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Abstract 
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The equations for convective diffusion to a rotating disk are 

solved numerically for the case where a consolute point is found between 

the concentration in the bulk and that at the surface. A singu1ar-

perturbation expansion is presented for the condition where the bulk 

concentration is nearly equal to the consolute-point composition. 

Resu1 ts are compared to Levich' s solution for constant properties and 

with his analysis of an experimental system. 

Introduction 

The driving force for diffusion is the gradient of chemical poten-

tial of the diffusing species. Usually, one defines the diffusion coef-

ficient in terms of a gradient in concentration. Thus, in the vicinity 

of a consolute point, the temperature and composition where two liquid 

phases become completely miscible, this diffusion coefficient becomes 

Key words: variable physical properties, consolute temperature, 
critical point, singular perturbation 
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zero. Krichevski and Tshekhanskaya [1] and Vitagliano et aL[2] 

observed this experimentally in the water-triethylamine system. Kri-

chevski and Tshekhanskaya also measured the rate of dissolution of a 

rotating disk of terephthalic acid in the water-triethylamine system. 

Levich [3] examined this system theoretically, accounting for variations 

in the diffusion coefficient with the concentration of triethylamine as 

well as the effects of variable physical properties on the hydrodynam

ics. However, Levich made a number of untenable assumptions, which call 

to question the validity of his conclusions. Although the behavior of 

transport properties at a consolute point is often discussed in the 

literature, see Sengers[4] and Cussler[S] for example, convective

diffusion problems when a consolute point is present in the system have 

not been addressed other than in Levich's original work. 

Our obj ective is to reexamine convective diffusion to a rotating 

disk theoretically, without arbitrary assumptions, and to elucidate 

better the behavior of the system in the region of the consolute point. 

In the analysis below we do not consider variations in the density or 

viscosity. Clearly, variations in physical properties affect the hydro-

dynamics and convective diffusion to the disk. Nevertheless, these 

effects are omitted here for two reasons. First, Hsueh and Newman[6], 

and others[7] [8] have treated variable physical properties previously. 

Second, variations in the hydrodynamics will have only a secondary 

effect on convective diffusion near the consolute point and will add 

little to our understanding of the behavior in this region. The princi

pal effect we wish to investigate is the consequence of a zero diffusion 

coefficient at a point in the flow and mass-transfer process. 
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Analysis 

The rotating disk is uniformly accessible to mass transfer. The 

convective diffusion equation in terms of the mass fraction of reacting 

species in a binary fluid is[9] 

pv dw = ~( v$) 
z dz dz P dz . 

The general boundary conditions considered are 

W = w at z = 0, 
o 

w = w at z = 00 
00 

(1) 

At high Schmidt number, the diffusion layer is much smaller than the 

hydrodynamic boundary layer, and the velocity normal to the surface of 

the disk may be accurately written as [3] 

v 
z 

With the dimensionless variable 

(2) 

(3) 

where e can be regarded as the axial distance z divided by the thickness 

of the diffusion layer and D is the value of the diffusion coefficient 
o 

at infinite dilution, equation 1 becomes 

2dw d [D dW] e. de = de 3D 0 de . (4) 
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The implicit solution to equation 4 is 

( D e 3D 
e2de I ° I ° de "'Dexp 

D w - w 
0 0 e = ° (5) 

w w ~D r 3D 
€2d€}d€ 

00 ° I DOexp I ° D o 0 

For constant diffusion coefficients, Levich gave the solution 

1 e 3 
e = r(4/3) l e-

x 
dx. (6) 

When the diffusion coefficient is a function of concentration, 

equation 5 can be integrated numerically, iteration being necessary 

because D depends on w. For a solution with a consolute point, however, 

the diffusion coefficient becomes zero at some value of e, and equation 

,5 cannot be integrated directly. 

The diffusion coefficient based on a concentration driving force 

can be related to a diffusion coefficient based on a chemical-potential 

driving force through an activity correction 

D (7) 

If the Gibbs energy is expressed by a three-suffix Margules equation, 

then the activity coefficient for a two-component solution is given by 

I 

(8) 

At the consolute point 
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If the concentration at the consolute point is known, these relation-

ships allow the evaluation of the two constants in equation 8. Refer-

ence [1] gives the consolute point for the water-triethylamine system as 

17°C and 0.261 mass fraction of triethylamine. These values are not in 

exact agreement with others reported in the literature[lO] but suffice 

to illustrate our technique. Figure 1 shows the activity factor for 

this system based on the 3-suffix Margules equation and the molar masses 

of the components. It is evident that the diffusion coefficient is zero 

at the consolute point. Additionally, one sees that in the vicinity of 

the consolute point the diffusion coefficient may be approximated by 

D (9) 

.Similar behavior is observed in other systems. [11] 

In order to solve the convective diffusion equation in the vicinity 

of the consolute point, we should formulate the problem so that the 

singularity is removed. The flux near the consolute point is 

(10) 

Variations in the velocity and flux are small compared to variations in 

the diffusion coefficient and concentration in this region; and, assum-

ing that the diffusion coefficient is of the form given in equation 9, 

we conclude that in the vicinity of the consolute point 
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Figure 1. Activity-factor correction to the diffusion coefficient 
based on the 3-suffix Margules equation. 
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(11) 

where z is the distance from the surface of the disk to the consolute 
c 

point, also called the critical distance. Therefore the z coordinate is 

stretched so that w is proportional to X near the consolute point: 

and equation 1 becomes 

(12) 

Equation 12 was solved by breaking the problem into two regions: 1) 

from the consolute point to the surface of the disk, and 2) from the 

consolute point out to infinity. At the consolute point the concentra-

tion is known, but the position is not. The boundary conditions con-

sidered were 

w 
dw 

we and dX 

w o at X 

A at X = 0, 

-X . 
e 

The concentration at the surface was set equal to zero, representing the 

reaction of diffusing species at the surface of the disk with fast 

kinetics. For a given value of X , the slope A at the critical point 
e 

was adjusted to give a zero concentration at the surface. The bulk con-

centration was then determined by using the same value for the slope at 

the consolute point and integrating out to infinity. Equations 12 was 
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put in a form like equation 5 and solved by numerical integration,but 

this did not prove to be an efficient method. 

The problem was reformulated with the following variables 

x 

and 

w 

-x 
1/3' z 

c 

1 -
w 
w 

c 

Thus equation 12 becomes 

where E is defined by 

3 2 dW 
E (I-x) - = 

dx 

E = 

3Kz3 
c 

2 . 
wD 

c c 

This can be split into two first-order differential equations 

2 2 
dP (1_x3)2 

w x 
c P, dx E 
D 

D 
c 

2 2 
dW 

w x 
c 

P, 
dx D 

D 
C 

(13) 

(14) 

(15) 

(16) 

(17) 
i. 
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and solved as an initial value problem with the boundary conditions 

w 0, P P at x 
o 

o. 

Equations 16 and 17 were solved using a Runge-Kutta routine. € was 

fixed, corresponding to a given critical distance. At x=O the value of 

P was adjusted until the calculated surface concentration was zero. 
o 

Then with the known value of P , the equations were integrated from x=O 
o 

to x= -00 to determine the value for the concentration far from the disk. 

The Runge-Kutta routine gave identical results to the previous method 

but was considerably more efficient. 

Assuming equation 9 is valid near the consolute point does not res-

trict the validity of the method. lt is important that the diffusion 

coefficient vary as shown in equation 9 only in the vicinity of the con-

solute point. In the analysis below we assume that the functional form 

of equation 9 is valid over all compositions only to illustrate more 

clearly our method without the introduction of detailed physica1-

property variations, which would restrict our results to only one physi-

calor chemical sys tern. The concentration profiles for w > ware 
<Xl , C 

shown in figure 2. Figure 3 shows the concentration profiles when the 

bulk concentration is below the consolute-point composition. In both 

cases the concentration is plotted against e, which is related to x by 

(18) 

As the bulk concentration is raised, the consolute point moves 

closer to the surface of the disk, and the slope dW/dx at this critical 
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Figure 2. Concentration profiles for bulk concentrations above or 
at (dashed line) the consolute-point composition. 
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Figure 3. Concentration profiles for bulk concentrations below or 
at (dashed line) the consolute-point composition. 
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distance increases. Figure 4 shows the slope dW/dx at the consolute 

point as a function of the concentration far from the disk. For values 

of E>2 solutions were not possible. We wished to investigate the 

behavior when the bulk concentration was arbitrarily close to that of 

the consolute composition, and to determine the maximum value of E. 

Perturbation Analysis 

Figure 5 shows W against x, which is related to the distance from 

the critical point by equation 18. The stretching of the above formula-

tion eliminated any sharp variation in this curve, in contrast to figure 

2. As w is lowered toward the consolute-point composition,l E 
ex) 

increases and dW /dx at x=o appears to be approaching zero. For E=l.8 

the curve shows significant curvature. Suppose there is a value of E 

for which dW/dx = 0 at x=O. The solution in the outer region would then 

be W=O for x<O. For x>O look for a solution of the form 

W 
2 

Ax + Bx + ... (19) 

near x=O. ,Substituting into the differential equation and equating 

equal powers of x gives 

4AB E. 

If E approaches a limit, somewhat greater that 1.8, then B approaches 

infinity as A goes to zero. The region where 



_dwl 
dXlx=o 
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Figure 4. The slope at the consolute point. 
asymptote given in equation 28. 
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defines an inner region (in the sense of a singular-perturbation expan-

sion). Let 

Xf x 
4A2 ' 

(20) 

W = 
f 

-3 w. 
4A 

(21) 

The problem in the inner region becomes 

[1 T h2~] dW d [-2 -] 4 ;2 ~ , (22) 

dx dx 

with the boundary conditions 

W = o and dW 
1 at x = O. 

dx 

To a zeroth approximation, W satisfies 

(23) 

with the implicit solution 

l6~3 2W-2 _ 1 
-3- = W + "4 In(l + 4W). 

(24) 

As x ---+ ex) 

W ---+ (§.] 1/2 -3/2 3 x, (25) 

or 
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w --+ (23€) 1/2 x 3/ 2 . (26) 

The outer region satisfies equation 15. Let x=x3
/

2
, and the prob-

lem becomes 

2€ -2 2 dW d W dW 
[ 

2 ] 
T(l-x) dx = dx x dx . (27) 

The solution must match the inner solution as x --+ 0, 

and 

W = 1 at x = 1. 

Thus € can be adjusted to give W=l at x=l. The numerical solution gives 

€=1.9967. The concentration profiles for this condition are the dashed 

lines in figures 2 and 3 and the solid line in figure 5. 

dW We are also able to find an asymptote for --I As x --+ - 00 dx x=o· 

and since A 
dW 
dx1x=0 

- 1 1 64x [ -3] 
W --+ - '4 - '4 exp --3-- , 

This is the dashed line on figure 4. 

(28) 
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Mass Transfer 

The rate of mass transfer to the surface of the disk is given by 

p 
_ D dw, 

dz z=O· 
(29) n 

The coordinate transformation allows us to define a dimensionless rate 

of mass transfer j and to express it as 

j 
1 3Do 3" dw 

[ ]

1 

we K dz'z=O 

" 

1 dW, _ . 
(3e)1/3 dx x-l 

(30) 

For a constant coefficient of diffusion, equation 6 shows that j takes 

the limiting form 

. 1 3D 0 dw 1 w co 

[ ]

1/3 

J = we K dz'z=O = r(4/3) we· 
(31) 

Figure 6 shows the flux to the surface of the disk from our numerical 

calculation as compared with the theoretical line predicted by equation 

31. The results are summarized below in table 1. 

Discussion 

From figure 2 one observes that the consolute point moves farther 

from the surface of the disk as the bulk concentration is decreased and 
." 

reaches a maximum distance e=O.6054 when the bulk concentration equals 

the consolute composition. The slope at the consolute point is infinite 

when plotted against e. Figure 3 shows the behavior as a consolute 

point is approached from concentrations below the critical value. As 
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Figure 6. Rate of mass transfer to the surface of a rotating disk. 
Dashed line is that predicted by equation 31 for a constant diffusion 
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Table 1. 

w 

dW/dx I x=O dW/dx I x=l 
00 

€ - j 
w 

c 

0.01 0.99809 1.00064 3.30252 3.22036 
0.05 0.99039 1.00321 2.71153 1.88811 
0.1 0.98065 1.00647 2.45832 1. 50347 
0.2 0.96069 1. 01299 2.18820 1.20103 
0.3 0.94009 1. 01961 2.01483 1.05606 
0.4 0.91878 1.02632 1.88162 0.96580 
0.5 0.89668 1. 03310 1.77097 0.90250 
0.6 0.87372 1.04000 1.67523 0.85495 
1.0 0.77077 1. 06851 1.38024 0.74086 
1.8 0.43457 1.13238 1.04281 0.64545 
1. 9967 0.0 1.15076 1.0 0.63363 

the concentration becomes closer to w , the slope increases sharply and 
c 

is infinite when the consolute point is reached. 

At low values of w , the diffusion coefficient is nearly constant, 
00 

and the profile approaches that predicted by equation 6. The rate of 

mass transfer is therefore identical to that predicted by equation 31, 

the dashed line in figure 6. 

As the consolute point is approached, the diffusion coefficient 

becomes smaller, and the rate of mass transfer is reduced as seen by the 

leveling off of the solid line in figure 6. This does not continue 

indefinitely because there is a competing effect. As the bulk concen-

tration is increased above the consolute-point composition, the diffu-

sion coefficient increases sharply, and the critical distance moves 

toward the disk. Thus, the rate of mass transfer becomes larger than 

that predicted by equation 31. The leveling off was observed experimen-

tally by Krichevski and Tshekhanskaya [1] and predicted by Levich [3]. 

The concentration range in Krichevski and Tshekhanskaya's experiments 
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was not large enough to verify the up-turn in the rate of mass transfer. 

Levich arbitrarily divided the problem into three regions: 1) far 

from the disk the concentration was constant and equal to the bulk con-

centration, 2) close to the disk the concentration varied approximately 

linearly with distance from zero to the consolute composition, and 3) a 

thin intermediate region showed negligible resistance to mass transfer. 

Figures 2 and 3 clearly contradict this picture. 
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constant = 0.51023 

dW at x=O 
dx 

Margules constant 

constant in equation 19 

Margules constant 

2 diffusion coefficient, cm Is 

parameter used in equation 9 

Gibbs energy, J/mol 

dimensionless flux defined in equation 30 

parameter in equation 2 
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2 
mass flux, g/cm 's 

velocity normal to disk, cm/s 

dimensionless concentration 

distorted dimensionless distance variable 

mole fraction 

variable defined below equation 11, cml / 3 

distance from surface of disk, cm 

activity coefficient 

gamma function 

parameter defined in equation 15 

dimensionless concentration defined by equation 5 

k ' .. , 2/ 
~nemat~c v~scos~ty, cm s 

dimensionless distance 

density, g/cm3 

mass fraction 

rotation speed, rad/s 

Subscripts 

far from disk 

surface of disk, infinite dilution 

critical or consolute value 

Superscripts 

inner region variable 

outer region variable 
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