow(G9r2,inv_betal),
GOrl =G(9,r1); G9rl = pow(GSrl,nv_betal);

dummy?2 = (Br2A(9.12) * G9r2 - Br2A(9,r1) * G 1)/ (B[9] * B[9]);
)

G8R = G(8.R); G8r2=G(8,r2"

if (GBR<0.11G8r2 <0))
{
printf("Errorx Imaginary number in G8R, or G8r2.\n");
exit(6);
}

else

{
G8R = pow(G8R,inv_betal), G812 = pow(G8r2.inv_betal);
}

dummyl = (Br2A(8,R) * G8R - Br2A(8,r2) * G8r2)/ (B(8) * B[8]);
signal = (dummy1 + dummy2) * HRdot * pow(pHoHR ,beta) / beta21;

return(signal);

/* second half-cycle; for case { if Hd <= Ha, HR > (Ha - Hd) ) only.
*/
double half2_p_II(HR ,HRdot,pHoHR ,mHoHR)

double HR ,HRdot.pHoHR , mHoHR;
(
extern double mHdHa.A[11],B{11];
extern double Ho,Ha beta,betal inv_betal bxia2l;
extern double R.inv_pi8al,inv_pidal;
double r3,G8r3.G8R ,signal;

r3 = Ho - mHdHa; r3 = pow(r3,betal);

r3 += pow(pHoHR ,betal); r3 -= ( 2.* pow(Ho,betal) );
r3 *= (inv_pi8al * inv_betal ),

r3=R-r3;

f 13<0) 3=0.;

else if (r3 > 1.0001 * R)

(
printf("Error\ 13 > R in the first quadrant.\n");

exit(3);

)
G8r3 = G(8,r3); G8r3 = pow(G8r3.inv_betal),
GS8R = G(8.R); G8R = pow(G8R,inv_betal);

signal = G8R * Br2A(8 R) - G813 * Br2A(8.r3);
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]

signal *= ( HRdot * pow(pHoHR .beta) )
signal /= (B[8] * B[8] * beta2l):

return(signal);

/* second half-cycle; for case { Hd > Ha } only. ¥/
double half2_III(HR,HRdot,pHoHR .mHoHR)

double HR ,HRdot,pHoHR . mHoHR;

{

extern double mHdHa A[11],B{11],Ho,Ha;
extern double beta,betal.inv_betal beta2l;
extern double R.inv_pi8al.inv_pidal;
double r1,G8r1,G8R.signal;

rl = Ho + mHdHa; rl = pow(rl betal):
rl = pow pHoHR betal) - rl;

rl *= (inv_pi8al * inv_betal );

rl=R-rl;

if(rl1 <0.) r1=0;
else if (r1 > 1.0001 * R)
{
printf("Errorx rl > R in the 2nd half-cycle\n™);

exit(3);

)
G8r1 =G(8.r); G8r1 = pow(G8rl,inv_betal);
G8R = G(8.R); G8R = pow(G8R.inv_betal);

signal = G8R * Br2A(8 R) - G8rl * Br2A(8,r1);
signal *= ( HRdot * pow(pHoHR ,beta) );
signal /= ( B[8] * B[8] * beta2l );

return(signal);
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> Program genKA_fftvsHa.c

ik This program calculates the different harmonics of the nonlinear

signal generated by a type-II superconductor versus ac magnetic

field amplitude, according to the generalized critical-state model.
b The results are stored in an output file.

**  The critical current density is assumed to take a generalized
bk Anderson-Kim form

e Jc = alpha x ¢ / pow( [IHI + Ho} , beta)

where alpha = flux-pinning force density ( "vhenbeta= 1),
- ¢ = speed of light,

Ho = sample dependent parar:eter,

Hd = dc magneuc field, Ha = ac field amplitude.

b In the ungeneralized K-A model, beta= 1.
b HR = H(R) = Hd + Ha.cos(wt), w = 1.

IMPORTANT: In this printout, the subroutines haif1_tseries.c, half2_tseries.c,

b halfl_p_sig.c, halfl_m_sig.c, half2_m., half2_p.c, half2_p_Il.c, and
half2_III.c are omitted; they are listed in the printout of genKA_spect.c.

*f

#include <math.h>

#include <stdio.h>

#idefine MAX 2048 /* 2048 limits N to be <= 1*/

#define N 11  /*No.ofdata= 2 1o the Nth: swer*/

#define JUMP 20 /*N=11->JUMP=20;N=10->JUMP=10; N=9-> JUMP = §;
JUMP = w / winterv = 1 / winterv; wmax = 51.2 */

#define PI 3.14159265

#define HPI 1.570796327 /* half Pi */

#define QPI0.785398163 /* quarter Pi */

#define PI2 6.283185307 /> Pix2*/

#define ROOT2 1.414213562

#define N_HARM 40 /* No. of harmonics to be available */

#define MAX Ha 500 /* Max. no. of Ha within {Hamin,Hamax}*/

#define G(NN,x) (A[NN] + B[NN] *x)

#define Br2A(NN,x) ( B[NN] * x - betal * A[NN])

double pHdHa.mHdHa, A[(11},B[11}; /* A[0]and B[0] not used */
double pi8al,pidal.inv_pi8al.inv_pidal,pi4alRbetal;
double Hlstar,Ho,Hd,Ha R beta betal,inv_betal beta2l;

main(argc argv)

int argc;
char *argv();

{
extern double B(11),pi8al,pidal.inv_pi8al.inv_pidal;
extern double Hlstar Ho,Ha, Kd,R ,mHdHa pHdHa pi4alRbetal
extern double beta,betal inv_betal beta2l;

double cycles,time[MAX],signal(MAX],*pr_ri[MAX],*ptr_im{MAX];
double half1_tseries(),half2_iseries() remain(),fft_comp{MAX](2];
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double tmin tmax.wmin,wmax.unterv,winterv,t,*freq;

double pil6al,Hamin Hamax.Hastep,alpha:

double comp_ri(N_HARM][MAX_Haj,comp_im{N_HARM][MAX_Hal,
double w_har_min[N_HARM],w_har_max[N_HARM],w_harmonic[N_HARM];
double *welch,inv_Wss. dummyimag = 0.,sqrt_inv_Wss;

double coswt,sinwt,pHoHR,mHoHR ,Hacoswt, HRdot.HR LogHa:

char string(50],file[50];

int no_data.nodatal .no_data2 .no_data21,no_Ha,hh kk.it:

FILE *outfile;

if (argc < 9) _
{
printf("Usage: Command Ho Hamin Hamax no_Ha");
prindf(" Hd H* R beta\n™);
exit(9);
)

sscanf(argv(1]," %lf" & Ho);

sscanf(argv(2)," %If".&Hamin);

sscanf(argv(3),"%If" & Hamax);

sscanf(argv{4],"%d".&no_Ha);

sscanf(argv(5]," %If" & Hd);

sscanf(argv(6],"%lf",&H]1star); /* Hlstar = penetration field */
sscanf(argv(7],"%If" .&R); /* Radius of sampie. */
sscanf(argv(8],"%If" &beta);

if (Hd <0.)

(

printf("Hdc must be positive.\n");
exit(7);

)

if (no_Ha > MAX_Ha)
{
printf("Max number of points for Ha\ %4d.\n",MAX_Ha);
exit(8);
)

printf("Enter output file name\ ");
scanf("%s" file);
outfile = fopen(file,"w");

betal =beta+ 1.; inv_betal = 1./ betal;
beta2l = ( beta + 2.) / betal;

trnin = 0.;

wmin=0.. wmax=51.2; /* Nyquist freq. */

no_data = int_pow(2N);

nodatal =no_data - 1;

no_data2 = no_data/ 2; no_data2l =no_data2 + 1:
tnterv = PI / wmax;

unax = unters * (double)nodatal:

winterv = 2. * Pl / ((double)no_data * tinterv);

if (Hamax <= 0. | Hamin <= 0.)
{
printf("Hamax and Hamin must be positive.\n");
exit(0);
J
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else

Hastep = loglO0(Hamax); :* ac H steps in log scale */
Hastep -= log10(Hamin);
Hastep /= ((double)no_Ha - 1.);

J

{req = (double *)calloc(no_data21.sizeot(double));

/* The following loop prepares for searching the correct peak
values at various harmonics of the FFT spectrum for each h0.*/
for (kk = 0; kk < N_HARM; ++kk)

{
w_harmonic{kk] = (double)(kk+1);

/* Window to search for harmonics is set below.*/
w_har_min{kk] = w_harmonic(kk] - winterv * .2
w_har_max{kk] = w_harmonic(kk] + winterv * .2

i

for (it = 0: it < no_data: ++tt)
[
L
ptr_ri{tt] = signal+tt: ptr_im{tt} = &dummyimag;
if (1 <= no_data2) *(freq+tt) = winterv * (doubleitt;
)

/* Hanning window, Numerical Recipes pp.425 */

inv_Wss =0.;

welch = (double *)calloc(no_data sizeof(double));

for (it = 0; &t < no_data; ++tt)
{
*(welch+tt) = ( PI2 * (double)ut ) / ( (double)no_data-1. );
*(welch+1tt) = cos(*(welch+tt));
*(welch+1) = 0.5 * ( 1. - *(welch+) );

inv_Wss += (*(welch+it) * (*(welch+u)));
}
inv_Wss *= (double)no_data;
inv_Wss = 1./ inv_Wss; sqri_inv_Wss = sgri(inv_WSss);

alpha = Hlstar + Ho; alpha = pow(alpha.betal);
alpha -= pow(Ho,betal); alpha /= (4.* betal * PI* R);

pi8al = Pl * 8. * alpha; pidal = 0.5 * p18al;
pidalRbetal = pidal * R * betal;
inv_pi8al = 1./ pi8al; inv_pidal = 1./ pidal;

B{10) = B(9] = B[7} = B[6] = B[4] = B[1] = -pidal * betal:
B(8] = B[5] = B(3] = B[2] = -B[1];

fprintf(ouifile,"%10.51f %9.5if %10.51f %8.51f %3dwn",Ho,Hd.alpha,R.N_HARM);
fpnntf(outfile," %9 .4lf %9.41f %5.41f 7%5.21f %4d\n”

Hamin,Hamax H 1star.beta.no_Ha);

LogHa = log10(Hamin);
for (hh = 0; hh < no_Ha; ++hh)
(
Ha = pow(10.,.LogHa);
pHdHa = Hd + Ha; mHdHa = Hd - Ha;
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for (1t = 0; u < no_data: ++tt)

{
if (u==0) ume(0] = tmin;
else umeju} = time{tt-1] + unterv;

1 = remainttime{tt],PI2); /*fold back to 1st full cycle*/
coswt = cos(t); sinwt = sin(t);

Hacoswt = Ha * coswt;

HR = Hd + Hacoswt; HRdot = -Ha * sinwt;
pHoHR = Ho + HR: mHoHR = Ho - HR;

if t<PD™ /* first HALF of cycle */
iignal[n] = half1_tsenies(HR ,HRdot,pHoHR .mHoHR);
else ! /* second HALF of cycle */
iignal{u] = half2_tseries(tHR.HRdot.pHoHR ,mHoHR):
} )
for (it = 0; u < no_data; ++tt) *ptr_ri[u) *= (*(welch+u));

/* fft_comp contains real & imag. components for both
positive and negative frequencies */
fftcompon(ptr_ri,pr_im N fft_comp);

/* See Numerical Recipes Fig.12.2.2 for ranges of ii below.
See also eqt (12.0.14) of the same book.*/
for (it = 0; tt <= no_data2; tt += JUMP)
{
for (kk = 0; kk < N_HARM: ++kk)
{
/* if within the "window" of the harmonics,...*/
if ( *(freq+u) >= w_har_min(kk] && *(freq+tt) <= w_har_max[kk] )
(

comp_rifkk][(hh] = fft_comp{a}(0] * sqrt_inv_Wss;
comp_im{kk](hh] = fft_comp(tt]{1] * sqri_inv_Wss;

if(n'!=0 && tt !=no_data2)
{
comp_rl(kk](hh] *= ROOT2:
comp_im(kk][hh] *= ROOTY,;
)

break: /*The right harmonics is found: no need for
further tesung of positon of freq */
}
)

)
LogHa += Hastep;
}

for (kk = 0; kk < N_HARM; ++kk)

{
for (hh = 0; hh < no_Ha; ++hh)
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t{'printf(outﬁle."% 13.41le ".comp_ri{kk][hh]);
if (*(hh % 5)) fprinti(outfile.\n");
} }
for (kk = 0; kk < N_HARM: ++kk)
f[or (hh = 0; hh < no_Ha; ++hh)

{

fprinf(outfile."%13.4le " .comp_im({kk][hh]);
if ({(hh % 5)) fprintf(outfile,\n");

)

)

fclose(outfile); printf("Data stored.\n");
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== Program genKA _fftvsHd.c

This program calculates the harmonic power of the nonlinear
signal generated by a hard superconductor versus dc magneuc
field, according to the generalized critical-state model.

The critcal current density is assumed to take the

=~ generalized Anderson-Kim form

Jc = alpha x ¢ / pow( [IHI + Ho] , beta)

where alphd = flux-pinning force density ( whenbeta= 1),
ik ¢ = speed of light,

Ho = sample dependent parameter.
Hd = dc magneuc field, Ha = ac field amplitud

In the ungeneralized Kim-Anderson model, beta= 1.
> HR = H(R) = Hd + Ha.cos(wt), w = 1.

IMPORTANT: In this printout, the subroutines halfl_tsenes.c, half2_tsenes.c.
halfl_p_sig.c, haif1_m_sig.c, half2_m.c. half2_p.c, half2_p_Il.c, and
half2_IlIl.c are omitted; they are listed in the printout of genKA_spect.c.

#include <math.h>

#include <stdio.h>

#define MAX 2048 /* 2048 limits N to be <= 11 */

#define N 11  /* No. of data = 2 10 the Nth power */

#define JUMP 20 /* N =11 ->JUMP = 20; N=10 -> JUMP=10; N=9 -> JUMP=5;
JUMP = w / winterv = 1 / winterv; wmax = 51.2 */

#define PI 3.14159265

#define HPI 1.570796327 /* half Pi */

#define QPI0.785398163 /* quarter Pi */

#define PI2 6.283185307 /> Pix2*/

#define ROOT2 1.414213562

#define N_HARM 40 /* No. of harmonics to be available */

#define MAX_Hd 500 /* Max. no. of Hd within (Hdmin.Hdmax)*/

#define G(NN,x) ( A[NN] + B[NN] *x)

#define Br2ZA(NN,x) ( B[NN] * x - betal * A[NN] )

double pHdHa.mHdHa A[11],B[11]; /* A{O] and B[O] not used */
double pi8al.pidal.inv_pi8al.inv_pidal,pidalRbetal;
double Histar Ho . Hd,Ha R beta.betal,inv_betal beta2l;

main(argc,argv)

int argc;
char *argv(];

{
extern double B[11],pi8al,pid4al.inv_pi8al.inv_pidal;
extern double Hlstar.Ho,Ha,Hd R,mHdHa.pHdHa, pi4alRbetal:
extern double beta,betal.inv_betal beta2l;

double cycles,ime{MAX] signal[MAX],*ptr_rl[MAX],*ptr_im[MAX].flt_comp{MAX]{Z],
double half1_tseries(),half2_tseries(Q),remain();

double tmin,tmax.wmin,wmax,tnterv,winterv.1*freq;

double pil6al,Hdmin , Hdmax.Hdstep,alpha;
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doutle comp_ri(N_HARM][MAX_Hd].comp_im{N_HARMI}[MAX _Hd};
double w_har_min{N_HARM)],w_har_max{N_HARM],w_harmonic{N_HARM];
double *welch.inv_Wss,dummyimag = 0..sqri_inv_Wss;

char string([50],file[50];

int no_data.nodatal.no_data2.no_data2l.no_Hd.hh.kk.u;

FILE *outfile;

if (argc < 9)

{

prinf("Usage\ Command Ho Hdmin Hdmax no_Hd Ha H* R betawn™);
exit(9);

} -

sscanf(argv(1],"%If".&Ho);

sscanf(argv({2],"%If" .& Hdmin);

sscanf(argv(3],"%If" & Hdmax);

sscanf(argv(4],"%d", &no_Hd);

sscanf(argv(5],"ZIf".&Ha);

sscanf(argv(6],"%If" . &Hlstar); /= Hlstar = penetration field */
sscanf(argv(7]," %" .&R); /* R = radius of the sample */
sscanf(argv(8],"%If".&beta);

if (Hdmin < 0. Il Hdmax < 0.)

printf("Hdc must be positive.\n™);
exit(7);

)
if (no_Hd > MAX_Hd)

printf("Max number of points for Hd\ %4d.\n" MAX_Hd);
exit(8);
)

pnnd("Enter output file namex "1 scant("%s" file:
outfile = fopent(file,"w");

betal =beta+ 1; inv_betal = 1./ betal:
beta2]l = (beta + 2.)/ betal;

tmin=0.,

wmin=0.; wmax =51.2; /* Nyquist frequency */
no_data = int_pow(2 N);

nodatal = no_dawa - 1;

no_data?2 = no_data/2; no_data2l =no_data2 + 1;
unterv = PI / wmax;

tmax = tinterv * (double)nodatal;

winterv = 2. * PI/ ((double)no_data * unterv);

Hdstep = (Hdmax - Hdmin) / ((double)no_Hd - 1.);
freq = (double *)calloc(no_data21.sizeof(double));

/* The following loop prepares for searching the correct peak

« alues at vanious harmonics of the FFT spectrum for each hQ. */
for (kk = 0; kk < N_HARM: ++} k)

(

w_harmonic{kk] = (double)(kk+1);

/* Window to search for harmonics is set below.®/
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w_har_min(kk] = w_harmonic(kk] - winterv * .2:
w_har_max(kk] = w_harmonic{kk] + winterv * .2;

]
3

for (1t = 0: tt < no_data: ++1tt)
{
ptr_ri{u] = signai+tt: pr_imitt] = &dummyimag;
if (it <= no_data2) *(freq+tt) = winterv * (doubleit

)

/* Hanning window. Numerical Recipes pp.425 */
inv_Wss =0.; ’
welch = (double *)calloc(no_data.sizeof(double));
for (it = 0; t < no_data: ++tt)
(
*(welch+tt) = ( PI2 * (double)tt ) / ( (double)no_data-1. ):
*(welch+tt) = cos(*(welch+tD);
=(welch+u)=0.5 * ( 1. - *(welch+ut) );
inv_Wss += (*(welch+tt) * (*(welch+tt)));

inv_WSss *= (double)no_data:
inv_Wss = 1./inv_Wss; sqri_inv_Wss = sqri(inv_Wss}.

alpha = Hlstar + Ho: alpha = pow(alpha.betal);
alpha -= pow(Ho.betal); alpha/=(4.* betal *PI*R ),

pi8al = PI * 8. * alpha: pidal = 0.5 * pi8al;
pidalRbetal = pidal * R * betal;
inv_pi8al = 1./ pi8al; inv_pidal = 1./ pidal;

B[10] = B[9] = B[7] = B{6] = B[4] = B[1] = -pidal * betal:
B(8] = B[5] = B3] = B[2] = -B[1];

fprintf(outfile," % 10.51f %9.51f <%10.51f %8.5if %3d\n" Ho.Ha.alpha R N_HARM):
fpnnif(outfile," %9.41f %9.41f %9.41f %5.2lf cddwn’
Hdmin.Hdmax H1star,beta.no_Hd):

Hd = Hdmin;
for (hh = 0: hh < nc_Hd: ++hh)
{
pHdHa = Hd + Ha: mHdHa = Hd - Ha:
for (it = 0: it < no_data: ++tt)
if (n ==0) time{0} = tmin;
else ume(tt] = umeftt-1] + unterv:
if (dmefu) < PI2) /* first cycle */
t = ume(tt];
if (ime{u] < PI) /* first HALF of cycle */

{
signal{tt] = halfl _tsenesit);
]
else /* second HALF of cycle */

anal[u] = haif2_tsenes(t),
J
}

else /* Beyond the first full cycle */
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E: remain(ume(u],PI2). =fold back 1o Ist full cvcle*/

if (t < PDH /™ first HALF of cycle */
s[ignallnl = halfl_tscnes(t);

elsi: ™ second HALF of cvcle */
éignal[u] = half2_tseries(t);

N

i
)

for (tt = 0; tt < no_data: ++1t) =ptr_ri{tut] *= (*(welch+tt));

/* fft_comp contains real & imag. components for both positive and
negauve frequencies: see comments on fftcompon.c pnintout. */
fftcompon(pur_rl,por_imN f{t_comp);

/* See Numencal Recipes Fig.12.2.2 for ranges of ii below.
See aiso eqt (12.0.13) of the same book.*/

for (tt = 0: it <= no_data2; tt += JUMP)
{
for (kk = 0; kk < N_HARM,; ++kk)
{
/* if within the "window" of the harmonics,...*/
if ( *(freq+tt) >= w_har_min{kk] & & *(freq+tt) <= w_har_max(kk] )
{

comp_ri(kk][hh] = fft_comp[u][0] * sqrt_inv_WSss:
comp_im{kk]}[hh] = fft_comp{tt][1] * sqri_inv_Wss;

if (it!'=0 && tt!= no_data?)
{
comp_rifkk]{hh) *= ROOT2:
comp_im(kk]{hh] *= ROOT2;
)

break: /*The nght harmonics is found: no need for
further tesung ot posiuon of freq */
]
J

Hd) += Hdstep;
J

for (kk = 0; kk < N_HARM; ++kk)
éor (hh = 0; hh < no_Hd; ++hh)
éprimf(outﬁle,”% 13.4le ",comp_rl{kk][hh));
if (1(hh % 5)) fprintf(outfile,"n");
| J

for (kk = 0: kk < N_HARM: ++kk)
{
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. i P

for thh = O: hh < no_Hd: ++hh)

fprintf(outtile.”% 13.3le " comp_im{kk][hh1);

if ('(hh % 5)) fpnntf(outfile.™n ™).

iclosetouttiley;
print("Data stored.\n"):

(o]
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Routine odeintl.c

- This is modified from ODEINT() of Numerical Recipes,
i (by Press, Flannery, Teukolsky and Vetteriing, Cambridge
e University Press, 1986), pp.559. a Runge-Kuua driver

with adaptive stepsize control. Integrate the 'nvar’
starting values 'ystart’ from 'x1’ to 'x2’ with accuracy
‘eps’. ’dhl’ should be set as a guessed first stepsize.

-~ 'ystart’ is REPLACED by values at the end of the integration
== interval. (*derivs)() is the user-supplied subroutine

= for calculatmy the right-hand side derivative. 'slopel’

b will store the rhs derivatives at the STARTING point 'x1°,
- (input)’ystart’.

x2 can be smaller than x1; in that case, the steps are
> AUTOMATICALLY made in the negative direcuon.

Has to be linked to rkqcrk4.c. This program was originally
e written on SUN 3/50, Unix.

zinclude <math.h>

#define MAXSTEP 5000

#define MAXSTEP1 4999 /* = MAXSTEP -1 */
#define NMAX 10 /* max no. of eqns in the set */
#define TWO 2.0

#define ZERO 0.0

#define TINY 1l.e-30

odeintl(ystart,nvarx1,x2.eps,dnhl.denivs,slopel)
double *ystartx1.x2,eps,dhl,*slopel:

int nvar,(*denvs)(;

"~ double yscal[NMAX],y[NMAX] dydx(NMAX] x.*x_ptr.dh:
double dhdydx.dhdid.dhnext,*dhdidptr,*dhnextptr:
register int nstp.ii;

x_ptr = &x;: dhdidptr = &dhdid:
dhnextpr = &dhnext:

x =xl:

dh = rabs(dhl) ;

if (x2<x1) dh*=-1.

for 1i=0): ii<nvar; ++1)
vi1] = *(ysLart+ii);

for tnstp = (; nstp < MAXSTEP: ++nstp) /*Take at most MAXSTEP steps*/
{

i*denvsj(x,y.dydx);
if (nstp == )
i
FOr (1 = ;11 < nvar; +=1)
*(slopel+11) = dydx|u};



/* Scaling used 10 monitor accuracy. This general-
purpose choice can be modified if need be. */
for (i1 = 0: 1 < nvar: ++ii)

/*  yscalfii]=1. */

dhdydx = dh * dydx(ii];

if (dhdydx < 0.) dhdydx *=-1.: /=absolute value™/
yscallii] = fabs(y[ii]) + dhdydx:

yscalfii] += TINY;
} —

/* If step can overshoot end. cut down stepsize.*/
if ( (x+dh-x2) * (x+dh-x1)) > 0.)
dh=x2-x;

/* x.*y will be replaced by new values. */
rkqc(y,dydx.nvar,x_ptr,dh,eps,yscal.dhdidpwr.dhnextptr,derivs):

if ( ((x-x2) * (x2-x1)) >=0.) /* Are we done? */
(
for (ii = 0: 11 < nvar; ++ii)
*(ystart+ii) = y(ii]; /* results */
break; /*Normal exit*/
)

else

{

dh = dhnext;

if (nstp = MAXSTEP1)
printf("Too many steps.\n™);

)

]
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i Routne rkqcrk4.c.

o This is a C version of RKQC(Q of Numerical Recipes
s (by Press, Flannery, Teukoisky and Veuerling, Cambridge
ke University Press, 1986) pp.558. It is a stepper program

that takes one "quality-controlled" Runge-Kutta step.

From Num. Rec.: Sth-order Runge-Kutta step with monitonng
of local truncation error to ensure accuracy and
adjust stepsize. Input are the dependent variable vector
'y’ of length 'n’ and its derivative 'dydx’ at the starting
value of the independent variable 'x’. Also input are the
stepsize to be attempted ’dhtry’, the required accuracy
‘eps’, the vector 'yscal’ against which the error is
scaled, and any parameters needed for the particular
function involved. On output, *y and *x_ptr are REPLACED
by their new values, "dhdid’ is the stepsize which was
actually accomplished, and 'dhnext’ is the estimated next
stepsize. 'derivs()’ is the user-supplied subroutine that
computes the right-hand side derivatves ( a function
pointer).

*/

#include <math.h>
#define NMAX 10
#define PGROW -0.20
#define PSHRNK -0.25

#define FCOR 0.066666666666667 /* = 1./15. */
#define ONE 1.
#define SAFETY 0.9

#define ERRCON 6.e4 /* =pow(4 / SAFETY, 1/ PGROW) */
rkqc(y,dydx.nx_ptr,dhtry eps.yscal.dhdidptr,dhnextpu,derivs)

doubie *y,*dydx,*x_ptr,dhtry,eps,* yscal,*dhdidptr,*dhnextptr;
int n, (*derivs)();

{

double ytemp[NMAX],ysav(NMAX],dysav[NMAX] xsav.dh;
double dhh, errmax.compare;

Int ii repeat;

xsav = *x_ptr;  /*Save inidal values.*/
for (ii = 0; ii < n; ++ii)

ysav{ii] = *(y+ii);
dysav{ii] = *(dydx+ii);
)

dh =dhtry; /* Set siepsize to the initial trial value*/

repeat = 1;
while (repeat == 1)
(

dhh=0.5* dh; /* Take two half steps */
nrrk4(ysav.dysav,n xsav,dhh,ytemp,derivs);
*x_ptr = xsav + dhh;
(*derivs)(*x_ptr,ytemp,dydx);
nrrk4(ytemp.dydx.n,*x_ptr,dhh,y,derivs);
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*x_ptr = xsav + dh:
if (*x_ptr == xsav)
{
printf("Stepsize not significant in rkqc().\n");
exit(0);
)

nrrk4(ysav.dvsav.n.xsav.dh.ytemp.derivs); /™ Take the large step */

errmax = (.:
for (if = 0; ii < n; ++i1)

ytempl(ii] == *(y+i); /™ error estimaie */
compare = ytempfii] / (*(yscal+ii));
if (compare < 0.) compare *=-1.; /* absolute value */
if (compare > errmax)
errmmax = compare:
J

errmax /= eps; /*Scale relative to required tolerance™/

if (errmax > ONE) /* Truncation error (oo large, reduce stepsize */
{
dh *= (SAFETY * pow{errmax.PSHRINKY));
repeat = 1; /* For another oy */
)
else /* Step succeeded. Compute size of next step.*/

{

repeat = Q;
*dhdidptr = dh;
if (errmax > ERRCON)

*dhnextptr = SAFETY * dh * pow(errmax PGROW);
else

)
)

*dhnextptr = 4. * dh;

for (ii = 0; ii < n; ++11)  /* Mop up 5th order truncation error.*/

*(y+ii) += (ytemp{ii] * FCOR);

Routine nrrk4.c

This is a C version of RK4() of Numerical Recipes,
pp.553.

From N.R.: Given values for 'n’ variables 'y’ and

their derivatives 'dydx’ known at x’, use the 4th
order Runge-Kutta method to advance the solution
over an interval 'dh’ and retum the incremented
variables as 'yout’, which need not be a distinct
array from 'y’. The user supplies the subroutine
(*denivs)(x,y,dydx) which returns derivatives
‘dydx’ at 'x’.

#include <math.h>
#define NMAX 10
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nrrk4(y,dydx.n.x.dh.yout.denvs) /*yout 1s the only output™/

double *y,*dydx,*yout:
double x,dh:
int n.(*derivs)();

{

double dhh.dh6,xh,yt[NMAX],dyt{INMAX],dym[{NMAX] xph:
register 1nt ii;

dhh =dh * 0.5; -
dh6 = dh * 0.166666666666667; /™ dh/6.*/
xh = x + dhh:

for (it = 0; i < n: ++ii) /* 1ststep */
{
vi[ii] = *(y+ii) + dhh * (*(dydx+ii));
}
(*derivs)(xh,ytdyt); /* 2nd step */
for (11 = 0: il < n; ++11)
{
yi(ii} = *(y+ii) + dhh * dyt[ii];
)
(*denivs)(xh,yt,dym); /* 3rd step */
for (1i = 0; 1 < n; ++i1)
{
yt(ii] = *(y+ii) + dh * dym{ii];
dymf{ii] += dyt(ii];
}

xph = x + dh;
(*derivs)(xph,yt,dyt); /* 4th step */
for (ii = 0; ii < n; ++ii) /* Accumulate increments with proper weights */
{
*(yout+ii) = *(y+ii) + dh6 * ( *(dydx+1u)
+ dyt[ii] + dym(u] + dym{u});
)
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- Funcuon fftcompon.c

== This is the basically an FFT program [ wrote in 1986

il (ie. fftl.c in library FFT). It outputs the real and

== imaginary fourier components of the input data.

Reference: "The Fast Fourier Transform.” by E. Oran Brigham.
== “‘rennce-Hall (1974).

=w

The data are assumed to be composed of complex numbers.
== Program checked on Mar 12, 1988.

*/

zinclude <math.h>
zdefine PI 3.141592654
#define P12 6.283185307

~ pur_rl is the pointer to the real part of the input data;

** ptr_im is the pointer to the imaginary part of the input data;

number of (complex) input data points = 2 to the "gamma’th power:

x1 is the (2 to the gamma)x(2) array which contains real and imaginary
components for both positive and negative frequencies.

==
=
=

=/

fficompon(ptr_ri,ptr_im,gamma.x1)

double *pur_ri[],*pr_im(],*x1;
unsigned gamma,

{
double *w.cplx_dum?2[2],cplx_dum3[2],cpix_dum1({2];
double *x0.2rgu;
unsigned samp_no,samp_no2.samp_no22;
unsigned pindex kindex lindex.get_p(),pindex2 kindex2:
nt kk jj,ii,step,dual_space.ii?;
int kk_max.dual_space2.
char *calloc();

samp_no = int_pow(2,(int)gamma); /* No. of sampies input */
samp_no22 = samp_no * 2;
samp_no2 = samp_no / 2;

x0 = (double *)calloc(samp_no22.sizeof(double));
w = (double *)calloc(samp_no.sizeof(doubie));

if (x0==0 Il w==0 Il x1==0)

prind("Waming\: Not enough free memory.\n");
™ exau@Q); */
}

for (i1 =0; ii<samp_no; ++it)
{
w2=u*2;
*(x0 + 112) = *prr_rifii];
*(x0 + 112 + 1) = *pr_im[ii];

}

[
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sor (pindex=0: pindex < samp_no2: +=pindex)
{
pindex2 = pindex * 2;
argu = PI2 * (doubie)pindex / (double)samp_no:
*(w+pindex2) = cos(argu);
*(w+pindex2+1) = sin(argu);

]

for (lindex=1: lindex <= gamma; ++lindex)
{
dual_space = int_pow(2,(int)(gamma-lindex));
kk_max = samp_no2 / dual_space:
dual_space2 = dual_space * 2,

step = 0
for (kk = 0: kk < kk_max: ++kk)
{
for (1i=0; iicdual_space; ++1i)
{
kindex = ii + step;
kindex2 = kindex * 2:
if (kindex > (samp_no - 1))
{
printf("kindex too large\n"):
}

pindex = get_p(kindex, gamma, lindex);
for (1j=0; jj<=1; ++ij)
(
cpix_dum2(jj] = *(w + 2*(pindex % samp_no2)+jj);

cpix_dum3({jj] = *(x0 + kindex2 + dual_space2 + jj);
}

comp_muit(cplx_dum?2.cpix_dum3.cpix_duml):
for (3j=0: Ji<=1: +=+1j)

{
*(x1 + kindex2 + }j)
= *(xO+kindex2+ijj) + cplx_dum1(jj};
*(x1 + kindex2 + dual_space2 + jj)
= *(xO+kindex2+jj) - cpix_dum1(jj];
}
}

step += dual _space2;
I

for (11=0; U < samp_no: ++1u}
{
12 =i *2;
for (jj=0; jj<=1: ++ij)
{

=(x0 + u2 + jj) = *(x1 +1i2 +]j);

J
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cfree(w);
unscramble(x0,gamma.x1);
cfreetx0); /* added on 9/5/°988 */

1
)

unscramble(x,gamma fourier) /* checked 9/21/86 */

double *x, *fourier;
unsigned gamma:

{
int i kk 1l ,num,gammal 12 kk2:

num = int_pow(2,(int)gamma);
gammal = (int)gamma - 1,

for (kk=0; kk < num: ++kk)

{
I=0;
for (ii=0; i1 <= gammal; ++ii)

{
U =111 ((kk>>ii) & 1) << (gammal -ii));
}

kk2 =kk * 2; N12=1=*2;
*(fourier + 112) = *(x + kk2);
*(fourier + 112 + 1) = *(x + kk2 + 1);
}
}

unsigned get_p(k,gamma,l)
unsigned k, gamma, I;
{
unsigned k1, p, kdum:
int u;
kl =k >> (gamma - 1);

p=0:

for (1i=0; ii <= (gamma - 1); ++ii)
{
kdum = ((k1 >> i1) & 1) << (gamma - | - ii);
p = p | kdum;
)

reurn(p);
J

comp_mult(z1,22.2122) /* Multiply complex nos. z1 and 22 10 become z122. */
double z1(],z201,2122(};

{
2122[0] = z1[0] * 22([0] - z1{1] * 22(1};
2122[1] = z1{0] * z2[1] + z1[1] * 22[0O};
}

ot
O
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Int_pow(x,n}) /® X 10 the nth power */

1nt X.n;

{
l

inti, ans = 1;

for (ii=1; li<=n: ++1i)

{
ans *=x:
}
return(ans);
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Appendix C GPIB Operation Details —
Programs for Data Acquisition

In this appendix, we provide the computer programs which the author has written
and actually used to take and plot some of the data presented in Chapter 4.

A list of the programs used for experimental data acquisition is given in Table C.1.
Programs for plotting out the data taken by the programs in Table C.1 are listed in Table
C.2. In Table C.3, some general purpose routines that are written to control some of
the electronic apparatus used in the experiments, or to make graphics on the video and
the plotter, and needed for the some of the programs listed in Tables C.1 and C.2, are

also listed. All these programs are written in Turbo C and are given in their complete

form later in the appendix.

Table C.1

Programs for experiment data acquisition.

Program name

Purpose(s)

sadump.c

" Take the spcctrum—a-;l—d- all other information currently on the
screen of the HP 3585A spectrum analyzer and store the data
in a file.

pnf_hl.c

Take specified harmonic power P(nf) as a function of ac field
amplitude and store the data in a file.

xpxpphln.c

Take the inductive and dissipative components of the ac
susceptivity as a function of ac field amplitude and store the
data in a file. The superposing dc magnetic field is constantly

monitored by a DMM.

xpxpphlt.c

Same as xpxpphln.c, except that thermocouple voltage, instead
of dc magnetic field, is being monitored.

Table C.2

Graphics programs for outputting experiment data.

Program name

———

_ Purpnse(s)

pltspc.c Reads a data file written by sadump.c and output the data to
HP 7225B.
plotpnf.c Reads a data file written by pnf_hl.c and output the data to the
video monitor.
hplotpnf.c Same as plotpnf.c, except that the data are output to HP 7225B.
vplotfl.c Reads a data file written by xpxpphln.c and output the data to

the video monitor.
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Table C.3

General purpose routines used for electronics and graphics.

| Program name r Purpose(s) -
keithley.c Routines for controlling Keithley 197 DMMs through National
Instrument GPIB-PCILI.
par5209.c Routines for controlling PARC 5209 lock-in amplifiers through
National Instrument GPIB-PCIL.
hp3325.c Routines for controlling HP 3325A synthesizers through
National Instrument GPIB-PCII.
hp3585sa.c Routines for controlling HP 3585A spectrum analyzers through
National Instrument GPIB-PCII.
hpgraph.c Graphics routines for HP 7225B plotter, through National
Instrument GPIB-PCIL
v_graph.c Turbo C graphics routines for the video monitor.
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/*
*x
* %
%
o
*x

* %

*/

Program: sadump.c

This program asks HP3585A spectrum analyzer to dump
all current information on the analyzer’s screen to

the computer thru the National Instrument GPIB-PCIL

This program has to be linked with \gpib-pc\tc\tcibs.obj.

#include <stdio.h>
#include "declh”
#define LENGTH 12012

main()

{

FILE *file;
char string{100],rd[28],Ingstg{ LENGTH];
int ud,ii;

printf("Enter output filename: ");
scanf("%s" string);

file = fopen(string,"w");

printf("Manually set the conditions of SA1; hit <CR> when ready.");
getchar();
getchar();

ud = ibfind("sal");

ibwrt(ud,"D7".2);
ibwrt(ud,"T4" 2);

ibrd(ud.rd,16);
for (ii=0; i< 16; + +1i)
fprintf(file,"%c" .rd{ii]);

ibrd(ud.rd,27);
for (1=0; 1<27; + +1ii)
fprintf(file,"%c" rd[i1]);

ibrd(ud,rd,11):
for (i1=0: i< 11, + ~11)
fprintf(file,"%c".rd[ii]);

ibrd(ud.rd,17);
for (i=0; i<17; ~ +ii)
fprintf(file." %c" rd[ii]);

ibrd(ud,rd.16);

for (11=0; ii<16; + +1)
fprintf(file,"%c" rd{ii});
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ibrd(ud.rd.24):
for (i1=0: i< 24 - ~1i)
fprintf(file,"Szc" rd[1i}):

ibrd(ud.rd,22);
for (1=0; i<22: ~ ~1)
fprintf(file."%%c" rd[ii]);

ibrd(ud.rd,13);
for (ii=0; ii<13: + - 1ii)
fprintf(file."%c".rd[ii]);

ibrd(ud.rd.13):
for (ii=0; i< 13; + ~ii)
fprintf(file,"%c" rd[ii]);

ibrd(ud.rd,14);
for (1i=0: i<14; + +11)
fprintf(file."%c".rdfii});

for (1i=0; i<LENGTH: -~ ~1i1)
Ingstgfii] = "

ibwrt(ud."D3".2);
ibwrt(ud,"T4".2);

ibrd(ud.lngstg. LENGTH);
for (1=0:; i< LENGTH: - +11)

fprintf(file."%%c" Ingstg[ii]):

if ( (1%60) == 0)
fprintf(file.” n"):

}

fclose(file); ibloctud):
printf("Use vpltspe (video) or pltspe (plotter) to plot the results.\n"):



Pnf Hl.c: This program 1s designed to take data

for Expcrimcms measuring harmonic power P(nf) (ot
high-Tc¢ superconductors) vs. ac magneuc field H1,
H1 field is stepped in logarithmic scale.

This program 1s configured bv Harry Lam in August. 12X
it has to be linked wath hp3358Ssa.c. hp3325.c, keithiey.c,
and \gpib-pcitertaibs.oby.

=include <stdio.h>
#include <math.h>
#include <dos.h>
#inciude “"declh”
#define REAL float

int board _ud:

main( )
i
int udsvnl.udsal,udvmdc.udvmac:
it vesno.rngindex.harm_no.voltam:
tnt samp_no.i]jW.AVE_NO.coll.mask. SAMP14;
int sa_alnum().sasetrng().sa_manF(); /* Routines for spec. anlyzer */

REAL synparam(),synphase().svnampl(); '* Routines for synthesizers */
REAL synfreq();

REAL sa_mkamp(),sa_Rconv(): /* Routines for lock-in */

REAL keith_rd(); /* Routines for Keithley DMM */
REAL rngivl.P1f Pnf fundfreq.harmireq;

REAL ac_monR.ac_calib.ac_ monV HI1:

REAL dc_monR.dc_calib.dc_ monV.Hdc:

REAL syn_ph.offset.syn_amp.syn fref mindrv_max:

REAL maxNH1,ampli[,ampli[?..lo.gsmp._logslcp:

char ref]15].mkrfrq{26],dbdiv{ 10|.range| 16|, mkramp|15];
char ctrfrq|23],spanj21].rbw{12].vbw{12},st[13];

char osunit{S5].func{10].hivolt{11].synunit|6].synfunit{4];

char Vokay,Vunit{4],dummy|{5],lastpt[10],temp{10};

char filename([20},sample{20],date|20],receiver[30];

char overwrt{5},append.comment[80],c_vesno[S},term_yn[5];
char NAD vn|5],dc_vesno|5];

FILE *outfile;

printf("\007\n\nEnter output filename: ");
scanf("%s" filename);

printf("\007\n\New file or OVERWRITE ? \(\"yes\" or \"no\"\) ");
scanf("%s".overwrt);

if (overwrt[0] ==Y && overwrt[]l] = = ‘¢’ && overwrt|2] == 's')
{
outfile = fopen(filename,"w"); append = ’'n’;
}
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Cise
i
\

outfile = topentfilename. a”): append = v
printf("\007\n** Appending to previously existng file. **in"):

3
f

if couttile == NULL)

!
l

printf("File cannot be open.\n"):
exat(0):

!
f

if (append == "n")
{
printf("\0O07\nEnter sample number (20 characters max): ");
scanf("“7s".sample):

printf("\007\nEnter today’s date (mon-day-vear): ");
scanf("¢7 5" date):

printf("\007\nEnter sample temperature (Kelvin): ");
scanf("%s".temp);

printf("\007\n(1) One-coil receiver? (2) Two-coil receiver? "),
scanf("%d",&coil);
if (coil == 1)
sprintf(receiver,"One-coil receiver");
else
sprintf(receiver,"Two-coll receiver”);
H

printf("\007\nMake sure that synth.1. spec. analyzer and vm2 are on.");
printf(" Hit <CR> when ready.\n");
getchar(); getchar();

printf("\007\nWill vm1 be used to monitor Hdc? ('y’ or 'n’) ");
scanf("%s".dc_vesno);
if (dc_vesno[0] == "y’)
{
udvmdc = keith_in("vm1");
printf("\007\nMake sure vl is on and set correctly.\n");
printf("\007\nEnter the value");
printf(" of the dc monitoring resistance in Ohms: ");
scanf("%f",&dc_monR);,

printf("\007\nEnter calibration of dc-coil in H(G) / I(A): "),
scanf("%f".&dc_calib):
!
else
{
printf("\007\nEnter superposing dc magnetic field (Gauss): ");
scanf("%f" . & Hdc);
}
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getchar();

board_ud = ibfind("gpib0"):

udsynl = ibfind("synl");

udsal = ibfind("sal"}; udvmac = keith_in("vm2");
ibsic(board_ud);

mask = ERR | TIMO | SROI | RQS | CMPL:
ibtrap(mask.2); /* 1. off: 2: record but no trap; 3: both record
and trap */

printf("\007\nEnter harmonic number wanted: ");
scanf("%d".&harm_no);

prinuf("\007\nWill NAD amplifier be used? (’y’ or 'n’) ");
scanf("%s",NAD_vn):
if (NAD_Yﬂ[O] == ’y‘)

printf("\007\nls synl’s ");

printf("output terminated by 50 Ohms? (’y’ or 'n’) ");
scanf("%s".term_vn);

if (term_yn[0] == "y) drv_max =
else drv_max
}

i
19 4

else

{
printf("\0O7\nEnter max. synl's Vpp: ");
scanf("%f",&drv_max);
}
printf("\00T");
printf("\nComputer’s ready to read gen’l settings of synthesizer 1:\n");
printf("hit <CR > if synthesizer 1 is set.\n");
getchar(); getchar();

offset = synparam(udsyn1.osunit.func.hivolt);
syn_f = synfreq(udsynl.synfunit);

/* Convert syn_{ into kHz for fundfreq, if needed */

switch(synfunit[0])
{
case 'H:  fundfreq = svn_f / 1000.; break:
case 'k’ fundfreq = syn_f: break:
case ‘M  fundfreq = syn_f * 1000
}

harmfreq = fundfreq * (REAL)harm_no;

printf("\007Computer’s ready to read gen’l settings of HP3385A; ");
printf("hit <CR > if it is sel.”);

getchar();

rngindex
= sa_alnum(udsal.ref.mkrfrq,dbdiv.range,mkramp,ctrfrq,span.rbw.vbw.st);

rogivl = sa_Rconv(rngindex);
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printf("\007\nls ac current monitored by vm2 as voltmeter \(1\)"):
printf(" or ammeter \(2\): ");

scanf("%d",&voltam);

if (voltam == 1)

{

printf("\007\nEnter the value of ");

printf("the ac monitoring resistance in Ohms: ");
scanf("%f",&ac_monR);

}

printf("\007\nEnter calibration of ac-coil in H1(G) / Irms(A): ");
scanf("%f".&ac_calib);

ibloc(udsynl);

printf("\nSynthesizer 1’s settings:\n");

printf("offset = %6.2f %s, %s, %s, %11.4f Ps\n"
,offset,osunit,func,hivolt,syn_f,synfunit);

printf("\nlnitial spec. analyzer settings:\n");

printf("%s, %s, %s, %s\n".ref mkrfrq,dbdiv.range);

printf(" 7%s, %s, %s. %s\n",mkramp,ctrfrq,span,st);

printf(' %s, %s\n",rbw,vbw);

printf("\007\nHow many points to average? ");
scenf("%d" ,&AVE_NO);

if (append == 'n’)

{
printf("\007\a");
printf("Want to add some comment ( < 80 char, 'y’ or 'n’)? "),
scanf("%s",c_yesno);
if (c_yesno[0] =="Y)
{
getchar();
printf("Comment: "); gets(comment);

}

fprintf(outfile,"File %s\n"filename);
fprintf(outfile."Date: %s, Sample: %s, Temp: %s K\n"
,date.sample,temp);

if (dc_yesno[0] =="y)

fprintf(outfile,"Dc magnetic field monitored.\n");

fprintf(outfile,"Dc mon. resistance (Ohms): %7.3An".dc_monR);

fprintf(outfile,"Calibration of dc-coil H(G)/I(A): %83f\n",
dc_calib);

}

else
fprintf(outfile,"Dc magnetic field not monitored.\n");

if (NAD_yn[0] == 'y)

fprintf(outfile,"NAD amplifier used. ");
else

fprintf(outfile,'NAD amplifier not used. ");
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fprintf(outfile,"%s\n",receiver);
fprintf(outfile,"\nSynthesizer 1’s settings:\n");
fprintf(outfile,"offset = %6.2f %s, %s, %s, %11.4f Zos\n"
,offset,osunit.func.hivolt,syn_f,synfunit);
fprintf(outfile,"\nlnitial spec. analyzer settings:\n");
fprintf(outfile,"%s, %s, %s, %s\n".ref,mkrfrq,dbdiv,range);
fprintf(outfile,"%s, %s, %s\n".mkramp,ctrfrq,span);
fprintf(outfile,"%s, %s, %s\n",st.rbw.vbw);

if (voltam == 1)
fprintf(outfile,"Ac mouitoring resistance in Ohms: %7.3f\n"
,ac_monR);

fprintf(outfile,
"Calibration of ac-coil in HI(G) / Irms(A): %8.3f\n\n"
,ac_calib);

fprintf(outfile,"# of ave. / data point = %d",AVE_NO);
fprintf(outfile,”, harmonic no. = %3d\n",harm_no);

if (c_yesnoj0] =="y’) fprintf(outfile,"%s\n\n",comment);

fprintf(outfile,"*****\n");
if (voltam == 1)

fprintf(outfile,’ No ac_monV syn_amp Hdc(G) );
else

fprintf(outfile,’” No ac_monA syn_amp Hde(G) )

fprintf(outfile," P(%2df)(dBm)  H1(G)\n\n",harm_uo);
}

ibwrt(udsynl,"”AM".2); ibloc(udsynl);

printf(*\007Input the starting synl ampitude (volts): ");
scanf("%f",&amplit);

logamp = logl0(amplit);

printf("\007Input max. H1 desired: ");
scanf("%f",&max H1);

printf("\007Input no. of samples per decade: "); .
scanf("%d".&SAMP14);

printf(*\007\007\007\007\n");
printf("About to start taking data.\n\n");
printf("\007\nHit <CR> when ready.");
getchar();  getchar();

logstep = 1. / ((REAL)SAMP14); /* samples per decade */
samp no = 1:
for (53)
{
amplit = pow(10..logamp);
if (amplit > drv_max)
{
ibloc(udsyn1);
printf("\007\007\007\nMANUALLY reset NAD amplifier ");
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/t

printf("input level and synth. 1 amplitude.\n");
printf("\nEnter new synl amplitude ");
printf("(in volts, or 99999 to quit): ");
scanf("%f",&amplit);

if (amplit > drv_max && amplit <= 40.)

{
printf("\007\007\007\nEntry");
printf(" larger than %6.2f volts, reenter to reconfirm: "
,drv_max);
scanf("%f",&amplit);
}
logamp = logl0(amplit);
if (amplit > 40.) Dbreak;

}
sa_port(udsal,2); synsetam(udsynl,amplit);
sa_port(udsal,l); sleep(1);

sa_manF(udsal,fundfreq);
for (ii=0; ii < 11; + +1i1)

{
P1f = sa_mkamp(udsal);

if (P1f > (rnglvl - 10.) && rngindex < 12)
{
+ + rngindex; sasetrng(udsal,rngindex);
roglvl = sa_Rconv(rngindex);

}
else if (P1f < (rnglvl - 40.) && rngindex > 1)
{

--rngindex; sasetrng(udsal,rngindex);
rgivl = sa_Rconv(rngindex);
}

else if (P1f > roglvl && rngindex == 12)

printf(*\007\007\007\nWARNING: ");
printf("Input to spec. analyzer is too large!!!\n");
printf(*Correct it and hit <CR> to continue.\n");

ibloc(udsal);
fclose(outfile), outfile = fopen(filename,"a");
getchar(); getchar(); break;
}

else
break;

}

sa_manF(udsal,harmfreq); sleep(1);

Pnf = sa_mkamp(udsal);
if (Pof > (rnglvl - 6. harm_no) && rngindex < 12)

{

+ +rogindex;
+ +rngindex; sasetrng(udsal, rngindex);
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ragivi = sa_Rconv(rngindex); sleep(1):
}

Pnf = 0.;
for (ii=0; ii<AVE_NO; ++ii) Pof += sa_mkamp(udsal);
Pnf /= ((REAL) AVE_NO);

/* Read ac monitor voltage (voltam = 1) or current (2) */
ac_ mouV = 0.;
for (ii=0: ii < (AVE_NO /2 + 1); ++ii)
ac_monV + = keith _rd(udvn:ac,Vunit,Vokay); /* in ac rms * /

ac_monV /= ((REAL)(AVE_NO /2 + 1))

if (voltam == 1) H1 = ac_monV / ac_monR * ac_calib;
else
{
if ( (ac_monV >= 1.8e-4 && ac_monV <= 2.1e-4) ||
(ac_monV >= 1.8e-3 && ac_ monV <= 2.1e-3) ||
(ac_monV >= 18e-2 && ac_| monV <= 2.1e-2) ||
(ac_monV >= 18e-1 && ac_ “monV < = 2.1e-1) ||
(ac_monV >= 18 && ac_ monV <= 21))

printf("\007\007\007\nAmmeter is getting underranged,”);
printf(" reset and hit <CR>.");

getchar(); continue;
Hi =}ac_monV * ac_calib;
}
if (dc_yesno[0] == V)
c{ic monV = 0,

for(u 0:i < (AVE_NO /2~ 1) ++11)
dc_monV + = keith _rd(udvmdc. Vunit,Vokay); /* dc Volts */

dc_monV /= ((REAL)(AVE _NO /2 - 1));
Hdc = dc_monV / dc_monR * dc_calib:
!

syn_amp = synampl(udsynLl.synunit);

if (volt == 1)

printf("\007\nsamp_no ac_monV syn_amp Hdc(G)");
else

printf("\007\nsamp _no ac_monA syn_amp Hdc(G)");
printf("  P(%2df)(dBm)  H1(G)\n\n".harm_no);

printf("%4d %115 %9.4{%5s %93e “%llSe %9.3e\n”
,samp_no.ac_monV syn_amp,synunit. Hdc.Pnf.H1);

fprintf(outfile,
"orAd 0.0 4e L04f%ZSs %93e O2115e 9%9.3e\n"
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,samp_no.ac_monv,sy‘n_amp,synuni[.Hdc,Pnf.H1);

if ((samp_no % 5) == 0)

{
fclose(outfile);
outfile = fopen(filename,"a");
}
if (H1 > max_HI) break;

logamp + = logstep;
+ +samp_no;

}

ibloc{udsal);

fprintf(outfile,"9999");

fclose(outfile);

synsetam(udsyn1,0.001); ibloc(udsvnl);
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XpXppH1N.c: This program is a newer version of
** XpXppH1.c, which is designed to take data

= for experiments measuring X'(1f) and X"(1f) (ac

=* susceptibility of high-Tc superconductors) vs. ac

= magnetic field H1.

* While XpXppH1.c stops after every data points to

= allow the experimenter to manually siep the ac magnetic
** field and readjust the phase between the master and slave

synthesizers (synl & 2), this newer version automatically

steps H1 and take a new data point. This new version

** assumes that the NORMAL sine output of "syn2", a HP3325A
** synthesizer, is driving  the ref AC input of PAR 5209 lock-in.

** This program is configured by Harry Lam in August, 1990;
** it has to be linked with par5209.c, hp3325.c, keithley.c,
i and \gpib-pc\tc\tcibs.obj.

= This program is written in Turbo C. [cf. sleep() of Turbo C.]
*/

#include <stdio.h>
#include <math.h>
#include <dos.h>
#include "decl.h”
#define REAL float

int board_ud;
main()

{

int udsynl,udsyn2 udlia,udvml;

int yesno,outquad,in_sen,out_semn;

int samp_no,ii,jj,w,AVE_NO,coiLmask.SAMPl4;

int read_set(),shftquad(),lisetsen(); /* Routines for lock-in */

REAL synparam(),synphase(),synampl(); /* Routines for synthesizers */
REAL synfreq();

REAL rd_phase(),sig_out(),rd_timec(); /* Routines for lock-in */
REAL keith _rd(); /* Routines for Keithley DMM */
REAL in_sig,ou[_sig,'mphase,oulphasc,ﬁl[_f,ref_f,timec;

REAL ac_monR,ac_calib,ac_monV,H1;

REAL syn _ph,offse[,syn_amp,syn_f,ref_min,rcf_max,drv_max;

REAL max_H1,amplit,amplit2 logamp,logstep;

char d__rcs[8],f_mode[S],lincﬁlt[S],rolloﬂ'[B],ﬂtfunc[10];

char osunit[5],func]10],hivolr(11],synunit[6],synfunit[4];

char Vokay, Vunit{4],dumm'/{5],lastpt[10},temp(10],Hdc(10];

char filename([20),sample{2()),date[20},receiver{30];

char overwrt[5),append,comment[80},c_vesno{S],term_yn(5];

char NAD_yn(5];

FILE *outfile;

printf("\007\n\nEnter output filename: “);
scanf("%s" filename);
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printf("\007\n\New file or OVERWRITE ? \(\"yes\" or \"no\"\) ");
scanf("%s",overwrt);

if (overwrt{0] = = 'y && overwrt[1] == '’ && overwrt[2] ==s’)
outfile = fopen(filename."w"); append = 'n’;
}

else
outfile = fopen(filename,"a"); append = Y}

printf("\007\n** Appending to previously existing file. **\n");
}

if (outfile == NULL)

printf("File cannot be open.\n");
exit(0);
}

if (append == 'n’)

printf("\007\nEnter sample number (20 characters max): ");
scanf("%s",sample);

printf("\007\nEnter today’s date (mon-day-year): ");
scanf("%s",date);

printf("\007\nEnter sample temperature (Kelvin): ");
scanf("%s",temp);

printf("\007\nEnter superposing dc magnetic field (Gauss): ");
scanf("%s",Hdc);

printf("\007\n(1) One-coil receiver? (2) Two-coil receiver? ),
scanf("%d",&coil);
if (coll == 1)
sprintf(receiver,"One-coil receiver");
else
sprintf(receiver,"Two-coil receiver”);

}

printf(*\007\nMake sure that synth.1 & 2, lock-in and DMM are on.");
printf(" Hit <CR> when ready.\n");

getchar(); getchar();

board ud = ibfind("gpib0");

udsynl = ibfind("synl1"); udsyn2 = ibfind("syn2");

udlia = ibfind("La"); udvm1 = keith_in("vm2");

ibsic(board_ud);

mask = ERR | TIMO | SRQI | RQS | CMPL;

ibtrap(mask,2); /* 1: off: 2: record but no trap; 3: both record
and trap */

printf("\007\oWill NAD amplifier be used? ('y’ or 'n’) ”);
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scanf("%s" NAD_vn);
if (NAD_ya[0] == '¥)

{

printf("\007\007\nNormal range outputs are assumed ");
printf("for BOTH synthesizers!\n");

printf("\007\nAre BOTH synl ");

printf("& syn2 outputs terminated by 50 Obms? ('v’ or 'n’) ");
scanf("%s"term_vyn);

if (term_vn[0] =="y)

{
ref min = 1.0; ref max = 14, drv_max = 4.
}
else
{
ref_ min = 0.6; ref max = 7 drv_max = 2,
}
}
else
printf("\007\nHigh voltage outputs are assumed for ");
printf("BOTH synthesizers!\n");
printf("\007\nEnter max. synl’s Vpp: ");
scanf("%f".&drv_max);
ref min = 1.0; ref max = 14
}
printf("\00T");

printf("\nComputer’s ready to read gen’l settings of svnthesizer 1;\n");
printf("hit <CR> if synthesizer 1 is set.\n");
getchar(); getchar();

offset = synparam(udsynl.osunit.func,hivolt);
sva_f = synfreq(udsynl,synfunit);
printf("\007Computer’s ready to read gen’l settings of PAR5209: DR

printf("hit <CR> if lock-in is set.\n");
getchar();

read_set(udlia.d_resf mode &filt_f.&ref_flinefilt.rolloff fitfunc):
timec = rd_timec(udlia):

printf("\007Set the ref. phase to the IN-PHASE value, then hit <CR>.\n");
getchar();

inphase = rd_phase(udlia);
in_sig = sig_out(udlia,&in_sen);

outquad = 1; /* No. of quad. out-phase from in-phase */
shftquad(udlia.outquad): /* Default: Shift 1 quadrant */
printf("\007See if vou like this OUT-PHASE (1),");

printf(" or add another 180 deg (0): ");

scanf("%d".&yvesno);
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if (vesno == 0)

{
shftquad(udha.2); /* shift 2 more quads */
outquad = -1;

outphase = rd_phase(udlia);

printf("\nin-phase = %6.2f, out-of-phase = %6.2f\n",inphase.outphase):

printf("\007\nEnter the value of the ac monitoring resistance in Ohms: ");

scanf("%f",&ac_monR);

printf("\007\nEnter calibration ot ac-coil in H1(G) / Irms(A): ");
scanf("%f",&ac_calib);

ibloc(udsynl);

printf("\nSynthesizer 1’s settings:\n");

printf("offset = %6.2f %s, %s, %s, %11.4f %s\n"

,offset,osunit func,hivolt,syn_f,synfunit);

printf("\nLock-in settings:\n");

printf("%s, %s. line filt: %s, %s, %s\n"
,d_res,f_mode,linefilt.rolloff fltfunc);

printf("filt. freq. = %8.3e, ref. freq. = %8.3¢, "filt_fref f);

printf("timec = %?7.2e s\n\n",limec);

lisetsen(udlia,in_sen);
shftquad(udlia,-outquad);

printf("\OO7How many points to average? ");
scanf("%d",&AVE_NO);

if (append == 'n’)
{
printf("\007\n");
printf("Want to add some comment ( < 80 char, 'y’ or 'n")? ")
scanf("%s",c_yesno);
if (c_yesno[0] == "¥)
{
getchar();
printf("Comment: "); gets(comment);

}

fprintf(outfile,"File %s\n" filename);

fprintf(outfile,"Date: %s, Sample: %s, Temp: %s K. Hdc: %s G\n"

,date sample.temp,Hdc);

fprintf(outfile,"%s\n" receiver);

fprintf(outfile,"\nSynthesizer 1 (slave) settings:\n");

fprintf(outfile,"offset = %6.2f %s. %s. %s. %11.4f Zs\n"
,offset,osunit.func.hivolt,syn_f,synfunit);

fprintf(outfile,"\nLock-in settings:\n"});

fprintf(outfile,"%s, %s, line filt: %s, %s, %s\n"
,d_res,f mode,linefilt.rolloff,fltfunc);

fprintf(outfile,"filt. freq. = %83e, ref. freq. = %8.3e, "
filt_fref f);

fprintf(outfile,"timec = ¢ 7.2e s\n\n" timec);
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fprintf(outfile."In-phase = 7 6.2f. out-of-phase = <7 6.2{"n
.nphase.outphase )

fprintf(outfile.”Ac monitoring resistance in Ohms: 773 n\n"
.ac_monR):

fprintf(outfile.
"Calibration of ac-coil in HI{G) / IrmstA): 78.3f0\n\n
.ac_calib):

tprintf(outfile."# of ave. / data point = “zd\n\n"AVE_NO):
if (c_vesno[0] == "v) fprintf(outfile."¢s\n\n".comment):

fprintf(outfile."*****\n"):

fprintf(outfile,” No ac_monV syn_amp svn_ph"):
fprintf(outfile.” in_sig(mV) out_sigmV)  HI(G)\n\n'):
}

printf("\0O7\007\007\007\n"):
printf("About to start taking data. ensure ");
printf("ref. phase of lock-in is IN-PHASE (¢26.10!\n\n".inphase ).

ibwrt(udsynl."AM".2);  ibloc(udsvnl);
printf("\007Input the starung synl ampltude (volts): ");
scanf("%f" &amplit);

:ogamp = logl0(amplit);

printf("\007Input max. H1 desired: ");
scanf("%f".&max H1):

printf("\007Input no. of samples per decade: ");
scanf("zd".&SAMP14):

printf("\007\nHit <CR > when ready. (IN-PHASE ¢27.2f first)".inphase ):
getchar(); getchar();

logstep = 1. / ((REAL)SAMP14); /* samples per decade */
samp _no = I
for (1)
{
amplit = pow(10..logamp};
if (amplit > drv_max)
{
ibloc(udsyn1);
printf("\007\007\007\aMANUALLY reset NAD amplifier "):
printf("input level and synth. 1 amplitude.\n");
printf("\nEnter new synl amplitude ");
printf("(in volts, or 99999 to quit): "),
scanf("%{",&amplit);
if (amplit > drv_max && amplit <= 40.)
{
printf("\007\007\007\nEntrv");
printf(" larger than %6.2f volts, reenter to reconfirm: "
,drv_max);
scanf("%f",&amplit):
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1
Y
logamp = logl0(amplit):
if (amplit > H).) break:

}

/* Choose a corresponding ac output of the master synthesizer,
which is driving the "AC IN" of the lock-in reference, so
that the phase of the reference will change correspondingly
with that of the slave synthesizer, which is driving the
ac magnetic field. */

amplit2 = amplit:
if (amplit2 < ref min) /* too small for lock-in ref */

{
for (jj=0: jj<4 ++]j)

{

amphit2 *= 10,;

if (amplit2 > = ref_min) break;
}

Y
!
else if (amplit2 > ref_max) /* too large for lock-in ref */

{
for (jj=0: jj<2; ++1)

{

amplit2 /= 10.;

if (amplit2 <= ref_max) break;
}

}
synsetam{udsynl,amplit); synsetam(udsyn2,amplit2);
lkinwait(udla);
in_sig = 0
for (ii=0: i<AVE_NO: + +ii) in_sig ~ = sig_out(udlia,&in_sen);
in_sig /= ((REAL) AVE_NO):
if (samp no == 1) out_sen = in_sen;
/* prevent overload when switch phase */
lisetsen(udla,15); sleep(1); /* Turbo C */
shftquad(udlia,outquad); lisetsen(udlia.out_sen);
lkinwait(udha);
out_sig = 0; /*in millivolts */
for (1=0: i<cAVE_NO: « ~ii) out_sig + = sig_out(udlia.&out_sen);
out_sig /= ((REAL) AVE_NO);
/* Read synthesizer 2’s phase and ac monitor voltage */
ac_monV =

for (1=0:1i < (AVE NO /2 + 1); + +1i)
ac_monV + = keith_rd(udvm1,Vunit,Vokay); /* in ac Voits rms */
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ac_monV /= ((REAL)(AVE NO /2 ~ 1))

syn_ph = synphase(udsyn2); /* in degrees */
syn_amp = synampl(udsynl.synunit);

H1 = ac_monV / ac_monR * ac_calib:

/* prevent overload when switch phase */
lisetsen(udlia,15); sleep(1); /* Turbo C */
shftquad(udlia,-outquad); lisetsen(udlia,in_sen);

printf("\007\nsamp _no ac_monV  syn_amp syn_ph");
printf(" in_sig out_sig  HI1(G)\n\n");

printf("%4d  %11.5¢ %6.4f%5s %6.1f  79.3e %93e %9.3e\n"
,samp_no,ac_monV,syn_amp,synunit,syn _ph,in_sig,out_sig,H1);

fprintf(outfile,
"ad %9.4e T6.4%5s b1 %104e %10.4e  %9.3e\n”
,samp_no,ac_monV,syn_amp,synunit.syn _ph,in_sig,out_sig,H1);

if ((samp_no % 5) == 0)
{
fclose(outfile);
outfile = fopen(filename,"a");
}
if (H1 > max_H1) break;

logamp + = logstep;
+ +samp_no,

}
ibloc(udsyn1); ibloc(udsyn2);
fprintf(outfile,"9999");
fclose(outfile);
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*/

XpXppH1T.c: This program is another modified
version of XpXppH1.c, which is designed to take data
for experiments measuring X’(1f) and X"(1f) (of
high-Tc superconductors) vs. ac magnetic field H1.

This program is modified from XpXppH1n.c so that
Keithley 197 DMM (device name: "vm1") will be used to
monitor the thermocouple voltage, hence the sample
temperature.

This program is configured by Harry Lam in March, 1991;
it has to be linked to par5209.c, hp3325.c, keithley.c,
and \gpib-pc\tc\tcibs.obj.

#include <stdio.h>
#include <math.h>
#include <dos.h>
#include "decl.h”
#define REAL float

int board_ud,;

main()

{

int udsyn1,udsyn2,udlia,udvm1,udvm?2;

int yesno, outquad,in sen,oul_sen;

int samp_no,iijj,w,AVE_NO,coil,mask,SAMP14;

int read_set(),shftquad(), lisetsen(); /* Routines for lock-in */
REAL synparam(),synphase(),synampl(); /* Routines for synthesizers * /
REAL synfreq();

REAL rd_phase(),sig_out(),rd_timec(); /* Routines for lock-in */
REAL keith_rd(); /* Routines for Keithley DMM */
REAL in_sig,out_sig,inphase,outphase.filt_fref ftimec;

REAL ac_monR,ac_calib,ac monV H1, TCV;

REAL offset,syn _amp,syn_ f,ref _minref_max.drv_max;

REAL max H1, logamp,logstep;

double amplit,amplit2;

char d_res{8],f_mode(8],linefilt[8],rolloff[ 13],fltfunc[10];

char osunit[5],func{10},hivolt{11],synunit|[6],synfunit{4};

char Vokay,Vunit[4],dummy{5],lastpt[10],temp{10],Hdc[10];

char filename(20},sample[20),date[20],receiver(30};

char overwrt(5],append.comment{80],c_vesno[5],term_yn(5];

char NAD yn(5];

FILE *outfile;

printf("\007\n\nEnter output filename: ");
scanf("%s" filename);

printf("\007\n\New file or OVERWRITE ? \(\'yes\" or \"no\"\) ");
scanf("%s",overwrt);
if (overwrt[0] = = 'y’ && overwrt[1] == ¢’ && overwrt[2] ==s’)

{
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outfile = fopen(filename,"w"): append = 'n’;

}
else

{

outfile = fopen(filename,"a"); append = 'V
printf("\007\n** Appending to previously existing file. **\n");
}

if (outfile == NULL)

printf("File cannot be open.\n");
exit(0);
}

if (append == 'n’)

printf("\007\nEnter sample number (20 characters max): ");
scanf("%s",sample);

printf("\007\nEnter today’s date (mon-day-year): ");
scanf("%s" date);

printf("\007\nEnter sample temperature (Kelvin): ");
scanf("%s",temp);

printf("\007\nEnter superposing dc magnetic field (Gauss): ");
scanf("%s",Hdc);

printf("\007\n(1) One-coil receiver? (2) Two-coil receiver? "),
scanf("%d",&coil);
if (coill == 1)
sprintf(receiver,"One-coil receiver”);
else
sprintf(receiver,"Two-coil receiver");

}

printf(*\007\nMake sure that synth.1 & 2, lock-in, vm1, vm2 are on.");
printf(" Hit <CR> when ready.\n");
getchar(); getchar();

board ud = ibfind("gpib0");

udsynl = ibfind("syn1"); udsyn2 = ibfind("syn2");
udlia = ibfind("lia"); udvm2 = keith_in("vm2");
udvml = keith_in("vm1");

ibsic(board_ud);

mask = ERR | TIMO | SRQI | RQS | CMPL;
ibtrap(mask,1); /* 1: off; 2: record but no trap; 3: both record
and trap */

printf("\007\aWill NAD amplifier be used? ('y’ or 'n’) *);

scanf("%s",NAD _yn);
if (NAD_yn[0] =="y)
{
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printf("\007\007\nNormal range outputs are assumed ");

printf("for BOTH synthesizers!\n");

printf("\007\nAre BOTH synl ");

printf("& syn2 outputs terminated by 50 Ohms? (’y’ or 'n’) );

scanf("%s"term_vn);

if (term_yn[0] == 'y)
{
ref_min
}

else
{
ref_min
}

}

I

1.0; ref_ max = 14 drv_max = 4,

0.6; ref max = 7,; drv_max = 2.

else

printf("\007\nHigh voltage outputs are assumed for ");
printf("BOTH synthesizers!\n");

printf("\007\nEnter max. synl’s Vpp: ");
scanf("%f",&drv_max);

ref min = 1.0; ref_max = 14,

}

printf("\007T™);

printf("\nComputer’s ready to read gen’l settings of synthesizer 1;\n");
printf(*hit <CR> if synthesizer 1 is set.\n");

getchar(); getchar();

offset = synparam(udsynl,osunit,func,hivolt);

syn_f = synfreq(udsynl,synfunit);

printf("\007Computer’s ready to read gen’l settings of PARS5209; ");
printf("hit <CR> if lock-in is set.\n");

getchar();

read_set(udlia.d_res.f mode.&filt_f.&ref_f linefilt.rolloff fltfunc);
timec = rd_timec(udlia);

printf("\007Set the ref. phase to the IN-PHASE value, then hit <CR>.\n");
getchar();

inphase = rd_phase(udlia);
in_sig = sig_out(udlia,&in_sen);

outquad = 1; /* No. of quad. out-phase from in-phase */
shftquad(udlia.outquad); /* Defauilt: Shift 1 quadrant */
printf("\007See if you like this OUT-PHASE (1),");

printf(" or add another 180 deg (0): ");

scanf("%d",&yesno);

if (vesno == 0)

{
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shftquad(udka,2); /* shift 2 more quads */
outquad = -1;

outphase = rd_phase(udlia);
printf(*\nin-phase = %6.2f, out-of-phase = %0¢6.2f\n",inphase.outphase);

printf("\007\nEanter the value of the ac monitoring resistance in Ohms: ");
scanf("%f",&ac_monR);

printf("\007\nEnter calibration of ac-coil in H1(G) / Irms(A): ");
scanf("%f",&ac_calib);

ibloc(udsynl);
printf("\nSynthesizer 1’s settings:\n");
printf("offset = %6.2f %s, %s, %s, %11.4f Ps\n"
,offset,osunit.func,hivolt,syn_f synfunit);
prindf("\nLock-in settings:\n");
printf("%s, %s, line filt: %s, %s, %s\n"
.d_res,f mode.linefilt.rolloff fltfunc);
printf("filt. freq. = %8.3e, ref. freq. = %8.3e, "filt_fref f);
printf("timec = %7.2e s\n\n",timec);

lisetsen(udlia.in_sen);
shftquad(udlia,-outquad);

printf("\OO7THow many points to average? ");
scanf("%d"&AVE_NO),

if (append == 'n)
{
printf("\007\n");
printf("Want to add some comment ( < 80 char, 'y’ or 'n’)? ");
scanf("%s",c_yesno);
if (c_yesno[0] == 'y)
{
getchar();
printf("Comment: "); gets(comment);

}

fprintf(outfile,"File %s\n" filename);
fprintf(outfile,"Date: %s, Sample: %s, Temp: %s K, Hdc: %s G\n"
,date sample,temp Hdc);
fprintf(outfile,"%s\n" receiver);
fprintf(outfile,"\nSynthesizer 1 (slave) settings:\n");
fprintf(outfile,"offset = %6.2f %s, %s, %s, %11.4f Zs\n"
,offset,osunit,func.hivolt,syn_f,synfunit);
fprintf(outfile,"\nLock-in settings:\n");
fprintf(outfile,"%s, %s, line filt: %s, %s, %s\n"
,d_res,f mode.linefiit,rolloff fltfunc);
fprintf(outfile, filt. freq. = %8.3e, ref. freq. = %8.3¢, "
St foref f);
fprintf(outfile,"timec = %7.2e s\n\n" timec);

fprintf(outfile."In-phase = %6.2f, out-of-phase = %6.2f\n"
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,inphase,outphase);

fprintf(outfile,"Ac monitoring resistance in Ohms: 97.3f\n\n"
,ac_monR);

fprintf(outfile,
"Calibration of ac-coil in H1(G) / Irms(A): ¢8.3f\n\n"
,ac_calib);

fprintf(outfile,"# of ave. / data point = %d\n\n", AVE_NO);
if (c_yesno{0] == "y’) fprintf(outfile,"%s\n\n",comment);

fprintf(outfile,*****\o");

forintf(outfile,” No  ac_monV syn_amp TC(V)");
fprintf(outfile,” in_sig(mV) out_sig(mV)  HI1(G)\n\n");
}

printf("\007\007\007\007\n");
printf("About to start taking data, ensure ");
printf("ref. phase of lock-in is IN-PHASE (%6.1f)!\n\n",inphase);

ibwrt(udsyn1,"AM",2); ibloc(udsynl);
printf("\007Input the starting synl ampltude (volts): ");
scanf("%If",& amplit);

logamp = loglO(amplit);

printf("\007Input max. H1 desired: ");
scanf("%f",&max_H1);

printf("\007Input no. of samples per decade: ");
scanf("%d",&SAMP14);

printf("\007\nHit <CR > when ready. (IN-PHASE %7.2f first)",inphase);
getchar();  getchar();

logstep = 1. / ((REAL)SAMP14); /* samples per decade */
samp_no = 1,
for (;;)

{

amplit = pow(10..logamp);

if (amplit > drv_max)

{
ibloc(udsyn1);
printf("\007\007\007\nMANUALLY reset NAL' amplifier ");
printf("input level and synth. 1 amplitude.\n");
printf("\nEnter new synl amplitude ");
printf("(in voits, or 99999 to quit): ");
scanf("%If",& amplit);
if (amplit > drv_max && amplit <= 40.)
{
printf("\007\007\007\nEntry");
printf(" larger than %26.2f volts, reenter to reconfirm: "
,drv_max);
scanf("%If" & amplit);
1
s
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logamp = logl0(amplit);
if (amplit > 40.) break:
}

amplit2 = amplit;

if (amplit2 < ref min) /* too small for lock-in et/
{
for (jj=0; i<4; + )

amplit2 *= 10.;
if (amplit2 > = ref min) break;
}

}

else if (amplit2 > ref max) /* too large for lock-in ref */

{
for (jj=:0; j<2; ++1)

{
arapli2 /= 10,
if (amplit2 < = ref max) break;
}
}
synsetam(udsynl,amplit); ~synsetam(udsyn2,amplit2);
lkinwait(udlia);
in_sig = 0.;

for (ii=0; i<AVE_NO; + +ii) in_sig + = sig_out(udlia,&in_sen);
~_sig /= ((REAL) AVE_NO);

if (samp_no == 1) out_sen = in_sen;
/* prevent overload when switch phase */
lisetsen(udlia, 15); sleep(1); /* Turbo C */
shftquad(udlia,outquad); lisetsen(udlia,out_sen);
lkinwait(udlia);
out_sig = 0.; /*in millivolts */
for (ii=0; i<AVE NO; + +ii) out_sig += sig_out(udiia,&out_sen);
out_sig /= ((REAL) AVE_NO);
/* Read synthesizer 2’s phase and ac monitor voltage */
ac_monV = 0;
for (i1=0; i < (AVE_NO /2 + 1); ++11)
ac_monV += keith_rd(udvm2,Vunit,Vokay); /* in ac Volts rms */
ac_monV /= ((REAL)(AVE_NO /2 + 1));

TCV = keith_rd(udvm1,Vunit.Vokay);
syn_amp = synampl(udsynl,synunit);

H1 = ac monV / ac_monR * ac_calib;
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/* prevent overload when switch phase */
lisetsen(udiia.15); sleep(1); /* Turbo C */
shftquad(udlia.-outquad); lisetsen(udlia.in_sen);

printf("\007\nsamp no ac_monV  syn_amp TC(V)"):
printf(" in_sig out_sig  H1(G)\n\n");

printf("%3d %11.5e 9%10.4e%5s %11.5e %9.3e %9.3e %9.3e\n’
,samp_no.ac_monV,syn_amp,synunit,TCV,in_sig,out_sig,H1);

fprintf(outfile,
"%3d %11.5e %10.4e%5s %l1l5e %10.4e %10.4e %9.3e\n”
,samp_no,ac_monV,syn_amp,synunit, TCV,in_sig.out_sig,H1);

if ((samp_no % 3) == 0)

{

fclose(outfile);

outfile = fopen(filename,"a");
}

if (H1 > max_H1) break;

logamp + = logstep;
++samp_no;

}
ibloc(udsyn1); ibloc(udsyn2);
fprintf(outfile,"9999");
fclose(outfile);
}
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** plispc.c: This program reads the data written by sadump.c
=* and output them to HP7225B.

** This program has to be linked with hpgraph.c. and
=* \gpib-pc\tc\tcibs.obj.

#include <stdio.h>
#define REAL float
main()

{
REAL spec[1001],tckx tcky,freq,ispec;
REAL y_pos,reflev,botlev;
FILE *file;
char ref[15],mkrfrq[26],dbdiv{10},range[16].mkramp{15];
char ctrfrg[23),span[21],rbw{12],vbw{12],st[13];
char string{100},aspec{6],afreq[6};
int ud.iij,kk:
extern uudd;

printf("Enter input filename: ");
scanf("%s" string);

file = fopen(string,'r");
for (i1=0; ii<14; + +1i)

{
/* if (ii= =0) fscanf(file,"%1s" ref +0):
else */ fscanf(file,"%c".ref +1i);

!
fscanf(file."%*c");
ref[14] = "\0’;

for (ii=0: <25 + +11)

{
/* if (ii= =0) fscanf(file,"%1s".mkrfrq +0);
else*/ fscanf(file."%c".mkrfrq +ii):
}
fscanf(file."%Z *c");
mkrfrg[25] = "\0’;
for (i=0:1<9; + +1i1)

{
/* if (ii= =0) fscanf(file,"%1s".dbdiv +0);
else*/ fscanf(file,"%c".dbdiv +11);

!
fscanf(file,"% *c");
dbdivi9] = "\0’;

for (i1=0; i<15; + +1)
{
/* if (ii= =0) fscanf(file,"%1s",range +0):
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/*

else */ fscanf(file,"%c",range +1);

!
fscanf(file,"%*c");
range[15] = "\O’;

for (ii=0: 11<14: + +11)
{
if (ii= =0) fscanf(file,"%1s".mkramp +0);
else */ fscanf(file,"%c",mkramp +ii);
}

fscanf(file."%*c");

mkramp{14] = "\0’;

for (i1=0: ii<22; + +1ii)

{
if (ii= =0) fscanf(file,"%1s" ctrfrq+0);
else */  fscanf(file,"%c" ctrfrq +1i);
}

fscanf(file."%*c");

arfrq[22] = '\0";

for (ii=0; i1<20; + +11)
{
if (ii= =0) fscanf(file,"%1s",span +0);
else */ fscanf(file,"%c",span +1ii);

}
fscanf(file,"%*c");
span|[20] = "\0’;

for (ii=0; i<11; + +ii)
{
if (ii= =0) fscanf(file,"%1s".rbw+0);
else*/ fscanf(file,"%c" ,rbw +11);

}
fscanf(file,"%*c");
rbw{11] = "\0";

for (ii=0; ii<11; + +11)

{
if (ii= =0) fscanf(file,"%1s" ,vbw +0);
else*/ fscanf(file,"%c" vbw + ii);

}
fscanf(file,"%*c");
vbw{11l] = "\0’;

for (ii=0; ii<12; + +ii)

{
if (ii= =0) fscanf(file,"%1s",st+0);
else*/ fscanf(file,"%c" st + it);
!

fscanf(file,"%z *¢");

stf12] = "\0%;

sscanf(ref,"% *4c%f" &reflev);
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botlev = reflev - 100.

/* prntf("REF = %f\n" reflev);
printf("%14s, %25s, %9s\n" ref mkrfrq,dbdiv);
printf("%15s, %14s, %22s\n",range,mkramp,ctrfrg);
printf("%20s, %11s, %11s, %12s\n",span,rbw,vbw,st);
*/
for (i=0; 1<1001; + +11)

fscanf(file,"%e,",spec +1i);
/* i (i < S||ii >99)

{
if (ii == 997) printf("\n");
printf("%9.3le ".spec(ii]);
!
*/
}
fclose(file);

/* getchar();
getchar(); */

ud = initgraph("PL1");
clear();

scale(0.,10000.,botlev,reflev);
border();

axes(0.,botlev,1000.,10.,1,1);
axes(10000.,reflev,1000.,10.,1,1);

freq = 0.;
for (i1=0; 1 <1001; + +1)
{
ispec = spechii};
move(freq,ispec);
if (ii == 0) pendown();
if (i == 1000) penup();
freq += 10.
}

y_pos = reflev + 5;

move(4000.,y pos); charsize(.2,4);
label(string);

y_pos = botlev + 40.;

labeldir(90.); move(-500.,y_pos);
label("Power (dBm)"); labeldir(Q.);
y_pos = botlev - 5.;

move(0.,y_pos); charsize(.15,.3);
label(ref); label(",");
label(mkrfrq); label(",");
label(dbdiv); label(",");

label(range); label(","); label("\015\012");
label(mkramp); label(",");
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label(ctrfrq); label("."):

label(span);
label(rbwy);

label(vbw);

label(st);

label(",");
label(",");
label(",");

label("\015\012");
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plotpnf.c:  Turbo C video graphics program to
read a data file generated by experiments controlled
by Pnf H1l.c and plot the results on the video.

#include <stdio.h>

#include <math.h>
#include <graphics.h>
#include <conio.h>
#include <process.h>
#define NO_LINES 27
#define REAL float
#define ENDFILE 9999
#define Pl 3.141592654

main()

{

char line[NO_LINES]}{80].filename[20],synampU[S5],label{30];
char normyn(5];

REAL ac_monV.syn_amp,Pnf.H1,Hdc:

REAL logH1,yplot;

REAL xmin xmax.xtic,ymin,ymax,vtic.labelx labely;
int iijj,textline = 0,samp_no;

int in_out;

FILE *fileptr;

printf("Enter input filename: ");

zanf("%s" filename);

wleptr = fopen(filename,"'r");

for (1i=0; i<NO_LINES-1; + ~ii)

{
fgets(line{ii},80,fileptr);
for (1j=0; j<4; + +])
{
if (linefiilfij) ! = ")
{
if (i < (NO_LINES - 2))
break:
else
printf("Not enough memory assigned for text.\n");
exit(0);
}
}
f () == 3) texthne = u + 1;
}
if (textline == (ii+1)) break;

}
fgets(line{textline),80,fileptr); /* Column headings. */
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fgets(line[textline-1),80.fileptr); /* Blank line replaces *'s. =/

printf("Normalized? (’y’ or 'n’) ");

scanf("%s",normyn);

printf(*Enter xmin, xmax. Xtic. ymin, ymax and ytic:\n");

scanf("%f %f %f %f %f Cof" & xmin. & xmax,&xtic, & ymin. & vmax.&ytic);

v_initgraph();
v_aspect(); */

v_scale(xmin,xmax,ymin.ymax):
v_border();
v_axes(nnin,ymin,xtic,ytic,l,l);
v_axes(Xmax,ymax.xtic,ytic,1,1);
v_logxaxes(xmin,xmax,ymin,ymax.1);
labelx = xmin + (xmax - xmin) * .1;
labely = ymax + (ymax - ymin) * .04;
v_move(labelx labely);
v_label(line[0]);
labelx = xmin - (xmax - xmin) * 0.04:
labely = ymin - (vmax - ymin) * 0.06;
v_move(labelx labely);
sprintf(label,"%3.0f",xmin);
v_label(label);
labelx = xmax - (xmax - xmin) * 0.04,
v_move(labelx,labely);
sprintf(label,"%3.0f" xmax);
v_label(label);
labelx = xmin + (xmax - xmin) * .48;
labely = ymin - (ymax - ymin) * 0.08;
v_move(labelx.labely);
sprintf(label,"Log (H1)");
v_label(label);
labelx = xmin - (xmax - xmin) * .04,
labely = ymin + (ymax - ymin) * .25;
v_move(labelx,labely); v_textdir(1);
if (normyn{0] = = 'y)

sprintf(label,"P(af) / (H1 x H1) (dB)");
else

sprintf(label."” P(nf) (dBm)");

v_label(label);

labelx = xmin - (xmax - xmin) * .15;
labely = ymin;
v_move(labelx.labely); v_textdir(0);
sprintf(label,"%9.3e",ymin);
v_label(label);

labelx = xmin - (xmax - xmin) * .15:
labely = ymax;
v_move(labelx.labely);
sprintf(label,"%9.2¢", ymax):
v_label(label);

for (ii=1; 1< 1000Q; + +1ii)
§
L
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fscanf(fileptr,"%d ",&samp_no);

if (samp_no == ENDFILE) break:

fscanf(fileptr,"%e %f %s %oe %€ Tce”
,&ac_monV,&syn_amp,synampU,&Hdc.&Pnf.&H1);

logH1 = loglO(H1); yplot = Pnf;

if (normyn{0] == "y’) yplot -= (20. * logH1);

if(ii == 1) v_move(logH1,yplot);
else v_lineto(logH1,yplot);
}

fclose(fileptr);

getchar(): getchar();

v_initgraph();

v_scale(xmin,Xmax,ymin,ymax);

labelx = xmin - (xmax - xmin) * 0.125:
labely = ymax;

for (ii=0; ii < textline; + +ii)

{

v_move(labelx labely);
v_label(linefii});

labely -= ((ymax - ymin) * 0.06);

}
getchar(); getchar();
clearviewport(); closegraph();
}

229



/*

**  hplotpnf.c:  C graphics program 1o read a data

**  file generated by experiments controlled by

**  Pof Hl.c and plot the results on the HP7225B plotter.

*/

#include <stdio.h>
#include <math.h>

#include "decl.h” /* for GPIB NI-488 handler */
#define NO_LINES 27
#define REAL float

#define ENDFILE 9999
#define PI 3.141592654

main()

{

char linc[NO_L[NES][SO],ﬁlename[20],synampU[5],labeler[30];
char normyn(5],correct(5];

REAL ac_monV,syn_amp,Pnf.H1,Hdc:

REAL logH1,yplot,radius;

REAL xmin xmax,xtic,ymin,ymax,ytic,labelx,labely,factor;

int ii,jj,textline =0,samp_no;

int in_out.linecirc.ud,every,cangle;

FILE *fileptr;

printf("Enter input filename: ");
scanf("%s" filename);
fileptr = fopen(filename,"r");
for (ii=0; i<NO_LINES-1; + +ii)
{
fgets(line[ii],80,fileptr);
for (jj=0; <4 ++1)

{
if (linefii](y] '= ")

{
if (ii < (NO_LINES - 2))
break;
else
printf("Not enough memory assigned for text.\n");
exit(0);
}
}
if (j == 3) textline = ii + 1;
}
if (textline == (ii+1)) break;
}
fgets(line[textline],80,fileptr); /* Column headings. */
fgets(lineftextline-1},80,fileptr); /* Blank line replaces *’s. */
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printf("Normalized? (v’ or 'n’) ");
scanf("%s",normyn);
printf("Want to a correct. factor to H1 orig. calib.? 'y’ or ‘'n’) ");
scanf("%s" correct);
if (correct[0] == V)
{

printf("Enter correction factor: ");
scanf("%f",&factor);
}

else factor = 1.;

printf("1. Line; 2. Circle; 3. Diamond ? ");

scanf("%d",&linecirc);

printf("Enter xmin, xmax, xtic, ymin, ymax and ytic:\n");

scanf("%f %f %f %f %f %", &xmin, & xmax, &xtic,& ymin, & ymax &ytic);
if (inecirc == 2 || linecirc == 3)

radius = (xmax - xmin) / 150,

if (linecirc == 2) cangle = 30;
else cangle = 90;
printf("Plot 1. every data pt.; 2. every OTHER pt.? *);
scanf("%d",&every);
}
ud = initgraph("PL1"); clear();
scale(xmin,xmax,ymin,ymax);
border();
axes(xmin,ymin xtic,ytic,1,1);
axes(xmax,ymax.xtic,ytic,1,1);

log_xaxes(xmin,xmax,ymin,ymax,1);
labelx = xmin + (xmax - xmin) * .1;
labely = ymax + (ymax - ymin) * .04;
move(labelx labely);

label(line[0}]);

labelx = xmin - (xmax - xmin) * 0.04;
labely = ymin - (ymax - ymin) * 0.06;
move(iabelx labely);
sprintf(labelstr,"%3.0f" xmin);
label(labelstr);

labelx = xmax - (xmax - xmin) * 0.04;
move(labelx labely);
sprintf(labelstr,"%3.0f" xmax);
label(labelstr);

labelx = xmin + (xmax - xmin) * .48;
labely = vmin - (ymax - ymin) * 0.08;
move(labelx labely);
sprintf(labelstr,"Log (H1)");
label(labelstr);

labelx = xmin - (xmax - xmin) * .04;
labely = ymin + (ymax - ymin) * .25;
move(labelx,labely); labeldir(%0.);
if (normyn[0] == "y’)
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sprintf(labelstr,"P(nf) / (H1 x H1) (dB)");
else
sprintf(labelstr,”  P(nf) (dBm)");

label(labelstr);

labelx = xmin - (xmax - xmin) * .15;
labely = ymin;

move(labelx labely); labeldir(0.);
sprintf(labelstr,"%9.3¢" ymin);
label(labelstr);

Jabelx = xmin - (xmax - xmin) * .15;
labely = ymax;

move(labelx labely);
sprintf(labelstr,"%9.2¢" ymax);
label(labelstr);

for (i1=1; ii<1000; + +1ii)
{
fscanf(fileptr."%d ",&samp_no);
if (samp_no == ENDFILE) break;
fscanf(fileptr,"%e %f %s %e %e %o€"
,&ac_monV,&syn_amp,synampU,&Hdc,&Pnf,&H1);

H1 *= factor;
logH1 = logl0(H1); yplot = Pnf;

if (normyn[0] == "y’) yplot -= (20. * logH1);

if (linecirc = = 1)

{
move(logH1,yplot);
if (ii == 1) pendown();
}
else
{

if (every ==1]|]|(i%2) ==0)
circleat(logH 1,yplot,radius,cangle);
}

}

penup();
fclose(fileptr);

/* getchar(); getchar();

v_initgraph();
v_scale(xmin.xmax,ymin.ymax);

labelx = xmin - (xmax - xmin) * 0.125;
labely = ymax;

for (ii=0; i < textline; + +ii)

{
v move(labelx labely);

v_label(linefii]);
labely -= ((ymax - ymin) * 0.06);
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}

getchar(); getchar();

clearviewport(); closegraph();
* //

}
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vplotfl.c:  Turbo C video graphics program to
read a data file generated by experiments controlied
by XpXppH1.c or XpXppH1n.c. and plot the results on the video.

This program has to be linked to v_graph.c.

#include <stdio.h>

#include <math.h>

#include <graphics.h>
#include <conio.h>
#include <process.h>
#define NO_LINES 25
#define REAL float
#define ENDFILE 9999
#define PI 3.141592654

main()

{

char line[NO_LINES][80],filename[20],synampU|5],label[20];
REAL ac_monV,syn_amp,syn_ph,in_sig,out_sig,H1;

REAL logH1,radius,yplot;

REAL xmin xmaxxtic,ymin,ymax.ytic,labelx.labely;

REAL fr_angle,sinfr,cosfr;

int size = 80,ii,jj,textline =0,samp_no;

int in_out;

FILE *fileptr;

printf("Enter input filename: ");
scanf("%s" filename);
fileptr = fopen(filename,"r");

for (1=0; i<NO_LINES-1; + +ii)
{
fgets(line(ii],80.fileptr);

for (j=0; jj<4; + +j))

{
if (linefi]fj] = ")
{
if (i < (NO_LINES - 2))
break:
else
{
printf("Not enough memory assigned for text.\n");
exit(0);
}
}
if j == 3) textline = ii + 1;
h
if (texthne == (1i+1)) break;

}
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fgets(line{textline].80.fileptr): /= Column headings. */
fgets(lineftexline-1].80.fileptr): /* Blank line replaces *’s. */

printf(*(1) V(af) / H1 2 (2) V\'(af) / H1? )
printf("(3) P(nf) in dBm ? 7);
scanf("%d".&in_out);

if (in out == 1 || in_out == 2
{

1

printf("Enter frame rotation angle in degrees: ");
scanf("%f{".&fr_angle):

}

fr_angle = 0.

else

fr_angle *= (PI / 180.);

sinfr = sin(fr_angle): cosfr = cos(fr_angle);

printf("Enter xmin. xmax. Xtic. ymin. ymax and vuc:\n");

scanf("Cef Scf Ff %f ef e & xmin.& xmax. &xtic.& vmin.& ymax & yic),

radius = (xmax - xmin) * 0.01:

v_initgraph();

v_aspect(); */
v_scale(xmin xmax,ymin ymax);
v_border();

v_axes(xmin,yminxtic.ytic.1,1);
v_axes(xmax,ymaxxtic,yuc.1.1);
v_logxaxes(xmin.xmax ymin ymax.1);
labelx = xmin + (xmax - xmin) * .1;
labely = ymax + (vmax - ymin) * .04
v_move(labebc.labely);
v_label(line{0]);

labelx = xmin - (xmax - xmin) * 0.04:
labely = vmin - (vmax - ymin) * 0.06;
v_move(labelx labely):
sprintf(label"%23.0f" xmin);
v_label(label);

labelx = xmax - (xmax - xmin) * 0.04;
v_move(labelxlabely):
sprintf(label,"%3.0f" xmax);
v_labeli(label);

labelx = xmin + (xmax - xmin) * .48:
labely = ymin - (vmax - ymin) * 0.08:
v_move(labebx.labely):
sprintf(label."Log (H1)"):
v_label(label);

labelx = xmin - (xmax - xmin) * .04
labely = ymin - (vmax - vmin) * .25;

v_move(labebx labely): v__textciir( 1);
if (in_out == 1)

sprintf(labeL"V’(nt) / H1 (mV/Ue)");
else if (in_out == 2)

235



spr'm[f(labeL"V\"(nD / H1 (mV/0e)");
else
sprintf(label” P(nf) ( dBm )");

v_label(label);

labelx = xmin - (xmax - xmin) * .15
labely = vmin:

v_move( labeix labely); v_textdir(0);
sprian(labcL”%9.2c".ymin);
v_label(label);

labelx = xmin - (xmax - xmin) * .15:
labely = vmax:

v_move( labelx.labely);
sprintf(label."%9.2¢" ymax);
v_label(labcl);

for (ii=1; 1<1000: + -ii)

{
fscanf(fileptr,"?%d ".&:amp_no):
if (samp_no == ENDFILE) break:
fscanf(fileptr,"%e %f %s %f %e e %e’
&ac_monV.&syn _amp,synampU.&syn _ph&in_sig,&out sig,&H1);

logH1 = loglO(Hl)
if (in_out == 1)
yplot = (in_sig * cosfr + out_sig * sinfr) / H1;

else if (in_out == 2
vplot = (-in_sig * sinfr - out_sig * cosfr) / HIL:
else

vplot = (in_sig * in _sig + out_ sig * out_sig);
vplot /= (775.° 775y, /* Ref volt. for dBm = .775 Vrms */
vplot = 10. * loglO(_vplo[)

}
v_dot(logH1.yplot):
}
fclose(fileptr);
getchar(); getchar();

v_initgraph();
v_scalc(nnin.xmax.ymin.ymax):

labelx = xmin - (xmax - xmin) * 0.125:
labely = vmax

for (ii=0; 1 < textline: ~ -i)

{

v_move(labeixlabely);
v_label(linefii}]);

labely -= ((ymax - vmin) * 0.06)

b
getchar(); getchar();
clearviewport(); ciosceraphi()

)
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== keithlev.c: Routines which help control Keithley 197

= DMM thru National Instrument GPIB-PCIIL.
== Configured by Harry Lam. June 1990.
*/

#include <stdio.h>
#1include "decl.h”
#define REAL float

/* Initializes the Keithley DMM to AUTO mode and return unit descriptor */
keith_in(intstrng)
char *intstrng; /* intstrng contains the device name of the umit */
{
int ud:
char dummy;

ud = ibfind(intstrng);
k__ready(ud): ibelir(ud):
k_ready(ud): ibwrt(ud."R0X",3):
k_ready(ud):

printf("\007"):
printf(“Manually set the Keithley &3s as needed. then hit <CR>.".intstrog);
scanf("%%c",dummy);

return(ud);

}

/* Reads the signal on the meter. which is assumed to be in AUTO mode */
REAL keith_rd(uudd.unit.okay)
int uudd:

char unit[],okay: /* unit has to be at least 4 bytes long */

(
1

it ii.jj;
char string|16],readbuf[30}:
REAL reading;

for (jj=0; <5 - -1j)
{

1

k_ready(uudd); k_rddone(uudd):
ibrd(uudd.readbuf.17):

for (ii=0: ii<15: - +ii) string{ii] = readbuffii};
stringf{15} = "\0";

if (string[0] == "O"

{

printf("\007\007\007\nDMM 1s overranged ");
printf("; reset and then hit <CR>.");
getchar():

printf("Continuing ...\n");

1
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else
break:
}

sscanf(string,"%c%3s%11e".&okay,unit.&reading);
k_rddone(uudd);
return(reading);

}

/* Make sure that the DMM is not busy */
k_ready(uudd)
int uudd:

{

char statbvte:

int i

ibwait(uudd.CMPL);
for (i1=0: 1 < 40; + +1i1)
{
ibrsp(uudd.&statbyte);
if (!(statbvte & 48)) break; /* not error and not busy */
if (i == 39)

{
printf("\007\007\007"):
printf("Warning: Keithley DMM has error or is always busy'\n");
printf("'DOUBLE CHECK if things are okay !'\n");
}
}
return( (int)statbvte);

}

“* Make sure that the DMM is ready for another reading */
k_rddone( uudd)
int uudd:

{

char statbvte;

it 1

ibwait(uudd.CMPL):
for (u=0; 1 < 40. -~ ~1u)

{

ibrsp(uudd.&statbyte);

/* not error and reading done */

if ('(statbvie & 32) && (statbvie & 8)) break:
if (i == 39)

{
printf("\007\007\007"):
printf("Warning: Keithley DMM has error or’).
printf(" cannot get ready for another reading '\n");
printf("DOUBLE CHECK if things are okay !!\n"):
i
/
return((int)statbyte);

)
!
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= par5209.c: Routines which help controlling PAR 5209
=* lock-in amplifier thru National Instrument GPIB-PCIL

= Written in Turbo C. [cf. the function sleep() of Turbo C.]
= Configured by Harry Lam, June 1990.

#include <stdio.h>
#include <dos.h>
#include "decl.h”
#define REAL float

/* Reads the parameter settings of the lock-in */
rcad_sel(uudd.dynres‘freqmodc,ﬁltfreq,reffrcq,lincﬁlt.rolloff.ﬁltfunc)
int uudd; /* uudd is the unit descriptor */
char dvares(],freqmode(],linefilt(},rollofff],filtfunc(];
REAL *filtfreq,*reffreq;

{

int code,ii;

char readbuf[50];

cmd_rdy(uudd); ibwrt(uudd."DR",2);
data_rdy(uudd); ibrd(uudd.readbuf,2);
switch(readbuf]0])
{
case 0"
sprintf(dynres,"HI STAB");  break;
case ‘1"
sprintf(dynres."NORM"); break:
case 2"
sprintf(dvores."HI RES");
}
cmd_rdy(uudd); ibwrt{uudd."F2F"'.3);
data_rdy(uudd): ibrd(uudd,readbuf.2);
switch{readbuf]0])
{
case ‘0"
sprintf(freqmode,"F mode"); break:
case ‘1"
sprintf(freqmode,"”2F mode");
}
/* Read filter tuned frequency in hertz */
cmd_rdy(uudd); ibwrt(uudd,"FF",2);
data rdy(uudd): ibrd(uudd.readbuf.5):

‘ﬁltf-rcq = (REAL)(atoi(readbuf));

data_rdyv(uudd); ibrd(uudd.readbuf.2);
code = atoi(readbuf);

if (code > 2)

{
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for (ii=0; ii < (code-2): + ~11) *filtfreq *= 10.:
}

else if (code < 2)

{
for (ii=0; ii < (2-code); + +1i) *filtfreq /= 10,
}

/* Read reference channel frequency in hertz * /
cmd_rdy(uudd); ibwrt(uudd."FRQ"3);

data_rdy(uudd); ibrd(uudd.readbuf,10);

readbuf[9] = "\0’;  /* this statem’t should be necessary */
sscanf(readbuf."%9f" reffreq);

*reffreq /= 1000.;

cmd_rdy(uudd); ibwrt(uudd."LF",2);
data_rdy(uudd); ibrd(uudd.readbuf.2);
switch(readbuf[0}])
{
case '0"
sprintf(linefilt."OFF"); break;
case '1”:
sprintf(linefilt."”2F ON"); break;
case 2"
sprintf(linefilt,"F ON"); break:
case '3":
sprintf(linefilt,'BOTH ON");
}
cmd_rdy(uudd); ibwrt(uudd,"XDB"3);
data_rdy(uudd); ibrd(uudd.readbuf,2);
switch(readbuff0])
{
case 0"
sprintf(rolloff."6 dB/octave"); break:
case ‘1"
sprintf(rolloff."12 dB/octave");
}
cmd_rdy(uudd); ibwrt(uudd."FLT"3);
data_rdy(uudd): ibrd(uudd.readbuf.2);
switch(readbuf]0])
{
case 0"
sprintf(filtfunc,"FLAT"); break:
case ‘1%
sprintf(filtfunc."NOTCH"): break;
case 2"
sprintf(filtfunc,'LOW-PASS"); break;
case '3

sprintf(filtfunc,"BAND-PASS");
\
s

}

/* Reads the signal detected at present phase in milli-volts */
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REAL sig_out(uudd,sencode)
int uudd,*sencode:

{

char statbyte,readbuf]50};
int output,ii;

REAL lu_sen(),sensit,signal;

cmd_rdy(uudd); ibwrt(uudd,"D2".2);
data_rdy(uudd): ibrd(uudd.readbuf.2);
output = atoi(readbuf); /* atoi() converts only digit characters */

if (output '= 0 && output !'= 1 && output != 2)

{
printf("\007");
printf("Put QUTPUT in SIGNAL mode, then hit <CR>.");
getchar();
}
cmd_rdy(uudd); ibwrt(uudd."SEN".3);
data_rdy(uudd); ibrd(uudd,readbuf.3);

*sencode = atoi(readbuf);
for (ii=0; 1 < 5; + +1i)
i{f (li_ovid(uudd) == 1) /* Check overloading */
i{f((‘s{cncode) < 15)

+ +(*sencode); lisetsen(uudd,*sencode);
Ikinwait(uudd); lkinwait(uudd);

}
elsc
{
printf("\007\007\007Signal or output ");
printf(“is overloaded!! Hit <CR > after reset.");
getchar();
}
}
/* Look-up table for sensitivity in millivolts */
switch(*sencode)
{
case 0: sensit = 0.0001; break:
case 1: sensit = 0.0003; break:
case 2: sensit = 0.001; break;
case 3: sensit = 0.003; break;
case 4 seasit = 0.01; break;
case 3: sensit = 0.03; break;
case 6: sensit = 0.1; break;
case 7 sensit = 0.3; break;
case &: sensit = 1.; break;
case 9: sensit = 3.; break;
case 10: sensit = 10.; break;
case 11: sensit = 30.; break:

ro
i~
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case 12: sensit = 100.; break:
case 13: sensit = 300.; break:
case 14: sensit = 1000.; break;
case 15: sensit = 3000.;

}

cmd_rdy(uudd); ibwrt(uudd."OUT".3);
data_rdy(uudd); ibrd(uudd,readbuf,7);
output = atoi(readbuf);

if ( (output > -1000 && output < 1000) && (*sencode > 0)
&& (li_ovid(uudd) != 1))
{

--(*sencode); lisetsen(uudd,*sencode);
lkinwait(uudd);
}
else if ( (output < -10200 || output > 10200
|| i_ovld(uudd) == 1) && (*sencode < 15) )

+ +(*sencode); lisetsen(uudd,*sencode);
Ikinwait(uudd);
}
else
break;

}

signal = sensit * ((REAL)output) / 10000.;
return(signal);
!

/* Set lock-in sensitivity according to input code number */
lisetsen(uudd,code)
int uudd,code;

char cmd[10],statbyte;

sprintf(cmd,"SEN 9%2d",code);
cmd_rdy(uudd); ibwrt(uudd,cmd,6);

cmd_rdy(uudd);
}

/* Set lock-in sensitivity according to input voltage (in mV) */
set_sen(uudd,sensit)
int uudd;
REAL sensit;
{

int code;

[
—

if (sensit < 0.00015) code
clse if (sensit > = (.00015 && sensit < 0.00035) code =
else if (sensit > = 0.00035 && sensit < 0.0015) code = 2;
else if (sensit > = 0.0015 && sensit < 0.0035) code = 3;

else if (sensit > = 0.0035 && sensit < 0.015) code

[T}

1t

"
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else if (sensit > = 0.015 && sensit < 0.035) code
else if (sensit > = 0.035 && sensit < 0.15) code
else if (sensit > = 0.15 && sensit < 0.35) code
else if (sensit > = 0.35 && sensit < 1.5) code
else if (sensit > = 1.5 && sensit < 3.5) code
else if (sensit > = 3.5 && sensit < 15.) code
else if (sensit > = 15. && sensit < 35.) code
else if (semsit > = 35. && sensit < 150.) code
else if (sensit > = 150. && sensit < 350.) code
else if (sensit > = 350. && sensit < 1500.) code
else if (sensit > = 1500.) code
lisetsen(uudd,code);

}

/* Reads current time-constant. */
REAL rd_timec(uudd)
int uudd;

{

REAL timec;
int nl;

char buf1[5];

cmd_rdy(uudd);

ibwrt(uudd,"XTC",3);

data rdy(uudd);

ibrd(uudd,buf1,3); nl = atoi(bufl);
/* Look-up table for time constant in seconds */
switch(nl)

{

case 0: timec = .001; break;

case 1: timec = .003; break:

case 2: timec = .010; break;

case 3: timec = .030; break;

case 4: timec = .100; break;

case 5 timec = .300; break:

case 6: timec = 1.00; break;

case 7: timec = 3.00; break;

case 8: timec = 10.0; break;

case 91 timec = 30.0; break;

case 10: timec = 100.; break;

case 11: timec = 300.; break;

case 12 tmec = 1000, break;

case 13: timec = 3000.;

}
return(timec):
}

/* Step up or down the time-constant by 'updown’ step(s). */
stptimec(uudd,updown)
int uudd,updown;

{

int nl:
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char bufl[8];

cmd_rdy(uudd); ibwrt(uudd."XTC".3);
data_rdy(uudd); ibrd(uudd.buf1.3);
nl = atoi(bufl); nl + = updown;

if (n1 < 0) nt = 0;

else if (n1 > 13) nl = 13;

sprintf(buf1,"XTC %2d".n1);
cmd_rdy(uudd); ibwrt(uudd.buf1,6);
cmd_rdy(uudd);

i

/* Enable the computer to wait an appropriate time after a new
=* sensitivity level is set before reading :he signal output

v/

lkinwait(uudd)

int uudd;
{
REAL timec,rd_timec();
unsigned second = 2;
char buf1[5];

int nl;
timec = rd_timec(uudd);

cmd_rdy(uudd); ibwrt(uudd,"XDB",3);
data_rdy(uudd);
ibrd(uudd,buf1,2); nl = atoi(bufl);

switch(nl)
{
case 0: timec *= 4.5; break; /* 6 dB/octave */
case 1: timec *= 7.2; /* 12 dB/octave */

}
if (timec > 1.)  second = ((int)timec) + 1;

sleep(second);

}

/* Reads current phase; returns phase in degrees */
REAL rd_phase(uudd)
int uudd:

{

REAL phase;

int nl;

char buf1[5],buf2[10};

cmd_rdy(uudd); ibwrt(uudd,"P",1);
data_rdy(uudd);
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ibrd(uudd.buf1,2); nl = atoi(bufl);
data_rdy(uudd);

ibrd(uudd.buf2.7); buf2[6] = "\0;
sscanf(buf2,"7%f" & phase); phase /= 1000.;
switch(n1)

{

case 0: phase += 0, break;

case 1: phase += 90. break:

case 2: phase + = 180.; break;

case 3: phase += 270..

}
if (phase > 180.) phase -= 360,
return(phase);

1
f

/* Shifts the current by a specified number of quadrants, pos. or neg. */
shftquad(uudd.quad)
int quad.uudd; /* quad: number of quadrants to be shifted * /
{
int nl;
long n2; /* Warning: watch the size of "long" for the compiler */
char statbyte,buf1[5],buf2[7],command[15];

cmd_rdy(uudd); ibwrt(uudd,"P",1);

data_rdy(uudd); ibrd(uudd,buf1,2); nl = atoi(bufl);
data_rdy(uudd);  ibrd(uudd,buf2,7); buf2[6] = \0’;
sscanf(buf2,"%Id",&n2);

nl ~ = quad; nl %= 4
if (n1 < 0) nl += 4

sprintf(command,'P %d,%6ld".n1,n2);

cmd_rdy(uudd);  ibwrt(uudd.command,10); cmd_rdy(uudd);
}

/* Make sure that lock-in is ready for the next command */
cmd_rdy(uudd)
int uudd;

{

char statbyte = 0;

int ii;

extern int board ud;

ibwait(uudd.CMPL);
for (ii=0; il < 40; + +1i)

{
ibrsp(uudd.&statbyte).

if (statbyte & 1) break;
if (i == 39)
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{
printf("\007\007\007");
printf("**Warning: SOMEHOW LOCK-IN DID NOT INDICATE ")
printf("COMMAND DONE. CHECK DATA !"\n");
printf("Lock-in statbyte = %d\n",(int)statbyte);
!
}
return((int)statbvte);

}

/* Make sure that lock-in’s output is ready to be sent */
data_rdy(uudd)
int uudd;

{

char statbyte = 0;
int ii;
extern int board_ud;

ibwait(uudd.CMPL);
for (1=0; u < 40; + +1)

{
ibrsp(uudd,&statbyte);

if (statbyte & 128) break;
if (ii == 39)

{

printf("\007\007\007");

printf("**Warning: SOMEHOW LOCK-IN DID NOT INDICATE ");
printf("OUTPUT READY, CHECK DATA !'\n");
printf("Lock-in statbyte = %d\n",(int)statbyte);
}
}
return((int)statbyte);

}

/* Check if lock-in is overload */
li_ovld(uudd) /* return 1 if overload, else 0 */
int uudd;

{

char statbyte;
int ii;

ibwait(uudd,CMPL); ibrsp(uudd,&statbyte);

if (statbyte & 16) i=1
else =0

return(ii);

}
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- hp3325.c: Routines which help control HP 3325

nr svathesizers thru National Instrument GPIB-PCII.
- Configured by Harry Lam, June 1990.

* /

#include <stdio.h>
#include "decl.h”
#define REAL float

char buffer[50]:
/* Read the phase parameter of the synthesizer, in degrees */

/* uudd is the unit descriptor */
REAL svnphase(uucd)

int uudd:
{
REAL phase:
syn_rdy(uudd): ibwrt(uudd."IPH".3);
syn_rdy(uudd); ibrd(uudd,buffer,18);

buffer[16] = "\0’;
sscanf(buffer."ct *2c%12{% *2¢" & phase);
return(phase);

/* Set the peak-to-peak amplitude of the synthesizer. */
synsetam(uudd.amplit)
int uudd;
REAL amplit: /* in volts */
{
REAL amphitMV:
char buff12);
if (amplit > = 1.0)
sprintf(bufl."AM%7.4fVO",amplit);

else
{
amplitMV = amplit * 1000.;
sprntf(buf,"AM%7.3fMV" amplitM V);
}

syn_rdy(uudd); ibwrt(uudd.buf.11);

!

/* Read the amplitude parameter of the synthesizer. */
REAL synampl(uudd,unit)
int uudd;
char unit(];
{
REAL amplit;
char delim|3};

syn_rdy(uudd); ibwrt(uudd,"IAM" 3);
svn_rdy(uudd); ibrd(uudd.buffer,18);
buffer{16] = "\0’;
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sscanf(buffer."c7 *2c¢% 12{%2s" & amplit,delim);
switch(delim[0])
{
case 'V’
if (delim[1] == "0")  sprintf(unit."Vpp");
else sprintf(unit,"Vrms");
break:
case ‘M’
if (delim{1] == "V’)  sprintf(unit."mVpp");
else sprintf(unit,"mVrms");
break:
case 'D”:
sprintf(unit."dBm");
}
return(amplit);

}

/* Reads the frequency parameter of the synthesizer */
REAL synfreq(uudd.unit)

int uudd;

char unit(};

{
char delim(3];

REAL freq;
syn_rdy(uudd); ibwrt(uudd,"IFR" 3);
syn_rdy(uudd); ibrd(uudd,buffer,18);

buffer[16] = "\0’;
sscanf(buffer,"%*2c%12f%2s", & freq,delim);
switch(delim[0])
{
case 'H’: sprintf(unit,"Hz");  break;
case 'K’: sprintf(unit,"kHz"); break;
case 'M’: sprintf(unit,"MHZz");
}
return(freq);

}

/* Read the miscellaneous parameters of the synthesizer. */

REAL synparam(uudd,osunit,func,hivoit)
int uudd;
char osunit{},func[],hivolt(};

{

REAL offset;

int code;

char delim(3];

syn_rdy(uudd); ibwrt(uudd,"IHV",3);
syn_rdy(uudd); ibrd(uudd,buffer.5);
switch(buffer{2])

{

case '0:  sprintf(hivolt,"hivoit off"); break;
case '1’:  sprintf(hivoit,"hivolt on");

}
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sva rdv(uudd): ibwrt(uudd."IFU".3);

svo_rdy(uudd): ibrd(uudd.buffer.3);
switch(buffer({2}])
{
case '0:  sprintf(func."DC only"); break:
case '1:  sprintf(func."Sine"): break:
case 2  sprintf(func."Square”): break:
case '3 sprintf(func."Triangle"\: break:
case "¥:  sprintf(func,"Pos. ramp”); break:
case 'S:  sprintf(func."Neg. ramp’);

sva_rdy(uudd); ibwrt(uudd."IOF".3);
sya_rdy(uudd): ibrd(uudd.buffer.18);
buffer{16] = "\0"
sscanf(buffer."% *2c 12{92s" . &offset.delim):
switch(delim{0}])

{

case 'V:  sprintf(osunit."Vdc"): break:

case ‘"M  sprintf(osunit.'mVdc");

}
return( offset);

1
I

/* Make sure the synthesizer is NOT busy and is ready */
syn_rdy(uudd)
int uudd;

!

L
char statbyte = 128;
1ot i
* See pp. 3-24 of HP3325A manual */
ibwait(uudd.CMPL):

for(u = 01 < 4 - -u)
{
ibrsp(uudd.&statbyte):

f ((statbvte & 128)) break:
if (i == 39)

{
printf("Warning: SOMEHOW A SYNTHESIZER IS ALWAYS").
printf(" BUSY: CHECK DATA '"\n\007\007\0G7);
h
i
return( (int)statbyte);
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/®
/

.x hp3585sa.c: Routines which help control HP 3585A

- spectrum analyzer thru National Instrument GPIB-PCIIL.
> Configured by Harry Lam. August 1990.
*/

#include <stdio.h>
#include "decl.h”
#define P ZAL float

/* Read the alphanumerics of the spectrum analyzers. Correct
memery sizes for the different string variables must be
assigned by the calling program: ref{15], mkrfrq[26],
dbdiv{10}, range[16}, mkramp[15}, ctrfrq[23], span[21],
rbw{12], vbw{12]. st[13].

Will return programming code’s "data” value for present
RANGE setting; cf. manual’s page 3-9-17.

* /

/
sa_alnum( uudd.ref. mkrfrq.dbdiv.range.mkramp,ctrfrq,span.rbw.vbw.st)

int uudd; /* uudd is the unit descriptor */
char reff},mkrfrq[],dbdiv{}.range[},mkramp(};
char ctrfrq(],span(],rbw{},vbw{},st{];

{

char dump;
int rngindex;
REAL rnglvl;

ibwrt(uudd."D7T4\012".5);  ibwait(uudd,CMPL);

ibrd(uudd.ref.15); ibrd(uudd.&dump,1);
ibrd(uudd.mkrfrq,26); ibrd(uudd,&dump,1);
ibrd(uudd.dbdiv.10); ibrd(uudd.&dump,1);
ibrd(uudd.range,16); ibrd(uudd.&dump,1j;

ibrd(uudd.mkramp,15); ibrd(uudd.&dump,1);
ibrd(uudd.ctrfrq,23); ibrd(uudd,&dump,1);

ibrd(uudd.span.21); ibrd(uudd.&dump,1);
ibrd{uudd.rbw,12); ibrd(uudd.&dump,1);
ibrd(uudd.vbw.12): ibrd(uudd.&dump,1);
ibrd(uudd,st,13); ibrd(uudd.&dump.1);

ref[14] = mkrfrq[25] =
ctrfrg[22] = span[20] = rbw{11] = vbw{11] = st[12] = "\0%

sscanf(range, % *5s%f".&rngivl);

if (rgivl > = -26. && mgivl <= -24.) rngindex = 1:
else if (rgivl > = -21. && mgivl <= -19.) rogindex = 2

else if (rngivl > = -16. && rglvl <= -14) rogindex =
else if (rngivl > = -11. && mglvl <= -9.) rmgindex =
clse if (rngivl >

N
L)
.

4
-6. && mmglvl <= -4) rmgindex =5

else if (rngivl > = -1, && mghvl <= 1.) rngindex = 6:
else if (rnglvl > = 4. && mgivl <= 6)) rngindex = 7;
clse if (rnghvl > = 2. && mahvl <~ 1 ragindex = R

1)
iy SUS
)

else if (rngivl >= 14 && rnélvl <= 16.) rngindex = 9

1]
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else if (rngivl >= 19. && rmgivi <= 21.) rngindex = 10
else if (rnglvl >= 24, && mglvl <= 26.) rogindex = 11:
clse if (rngivl > = 29. && rogivl <= 31.) rogindex = 12

return(rngindex);

1
]

/* Reads the marker’s amplitude. */
REAL sa_mkamp(uudd)
int uudd:
{
char statbyte = 0.buffer{20];
REAL amplht:
int 1

ibwrt(uudd."D1T35\012".5);  ibwait(uudd.CMPL);
for (i1=0: i < 10000; + +1u)
¢
ilbrsp{ uudd.&statbyte):
if ( (statbvie & 64) && (statbyte & 2) )  break;
if (i == 9999)

{
printf("\007\007\007**WARNING: ");
printf("Somehow the spectrum analyzer could ");
printf("not output marker amplitude!!\n");
printf("Spectrum apalyzer statbyte = %d\n",(int)statbyte);
}

}

ibrd(uudd.buffer,13); buffer{11] = "\0’;

sscanf(buffer,"%e" . &amplit);  return(amplit);
'

/* Converts programming code’s RANGE "data” to actual range level
according to the table on manual’s page 3-9-17.

*/

REAL sa_Rconv(rngindex)

int rngindex:
{
REAL rnglvl:

switch(rngindex)
{
case 1: rngivl = -25.; break;
case 2: rngivl = -20.; break:
case 3: rnglvl = -15; break:
case :  roglvl = -10.; break:

case 5: mglvl = -5.; break:
casc & mmght = 0. break;
case 7: mglvl = 3. Dbreak:
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case 8: rmglvl = 10.; break:

case 9: rnglvl = 155 break:
case 10: rnglvl = 20.. break:

case 11: rnglvl = 25.; break:

case 12: rngivli = 30.;

}

return(rogivl):

}

/* Set range level according to input "rngindex” value * /
sasetrng(uudd.rngindex)
int uudd.rngindex:

{
char buf[5];

if (rngindex < 10 && rngindex > 0)
sprintf(buf,"R0%1d\012",rngindex);

else if (rngindex > = 10 && rngindex <= 12)
sprintf(buf,"R%2d\012".rngindex);

else if (rngindex < = 0)
sprintf(buf,"R01\012");

else
sprintf(buf."R12\012");

ibwrt(uudd.buf,4); ibwait(uudd,CMPL);
}

/* Set manual frequency to input value "freq” in kHz */
sa_manF(uudd.freq)

int uudd:

REAL freq;

{
char buf{20):

sprintf(buf."S3%% 10.4fKZ\012".freq);
ibwrt{uudd.buf.15); ibwait(uudd.CMPL);
1

!

/* Switch input port: 1 -> 1 Mohm: 2 -> 50 ohms; 3 -> 75 ohms. */
sa_port(uudd.code)
int uudd,code;

{

char buf3);

sprintf(buf,"19d\012".code);
ibwrt(uudd.buf.3); ibwait(uudd.CMPLY);

\
/
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/* hpgraph.c: Graphics driver for HP7225B plotter.

> The computer is assumed to communicate with
* the plotter thru National Instrument GPIB-PCII.
> Configured by Harry Lam, June 1990, based on a
e similar program written by Jim Crutchfield for

** the Sun workstations.

*/

#include <stdio.h>
#include <math.h>
#include "decl.h"

#define REAL float
#define PI 3.141592654
#define LOG2 0.301029996
#define LOG3 0.477121255
#define LOG4 0.602059991
#define LOGS 0.698970004
#define LOG6 0.77815125
#define LOG7 0.84509804
#define LOGS8 0.903089987
#define LOGY9 0.954242509

char command|{100};

int uudd;

int gr_width,gr _hght;

int gr_lxgr 2x.gr_lygr 2y
int p1x,ply,p2x,p2y;

REAL bx0,bx1,by0,by1;
REAL xscale,yscale;

initgraph(intstrng) /* Unit descriptor will be returned */
/* intstrng contains the device name of the plotter */
char *intstrng;

/* Default plot/write area */

gr lx = 328; gr 2x = 10328; gr_ ly = 300: gr_2y = 8000:
gr_width = gr 2x - gr 1x;  gr_hght = gr 2y - gr_ly;

/* Defining default plotting window */

plx = 1500; p2x = 9500; ply = 1500; p2y = 7500;

/* Default scaling */

bx0 = 1500; bxl = 9500.. by0 = 1500.; byl = 7500.;
xscale = yscale = 1,

uudd = ibfind(intstrng);
ibclr(uudd);
ibwrt(uudd."IN;".3);
return(uudd);

}

char clear() /* Ask if new paper is in place & plotter on and ready. */

{
printf("Hit key 'c’ when plotter is ready with fresh paper\n");
while ((getchar()) '= c)
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}

/* Scale the device units with the user’s units */
scale(x0.x1,y0,y1)
REAL x0,x1,y0,y1;
{
bx0 = x0; bxl = x1: bv0 = v0; byl = vl;
'

move(x,y)
REAL xy;
{
int xtodev(), ytodev(),ii,ix,iy; /* The 2 functions convert user units
to plotter units. */

ix = xtodev(x); iv = vtodev(y);
sprintf(command,"PA%5d.%5d;" ix1y);
/¥ if(grlx <= ix&& gr 2x >=x && gr ly <= iy && gr 2y >=1y) */
for (ii=0; ii<14: + +ii)  ibwrt(uudd,command +ii,1);

}
border()
{
move(bx0,by0); pendown();
move(bx1,by0); move(bxl,byl);  move(bx0,byl);
move(bx0,by0); penup();
}

axes(xorigin,yorigin,xtic,ytic,upright,downleft)
REAL xorigin,yorigin,Xxtic,ytic;
int upright,downleft;

-

int 1

REAL t;

if (upright < 0 || upright > 100) upright = 5;
if (downleft < 0 || downleft >100)  downleft = 5;

sprintf(command,"TL%3d,%3d;",upright,downleft);
for (ii=0; ii<10; + +ii) ibwrt(uudd,command +i1,1);

if (bx0 < = xorigin && xorigin < = bxl)
{
if (by0 <= yorigin && yorigin < = byl)
{
move(xorigin,yorigin); pendown();
for (t=yorigin; t <= byl; t + = ytic)
{
move(xorigin,t); ibwrt(uudd,"YT;",3);
}
penup();
move(xorigin,yorigin); pendown();
for (t = yorigin-ytic; t > = by0; t -= ytic)
{
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move(xorigin,t); ibwrt(uudd."YT:"3);

}

penup();

move(xorigin,yorigin); pendown();

for (t=xorigin; t <= bxl:t - = xtic)
f

1

move(t,yorigin); ibwrt(uudd,"XT:",3);

}

penup(); o
move(xorigin,yorigin); pendown();
xorigin-xtic; t > = bx0: t -= xtic)

for (t =

{

move(t,yorigin); ibwrt(uudd,"XT:",3);

}

penup();

}
}

/* To draw the x-axes for semi-log graph. */
log_xaxes(xmin,xmax,ymin,ymax,updown)
REAL xmin,xmax,ymin,ymax;

int updown;

{

int iLjj;

REAL xplot,xplot0,yplot;

if (updown < 0 || updown > 100)  updown = 5;

for (jj=0; j<2; + +1j)

{

if (jj==0

{

yplot =

}
else

{

yplot

}

il

)

ymin;

ymax;

sprintf(command, TL%3d.0;",updown);

sprintf(command,"TLO,%3d;",updown);

for (i=0; ii<8; + +ii)  ibwrt(uudd,command +1i,1);

xplot0 = xmin;

pendown();

move(xplot0,yplot);

for (ii=0; ii<100; + +1i)

xplot = xplot0 + LOG2:
move(xplot,yplot}); ibwrt(uudd,"XT;" 3);
xplot = xplot0 + LOG3;
move(xplot,yplot); ibwrt(uudd,"XT;",3);
xplot = xplot0 + LOGS4;
move(xplot,yplot); ibwrt(uudd,"XT;",3);

xplot = xplot0 + LOGS;
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move(xplot,yplot); ibwrt(uudd."XT:".3);
xplot = xplot0 + LOG6;

move(xplot,yplot); ibwrt(uudd."XT;",3);
xplot = xplot0 + LOG7.
move(xplot,yplot); ibwrt(uudd."XT;".3);
xplot = xplot0 + LOGS:
move(xplot,yplot); ibwrt(uudd,"XT:",3);
xplot = xplot0 + LOGSY;
move(xplot,yplot); ibwrt(uudd,"XT;",3);
xplot = xplot0 + 1,
move(xplot,yplot); ibwrt(uudd,"XT;",3);
xplot0 = xplot;
if (xplot0 > = xmax) break;
}
penup();
}
}
xtodev(x) /* Convert x-coord from usr’s scale to plotter’s scale */
REAL x:
{
int ilocx;

ilocx = (int)( (x - bx0) / (bx1 - bx0) * (p2x - plx) );
lox += plx;
return(ilocx);

}

ytodev(y) /* Convert y-coord from usr’s scale to plotter’s scale */
REAL v;
{

int ilocy;

ilocy = (int)( (y - by0) / (byl - by0) * (p2y - ply) );
docy + = ply;
return({iocy);

}

charsize(xdim,ydim) /* character size, in cm */
REAL xdim,ydim;
{
int ii;
if (xdim < -10. || xdim > 10. || ydim < -10. || ydim > 10.)
{
xdim = .2; ydim = .4;
Y
sprintf(command."SI76.2f.%6.2f:" xdim.ydim);
for (1=0; <16; + +i1) ibwrt(uudd,command +1i.1);

}

labeldir(angle) /* angle in degrees: 0 = hornz. */
REAL angle;

{

REAL dgtord = PI / 180.radianrun,rise;

[p )
n
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1nt i1

radian = angle * dgtord;
run = cos(radian); rise = sin(radian);
if (angle == 0.)
{
sprintf(command."DI:");
for (ii=0; ii<3; +-i) ibwrt(uudd.command +1i1);
}
else

sprintf( command."D1%7.4f,%7.4f;" ,run,rise);
for (1=0; 1i<18; + +ii) ibwrt(uudd,command +ii,1);
}

}

label(string)
char *string;
{
int length;

length = strlen(string);

ibwrt{uudd,"LB".2); ibwrt(uudd.string,length);
ibwrt(uudd,"\003",1);

}

drcleat(x,y,radius,chordang)

/* Xy in usr’s units; radius in scaled x units */
REAL x,y,radius;

/* chordang in integral degrees */
int chordang;

{

int r,jj,angle,ix,y,iccx,iccy;

REAL relx,rely,relangcc,relang;

angle = chordang % 360;

relangec = ((REAL)angle) / 180. * P

r = (int)(radius / (bx1l - bx0) * (p2x - plx));
ix = xtodev(x); Iy = vtodev(y);

for (relang = 0.; relang < = (2.1*PI); relang + = relangcc)

{
icex = ix + (int)((REAL)r * cos(relang));
iccy = iy + (int)((REAL)r * sin(relang));

sprintf(command,"PA %6d,%6d;" iccx.iccy);
for (j=0; jj<16; + +jj) ibwrt(uudd,command +jj,1);

if (relang == 0.) pendown();
}
penup();
!
dotat(xy) /* X yin usr’s scale */
REAL xv;

257



{

move(x.y); pendown(); penup();
}
penup() { ibwrt(uudd,"PU;",3); }

pendown() { ibwrt(uudd."PD:".3); }
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v_graph.c: Turbo C graphics driver for the video.
Configured by Harry Lam, June 1990.

#include <graphics.h>
#include <stdio.h>
#include <conio.h>
#include <process.h>
#define VPCLIP 1 /* Clip output when beyond viewport */
#define REAL float
#define LOG2 0.301029996
#define LOG3 0.477121255
#define LOG4 0.602059991
#define LOGS 0.698970004
#define LOG6 0.77815125
#define LOG7 0.84509804
#define LOG8 0.903089987
#define LOG9 0.954242509

int gr_lx.gr_2x.gr_ly,gr 2y,

int plx,p2x,ply,p2y;

int font,directn,chsize.v_just,h_just:
int tmarkx,tmarky;

REAL bx0,bx1,by0,byl;

v_initgraph()

/*

{

int g_driver,g_mode,g_error;

/* Default plot/write graphics area */

gr Ix = 0; gr 2x =639 grly-= 15/* 5*/; gr 2y = 349/* 479*/;
/* Defining defauit plotting window */

plx = 100; p2x = 600; ply = 25/*15*/; p2y = 275 /* 379*/;

/* Default scaling */

bx0 = 100.; bxl = 600.. by0 = 25./*15.*/; byl
/* Default text setting */

font = 0; directn = HORIZ DIR: chsize = 1;
h just = LEFT_TEXT: v_just = BOTTOM_TEXT;
/* Default tick mark size in graphics scale */

tmarkx = 3; tmarky = 3;

275. /*379*/;

g_driver = DETECT;

g_driver = VGA; g_mode = VGAHI; * /
initgraph(&g_driver,&g_mode,™);
g_driver = VGA: g mode = VGAHIL

g_error = graphresult();
if (g_error < 0)
printf("Initgraph error: %s\n",grapherrormsg(g_error));
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setviewport(gr_lx.gr ly,gr 2xgr 2y,VPCLIP);
clearviewport();
rectangle(0,0,gr_2x-gr_lx.gr_2y-gr_ly);
settextstyle(font.directn,chsize);
settextjustify(h_just,v_just);

}

/* Scale the video's units to the user’s units. */
v_scale(x0,x1,y0,y1)
REAL x0,x1,y0,y1;

{
bx0 = x0; bxl = x1; by0 = v0; byl = yl;
}

v_move(xy) /* Move the current position to (x%y) in usr’s scale */
REAL xy;

int v_xtodev(),v_ytodev(),ixiy;
ix = v_xtodev(x); iy = v_ytodev(y);
moveto(ix,1y);

}

v_lineto(xy) /* Draw a line from CP to (xy) in usr’s scale, */
REAL xy; /* and move CP to (xy). */

int v_xtodev(),v_ytodev(),ixiy;

ix = v_xtodev(x); iy = v_ytodev(y);
lineto(ix,iy);

}

v_border()

rectangle(plx,ply,p2x,p2y);
}

v_axcs(xorigin,yoﬁgin,mc,ytic,updown,lcftrght)
REAL xorigin,yorigin xtic,Ytic;
int updown,leftrght;

{
int dx.dy;
REAL t;
dx = tmarkx * leftrght; dy = tmarky * updown;
if (bx0 < = xorigin && xorigin < = bxl)
{
if (by0 <= yorigin && yorigin <= byl)

{

v_move(xorigin,yorigin);

for (t=yorigin; t <= byl; t + = ytic)
{
v_lineto(xorigin,t);  linerel(dx,0);
lirerel(-2*dx,0); v_move(xorigin,t);
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}

v__move(xorigin.yorigin‘);

for (t = yorigin - vtic: t > = byl t -= vtic)
{
v_lineto( xorigin.t); linerel(dx.0);
linerel(-2*dx,0); v_move(xorigin.t);

)
J

v_move(xorigin,yorigin);
for (t=xorigin: t <= bxlit + = Xtic)

v_lineto( t.yorigin); linerel(0.dy);
linerel(0,-2*dy); v_move(t,yorigin);
}

v_move(xorigin,yorigin);
for (1 = xorigin-xtic: t > = bx0; t -= xtic)

{

v_lineto(t,yorigin); linerel(0,dy);
linerel(0,-2*dy); v_move(t,yorigin);

}

}

/* To draw the x-axes for semi-log graph. */
v_logxaxes(xmin,xmax,ymin,ymax,updown)
REAL xmin.xmax,ymin,ymax;
int updown;

{

int dyl.dy2,i,}j;

REAL xplot0.xplot,yplot:

dvl = tmarky * updown:

for (j=0; j<2: = ~+1)

{

if () ==0)
{
yplot = ymin; dv2 = -dyl;
}

else
{
yplot = ymax; dv2 = dyl:
}

xplot0 = xmin: v_move(xplot0,yplot);

for (ii=0; i< 100; + +1ii)
{
xplot = xplot0 + LOG2; TICKS(xplot,yplot.dy2);
xplot = xplot0 + LOG3: TICKS(xplot.yplot.dy2);
xplot = xploty + LOG4; TICKS(xplot,yplot.dy2);
xplot = xplot0 + LOGS: TICKS(xplot,yplot.dy2);
xplot = xplot0 + LOG®; TICKS(xplot,yplot,dy2);
xplot = xplot0 + LOG7, TICKS(xplot,yplot.dy2);

261



xplot = xpiotv - LOGS: TICKS(xpiot.yplot.dv2);
xplot = xplot0 - LOG9Y: TICKS(xpiot.vplot.dv2):
splot = xplot0 - 1. TICKS(xplot.yplot.dv2):

xplot0 = xplot:

if (xplot0 > = xmax) break:

1

f

i

TICKS(xplot.yplot.dy)

REAL xplot.yplot:

it dv:
i
v_lineto(xplot.yplot); v_move( xplot.yplot);
linerel(0,dy); v_move(xplot.yplot):
1
f

v xtodev(x) /* Convert x-coord from usr’s scale to window’s scale */
REAL x

f
t

int ilocx:

tlocx = (int)( (x - bx0) / (bxl - bx0) * (p2x - plx) );
locx + = plx;
return(ilocx);

1
)

v viodev(y) /* Convert y-coord from usr's scale to window’s scale */
REAL v;
{

mnt ilocy;

locy = (int)( (y - bv0) / (byl - by0) * (ply - p2v) );
ocy ~ = p2v;
return(ilocy);

\
s

v charsize(cc) /* chsize: magnification factor of default char size */
int cc:

/
3

chsize = cc;
if (chsize == 0 || chsize > 10) chsize = 1.
settextstyle(font.directn,chsize);

I,
i

v_texrdir(cc) /* directn: 1 means vertical. else horizontal */
nt cc:
\
directn = cc;
if (directn '= 1) directn = O;
settextstvle(font.directn.chsize):

!
i

v_label(string)
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char *string;
{ outtext(string); }

v_circle(x.v.radius)

REAL xy.radius: /* xv in usr’s scale: radius in x-scale */

f
1

int L\Li_\',v_xtodcv().v_ytodev().iradius:
REAL dummy;

ix = v xtodev(x); iy = v_vtodev(y);
dummy = x + radius:

iradius = v_xtodev(dummy): radius -
circle(ix.ly.iradius);

1

f

v_dot(xy) /* X. v in usr’s scale */
REAL xv;

{
int ix.i_\'.v_xtodev(),v_ytodev(),ii,jj;

ix = v_xtodev(x); iy = v_ytodev(y);

/* for (i =-Liii<=1 -~+i)

{

for (j = -1, <=L ++1) puzpixel(ix+ii,iy+jj,]5);

yor/

putpixel(ix.iy,15);
}

v_aspect()
]
1

10l Xasp.yasp;

getaspectratio( &xasp.&vasp);
selaspectralio(Xasp.xasp);

}
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