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Abstract 

An analytic treatment of the one Higgs doublet, electroweak phase 
transition is given. The phase transition is first order, occurs by the nu­
cleation of thin walled bubbles aiid completes at a temperature where the 
order parameter, (¢h is significantly smaller than it is when the origin 
becomes absolutely unstable. The rate of anomalous baryon number vi­
olation is an exponentially sensitive function of (¢)T. In very minimal 
extensions of the standard model it is quite easy to increase (¢)T so that 
anomalous baryon number violation is suppressed after completion of the 
phase transition. Hence baryogenesis at the electroweak phase transition 
is tenable in minimal extensions of the standard model. In some cases ad­
ditional phase transitions are possible. For a light Higgs boson, when the 
top quark mass is sufficiently large, the state where the Higgs field has a 
vacuum expectation value (¢) = 246 GeV is not the true minimum of the 
Higgs potential. When this is the case, and when the top quark mass ex­
ceeds some critical value, thermal fluctuations in the early universe would 
have rendered the state (¢) = 246 Ge V unstable. The requirement that 
the state (¢) = 246 GeV is sufficiently long lived constrains the masses 
of the Higgs boson and the top quark. Finally, we consider whether local 
phase transitions can be induced by heavy particles which act as seeds for 
deformations in the scalar field. Semi-classical reasoning suggests that, 
when a particle receives a contribution to its mass from the vacuum ex­
pectation value of a scalar, under certain conditions, the ground state of 
particle number one contains a 'dimple' or shallow scalar field condensate 
around the particle. We argue that this is not the case. A careful analysis, 
taking into account quantum mechanics, shows that the semi-classical ap­
proximation is a poor one. We find that there are no energetically favored 
one-particle dimple solutions for perturbative couplings. 

·This work was supported in part by the Director, Office of Energy Research, Office of 
High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of 
Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foundation 
under grant PHY90-21139. 
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Chapter I 

The Electroweak Phase 

Transition 

1 Introduction 

In the minimal standard model, electrowea.k symmetry breaking is induced by the 

ground state of a single doublet scalar field. We can write the potential for the real 

scalar component of the doublet which acquires a vacuum expectation value as 

(1.1) 

In a cold and empty (or relatively empty) universe, the Higgs field 4> can minimize its 

energy .and hence the free energy of the system by choosing a vacuum expectation value 

(4)) = (J. However, the early universe was neither cold nor empty, and the presence of 

an ambient, thermal distribution of particles changes this picture. Although the vacuum 

energy of the system is still reduced by shifting the classical value of the Higgs field 

away from (4)) = 0, we now pay the price of adding free energy to the particles in the 

surrounding plasma as they acquire a mass (see Figure 2). \Vhen the temperature is 

high enough, the free energy required to give mass to a thermal distribution of particles 

exceeds the vacuum energy liberated by displacing the Higgs field vacuum expectation 
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value from the origin. This occurs for temperatures above a critical tempe~ature we 

call T1 , where the configuration of the Higgs field that minimizes the free energy of the 

system is (¢) = O. Thus, at temperatures large compared to the scale of electroweak 

physics, the minimum of the effective Higgs potential is at the origin. This is the origin 

of symmetry restoration at high temperature [1-3]. A13 the universe cools, when the 

temperature drops to the critical temperature Th a new minimum appears, separated 

from the origin by a hump. When the free energy barrier separating the two extrema is 

small enough, bubbles of true vacuum are nucleated and grow. The thermal decay rate 

from the unstable state carries a suppression [4, 5], 

(1.2) 

where Fc(T) is the surplus free energy needed to create a bubble of true vacuum large 

enough to grow indefinitely. Bubbles of true vacuum smaller than this critical size 

collapse under surface tension. For a bubble larger than this critical size, as the radius 

of the bubble increases the free energy liberated by the expanding volume of true vacuum 

exceeds the free energy required to increase the bubble's surface area. Such a bubble 

will grow and convert space to true vacuum. A static bubble which is exactly the critical 

size is in unstable equilibrium, it is a saddle point solution of the free energy functional. 

At temperature T2 , where the second derivative of the potential at the origin van­

ishes, fluctuations can classically roll towards the global minimum without surmounting 

an energy barrier; If the phase transition has not yet completed by the time the temper­

ature drops to T2 , the transition no longer occurs through bubble nucleation. We call the 

transition first-order if it proceeds by bubble nucleation. So a necessary condition for a 

first order phase transition is that bubbles occupy most of space before the temperature 

drops to T2 • We will satisfy a slightly more stringent condition. At temperatures very 

close to T2 the loop expansion parameter becomes large[2]. So in addition, a reliable ana­

lytical determination of the phase transition requires that it complete while the effective 

loop expansion parameter is small. 
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In the next section we write the finite temperature effective potential for the o~e 

Higgs doublet standard model in a form which is useful for the analytic understanding 

of the nature of the phase transition. We take the Higgs boson to be lighter than about 

150 GeV, and use the high temperature approximation, which we will show is highly 

accurate for all aspects of the phase transition. In section three we discuss the nature of 

bubbles which could be nucleated to trigger the phase transition. The scaling arguments 

of section three suggest that an examination of whether the phase transition occurs via 

nucleation of thin walled bubbles is warranted. In section four, the free energy of these 

thin walled bubbles is calculated, and in section five it it shown that the thin walled 

bubble free energy is small enough that the phase transition does complete by the rapid 

nucleation of exclusively thin walled bubbles. Our analysis is purely analytic, and we 

obtain formulae for such quantities as the temperature of the universe at the completion 

of the phase transition and the number of bubbles nucleated per horizon volume. 

Section six provides an important application of our results to the question of 

depletion of the baryon asymmetry after the phase transition. The standard model con­

tains an anomaly which is baryon number violating [6]. At high temperatures the rate 

of anomalous baryon number violation can be quite large [5,7-10]' This has stimulated 

a great deal of interest in the possibility of creating the baryon asymmetry at the elec­

troweak phase transition, (EWPT), [11-17] A successful scenario must explain why the 

baryon excess created at the e1ectroweak phase transition is not washed out after the 

phase transition completes. We show that extremely simple additions to the standard 

model avoid washout for any Higgs mass up to 150 GeV. 

2 Evolution of the Potential 

The tree level potential for the physical Higgs scalar is 

U(¢) = ~o (¢2 _ (72)2, (2.1) 

where >'0 is related to the Higgs boson mass by m;, = 2>'0(72. To reliably analyze the 

3 



dynamics of this field, we need to include the interactions of the Higgs field wi~h virtual 

particles and with the heat bath. 

The one loop, zero temperature potential, V(4)) can be written as the sum of the 

classical potential and a one loop correction V(4)) = U(4)) + V 1(4)). If we adopt the 

renormalization prescriptions i) V"(o") = m~, and ii) V'(O') = 0, for each degree of 

freedom to which the Higgs boson is coupled, the zero temperature one loop correction 

to the effective potential is (see Appendix A) 

(2.2) 

where the ± is for bosons (fennions) and m( 4» is the mass of the particle in the presence 

of a background field 4>. Equation (2.2) is valid for particles which have a mass of the form 

m2 = a + b4>2 in the mass eigenstate basis. In addition to these quantum corrections, 

we must also include the interaction between the Higgs field and the hot electroweak 

plasma. Taking the Higgs boson sufficiently light that we can ignore the contribution of . 

scalar loops, it is shown in Appendix A that, using the high temperature expansion, the 

effective potential for the standard model can be reliably written 

(2.3) 

where D = l4 {6(mw/0')2 + 3(mz/0')2 + 6(mt/0')2} , and the coefficient of the term linear 

in temperature is E = 1~1r [6(mw/0')3 + 3(mz/0')3] ~ 10-2 • The temperature dependent 

4>4 coupling is: 

(2.4) 

where the B(F) denotes bosons (fe~mions), 9B(F) is the number of degrees of freedom, 

CF and CB are constants which can be found in Appendix A, and the masses in (2.4) are 

e\'aluated at (4)) = 0'. The physical Higgs mass is related to .A by 

(2.5) 
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where B = 64;20-4 (6mtv + 3m~ - 12m~). We define T2 as the temperature where V"( ¢ = 

0) = o. From Appendix A, 

(2.6) 

Because this result was obtained at the origin, it is valid to all orders in m/T. The 

quantity X is plotted against mH for various values of me in Figure 1. 

At temperatures well above T2 , the only minimum of the potential is (¢) = O. As 

the early universe cools down from this high temperature, a second local minimum of 

the potential first appears (as an inflection point) when the temperature reaches 

2 2 1 
T. = T2 1 _ 9E2/8>"TD (2.7) 

at a value of the field ¢. = 3ET./2>"T. At lower temperatures, this point splits into a 

barrier ¢_ and a local minimum ¢+ which subsequently evolve as 

(2.8) 

The evolution of ¢± is shown in Figure 2. We define the temperature Tl to be the temper­

ature at which the second minimum becomes degenerate with the origin, V(¢+(T1 )) = o. 

Hence, if we divide equation (2.3) by ¢2, Tl occurs where the resulting quadratic equa­

tions has two real equal roots. This gives the relation 

2 1 2 
Tl = 1 _ p;2 T2 • (2.9) 

ATD 

For Higgs Boson masses above the current experimental limit, the difference in temper-

ature between Tl and T2 is small compared to the temperature. Writing Tl = T2 + r, we 

find r« T2 provided mH::: 10 GeV, where 

r= (2!~) T2 • 

From equations (2.8) and (2.9) we see that 

A.. (T) = 3ETl ± ETl 
'f'± 1 2>"T 2>"T 

A.. (T) = 3ET2 ± 3ET2 
'f'± 2 2>"T 2>"T . 

5 
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It will prove convenient to write the potential in terms of the scaled field. 4>', where 

4> = (~) 4>', for which 

V(4)) - A (ET)o4 (~(T2 -T;) 4>12 _ 4>13 + !4>'4) . 
- T AT T2(Tl- T;) 4 

(2.12) 

If TI - T2 < < TI + T2 , then for any T such that ITI - TI < < TI , the potential reduces to 

the simple form 

V(4)) = AT (~~) 4 (1 _ €)4>12 _ 4>13 + ~4>'4) , (2.13) 

where € = (TI - T)/(TI - T2 ). In terms of the scaled field' 

4>'± = ~ ( 3 ± VI + 8€ ) . (2.14) 

The critical temperatures T., TI , and T2 correspond to the following values of €: 

(2.15) 

The largest values of mIT which are of importance in this chapter correspond to 

T ~ TI and 4> ~ 4>+(TI). Is the high temperature expansion a good approximation in 

this case? If the high temperature approximation is valid for the top quark, it will be 

valid for all other particles as well. In the temperature region of interest, for the top 

quark we have 

(2.16) 

In Appendix A we show that the high temperature approximation is valid to better than 

5 percent provided this quantity is less than 1.6 . An inspection of Figures three and 

four demonstrates that our use of the high temperature approximation is well justified. 

3 A Heuristic Discussion of the Saddle Point 

Mter the universe cools down to a temperature below T I , the previously global 

minimum (4)) = 0 becomes metastable. The subsequent conversion of the universe to the 

true vacuum state (4)) = 4>+(T) takes place by the nucleation of true vacuum bubbles. 
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Accordingly, we need to determine the free energy barrier such bubbles must surmount 

in order to grow. Consider a true vacuum bubble in a sea of false vacuum (¢) = O. Let 

(¢) = ¢' at the center of the bU:bble (see Figure 5). 

By convention we choose the state (¢) = 0 to have free energy zero, V(O) = O. 

Then the surplus free energy of a true vacuum bubble is 

(3.1) 

The free energy of a true vacuum bubble has two contributions: a surface free 

energy Fs, coming from the derivative terms in (3.1), and a volume term Fv, which 

arises from the difference in free energy density inside and outside the bubble. These 

two contributions scale like 

(
C¢)2 Fs tv 21r R2 cR cR, 

(3.2) 
41r n3-

Rv '" - - .leV 
3 ' 

where R is the radius of the bubble, cR is the thickness of the bubble wall, c¢ = ¢',. and 

V is minus the average value of the potential inside the bubble. When V(¢_) is large 

compared to - V( ¢'), it is important to minimize the contribution to Fv coming from 

regions near ¢ ~ ¢_. More precisely, when the height and the width of the barrier near 

¢_ are not small compared to the depth and width of the well at ¢+, for the optimal 

solution, ¢ will change quickly between 0 and ¢', and cR will be small. This is the 

situation for temperatures just below T1 • Hence, the first bubbles which could be formed 

are thin wall bubbles. 

As the temperature subsequently drops towards T2 , the barrier in ¢ space tends to 

zero, and the difference in free energy density between the states (¢) = 0 and (¢) = ¢+ 

increases. When the size of the hump in the potential at ¢_ becomes small compared 

to the depth of the well at ¢+, it is favorable to make cR as large as possible so as to 

minimize the 'surface' term Fs. Hence, cR tv R, and we should work in a thick wall 

"For thin walled bubbles <P' will lie at the absolute minimum, while for thick walled bubbles we must 
allow for the possibility that <P' is somewhat less than <p+. 
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approximation. So, whether the EWPT proceeds by the nucleation of thick. walled or 

thin walled bubbles depends on how large the rate of bubble nucleation becomes before 

thick walled bubbles are energetically preferred. Our purpose, throughout this section, 

is to gain a qualitative understanding of the dependence of bubble free energies on the 

shape of the effective potential. Accordingly, we shall not be too concerned with the 

precise value of the numerical prefa.ctors which occur in estimates of bubble parameters. 

Simple qualitative and semi-quantitative estimates of these two cases will tell us what 

kind of bubble to examine with closer scrutiny. Let's first.consider the simpler case of 

thick walled bubbles . 

• Thick Walled Bubbles 

For thick walled bubbles 6R ,...., R, and the surface energy of the bubble grows : .. -

like R. In contrast, the negative volume term increases in magnitude like R3. Thus, 

a thermal fluctuation producing a bubble of true vacuum, which starts from a radius 

of zero and expands in radius to envelope the system, must have a free energy greater 

than or equal to some critical value. The critical radius of the bubble, He, is the bubble 

radius where the total free energy of the bubble reaches a maximum. Differentiating 

(3.2), Rc ,...., 6</>1V2V, and the thick wall bubble free energy is 

2 411" n3-
Fe '::!.211"He(6</» - a.ll.cV 

(6</»3 ,....,--v'V . 
(3.3) 

Note that for thick walled bubbles, the magnitude of Fe depends on the relative sizes 

of the shift in </> and the potential difference between the center and the outside of the 

bubble and not the height of the barrier in </> -space. t As a quick estimate for the 

potential (2.3), defining r = 1 - !, as the temperature approaches T2 the critical free 

energy scales like 

(3.4) 

fWhile it is true that a large barrier in V(4)) vs. 4> space makes it hard to fluctuate a bubble of true 
vacuum, and a smaller barrier makes it easier, we should remember that the real barrier is in configuration 
space (see Figure 6), and we should be wary of intuition based on the one dimensional mechanics. 
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• Thin Walled Bubbles 

For thin walled bubbles, in addition to the contribution of the derivative term to 

the bubble wall free energy, inside the bubble walls there is also a positive contribution 

to the free energy from the barrier in <p-space, Vb '" V_. As a function of the bubble 

. radius and thickness, the thin wall bubble free energy is 

(3.5) 

The saddle point corresponds to 6R ~ 6<p/V2Vb and Rc '" vYi ~ (see Figure 6). So 

the critical free energy is 

(3.6) 

So the thin wall bubble radius is found by scaling the thick wall radius by ,..., JVb/V .. ' .:. 

and the thin wall free energy increases by a factor of '" (~) 3/2 relative to the thick 

wall case. For the potential of (2.3), V ~ -V(<p+), Vb ~ V(<p-), and 6<p = <1>+- Since 

the first bubbles to form as the universe cools to a temperature below Tl will be thin 

walled bubbles, substituting <P± into equation (3.6), recalling € = (Tl - T)/(T1 - T2 ), 

and expanding for small €, the first bubbles to form must surmount a free energy barrier 

which scales like 

ETI . 
Fe( €) '" €2(2AT )3/2 (3.7) 

As we will discuss in section 5, a free energy barrier O(lOOT) is small enough to allow 

bubbles to nucleate. Accordingly, the estimate (3.7) tells us we should make a care­

ful study of bubble free energies in the thin wall approximation the instant after the 

temperature drops below T I • 

4 Saddle Point Free Energies in the Thin Wall Approxi-

mation 

\Ve can adapt Coleman's thin wall approximation[18] to derive an analytic formula 

for the critical free energy valid in the limit that the temperature approaclles TI from 
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below.t The thin wall analysis has been applied to the general case of theriIlal vacuum 

stability by Linde [19]. However we find his conclusions regarding the applicability of the 

thin wall approximation to realistic gauge theories overly pessimistic. For the potential 

of equation (2.3), if we shift our field <I> -- <I>' = <I> + (ET j AT ), we can cast the potential 

in a form where the validity of Coleman's thin wall approximations will be transparent. 

Recall 6 = E2jATD, E = (Tl - T)/(T1 - T2 ), and define v = ETjAT. In terms of the 

shifted field the potential becomes 

/ 

plus terms independent of <1>. For a universe filled with false vacuum (<I» = -v, the true 

vacuum bubble of minimum free energy, which is just large enough to grow, is a static 

0(3) invariant solution to the equations of motion. Hence it satisfies 

d2 <I> 2 d</> , 
d 2 + --d = V (<I>,T), 

r r r 
(4.2) 

where the I denotes differentiation with respect to <1>. Integrating the appropriate solution 

to (4.2) gives the critical free energy 

(4.3) 

In the limit of small €, the bubble wall thickness is negligible when compared to the bubble 

radius. So for small €, inside the bubble walls we can neglect the term in (4.2) linear in 

spatial derivatives. This, together with the boundary conditions that the derivative of <I> 

and the free energy density vanish outside of the bubble, implies 

d<l> = V2V 
dr (4.4) 

inside the bubble walls. We have defined the zero of V(<I» in (4.1) so that V( -v) = O. 

From (4.3) and (4.4) we can write the resulting bubble free energy as 

l <J>(R+6R) ~ loR 
F -::= 47r R2 V2V(<I» d<l> + 41i drr2V(<I>+, T). 

<J>(R-oR) 0 
(4.5) 

1The result we obtain here will be exact in the limit € goes to zero, for the potential of (2.3). 
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As a function of the bubble radius, the free energy is given by§ 

(4.6) 

Varying with respect to R, we find that Be = 2/ (.J2AT(3€V». Hence, in the limit of 

small E, the critical free energy to temperature ratio is 

(4.7) 

As we will discuss in section 5, the phase transition completes when the free energy to 

temperature ratio is on the order of 100. This is achieved for E ~ (1/6)(50 GeV/mH)3/2. 

For completeness, we note that to lowest order in E, inside the bubble walls ¢ behaves 

like a domain wall and the well known solution is 

4>(r) = -vtanh ( {iv(r - R)) . (4.8) 

5 Bubble Production, Evolution, and Number 

Having determined the free energy of a bubble large enough to grow indefinity, we 

examine the rate for producing such bubbles. As the early universe cooled from tempera-

ture Tl to temperature T2 , a point was reached where classical thermal fluctuations were 

large enough to nucleate bubbles of true vacuum. These thermal fluctuations produced 

bubbles of true vacuum at a rate per unit volume 

(5.1) 

where Fe(T) is the free energy of a fluctuation large enough to pass over the energy barrier 

separating the two vacua, and A is a characteristic scale in the theory. For definiteness 

we take A 4 = wT4. As we shall see, the temperatures we are interested in are on the 

order of the particle masses. Moreover, because the nucleation rate is dominated by the 

§The reader is cautioned that formulas (4.12) and (4.21) of reference [18] are off by a factor of two. 
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exponential, the exact value of the prefactor is not very important, so the effect of w :I: 1 

will be negligible . 

• The Onset of Nucleation 

Let's begin l?y determining when the onset of bubble nucleation occurs. In the 

radiation dominated era, the time-temperature relationship is t = ~MpdT2, where t is 

the age of the universe, M p, = 1.22 X 1019 GeV is the Planck mass, and ~ ~ 1/34 near 

the electroweak phase transition. ,. Because the horizon size scales like dH = 2t, the size 

of a causal volume at a temperatureT is 

(5.2) 

Without being overly precise about the numerical prefactor, we take (5.2) as our defini­

tion of a causal volume. For probabilities small compared to one, the probability that a 

bubble was nucleated inside a causal volume during a temperature interval dT is given 

by 

(5.3) 

In this section, it will be convenient to make use of the fact that the critical bubble free 

energy to temperature ratio, (4. 7), has a Taylor expansion about a temperature To given 

by 

Fc{T)/T = Fc(To)/To (1 + 2x + 3x2 + ... ) , (5.4) 

where x = f:;=-'¥o. Between the temperatures Tl and T2 the free energy is a quickly 

changing function of temperature but the change in temperature itself between Tl and T2 

is insignificant. Define TN as the temperature reached when the first bubble is nucleated 

in a typical horizon. Using the expansion (5.4), we integrate equation (5.3) and note that 

the integrand is sharply peaked about x = o. The first bubble nucleation in a typical 

horizon when P '" 1 giving 

(5.5) 
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This ratio varies by about 2 percent as the Higgs Boson mass increases from 50 GeV to 

100 GeV . 

• The Phase Transition 

In order to claim that the phase transition really proceeds by bubble nucleation, 

it is necessary but not sufficient to require that T2 is small enough relative to TN to 

ensure that nucleated bubbles grow enough to convert the universe to true vacuum 

before the temperature drops to T2 , where the free energy barrier disappears. A reliable 

determination of the phase transition requires that it completes before the loop expansion 

parameter in the SU(2) X U(l) becomes large[2]. Moreover, because the anomalous 

baryon number violating processes which persist after the EWPT completes are very 

sensitive to the value of ¢+(Tn) II, a careful determination of the temperature at which 

the phase transition completes is required. 

Define dN(T) as the number of bubbles per unit volume nucleated between tem­

peratures T and T + dT. From (5.1), 

(5.6) 

Consider a true vacuum bubble expanding with a constant terminal velocity f3 with 

respect to the plasma. There are two contributions to the bubble wall expansion. One 

comes from the propagation of the bubble wall through the fluid and the other is from 

the expansion of the universe. Hence, 

dT 
dR = f3dt - a(T)y' (5.7) 

where aCT) is the Robertson-Walker scale factor. In the radiation dominated era, this 

leads to the differential equation 

dR = _2f3cMpl _ aCT) 
dT <, T3 T· (5.8) 

114>+ increases by a factor of 3/2 as the temperatures drops from Tl to T,. 
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During the electroweak phase transition a bubble nucleated at a temperature T', and 

expanding with a velocity /3, has a radius 

(5.9) 

where RN(T') is the radius of a true vacuum bubble when it is produced at a temperature 

T'. 

We can imagine two qualitatively different types of first order phase transitions. 

In a bubble expansion dominated first order phase transition, a typical observer in the 

fluid sees the surrounding volume converted to true vacuum as a nearby bubble of true 

vacuum expands and a bubble wall passes over the volume. A second type of first order 

phase transition occurs if the nucleation rate turns on very suddenly and is so rapid .•. 

that a typical volume element in the fluid is converted to true vacuum by a nucleation 

event. We call this second type of first order phase transition nucleation dominated. The 

nucleation rate increases on a time scale set by the expansion rate of the universe. At 

a time when the bubble nucleation rate is large enough to produce bubbles copiously, 

but small enough that the conversion of space to true vacuum by the nucleation event 

itself is still negligible, previously nucleated bubbles will grow appreciably in size before 

there is a substantial increase in the nucleation rate. This is a result of the smallness of 

the temperature relative to the Planck mass. As a result, the vast majority of space is 

converted to true vacuum by the expansion of bubbles as opposed to being on the site 

of a nucleation event. So, the volume of a bubble produced at temperature T' can be 

safely written 

VeT T') = 3211" pae!ll;l (.!. _ .!.)3 
, 3 T3 T T (5.10) 

Integrating over the duration of bubble production, the fraction of a typical horizon that 
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is true vacuum at time t is • 

f -::= J dt'V(t', t)r /V 

'" 641r {33..-4(M /T)4 rTl 
TdT' (1 _ T)3 -Fe (T')/T' 

- 3 W <; PI JT TI2 T' e . 

(5.11) 

• End of the Phase Transition 

Define Tn as the temperature reached when the phase transition has completed. 

In the region of interest, the temperature change is insignificant compared to the change 

in Fe(T). Defining x = (T - Tn)/Tn, using the Taylor e>..-pansion (5.4) about Tn, we see 

that the integrand of (5.11) is sharply peaked at temperatures very near Tn. The phase 

transition completes when the fraction of true vacuum approaches unity, giving 

( 
2AT(2) (100 Gev) 3 

Fc:(Tn)/Tn -::= 96 - 7ln (50GeV)2 - 4ln Tl -In{3 . (5.12) 

The expanding bubbles are not extremely non-relativistic, giving Fc:(Tn)/Tn -::= 100. 

Hence €n -::= (1/7)(50GeV/mH )3/2, and the phase transition completes the instant af-

ter the universe cools to temperature T l . The precise value of €n is shown as a function 

of the Higgs boson mass for several top quark masses in Figure 7 . 

• The Num.ber of Bubbles 

Define Tn as the temperature reached by the time n bubbles have been nucleated 

inside the comoving'volume coincident with the horizon volume at the end of the phase 

transition. 

n -::= 16w~ (Mpl)4 rTl 
e-(3Fe (T)/TdT. 

T JTn T 
(5.13) 

Equating Tn with Tn, the number of bubbles produced per horizon by the end of the 

phase transition satisfies the simple relation: 

n ~ _1_{3-3 (dFe )3 
161r dT n 

= ~{3-3 ( Tn )3 (FcCTn))3 
21r Tl - Tn Tn 

C5.14) 

"This expression for the fraction of space containing true vacuum over counts the volume where 

bubbles overlap. The exact formula [20] is 1- f = e- jr/vv(t',t)dt'. Hence, our definition of the end of 
the phase transition corresponds to the era where only lie of space is still false vacuum. 
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It is easy to understand why the number of bubbles per horizon increases as the 

derivative of the saddle point free energy increases. At the end of the phase transition, 

the faster the nucleation rate is changing, the shorter the duration of bubble nucleation. 

A larger number of bubbles needs to be produced for the phase transition to complete 

in a shorter time interval. 

6 Avoiding Washout of the Baryon Asymmetry 

Can baryogenesis occur at the one Higgs doublet EVIPT? The picture of the phase 

transition which we have given, valid for Higgs masses from the experimental limit of 

46 Ge V up to about 150 Ge V, certainly shows that the universe is far from thermal . ;.; 

equilibrium after the temperature drops below TN' At high temperature, anomalous 

baryon number violation can be quite rapid [5, 7, 8, 9, 101 Hence the possibility of 

successful baryogenesis rests on two issues: 

• sufficient CP violation 

• avoiding washout of the B + L asymmetry, after Tn. 

The numericcU size of CP violation in the standard model is insufficient for baryo­

genesis. Tllis is true even if the strong CP parameter "8 were of order unity at high 

temperatures, because the physical effects of e are repressed by light quark Yukawa cou­

plings. Nevertheless, it is simple to add new physics to the standard model which yields 

sufficient CP violation without changing the behavior of the EWPT. One possibility is 
I 

that this new physics yields operators of the form J2</>·</>FF in the low energy theory, 

where F is the electroweak field ,strength [11]. Hence it may be possible to create a 

significant baryon asymmetry at the one Higgs EWPT. 

We are left with the problem of how to avoid the B + L asymmetry being de-

pleted just after Tn as soon as thermal equilibrium is re-established. Several authors 

[12, 16] have argued that anomalous baryon number violation will washout any baryon 

asymmetry for Higgs masses larger than some critical value, rrtHc' Although there are 
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uncertainties in the calculation of mHc ' it is in the vicinity of 50 GeV, perilously close 

to the experimental lower bound. Hence, the one Higgs EWPT of the minimal standard 

model, extended only to include CP violating operators of the form .J2 <po< <pF F, does not 

yield an acceptable baryon asymmetry, with the possible exception that the Higgs boson 

mass is very close to 46 GeV. (There is also the possibility that mH is much larger than 

100 GeV, in which case we do not know the nature of the phase transition.). 

In this section we show that the problem of baryon washout in one Higgs doublet 

models can be solved in a way similar to the solution of the problem of sufficient CP 

violation. Particles can· be added to the standard model such that our analysis of the 

one Higgs EWPT persists, but baryon washout is avoided for Higgs masses all the way 

up to 150 GeV. We find that these additional particles affect the EWPT indirectly, by 

changing the numerical values of the parameters of the effective potential (B, D, E, AT). 

However, our formulae for quantities of interest (T1,2, <P±(T1,2), in, etc.) are still correct 

when written in terms of these parameters B, D, E, AT. 

As we go beyond the minimal standard model, why not go to the two Higgs 

doublet model? We do not do this because this greatly complicates the EWPT. In 

general, one cannot just define a single linear combination of the Higgs as the one which 

gets a vev, because this combination is T dependent. No complete analysis of the phase 

transition exists. For example, we do not know the quantities <Pl+(Tn) and <P2+(Tn) 

which are relevant for baryogenesis. The advantage of the one Higgs doublet EVIPT is 

that we know essentially everything about the phase transition, so that we can use the 

requirement of aVOiding baryon washout as a guide to what new physics should exist. 

The analysis of this section will be valid for a whole class of models. This class of 

models has a single Higgs doublet and has the EWPT proceed by the nucleation of thin 

wall bubbles. More precisely, the class is defined by three criteria: 

• The EWPT is induced by a single Higgs doublet, and the coefficient of the tree 

level <jJ4 term is sufficiently small that the Higgs contribution to F( <jJ, T) can be neglected . 

• All particle masses are such that at temperatures near Tl the high T approxi-
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mation, (A2.6), for V( <jJ, T) is valid, with the exception of particles so massive that their 

thermal contributions to the effective potential are Boltzmann suppressed to the point 

that they can be ignored . 

• The EWPT proceeds by the thermal fluctuation of thin wall bubbles. This means 

that t 

1 E 1/2 

En ~ 12 3/4 < < 1. 
.AT 

(6.1) 

These one Higgs models all have the EWPT proceed as we have described, except now 

the parameters B, D, E, .AT can differ significantly from their standard model values. We 

now calculate how the baryon washout rate depends on these parameters. We will not 

attempt to calculate the numerical value for the washout rate, however. 

At T < Tn the rate for anomalous baryon number violation is proportional to 

e>..'P( -Fsp(T)jT), where Fsp(T) is the sphaleron free energy at temperature T. In the 

region of interest to us T ~ Tn (which is just below T1), and we do not know what Fsp(T) 

is. This is because the usual approximation of keeping only the T2<jJ2 terms in the high T 

expansion of AV1(<jJ, T) [21] is not good at temperatures near Tn. In particular it is clear 

that the term - ET <jJ3 cannot be neglected. Although the <jJ2T2 terms are the largest 

<jJ dependent terms in the mjT expansion, they combine with the zero temperature <jJ2 

terms to cancel when the temperature is T2 • One possibility is to try to find some lower 

temperature where the <jJ3 term can be dropped, but where the high T expansion is still 

good. However, since the baryon washout rate decreases as T is lowered, this will only 

yield a lower bound on the amount of depletion. Alternatively one can do a numerical 

analysis for the sphaleron energy at temperatures just below Tl [12]. y.,Te will assume 

that the sphaleron free energy is linear in <jJ(T)jT, a form motivated by the inclusion of 

tIn order to use this formula for tn it is actually necessary to also require that Tl - T2 « Tl + T2. 
This is because our thin wall analysis for tn was based on the effective potential of (2.13) which assumes 
T1 -T2 «Tl +T2 • However if this constraint on T1 -T2 is not satisfied, equation 6.1 still holds provided 
{ is replaced by Ft, where F = ~ T:!h ~ 1. In the majority of models where F is not close to 1, we 
find that F is not small either. 
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the T2<1>2 terms. Hence we take 

(6.2a) 

where 

:T = C1 exp { - (C2 <I>+~T)) } (6.2b) 

and H = H(T) is the Hubble parameter. C2 is a large dimensionless constant which we 

assume has a more mild dependence on (B, D, E, AT) than does <I>+(T) in the region of 

T = Tn. We take C1 to be a constant, although our results are unchanged if it has a 

large power dependence on T. 

The most likely T region for baryon washout is immediately below Tn. If the 

washout is to be limited, the washout rate must have frozen out well before T2 : (1 )T2 < < 

1. Taking <I>+(T) = f:: <I>'+(T) where <1>'+ is given in equation (2.14), and integrating (6.2a) 

gives a logarithmic depletion of 

(6.3) 

where 

(6.4) 

When £n « 1, it can be dropped from equation 6.4. Whether depletion is significant is 

largely a question of whether the baryon washout rate freezes out before or after Tn, i.e. 

of whether (r / H)Tn is greater or less than unity. This entire class of one Higgs doublet 

models has a baryon washout rate which is exponentially sensitive to the ratio E / AT, 

but is relatively insensitive to B and D, and therefore to Tl and T2 • There is significant 

sensitivity to mH because AT is related to mH by 

(6.5) 

where we have defined the logarithmic terms of equation 2.4 to be ~A : AT = A - ~A. 

Others have found a critical Higgs mass of about 50 GeV [12, 16] in the minimal 

standard model. This corresponds to 

(6.6) 
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for low top quark masses. 

V-Ie can now see how simple it is to avoid baryon washout at the one Higgs EWPT. 

Particles should be added to the standard model so that E I AT > ! for any desired value 

of mH in the region of 45-150 GeV. This can be accomplished in two ways: 

• add bosons with small 5U(2) x U(I) preserving masses to increase E 

• add bosons so that D.A + 6B is increased. For a given Higgs mass this decreases 

AT as can be seen from (6.5). 

It is interesting that both possibilities involve additional bosons. Althoughfermions 

never contribute to E, they do contribute to D.A + 6B. However, they tend to increase 

baryon depletion. This can be seen from the fact that a heavy top quark mass in the 

standard model decreases the critical Higgs mass: 

(6.7) 

We now give a specific simple extension of the standard model which avoids baryon 

washout even for Higgs boson masses up to 150 GeV. We add a spin 0 multiplet 5 which 

is a singlet, so that the Lagrangian of the standard model is augmented by 

(6.8) 

where H is the Higgs doublet field: IHol = ~. Vole take M2 and (2 to be positive so 

that < 5 >= 0 at all temperatures, and the EWPT is that of the single Higgs. 

A simple possibility is to tal{e M2 sufficiently small that where <p ~ <p+(T1 ) the 

scalar mass m~ = }'12 + (2<p~ ~ (2<p~. In this case the 5 field contributes to E. If it 

gives the dominant contribution to E, then 

(6.9) 

where 9s is the degeneracy of the 5 multiplet, and we have cllOsen parameters such that 

D.A + 6B can be dropped in equation (6.5). The size of EIAT is restricted by requiring 
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that the high T expansion be valid at T1 : 

E 1 -<­AT - (. (6.10) 

Hence we must take ( :=; 1. Note that the criterion (6.1) for the thin wall approximation is 

easily satisfied for E I AT much bigger than we need. There are a wide range of parameters 

that avoid baryon washout for all Higgs masses up to 150 GeV. 

As an example, consider (= 1,gs = 1, and mH = 100 GeV. In this case EIAT ~ 

2/'rr, and all constraints and approximations are satisfied. Taking mt = 125 GeV gives 

T2 ~ 130 GeV and Tl ~ 148 GeV. How small must the SU(2) invariant S mass be in 

order that ms(T1 ) ~ (4)+(T1 ) is a valid approximation? We find that M:=; (>.~Tl ~ 94 

GeV, which does not involve any more fine tuning than for the Higgs doublet. 

The simple extension of the standard model described by equation (6.8) can also 

avoid baryon washout, even if the S particle has a mass in the Te V range. At first sight 

this is surprising since S does not contribute to E. This is because M » (4)+(T1 ), and 

because the S particles have an exponentially suppressed number density at T1 • The 

contribution of the S field to the effective potential, Vs(4)), can then be obtained by 

expanding A1.6 in a power series in ~: 

(6.11) 

The decoupling behavior as 1I{ --+ 00 is manifest. Since V;(a) = V;'(a) = 0, this 

contribution does not alter the minimum of the potential or the relation for the Higgs 

mass: m'k = 2(ATsM + 6BsM)a2. For our purposes the most important consequence of 

Vs is to correct the coefficient of 4>4: 

(6.12) 

This is a crucial correction since it changes the mH I AT relation, increasing the critical 

Higgs mass: 

(6.13) 
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Hence if (9s(4)«:;:) = 3, the critical Higgs mass squared is increased by (50 GeV)2. 

For example taking 9s(4 = 15 and c.;;: = l would give a bare S mass of M = 0.56 ( 

Te V. Baryon depletion can be avoided even if the additions to the standard model have 

masses in the Te V region. 

We conclude that successful baryogenesis at the one Higgs doublet EWPT can 

occur provided the Higgs doublet is given two new interactions: one to violate CP and 

the other to enhance E / AT to avoid baryon workout. 

7 Conclusion 

We have presented a completely analytic treatment of the electroweak phase transition 

(EW'PT), valid for all Higgs boson masses from the experimental limit of 46 GeV up 

to about 150 GeV. The electroweak phase transition is first order and proceeds by the 

nucleation of thin walled bubbles. We give the precise value of the temperature at which 

the phase transition completes as a function of the top quark and Higgs boson masses. 

In addition to characterizing the electroweak phase transition, we determine the value of 

the Higgs field vev after the phase transition completes, the number of bubbles nucleated 

per horizon, and many other quantities. Our formulae also apply to many extensions 

of the standard model which have the EWPT occur through just one field acquiring 

a vev. Additional particles can significantly alter quantities such as the temperature 

at which the phase transition completes, through their virtual effects on parameters in 

the Higgs potential. An important result of our analysis is determination of (<Ph at 

the end of the phase transition. The temperature dependent vev, (<Ph, increases by a 

factor of 3/2 as the temperature drops from Tl to T2 • Accordingly, determination of 

when the phase transition completes is essential because the rate of anomalous baryon 

number violation is an e:>"l>onentially sensitive function of (<Ph. 'IT the rate of anomalous 

baryon number violation is large after thermal equilibrium is reestablished, any B + L 

asymmetry generated during the E';YPT will be at best ephemeral. 
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Much attention has recently been paid to the exciting possibility that the cosmo­

logical baryon excess may be produced at the EWPT. The possibility that this occurs 

in a model with a single Higgs doublet has largely been ignored. This is because it has 

been shown that even if sufficient baryon asymmetry could be generated, immediately 

after the EWPT it would be destroyed by anomalous baryon number violation, at least 

for Higgs boson masses above about 50 GeV. As a demonstration of the utility of the 

analysis of the EWPT presented in this chapter, we have shown that this baryon washout 

is very easily avoided in simple extensions of the standard model. Perhaps the simplest 

is the addition of a gauge singlet scalar boson that receives a contribution to its mass 

from the Higgs boson vev. 
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Chapter II 

Thermal Vacuum Stability and 

Constraints on m.H and mt 

1 Introduction 

Despite a plethora of theoretical work and the vigorous e>"'Perimental testing which has 

demonstrated the success of the standard model, we still do not know the masses of the 

Higgs boson or top quark. The best we can do is to exclude certain values. In addition to 

mass limits from accelerators, limits on the masses of the top quark and the Higgs boson 

can be obtained from cosmological consequences of the structure of the Higgs potential. 

In the standard lore of spontaneous symmetry breaking, we live in the well of a 

potential shaped like a Mexican hat. The value of the Fermi constant, GF, implies that 

we are in the local minimum where the Higgs field, 4>, has a vacuum e>"'Pectation value 

(4)) = (J, where a = 246 GeV. However, the Higgs potential we often appeal to when 

discussing spontaneous symmetry brealdng, 

(1.1) 

is only the tree level potential. Quantum corrections can significantly change this picture. 

For a fixed mass of the Higgs boson, as the mass of the top quark, m" increases, a new 
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minimum of the potential develops at ¢ > q when m, reaches some critical value [1] (see 

Figure 8). 

This situation suggests that cosmological considerations may constrain the masses 

of the Higgs boson and top quark. For certain values of m, and mH, the rate of quantum 

tunneling is large enough -to render the state (¢) = q unstable. This occurs if the 

lifetime of the state (¢) = q is less than the age of the universe. Flores and Sher [2] and 

subsequent work by Arnold [3] used this consideration to set limits on the masses of the 

Higgs boson and the top quark (see Figure 11). However, quantum tunneling in not 

the only vehicle by which the state (¢) = q can decay. In the early universe, when the 

temperature was high, thermal fluctuations may have been large enough for the system 

to pass over the barrier classically. Indeed, for many values of m, and mH, constraints 

from classical, thermal bubble nucleation are more stringent than those from quantum 

tunneling. In section 2, we discuss the exact form of the temperature-dependent, one-loop 

effective potential which is essential to calculate the bubble nucleation rate accurately. 

Section 3 discusses how large the primordial rate of classical, thermal bubble nucleation 

needs to be in order to constrain m, and mHo Section 4 computes critical bubble energies 

for two ansatze. Then we present mass limits obtained using the analysis of the previous 

sections. 

2 Instability of the Effective Potential 

The one-loop, zero temperature, effective potential for the physical Higgs scalar is dis-

cussed in the appendices. For Higgs bosons light enough to neglect scalar loops, the 

potential can be written [1], 

(2.1) 

where ¢, the physical Higgs scalar, has mass m~ = 4(12(~>. + 3B), (¢) = (1, and 

1 (4 4 4) B = 2 4 6mw + 3mz - 12m, . 
641r q 

(2.2) 
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For m1 ;::(80 GeV)4 + l2mt, the parameter B becomes negative and the Higgs potential 

appears to be unbounded from below as 4> -+ 00. Note however, that since we have 

neglected higher order terms in the potential of equation (2.1), tIlls expression is not 

valid for large 4>. For example, two-loop effects ex: 4>4 (In(4>))2 can restore boundedness 

at larger values of 4>. A more accurate determination of the mass range where (4)) = q 

is not the absolute minimum of the Higgs potential requires summing these higher order 

terms. In a recent article [5], Lindner et al. numerically solve the renormalization group 

equations for:the Higgs potential at two-loop order. They find the very interesting result 

that, for values of me above the dotted line in Figure 11, we live in a false vacuum. 

However, as was pointed out in reference 2, there is no guarantee that we are living 

in the true vacuum. Sher and Zaglauer [4] argue that cosmic rays would catalyze false 

vacuum decay in most of the unstable region of me - mH space, but subsequent work 

by Arnold [3] disagrees with their analysis. We can only require that the lifetime of our 

state is greater than the age of the universe. 

In general, the decay rate r of an unstable state is related to the imaginary part 

of the free energy [6]. For quantum tunneling r = 2ImF, while for classical decay 

r ex: .f1r 1m F. In the path integral formulation, the quantum mechanical decay rate per 

unit volume of an unstable state is given by the well known formula [8] 

(2.3) 

where S is the Euclidean space action for a true vacuum bubble of critical size. The 

coefficient A is calculated from fluctuations around the bubble [8]. The rate of quan­

tum tunneling has been calculated [2, 3]. Flores and Sher found that zero temperature 

quantum tunneling will not destabilize the state (4)) = q within the age of the universe 

provided 

mH;:: 3.6 (me - 180 Gel!) , (2.4) 

while later work by Arnold [3] found more restrictive bounds (see figure 11). \Ve shall 

concern ourselves with the classical thermal decay rate. Standard Quantum field theory 
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is set up to describe events that take place in the background of empty spa.c~. At the 

high temperatures present in the early universe, the zero temperature potential must 

be modified to include the interaction between the Higgs field and the hot electroweak 

plasma. As discussed in the appendices, the thermal contribution to the potential is the 

free energy of the ambient particles: 

II VI (¢, T) = ~ -;;; 1000 
dx x2 In (1 + e-v':i2+m}(32) 

+ L 9;:; 1000 
dx x2 In (1 - e-v':i2+m~(32) , 

B 

(2.5) 

where Mi = .!IIi ( ¢) is the mass of particle i in the presence of a background field ¢, 9i 

is the number of degrees of freedom of particle species i, f3 = l/T, and (F)B denotes a 

sum over (fermions) bosons respectively. 

The high temperature expansion of II lit ( ¢, T) used in chapter 1 is not a good ap­

proximation of equation (2.5) when M(¢)/T is large. Indeed, for many cases of interest, 

M(¢)/T can be larger than 0(1) . In particular, the rate of thermal bubble nucleation 

in the early universe can be large when M(¢)/T is not small. As we shall see, the rate 

of thermal bubble nucleation is largest near T2 /2, where T2 is the temperature at which 

the state (¢) = 0 becomes unstable. 

The integral equation for II VI (¢, T), equation (2.5), can be written in terms of a 

sum. As shown in Appendix C: 

(2.6) 

where NF = 9FT'-/2tr2 and NB = 9BT'-/2tr2• Since the Bessel function ](2 falls off 

e..-.::ponentially for large values of its argument, the expression above is well suited to 

numerical computation. In Figure 8 we display the full, temperature dependent, one-

loop effective potential for m l = 160 GeV and m H = 20 GeV. 'Ve include the loop-effects 

of the lV, Z, and top quark (gt = 12,9w = 6,gz = 3). 
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3 Of Sizes, Scales, and Temperature 

The Boltzmann suppressed rate of thermal diffusion out of a metastable state has 

been discussed by many authors[6, 7]. The thermal escape rate for a simple system is 

calculated in Appendix B. For a quantum field theory, thermal fluctuations will produce 

bubbles of true vacuum at a rate 

(3.1) 

where Fe(T) is the free energy of a fluctuation large enough to pass over the free energy 

barrier separating the two vacua, and A is a characteristic scale in the theory. For 

definiteness tal(e A = T. As we shall see, for a certain range of the masses m, and mH, 

the free energy of the barrier separating 4> = a and 4> = a' is small enough to allow 

thermal fluctuations from a to a' (see Figure 9). We must require that no false vacuum 

decay of this type occurred in our past. In other words, the probability that a phase 

transition occurred in a comoving volume coincident with the present horizon volume 

must be less than one. 

To calculate the size that this comoving volume occupied at a temperature T, we 

must scale back our present causal volume. The ratio of the present photon temperature 

to the photon temperature at recombination tells us how much the cosmic scale factor 

has expanded since the end of the radiation dominated era: 

T-yR/T-yo = R(to)/ R(tR) ~ 1300. (3.2) 

VVe can scale back to earlier times by noting that in the radiation dominated era, R(T) ex: 

T- 1 • Thus, the volume that a comoving volume coincident with the horizon volume today 

occupied at times before recombination can be expressed as 

(
to )3 

~ 1300 Tft/~, 
(3.3) 
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where TR ~ 0.3 eV and to is the age of the universe. Moreover, noting that inthe.radi­

ation dominated era, the time-temperature relationship is t '" J.1PI /T2, the probability 

that a bubble was nucleated during a temperature interval dT is given by 

(3.4) 

where Mp1 = 1.2 X 1019 GeV is the Plank mass. Setting P ~ 1, examining the bubble 

nucleation rate near T !::: 50 GeV, and choosing a conservative temperature interval 

dT !::: O( to), no bubble nucleation implies that 

_ FcCT) < -250 e T _e . (3.5) 

Hence, bubble nucleation would not have occurred in our past horizon volume if • 

Fef) ~250. (3.6) 

4 Critical Energies for Bubble Nucleation 

Consider a true vacuum bubble in a sea of false vacuum (<I>h = aT, where aT is the 

temperature dependent local minimum of the Higgs potential destined to become a. 

Let <I> = a' at the center of the bubble. (See Figure 9). By convention we choose this 

metastable state to have zero free energy. The free energy of the system is 

(4.1) 

In our case, inspection of the potential reveals that V(ab) - V(aT ) is not large compared 

to V ( aT) - V ( a'). In this case, as discussed in chapter I, it is favorable to make 6 R as 

·Let R be the cosmic scale factor and let T be the temperature of the universe. The fact than RT 
is a constant is a consequence of entropy conservation. If entropy dumping occurs after the electroweak 
phase transition, the product RT will increase. If the product RT were to increases by a factor f, the 
right side of equation (3.5) would be reduced by a factor f3. So, enormous entropy dumping can weaken 
the constraints derived from equation (3.6). For example, if Fc(T)jT is reduced from 250 to 240, the 
bound, derived in section 4, on mH when m. is 200 GeV is reduced from about 46 GeV to 45 GeV. If the 
Higgs Boson or the top quark were to be discovered in the region excluded by this analysis, a sensible 
cosmology would require enormous entropy dumping at a time after the SU(2) x U(l) phase transition. 
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large as possible so as to minimize the 'surface' term Es. Hence 6R I'V R, and we should 

work in a thick wall approximation. Recall that the energy barrier that fluctuations 

need to surmount is a saddle point. So the energy of the barrier is the maximum free 

energy attained by the solution which crosses the smallest possible barrier. Hence, the 

energy barrier crossed by a trial function which interpolates smoothly?etween the phases 

(<p) = (7T and (<p) = (7' is greater than or equal to the free energy of the saddle point. 

For this reason, we can obtain upper bounds on the critical bubble energy by using the 

trial functions of (4.2): 

<PI (R) = (7T + «7' - (7T )e-r
/
R

, 

¢2(R) = (7T + «7' - (7T )e-r2
/
R2

• 

The bubble free energy corresponding to these solutions is, 

Pi = 41r J drr2 {~ (~~i) 2 + (V(<pi(r)) - V«7T))}' 

(4.2) 

(4.3) 

For each of the two ansatze (4.2), the resulting bubble energy, calculated from (4.3), was 

maximized with respect to R and minimized with respect to (7', subject to the constraint 

that the energy of the bubble be less than a bubble of false vacuum as the radius of the 

bubble approaches infinity. An example of the dependence of FiT) on temperature is 

shown in Figure 10 for each of the two ansatze. Figure 11 displays the limits on the mH 

and m t resulting from the requirement that the bubble energies calculated from equation 

(4.3) satisfy the inequality of equation (3.6). 

5 Conclusion 

In this chapter we have investigated constraints on the Higgs boson and top quark masses 

arising from the requirement that the ground state of the Higgs potential near (<p) = 246 

GeV is stable at the high temperatures present in the early universe. For certain values 

of Higgs boson and top quark masses, thermal fluctuations would have destabilized the 

local minimum of the Higgs potential near (<p) = (7 when the tempera.ture was roughly 
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half the temperature where the SU(2) X U(I) phase transition occurred. Th: fact that 

today, (¢) = (7, excludes the mass range above the solid curve in Figure 11. In particular, 

if the Higgs boson has a mass of 25 GeV, the top quark must be lighter than 170 GeV. 
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Figure 8: The effective potential for the Higgs field with m t = 160. GeV and mH = 20. 

Ge V. For each curve, the zero of the potential has been chosen to be at 4> = O. The 

solid curve is the zero temperature contribution of equation (2.1). The dashed curves 

represent the temperature dependent potential at temperatures T = !T2 and T = T2 , 

where T2 is the temperature at which the state (¢) = 0 becomes unstable. The dashed 

curves include the one-loop effects of the W and Z gauge bosons and the top quark. 
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ansatz 1 (2). 
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of the Higgs potential. 
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Chapter III 

Can a Particle Have a Bag? 

1 Introduction 

In addition to the phase transitions we have discus~ed, it is interesting to consider' 

whether a small scale deformation in the scalar field can be induced by the presence 

of a heavy particle. Specifically, can a heavy particle act as seed for a local nucleation 

event which leaves the particle enclosed in a bag of scalar field condensate? Recently, 

it has been argued [1] that when a particle receives a contribution to its mass from the 

vacuum expectation value, v, of a scalar </>, under certain conditions the lowest excitation 

of the system containing a single particle is one in which a bag of scalar field condensate, 

or 'dimple', forms around the particle. 

It is known that classical bag configurations can form when many particles are 

present. Such non-topological soliton solutions have been studied in detail [2, 3]. In this 

chapter we investigate whether such bags can form about a single particle. Intuitively, it 

appears that bag formation will occur if the energy in the scalar field gained by locally 

relaxing its vacuum ex-pectation value is less than the energy liberated by the resulting 

decrease in particle mass. The existence of such bags around heavy quarks and gauge 

bosons ",:QuId lead to interesting effects in ,both the masses and decay signatures. 

In section 2 we present semi-classical arguments for bag formation around a single 
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particle. The validity of this semi-classical approximation is discussed in secti9n 3, and 

again in the language of coherent stateS in section 4. For bags supported by one particle, 

we find that energetically favorable deformations are too small to be built up from the 

fundamental quanta. Hence, we argue that there are no dimples in the scalar field near 

a single, perturbatively coupled particle. 

2 A Wrinkle in </> 

To present the arguments for bag formation around a single particle we discuss an explicit 

example. Consider the Hamiltonian for a scalar field with a potential V(<I» = l'>'(<1>2-

v2 )2, coupled to a fermion with a mass rna + g(<I» , where (<I» is the vacuum expectation 

value of the scalar <1>. For time independent field configurations, 

(2.1) 

When there are no fermions present, the ground state of the system is just the standard 

vacuum (<I» = v. But, for the lowest energy solution with fermion number one, classical 

reasoning seems to imply that a condensate in the scalar field, where (<I» differs from 

v, forms around the fermion. Ostensibly, if the Yukawa coupling to the fermion is 

sufficiently large, the scalar field energy gained by relaxing (<I» towards zero near the 

fermion may be more than compensated for by the loss in rest energy of the fermion. 

For a small dimple in the scalar field around a single fermion, the energy. of the system 

is a combination of the surface energy resulting from the change in (<I» = <l>el in the 

bubble walls, the scalar field potential energy, the loss in rest mass of the fermion, and 

the kinetic energy of the confined fermion. For a bubble of radius R and thickness 6R, 

and for a non-relativistic fermion, 

(2.2) 

where t::. V is the change in potential energy density inside the bubble, 6R is the thickness 

of the bubble wall, and mf is the mass of the fermion in the presence of the shifted vacuum 
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expectation value. The energy of the system will favor a bag with thick walls. In tlus 

limit, the dimple walls have a thickness comparable to the radius of the dimple aR '" R, 

and the energy difference between a fermion in a dimple and one without a dimple is 

(2.3) 

where av is the change in (4)) at the center of the bubble, m", = .J>.v is the mass of 

the scalar, and the parameters A, B, C are numerical factors of order unity. We call this 

energy the dimple binding energy, EDB • The confinement momentum of the fermion, 

resulting from a spread in the fermion wave function over the dimple, will be of order 

1/ R. Denoting p = D / R, the ground state of the system can be found by varying R and 

av. When the scalar field mass is small, so that the volume term can be neglected, and 

provided g;:: (v / mo) ~, the binding energy of the dimple is 

(2.4) 

1 

where a = g2 / 47f. The condition g;:: (v / mo)3 must be imposed to ensure that av be less 

than v. This is equivalent to the statement that we have a 'dimple' in the scalar field 

rather that a bubble «4» = 0 at the center). Since we have optimized av, solutions with 

av = v must give smaller energies. Our neglect of the volume term is valid provided 

m",;:s amo (?v2)' The dimple radius is 

(2.5) 

¥le can get a handle on the size of these factors by performing a Rayleigh-Ritz vari-

ational calculation. In this approximation we treat the bubble classically while treating 

the .,p-particle quantum mechanically. Below we calculate the energy of a single particle 

in a bag in this approximation. \Vriting 

(2.6) 

for 4>cl v' at the center of the dimple, and denoting av v - v', the scalar field 
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contribution to the energy of the dimple is 

(2.7) 

while the energy contribution from the .,p particle is 

(2.8) 

Using various sets of trial wave functions, we minimize the binding energy with respect 

to R D, R.", and v'. This results in RD '" R.", which maximizes the decrease in the fermion 

mass while minimizing its kinetic energy. 

The optimal ansatz was 

For these trial wave functions we find 

1 2 
EDs ~ - 28 a mo, 

1 
RD~9--. 

amo 

(2.9) 

(2.10) 

For future reference we note that the energy of these 'would be' non-topological 

solitons vanishes as the couplings are turned off. 

3 The Classical Criteria 

Although the classical reasoning used above seems to suggest that the 4rfield dimple is 

the minimum energy solution in the presence of an external source (e.g., the fermion), this 

does not mean that we should place the dimple on an equal footing with the actual ground 

state, (4)) = v. The arguments used to find this classical, minimum energy solution to 

the field equations treated the scalar field 4> as a continuous, c-number field. Quantum 

mecllanics tell us that this is not in general correct. As a result of quantization, changes 

in the value of a field are discrete. These changes may be viewed as continuous when 
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differences in the field considered represent the addition or subtraction of many quanta. 

When a deformation in the value of an field operator is small compared to differences 

induced by the emission or absorption of many quanta, we shouldn't trust classical 

arguments. Another way of saying this is that the expectation value of an operator can 

be replaced by its classical value only when the fluctuations in that expectation value 

are small. This is only the case when the field contains many quanta. 

Armed with the results of section 2, we can check our treatment for self-consistency 

by comparing the energy in the scalar-field dimple to that of an individual scalar quan­

tum. We find, unfortunately, that the approximation of treating the dimple classically is 

a bad one because its energy is less than that of a single quantum. Consider a Fourier de­

composition of the scalar-field dimple. Since the size of the dimple is '" a!o (where, for 

simplicity, we drop numerical factors), we expect the Fourier modes to have momentum 

'" amo. This implies that the typical energy of a quantum in the dimple is 

E · '" (2 2 2)1/2 quantum - mt/> + a mo . 

Comparing this to EDB we find, 

EDB 
---"-- '" a. 
Equantum 

(3.1) 

(3.2) 

Hence, for pertU7'bative coupling our solution is composed of much less than one quantum. 

The invalidity of the classical treatment of a dimple in a scalar field surrounding 

a particle can be seen directly. In what follows, we denote the total energy in the scalar 

field by Et/>. The criteria that the deformation in ¢cl be made up of at least one quantum 

is 

Et/> ~ Equantum ~ .jm~ + R-2 > 1/R. (3.3) 

In order for a bound state to exist, the total energy in the scalar field, Et/>, must be less 

than the change in rest mass of the fermion: 

E", ~ gov. (3.4) 
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Putting this together with (3.3) we have 1 < g(6v)R. In particular, the ene~ in the 

'surface' terms must be less than the change in rest mass of the fermion, 

(3.5) 

so that 6vR < gI47r. Putting these together gives a = ~ > 1. Requiring that the 

dimple be made up of N quanta implies that 

g2 
a=->N. 

41r 

Hence there are no bubbles for perturbativecouplings. 

(3.6) 

It is instructive to compare the behavior of these 'would be' non-topological solitons 

to the behavior of classically valid topological solitons [4, 5]. For definiteness, we recall 

the properties of the 'kink' (domain wall) solitons of </J4 theory in 1 + 1 dimensions. 

Rescaling the scalar field </J by the small coupling g, </J' = g</J, the 4>4 theory Lagrangian 

is 

LIn = g!1i J dx {~81'4>'81'</J' - ~ (1 - </J1'l)2} • (3.7) 

In addition to the degenerate vacua of (</J') = ±1, the Lagrangian (3.7) has a stable 

classical solution 

</Jcl = ta.nh J.LX • (3.8) 

Quantizing around this solution, to order g, the energy is given by 

4J.L 3 1 3 
E = - - J.Lg(- - -) + O(g J.L). 

39 1r 2v13 (3.9) 

Hence, we see that in the region of validity, the 'classical' contribution to the energy 

of this topological soliton E '" J.LI 9 is many times larger than the energy of a quantum 

fluctuation Eq '" gJ.L. The classical limit 1i -+ 0 is equivalent to 9 -+ O. So, for weak 

coupling, the energy of the classical solution is much larger than the energy of fluctuations 

around the solution (3.8). For large values of 9 the energy of the classical solution is 

not the dominant term in (3.9), and there is no more reason to believe the classical 

analysis than there is to trust perturbation theory [4]. The sanle remarks would apply 
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to the soliton structures of sine-Gordon theory, the 't Hooft-Polyakov monopole, or other 

topological solitons in field theory. 

4 Classical Values, Fluctuations, and Coherent States 

For small shifts b</J in the field </J about the minimum of the potential V( </J) = ..\( </J2 - v 2 )2, 

we can perturbatively define our theory so that to lowest order it is merely the theory 

of a heavy fermion coupled to a free, massive scalar field. The Lagrangian for such a 

theory is simply 

(4.1) 

where m is given by the second derivative of V( </J) at its minimum. Since the scalar field 

is free except for its coupling to the fermion, we can now study its behavior using the 

formalism of coherent states. 

Coherent states are constructed by the application of creation operators (in the 

interaction picture) on the vacuum state 10) so as to yield a prescribed expectation value 

for the field operator 4>. We define coherent states for the positive frequency part of the 

quantum field </J. The field operator 4> can be expanded in on-shell Fourier modes in the 

usual way: 

(4.2) 

where die = d3k/(27r)~k' Since we work in the interaction picture, the operators ak and 

at are time dependent (Le., ak(t) = ak(O)eiwkt ). The creation and annihilation operators 

also satisfy the usual commutation relation 

(4.3) 

Consider the coherent state 117) given by 

(4.4) 
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where J dkl'7(k) 12 < 00, and CN = e>"1>{ -! J dkl'7(k)j2} is chosen so that 1'7) has a norm 

of one. It is easy to verify that 

(4.5) 

so that by proper choice of '7(k) one can ensure that ('7I¢I'7) has the desired form. 

The average number of particles in the coherent state, N = (N), is 

(4.6) 

so C N = exp{ -! N}. The coherent state has energy 

(4.7) 

Fluctuations in ('7lifl'7) can be defined by 

(4.8) 

The classical limit is attained by choosing '7(k) so that the average number of 

particles N is large. As the number of particles is increased, 

(4.9) 

where N is the total number of quanta as defined in (4.6). Note that when N is small, 

the energy of the state 1'7) is not well defined, and undergoes large fluctuations compared 

to its mean value. This is to be expected as if and ¢ do not commute. The semi-classical 

approximation used in section 2 requires that both (¢) (which determines the fermion 

mass) and (H) (which gives the scalar field energy) be known. This is only possible in 

the classical limit where N -+ 00. Vve can therefore conclude that when N is small, there 

is no reason to expect that the calculation of section 2 has any validity whatsoever. 

Moreover, when N is small the non-classical nature of the coherent state is manifest 

since 

(4.10) 
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so that the coherent state is mostly vacuum with small amplitudes to be in an n particle 

state. 

It is important to reiterate that there is no uncertainty whatsoever in this system 

as to the identity of the ground state. The ground state is clearly 10), upon which all 

excitations of <J> and "p are constructed. By 'turning on' a source term gradually, one 

sees that the resulting <J> field is a superposition of scalar excitations above the vacuum. 

It is only when the scalar excitations consist of many quanta that a classical description 

of the <J> field is valid. 

Quantum fluctuations of the type considered above can also be understood as a 

finite volume effect. A measurement of the value of a field must always be taken in some 

smeared volume. The value of the field can only be determined to within fluctuations 

which are f'V 1/ L, where L is roughly the size of the smeared volume. (This can easily 

be seen by considering the quantity (<J>(x)¢(x'», which diverges for x -+ x' even in a 

free theory.) It is straightforward to show that for the dimple system, with L f'V R D , 

the fluctuations 1/ RD are always larger than the classical shift in the vev, av. Thus, the 

quantum fluctuations overwhelm the purported classical shift, and it is meaningless to 

ascribe a physical significance to a scalar dimple in a volume of size R~. 

Now we construct the exact solution to the scalar field equations in the presence 

of a normalizable, localized source which we can take to represent the fermion wave 

function in the dimple system. VIe can then rigorously show that, for perturbative 

coupling between the fermion and scalar, (N) for tllls solution is less than one. 

The time-independent equation of motion for the scalar field of (4.1) in the presence 

of a source J(x) ~ "pt(x)"p(x) is given by 

(4.11) 

The coherent state corresponding to the solution of (4.10) is given by (4.4), with 

(4.12) 
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where J(k) satisfies J(x) = f (;:')3 {J(k)eik,x+h.c.}. Thee>..rpectation value of the number 

operator is then 

(4.13) 

Inserting for.,p our best ansatz (2.9), we can now directly calculate (N). For R",mt/> < 1/2, 

the total number of quanta in the dimple is 

(4.14) 

where ~ = ~mt/>. We note that most of these quanta have-wavelengths of'" l/mt/>. 

The apparent divergence for ~ --+ 0 does not concern us, as it is just the standard 

infrared divergence due to long wavelength modes. This is the familiar result for the 

massless limit of a Yukawa field· (i.e., a Coulomb field). Long wavelength modes are 

irrelevant to the question of whether the dimple should be treated classically. The 

relevant modes are those of wavelength ;S~. Therefore, for extremely small values of 

mt/>, we should impose an infrared cutoff 1/ Lin (4.13) to obtain the number of physically 

relevant quanta. This corresponds to placing the system in a box of size L. For L '" R,p, 

it is easy to see that the number of quanta (4.14) is always less that a. 

We note that by suitable choice of the source term J( x), it is possible to obtain a 

valid classical state 4>(x). Since N is proportional to g2IJ(k)12, it can be increased either 

by increasing g, or by increasing the overall magnitude of J(x). The former corresponds 

to strong coupling, while the latter corresponds to increasing the number of fermions 

contained in the probability distribution J(x) == .,pt(x)¢(x). The solutions obtained in 

that case correspond to many-particle nontopological solitons, as discussed in [2]. 

Although we have argued against the existence of a classical condensate surround-

ing the fermion, this does not imply that there is no vestige of collective behavior for 

non-zero g. In fact, the collective effects which do appear are well understood [6]. For 

non-zero coupling g, the lowest energy eigenstate of the Hamiltonian with fermion num-

ber one is just the unperturbed free fermion state 'dressed' by a cloud of scalar quanta. 

This 'dressing' can be understood simply as wave function and mass renormalization of 

52 

-;-



the fermion, yielding a correction to the fermion mass which is divergent. A prescription 

for subtracting this divergence (Le., by addition of counterterms to the Lagrangian) is 

necessary to ensure a finite physical mass for the fermion. This is the mass of the phys­

ical (renormalized) fermion, which is in fact the lowest energy state of fermion number 

one. 

5 Conclusion 

To summarize, although a purely classical treatment of the scalar field suggests that 

the solution in which a dimple forms in the scalar field near a particle getting a mass 

is energetically favored, this is overshadowed by the fact that for the bubble solution 

found, the classical treatment is not valid. The classical computation of a quantity is 

only reliable when the fluctuations about the solution are small compared to the classical 

value. A necessary condition for the fluctuations to be small is that the deformations 

in a field must be made of many quanta. Unlike topological solitons in weak coupling, 

the dimple solution discussed in this chapter and in [1] is not well described by classical 

physics. For, weak coupling, the collective effects of the interaction are understood in 

terms of renormalization. 
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Appendix A 

The Effective Potential 

1 The Zero Temperature, One-Loop Effective Potential 

Consider an ensemble of particles i, which receive a contribution to their mass from 

the vacuum expectation value of a scalar field 4>. In the mass eigenstate basis, the 

unrenormalized one-loop contribution to the effective potential is 

{ 
i J d4

k (2 2) .)} .6.Vi = ± -2 (21r)4In -k + m (4) - u: , (A1.I) 

where the ± is for bosons (fermions) respectively. Going to Euclidean space, introducing 

a cutoff A, and integrating we find 

(A1.2) 

We write the renormalized potential Vi as the sum of the tree level potential U(4)), the 

one loop correction .6. Vb and a counter term potential Vet: 

(A1.3) 

VIle denote the renormalized one loop correction by V I = .6. VI ( 4» + Vct( 4». At 4> = a, we 

choose to impose renormalization conditions that preserves the tree level values of m H 
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and a: 

i) 
(AlA) 

ii) 

For a collection of particles with masses of the form m2 (4)) = J.L2 + 94>2, imposing the 

renormalization conditions above, we find • 

(A1.5) 

plus terms independent of 4>. We will have occasion to use two special cases of this 

formula. For a particle with mass m( 4» = A4>, we recover the well known result 

(A1.6) 

Finally, for a particle with a large SU(2) conserving mass m 2(4)) = }.,f2 + 94>2, where 

}.,f2 > > 9a2, the one loop contribution decouples as 

(A1.7) 

2 The Effective Potential of the Standard Model 

For the tree level potential 

(A2.l) 

AO is related to the Higgs mass by m~ = 2Aoa2. If we adopt the renormalization 

prescription i) V"(a) = m~, and ii) V'(a) = 0, the relation between mH and AO will 

·Strictly speaking, the tree level Higgs boson mass preserved by (AlA) is the Higgs boson mass at 
zero Euclidean momentum. The formulas we obtain here will have corrections coming from running the 
mass from zero euclidean momentum up to mHo This fact has been noted by the authors of reference 
19 in chapter 1. The divergence in (A1.5) for Goldstone bosons, is an artifact of this running. This is 
because the Goldstone boson contribution gives an infinite running of the Higgs mass between p2 = m~ 
and zero euclidean momentum. Alternatively one could impose renormalization conditions at a different 
value of 4>. In that case, a singularity in V" would still exist for the reasons mentioned above, and 
parameters of the effective potential would be related to measurable quantities by both a running in field 
space and momentum space. In this appendix we work with Higgs Boson self couplings small enough 
that we can neglect scalar loops which contain Goldstone Bosons. 

56 



be preserved. In this case, for each degree of freedom, the one loop corrections to the 

effective potential is given by (A1.5) t 

(A2.2) 

where the ± is for bosons (fermions) and me</»~ is the mass of the particle in the presence 

of a background field. Neglecting the Higgs doublet contribution to VI, the one-loop, 

zero temperature, effective potential for the physical Higgs scalar is given by the well 

known expression (see, for example, reference 18 of chapter 1) 

(A2.3) 

plus terms independent of </>. Here </>, the physical Higgs scalar, has mass m~ = 2>'00"2 = 

(2)' + 12B)0"2, (</» = 0", and B = 641r\/74 (6mt + 3m~ - 12m:). \iVhen the system is in 

contact with a hot thermal reservoir, such as in the early universe, the effective potential 

for the Higgs boson must be modified to include the interactions between the Higgs 

field and the hot ambient plasma. The thermal one-loop corrections to the effective 

potential for the Higgs boson is just the free. energy of the Bose-Einstein and Fermi-

Dirac distributions of particles getting a mass from </>, 

t::. VI ( </>, T) = - ~ 9 ;:; loOO dx x2 In (1 + e -..; x2+{Pm '} ) 

+ 2.:: g;:; looo dx x 2 In (1 _ e-";x2+{32m1) , 
B 

(A2.4) 

'where mB(F) is the mass of a boson (fermion) in the presence of a bacl<ground field </>, 

9B(F) is the number of degrees of freedom, f3 = liT, and (F)B denotes a sum over 

(fermions) bosons respectively. E:> ... panding the argument of the logarithm and integrat­

ing, the integral equation for t::. VI (</>, T) can be written in terms of a sum. As shovm in 

tVVe have added a constant so that the one loop contribution to the cosmological constant vanishes 
at (tP) = (T. 
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appendix C, 

(A2.5) 

Since the modified Bessel function ](2 falls off exponentially for large values of its argu-

ment, the expression (A2.5) is well suited to numerical computation when mIT is large. 

In the high temperature limit, when m(</J)IT is small, equation (A2.4) can be e>...-panded 

in powers of m( </J) IT. Excluding the terms independent of </J, the result from reference 

17 of Chapter I is 

(A2.6) 

where In(CB) = ~ + 21n41r - 2[ ~ 5.41 and In(CF) = ~ + 21n1r - 2[ ~ 2.64. t 

Expanding to order TJ in mIT and neglecting all one loop Higgs self interactions, 

we add (A2.3) and (A2.6) to obtain the one-loop, temperature dependent potential 

V(</J, T) = [DT2 - (~A + Ba2) a2] </J2 - E</J3T + ~).T</J4 

=D(T2 - T;)</J2 - ET</J3 + ~AT</J\ 
4 

(A2.7) 

where the constants D, E, and AT are given in Chapter 1. The absolute instability of the 

origin occurs when the temperature reaches T2 : 

T.2 _ (2), + 4B)a2 _ m~ - 8Ba2 _ 2( ) 2 
2 - 4D - 4D = X me, mH mw (A2.8) 

As well as providing good qualitative behavior, the standard mIT expansion (A2.6) gives 

reliable quantitative results up to surprisingly large values of miT. For what values of 

tThis comes from Dolan and Ja.ckiw, reference 17 of Chapter I, where the 2.64 was misprinted as 2.84; 
we thank David Brahm for bringing this to our attention. 
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miT is the high temperature approximation accurate? From Figures Al and A2 we see 

that the high temperature approximation agrees with the exact potential to better than 

5 percent for miT < 1.6 (2.2) for fermions (bosons). It is interesting to note that unless 

great accuracy is required, for any value of miT, either the high temperature or a low' 

temperature approximation can be used to obtain a simple formula for the free energy. 

For large values of x, the modified Bessel function 1(2 has the asymptotic behavior 

(A2.9) 

So, for large values of miT, the temperature dependent contribution to the free energy 

is given by 
3/2 ' 

_ (m(</») -m(4))/T ( 15T ) ~Vl(</» - 27rT e I + 8m(</» + .... (A2.10) 

For any value of miT, the better of (A2.6) or (A2.10) will give a value for ~Vl(</» which 

is good to better than ten percent. 
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Figure Ai: Exact and approximate relations for the free energy of a fermion. 
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Figur''(; A2: Exact and approximate relations for the free energy of a boson. 
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Appendix B 

Fluctuations About the Saddle 

Point 

1 Thermal Rates in a Simple Model 

In order to develope some insight, we first consider the classical one dimensional barrier 

hopping problem, as shown in Figure B 1. Following Affleck, reference 1 of Chapter I, 

the probability of being thermally excited out of the left well and over the barrier is a 

Boltzmann average of the flux: 

(B1.1) 

In order to extend this computation to a system with more than one degree of freedom, 

we relate this rate to the imaginary part of the partition function. First we note that, 

for an ensemble of particles localized in the left well the partition function is 

Z = f dpdx e-t3[~p2+V(x)] 

~ f dp dx e-t3[~p2+!~] 
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NeJ..'t we induce an imaginary part by distorting the contour so that 

(B1.3) . 

Expanding Z about the barrier, we find 

(B1.4) 

Thus, 

(B1.5) 

We can add other degrees of freedom so the barrier becomes a saddle point instead of a 

maximum. In that case, the ratio of the partition function evaluated around the saddle 

point to the partition function around the left well, as well as and the Boltzmann average . .-

of the flux across the saddle, picks up a factor 

f dpydye-/3[~~+!~!l] Woy 

J dPJldye-/3[!~+~~IIy2] = Wy • 
(B1.6) 

So the relation (B1.5) is preserved. Equation (B1.5) will hold as we continue to add more 

degrees of freedom to the potential. For a system with an infinite number of degrees of 

freedom, we need to evaluate the partition function 

(B1.7) 

where the integration is over all functions x(r) satisfying x(O) = x(f3). Vole expand the 

Euclidean action about an a'tremum 6S = O. The extremal path satisfies ~ - Vex)' = O. 

Note that the x's solving this equation are not unique. 'VI'e can write an arbitrary path 

in terms of a particular extremum, X, and a variation away from the extremum, 6x: 

x(r) = x(r) + 6x(r). (B1.8) 

On the interval (0, f3) we can expand any periodic function 6x( r) in terms of orthonormal 

functions, 
00 

6x(r) = Xo + 2:)emX m + CnXn],. (B1.9) 
1 
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where Xn = cose7'T), Xm = sine{j'T), and Xo is a constant. The measure [dx] can be 

written 
00 00 

[dx] = N(21r)1/2dco II (21r)~dCn IT (21r)~dcm 
n=l m=l 

(B1.10) 
00 

== N II (21r)~dCi. 
i=-oo 

For static solutions, X, our orthonormal functions are eigenfunctions of the equation: 

.. V"(-) \ - Xi + X Xi = AiXi. (B1.11) 

Expanding Vex) to second order about a static solution X, t\le Euclidean Action becomes 

(B1.I2) 

Thus, 

(B1.I3) 

where 

(B1.I4) 

For the potential of Figure BI we expand Vex) about X(T) = Xo in Z and about X(T) = 

Xsp in Z. Recalling that we only integrated over half of the gaussian in our analytic 

continuation of Z, 

Tm Z IT [det (-8-; + w;)] ~ -{3v. --"'- 7n e 0 

Z - 2 det ( -8:; + w2 ) . 
(B1.I5) 

For e>"'Pansion about the unstable point V"(xsp) = w2 = -w:' from (B1.9-B1.11), we see 

there are always an odd number of negative eigenvalues. Evaluation of the determinant 

is performed in section B2, and the thermal diffusion rate is 

r ~ -w_ TmZ ~ w-Tm [det (-8-; + w;)] ~ e-{3Vo 

1r Z 21r det (-B; + w 2 ) 

w_ [Sinh( ~wof3) 1 -(3v. "'- - e 0 

- 21r sine ~w-f3) . 

(B1.I6) 
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2 Evaluation of the Determinant 

The determinant (B1.15) can be evaluated by the method of (functions. The determi-

nant of an operator A can be written 

det(A) = e-(~(O) = II an, (B2.1) 
n 

where 

(B2.2) 
n 

Noting that cot(1rz) has simple poles at Z = 0, ±1, ±2, ... with residue 1r-1, we can make 

a Sommerfeld-\Vatson transformation 

(s) = a~s f cot(1rz) (.? + p2) -s dz, (B2.3) 

where p = w/3/21r and a = (21r//3)2. Using the fact that the integrals above and below 

the contour are the same, and splitting cot(1rz) into two parts, we have 

(s) = 2a-s r dz . e
i1rz

. (z2 + p2)-S dz + a-s r (z2 + p2)-S dz J Cl e'1rZ - e-l'7rz J C2 
(B2.4) 

For the- first integral we take the derivative with respect to s and note that the phase 

of the integrand changes by 21r across the branch cut (see Figures B2 and B3). So, we 

obtain 

(B2.5) 

The second integral can be regularized by writing it in terms of a B function 

(B2.6) 

So that 

(B2.7) 

The determinant is then 

(B2.8) 
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Applying a different method than used here, Affleck and the authors of reference 11 in 

Chapter I find the same result. 
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Figure Bl: Thermal Diffusion Across a Double 'VeIl. 
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Appendix C 

Evaluation of the Thermal 

Contribution 

In this appendix we evaluate the one-loop, thermal contribution to the effective poten­

tial. Standard quantum field theory is set up to describe events that take place in a 

background of empty space. However, for significantly high temperatures thermal effects 

become important. To properly incorporate the interactions of the system with its sur-

roundings, the background vacuum state should be replaced with a thermal bath. To 

one loop, the temperature dependent contribution to the effective potential is the free 

energy of a thermal distribution of ambient particles. Writing the full, one-loop effective 

potential as 

(C.1) 

the thermal contributions to the effective potential, .6 VI (</>, T), are given by the well 

known formula 

.6l/i(</>, T) = I;Ni 1000 

dx x'lln (1 ± e-..j:r:2+Mt/32) , 
\ 

(C.2) 

where the +( -) is for fermions (hosons) respectively. Ni = =F ~r;, 9i is the number 
_1r 

of degrees of freedom of particle i (Le., 9t = 12, 9w = 6, 9z = 3 ), Ali is the mass of 
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particle i in the presence ofa bacl{ground field <1>, and the (+)- is for (fermions) bosons 

respectively . 

Writing ~ = Mi(<I»/T and expanding the logarithm in powers of the exponential, 

we have 

(C.3) 

where the ± is for bosons (fermions) respectively. The integral In can be written 

In(a) = 100 

dx x2e-n"'x2+a
2 

d {l roo d X4 -n"'x2+a2} 
- da anJo x vx2+a2e (CA) 

_ ~ {!!:Jdx X2 e-n"'X
2 +a2

}. 

da n VX2 + a 2 

This can be written in terms of the Bessel function [(2 : 

1 d [ 2 ] - -- a [(lean) . 
n2 da 

(C.5) 

Hence, 

(C.6) 

Finally, the one-loop, temperature dependent contribution to the effective potential can 

be written 

~Vl(<I>, T) = - ~NF [E( _l)n+1 a~[(~~aFn) 1 

- ~NB [f a;[(~~aBn)l ' 
B n=l 

(C.7) 

where the F(B) indicate sums over fermions (bosons). 
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