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Function Systems 

ABSTRACT 

Jane C. S. Long, Christine Doughty, 
Kevin Hestir and Stephen Martel 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

Berkeley, CA 94720 

Fractured and heterogeneous reservoirs are complex and difficult to charac
terize. In many cases, the modeling approaches used for making predictions of 
behavior in such reservoirs have been unsatis~a~tory. In this paper we describe a 
new modeling approach which results in a model that has fractal-like qualities. 
This is an inverse approach which uses observations of reservoir behavior to 
create a model that can reproduce observed behavior. The model is described by 
an iterated function system (lFS) that creates a fractal-like object that can be 
mapped into a conductivity distribution. It may be possible to identify subclasses 
of Iterated Function Systems which describe geological facies. By limiting the 
behavior-based search for an IPS to the geologic subclasses, we can condition 
the reservoir model on geologic iliformation. This technique is under develop
ment, but several examples provide encouragement for eventual application to 
reservoir prediction. 

1.0 INTRODUCTION 

Most of the est.ablished techniques for modeling heterogeneous and frac
tured reservoirs are based on the assumption that the reservoir acts as an 
equivalent continuum on some scale, often called the representative elementary 
volume (REV) (Toth, 1967). Further, a common assumption is that the reservoir 
can be modeled by tesselating the entire region of interest with blocks of 
equivalent continua that are at least aslarge as the REV. However, it has become 
increasingly apparent that reservoir heterogeneities occur on every scale (Freeze, 
1975), and that the concept of the REV may not always be appropriate. For 
example, in a fractured rock, we find fractures on every scale from the micro
fracture to major fault. Dominant flow paths develop where open, conductive 
fractures intersect. Bow may completely bypass parts of the reservoir and 
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connected regions may be complex and hard to define. A similar case maybe 
made for sand-body reservoirs. In these cases, it is difficult to de~~ a hetero-
geneous model for reservoir behavior. I 

Two modeling approaches are commonly used to include the effect of 
heterogeneities. (For this discussion we can consider fractures as just another 
type of heterogeneity.) The first approach we will call the "forward" approach. 
In this approach one tries to infer the distribution of heterogeneities and the spa
tial relationships from conductivity measurements. Tools such as geostatistics 
can be used to create realizations which match both the local measurements and 
the inferred spatial correlation. The primary difficulty with this approach is that· 
such models rely on an estimate of the geometry of the heterogeneities to predict 
the behavior. A model which reproduces the geometry may not match observed 
behavior, much less correctly predict new behavior (Long et al., 1991). Secondly, 
most of these techniques are restricted to producing smooth models of hetero
geneities. Physical systems that are highly convoluted or poorly connected such 
as meander belts ~r fracture networks, may be extremely difficult to simulate 
with geostatistics. 

The second approach is the inverse method. In this approach we search for a 
pattern of heterogeneity which matches the observed behavior of the reservoir, 
usually observed heads under assumed steady flow conditions. Such models have 
been developed by Carrera and Neuman (1986a,b,c) and Kitanidis and Vomvoris 
(1983), for example. The latter is particularly interesting because the inversion 
method is used to determine a relatively small set of geostatistical parameters, 
which are then used to generate heterogeneous hydrologic property distributions 
via kriging. 

In the inverse techniques we have developed at Lawrence Berkeley Labora
tory, we search for equivalent models which are based on a geologic understand
ing of flow. For example, Simulated Annealing (Davey et al., 1989) is an inver
sion technique that has been applied to fractured rock to find an Equivalent 
Discontinuum model (Long et al., 1991). Simulated Annealing is applied to a 
partially filled lattice of one-dimensional conductors, called a template, which is 
in effect a geologically based conceptual model for the fi:~cture system. The algo
rithm searches for a configuration of lattice elements which can reproduce 
observed hydrologic data. At each iteration, one calculates the "energy," E, of 
the configuration, which is a function of the difference between model predic
tions and observed behavior. Then a random change is made in the lattice and the 
new energy is computed and compared to the old energy. If the energy is 
decreased, the change in the configuration is kept. If the energy is increased by 
the change, the choice of whether or not to keep the new configuration is made 
randomly based on a probability which decreases with the amount of energy 
increase, allowing the algorithm to "wiggle" out of local minima. Use of the 
annealing algorithm is more completely documented by Davey et al. (1989) and 
Long et al. (1991). . 

The Iterated Function System (IFS) inversion method described in this 
paper is similar to the application of Simulated Annealing to Equivalent r 
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Discontinuum models. An IFS is used to create a fractal-like object (an attractor) 
which describes reservoir heterogeneities or fractures. The inverse analysis 
optimizes the parameters of the IFS until the attractor~based hydrologic model 
matches the observed behavior of the hydraulic data. 

Below we briefly describe the IFS concept and explain how these functions 
are used in an inversion. Then we discuss the well test data that can be used in an 
inversion. We provide two examples of inversions based on synthetic data gen
erated from numerical models and two preliminary field based examples, one for 
heterogeneous porous materials and one for fractured rock. A third preliminary 
example shows how we might find classes of IFS which produce fracture 
geometries similar to those observed in nature. Finally we discuss future direc
tions. 

2.0 ITERATED FUNCTION SYSTEMS 

An iterated function system (lFS) is a standard way to model self similar 
geometrical structures (Bamsley, 1988) which was developed for use in com
puter graphics in order to find efficient means for storing the information describ
ing each pixel of a complex picture. In this application, one identifies an iterative 
process that will create the picture rather than storing the information for each 
pixel. The iterative process is defined by an IFS which has a relatively small 
number of parameters. The use of an IFS essentially exchanges the use of com
puter storage for the use of computer time. In our application, we want to create a 
model of a complex heterogeneous geologic system. Instead of trying to describe 
this system "pixel by pixel," we look for an IFS that can describe the geometry 
of the system with a small number of parameters. 

An IFS creates a picture starting with an initial set of points and a set of 
iterative functions. At each iteration, each function in the system operates on the 
set of points and according to the parameters in the function translates, reflects, 
rotates, contracts or distorts the set of points. Over many iterations, the points in 
the picture coalesce towards an "attractor" which is a fractal-like object. The 
shape of this attractor changes gradually when the parameters of the IFS gradu
ally change. 

To create an IFS one first specifies a function f, which maps sets to sets: 

(2.1) 

where Ao and Al are (compact) subsets of two (or three) dimensional space. A 
set Aoo can then be defined by 

An+ 1 = f(An) n ~ 0 , 1 , ... (2.2) 

Aoo= limAn • 

Given certain restrictions on the set function f, one can show (Barnsley 1988) 
that Aoo exists, is independent of the starting set Ao. and generally has· a frac
tional Hausdorff dimension. Hence f determines a fractal, Aoo. If we have a 
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function f that is easily parameterized, then the fractal Aoo is parameterized as 
well. This leads to a nice setup for modeling real-world problems, because a 
small number of parameters can be used to characterize a complex geometry. 

A wide variety of Iterated Function Systems can be defined, but they fall 
into two main categories: deterministic and probabilistic. A deterministic IFS 
has l uniquely determined parameters, and thus creates a unique attractor Aoo. A 
random IFS chooses some or all of its parameters randomly from probability dis
tributions, so multiple realizations of Aoo differ. The Iterated Function Systems 
used in the hydrologic inversions given in this paper are deterministic and of the 
form of Equations (2.3) and (2.4); those used in the fracture growth scheme (Sec
tion 8) are random. 

One important example of a detenninisticf used extensively by Barnsley 
(1988) is:· 

f(A) = gl(A) u g2(A) u ... gk(A) 

Here the gi's are so called affine transfonns: 

gi(A) = u gi(X) 
xeA 

~ 

g·~=B:X+b· 1 \A) 1 1 

(2.3) 

(2.4) 

~ 

where Bi isa matrix and bi a vector. The parameters characterizing f are the 
entries in the Bi's and bi'~ The matrix, Bi, serves to rotate, reflect, distort, and 
contract and the vector, bi' translates. An example IFS using k = 3 affine 
transformations which contract and translate, resulting in a fractal called a 
Sierpjnski's gasket, is shown in Figure 2.1. The IFS is specified by 

B B B fO.5 0.0, 
I = 2 = 3 = LO.O 0.5) , (2.5) 

~ ~ ~. 

b i = (0.0, 0.0), . b2 = (0.5, 0.0) , b3 = (0.0, 0.5) . 

Figure 2.2 shows the attractors generated by a sequence of functions 
f1' f2' .. , ,f6' where f1 is the Sierpinski's gasket, and for j = 2, 6 every param
eter of fj differs from the corresponding parameter of fj-I by a small increment. 
The continuous change in par<tJneters is manifested as a continuous change in the 
attractors; which is a useful but not necessary condition for an IFS-based inver
sion procedure to work. 

The most general affine transforms that operate in two-dimensions have four 
arbitrary entries in each Bi matrix, and two arbitrary values in each ~ vector, 
which gives a total of 6 parameters for each affine transformation. By under
standing how the different parameters affect the shape of the attractor, we can 
constrain parameters to produce attractors that have desired properties, for exam
ple mimicking certain geological facies. As well as making the inversion pro-

. cedure more efficient by reducing the dimensionality of the parameter space, 
r 
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Figure 2.1. Generation of a Sierpinski's gasket using three affine transfonna
tions. 
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Figure 2.2. A series of attractors generated by functions whose parameters differ 
by small increments. 

these constraints make the inversion more robust by conditioning it on known 
geological conditions. One simple example is to construct each Bi as a rotation 
m~~ , 

B = s[C?S 8 -sin 81 
sm 8 cos 8J (2.6) 

where S is a contractivity factor (0 < S < 1) and 8 is a rotation angle. This for
mulation reduces the number of parameters of the IFS from 6 to 4 per affine 
transfonnation. By restricting 8 and b to a limited range, directional trends 
observed in geologic media can be reproduced in the attractors. ' 

3.0 INVERSION BASED ON ITERATED FUNCTION SYSTEMS 

To use the IFS as a basis for hydrologic inversions we mapthe points of the 
attractor into a hydrologic property (conductivity, storativity etc.) 4istribution 
and use the finite elem~nt code TRINET (Karasaki, 1987) to simulate a well test. 
In the examples given here, the finite element mesh consists of a lattice of one 
dimensional Gonductors. We superimpose the attractor on the lattice and incre
ment the conductance and storativity of the lattice elements that are close to each 
point on the attractor, as shown in Figure 3.1. The hydrologic properties of a 

'-' 

'f' 
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lattice element can be incremented as many times as there are poihts on the 
attractor near by. In this way the small number of parameters of an IFS define the 
conductance and storativity distribution for thousands of elements . 

•• 
• 

'\ 
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Figure 3.1. "Step" mapping between points on the attractor and increments in 
hydrologic properties of the lattice. 

The inversion algorithm searches for IFS parameters which define a hetero- , 
geneous system that behaves like the observed well tests. We first construct a 
model of the flow system using a lattice of elements modified by an arbitrary 
IFS. We then optimize the parameters of the IPS until the model produces a good 
match to the well test data. The match is quantified by the energy, E, which 
represents, in a' single number, the total amount of mismatch between the 
observed and modeled drawdowns, and is a convenient way of quantifying the 
"goodness of fit" of the model to the data during the course of an inversion. We 
define E as 

I' (3.1) 

where ho is the observed head (or drawdown) and he is the head (or drawdown) 
calculated using the hydrologic properties mapped from the attractor. E can also 
be a function of flow differences or any other pertinent measure of behavior. The 
sum is taken over a discrete set of observation times and all observation wells. E 
is not nonnalized by the number of data points or by the magnitude of the 
observed drawdowns, so one cannot say a priori that a certain value (e.g., E = 
10) is "good" or "bad" for all problems. At this point we use judgment to 
decide whether the mismatch between observed and calculated drawdowns is 
sufficiently small to be insignificant. 

The optimization can be done in a variety of ways. We have used several 
routines available in standard numerical libraries, including downhill simplex 
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and direction set methods (press et al., 1986). One optimization technique that 
seems to work well is Simulated Annealing. In this case, we randomly choose 
new values of the IFS parameters and accept or reject these new choices accord- . 
ing to the annealing algorithm as described above. 

Some parts of the inversion algorithm are arbitrary. For example, we choose 
the number of affine transforms, k, that make up the IFS. We also choose the 
number of points, M, for the IFS to use in creating the attractor. The larger Mis, 
the greater the contrast in permeability can be. One could use a high value of M 
to model highly conductive features in a relatively impenneable matrix or a 
lower value of M to model conductive features in a slightly impermeable matrix. 
Further, we also arbitrarily choose how to relate the increment in conductance 
and storativity represented by each point of the attractor. Another arbitrary , 
choice is exactly how to map the attractor into the hydrologic parameters. One 
possibility is to modify the properties of just the single element closest to each 
attractor point (a "step" map). Alternatively, properties for all elements near an 
attractor could be affected, with the magnitude of the change decreasing as a 
function of distance from the attractor point (a distributed map). We have just 
begun to study the effects of such choices. 

One of the attractive features of this approach is that it may be possible to 
choose sub-classes of Iterated Function Systems which tend to produce features 
observed in a geologic investigation. For example, we may be able to find 
Iterated Function Systems that always produce a specific type of brittle shear 
zone or meander belt structure. In these cases we could confine the search for 
hydrologic behavior to the sub-class of IFS that represents the geology. Along 
the same lines, once we have identified the form of the IFS that best explains all 
the data, the model will have fractal-like properties that may help to extrapolate 
behavior to scales that can not be tested in reasonable time frames. 

4.0 HYDROLOGIC DATA FOR INVERSION 

One of the significant problems associated with applying these techniques is 
the choice of data set to invert. In principle, any physical phenomena of interest 
which can be numerically modeled and also monitored in the field can be used in 
the inverse method. In practice, it can be quite difficult to pick a good data set for 
analysis. Some of the difficulties arise from the usual problems with field data: 
poorly known boundary conditions, incomplete or insufficient data, etc. Another 
problem faced in the inversion process is comparing model results to data. In the 
model we choose base values of conductance and stOrativity. The'n, these param
eters are incremented using the IFS map and the model is used to simulate well 
tests. The model results and the data may differ for two reasons: (1) the base 
values of the parameters are wrong or (2) the distribution of heterogeneities is 
wrong. The inversion process defined above is only designed to address the 
second reason. In some cases an incorrect choice of base values can be treated 
by shifting the model results on a log drawdown - log time plot. The y-shift 
corresponds to scaling the conductances of the elements uniformly up or down 
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and the x-shift scales the diffusivity (conductivity divided by storativity). Thus 
at each iteration, the model results are first shifted to obtain the best fit to the data 
and then the energy is calculated. However, as discussed below, it is not always 
appropriate to shift the model results. Further, if the base parameters chosen are 
very bad estimates, so that large shifts are required, numerical problems can 
occur. For example,a large over estimate of base conductance can cause draw
downs to be so small that they are swamped by round off errors; A large log
time shift may either cause the temporal resolution of the model to be inadequate 
at early times, or the period of time modeled to be too short. Although shifting is 
an elegant way to avoid repetitious modeling, for practical purposes it may be 
preferable to incorporate the choice of base parameters into the optimization pro
cess. Some of the considerations necessary for using different types and amounts 
of well test data are discussed below . 

. 4_1 Steady-State Tests 

The simplest approach has been to use the steady-state head distribution 
resulting from a pumping test with a constant flow boundary condition applied at 
the pumping well. The energy function is constructed as a function of the differ
ences between modeled and measured heads or drawdowns. Drawdowns induced 
by such a test are relatively simple to measure, and steady flow is easy and quick 
to model, allowing many iterations of the model to be practical. However, for 
steady-state flow, the pattern of drawdowns does not change when conductances 
of the medium are uniformly scaled up or down, So, using a single steady-state 
test will only give a pattern of conductance contrasts which matches the head dis
tribution. The value of these conductances can then be scaled up or down until 
the applied flow boundary condition is matched. This means, not surprisingly, 
that models obtained largely by matching drawdowns should be more sensitive 
predictors of drawdown than they are of flow. 

Greater sensitivity to flow can be gained by combining a series of steady
state tests. If constant flow is applied at the pumping well, the .energy function 
can include the head at the _pumping well treated as any other observed head. In 
this case, each of the separate tests is modeled at each iteration and the factor 
incrementing all the element conductances is chosen to best fit all the flow boun
dary conditions. If constant head boundary conditions are applied at the pumping 
well, the energy function can be constructed as an appropriately scaled combina
tion of squared head differences at observation wells and squared flow differ
ences at the pumping well. In this case, no overall scaling of conductances is 
needed. 

Generally, multiple steady tests may provide the best data for inversion 
because there is no dependence on storage coefficient and the time required for 
steady flow calculatio!1s is very small. However, in the field each steady test is 
very time consuming and consequently few are usually available. 
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4.2 Transient Tests 

Alternatively, one can use the transient interference data resulting from a 
constant flow boundary condition. The flow rate used in the field is specified in 
the model in order to predict the transient drawdown response. At each iteration, 
the model predicts curves of drawdown versus time that can be shifted in both 
the x- and y-directions in log-log space until a best match is obtained to the real 
curves. This process is similar to matching data to a Theis curve but in this case 
the shift corresponds to scaling the conductances and storage coefficients for the 
elements in ,the model. With multiple observation points, it becomes necessary to 
find the best shift on average . .Although this process is conceptually simple, the 
vagaries of numerical calculation combined with the vagaries of real data can 
make curve matching extremely difficult to do automatically for thousands of 
iterations. The energy at each iteration is the sum of the squared differences in 
log of head for each observation point at selected times. The advantage of using 
this type of data in inversion is that the' transients reflect the distribution of 
heterogeneities in space, where as a steady test is more likely to reflect the big
gest bottle-neck, irrespective of where it is. The disadvantage of transient data is 
that we are forced to make an assumption about the relationship between storage 
and conductance; in other words we have more information, but another parame
ter to specify. 

As in the steady-state case, a slightly different procedure must be used if the 
transient test has a constant head boundary condition. In this case we should use 
both the transient drawdown data at the observation wells and the transient flow 
rate at the pumping well in the energy function. Under these conditions the y
shift is not needed because head is pegged by the constant head boundary condi
tion. Consequently, constant, head tests are somewhat more sensitive to the initial 
estimate of the element conductances and in practice are more difficult to invert 
than constant flow test data. 

4.3 Combining Different Types of Tests 

If several different tests are available, these can be combined. In principle 
any combination of steady, transient, constant-flow or constant-head data can be 
combined. The main drawback for combining a large number oftra:1sient tests is 
the possibility of using an enormous amount of cpu time. The calculation time 
scales with the number of tests times the number of time steps times the number 
of iterations. It Js riot difficult to conceive of a problem that could take on the 
order of a month to invert. 

For multiple constant-flow transients, the procedure is straight forward. At 
each iteration, each test is modeled and the best-fit x- andy-shifts for all the 
curves are identified. Theoretically. a steady-state test is a subset of a transient 
test and the steady drawdowns predicted by the model can be matched to the data 
by a shift in the y-direction, with the x-shift irrelevant for steady-state conditions. 
On the other hand, if we include a constant head test (transient or steady-state), 
we cannot use a y-shift to match the drawdown data from the constant head test. 
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One approach is not to use the y-shift on any of the drawdown curves. In this 
case, we need to have a good a priori estimate of element conductance. Again, 
flow data should be included in the energy function for the constant head case. 

In general, the inversion of well test data yields a non-unique solution. Pun
damentally, one rarely has enough data to specify a unique solution. The advan
tage of using multiple well tests is that each additional test provides more infor
mation about the system. We can use a single well test to predict a second well 
test, and the first two well tests to predict the third. In this way we can see if our 
ability to make predictions improves which implies an improvement in the 
uniqueness of the solution. 

5.0 SYNTHETIC EXAMPLES 

One way to see how well the inversion algorithm works is to generate syn
thetic data from a prescribed model and see if the model used to generate the data 
can be recovered by the 'inversion. At this point, we have completed a few simple 
cases which serve to provide encouragement for the concepts as well as point out 
the limitations of the method. Many issues have not yet been addressed and will 
be the object of further study. 

5.1 A Linear High-Conductivity Feature 

The first synthetic case is a simplified model which might represent the 
hydraulic conditions imposed by a buried stream channel or the trace of a con
ductive fault. We construct a two-dimensional model with a highly conductive 
linear feature and use IPS inversion to see if we can find the location of this 
feature. 

An IPS composed of two affine transforms of the form 

(5.1) 

where 

gl~) = [8:6· g:~Jx + t)i (5.2) 
.,,-+ ~ 

has only four parameters, the two components of each of hI and b2. This f 
always produces a line~attractor, with the length and orientation of the line seg
ment depending on the bi ' s. A linear high conductivity feature provides a simple 
demonstration of the IPS inversion procedure for several reasons: The inversion 
is fast because the dimension of the parameter space is small (4 instead of the 
usual 6 parameters per affine transformation); the evolution of the attractor as the 
inversion progresses is easy to visualize; and the linear high conductivity feature 
has a clear "signature" on the pressure transients, making the inverse problem 
better posed. 

A synthetic data set was generated for a constant flow pump test conducted 
in a medium with a linear feature that has a conductivity 500 times higher than 
the background (see Figure 5.1). The central well pumps at a constant rate and 



r 

-12 -

transient heads are calculated for four surrounding observation wells. A two
dimensional finite element mesh composed of a regular 20 by 20 grid of linear 
elements is used; head is held constant at the outer boundary. Figure 5.2 shows 
the transient heads calculated for this conductivity distribution (the synthetic 
data). The effect of the high conductivity feature is clearly seen in the earlier, I 

larger response of th.e upper well in Figure 5.2 . 

. . . .. ; ....... i ..... ,,; ....... ; .. , .... ; .....•. ~ . .. . .: 
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Figure 5.1. Model of synthetic case I: the heavy black line shows the region of 
enhanced conductivity, the wells are marked as large black dots, and 
the mesh is shown as dotted lines. The initial attractor for inversion 
is the dashed line labeled 1; the dashed lines labeled 2-8 are a se
quence of attractors found during the inversion. 

The attractors found at variou's points duringthe inversion are shown in Fig
ure 5.1, along with the corresponding energies. Note that this figure shows the 
attractor, each point of which is used to increment the nearest element conduc
tance, not the conductance distribution itself. Figure 5.2 shows the pressure tran
sients for a uniform medium (no attractor, E = 90) and for the final attractor 
determined by the inversion (E = 1.2). The small energy of the final attractor is 
due to the excellent match of all the pressure transients and is not surprising in 
light of the similarity of the final attractor (labeled 8 in Figure 5 .. 1) to the original 
high-conductivity feature. This synthetic case illustrates the IFS inversion work
ing very well, but it should be emphasized that real-world problems are likely to 
be much more complicated. 
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Figure 5.2. Transient heads at the four observation wells for synthetic case 1: 
data (black dots), a unifonn medium with no attractor (dashed lines, 
E = 90), and the attractor labeled 8 in Figure 5.1 (solid lines, E = 
1.2). The arrangement of the plots on the page follows the locations 
of the observation wells in the well field. 

5.2 A Square Zone of Contrasting Conductivity 

A second synthetic case consists of a central square region with hydrologi
cal properties significantly different than the surrounding region (Figure 5.3). 
First we allowed the center region to have a conductivity and storativity 100 
times higher than the outer region. Then, we reversed these ratios. In each case, 
interference data was generated by pumping from well 0 and monitoring the 
response at the other five side and corner wells. The five drawdown vs. time 
curves are inverted using Simulated Annealing to find an optimal IFS composed 
of three affine transfonns. 

The IFS chosen to provide a starting point for the inversion is the 
Sierpinski 's gasket shown in the first frame of Figure 2.2. 

Figure 5.4 shows two different solutions for the inversion with thebigh con
ductivity and storativity in the center. Figure 5.5 shows the match between the 
synthetic well test data and the model results for the first solution. Figures 5.6 
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Figure 5.3. Model for the second synthetic case. The central region is at first 
100 times more conductive than the outer region, then 100 times less 
conductive. The numbers show the locations of six wells. 

and 5.7 show the corresponding information for the low conductivity and stora
tivity in the center. The energy associated with a homogeneous lattice is about E 
= 200 and the energy of all the IFS solutions is about E = 10. 

The algorithm is clearly able to find a central high conductivity zone and 
this is very encouraging. This case should be extended to see how large a contrast 
and how small an inhomogeneity can be detected. Also, we should investigate 
how far away the wells can be from the anomaiy and still detect it. 

Interestingly, the reverse case does not recover the geometry of the original 
model as_ well. When the high conductivity is on the outside, the algorithm puts a 
small region of high conductivity on the outside, but does not spread it around 
the anomaly. We suspect that if we based the inversion on a combination of well 
tests from different wells, we would have a better chance to resolve the anomaly. 
Also, we could use the attractor to decrement the conductance instead of incre
ment it. This may give a solution similar to the case above. 

5.3 Conclusions Drawn from Synthetic Cases 

The synthetic cases we have conducted so far have provided some general 
confidence. in the approach we are taking and show that an extensive study of 
synthetic cases is warranted to help refine the algorithm. Furthermore, it will be 
useful to corrupt the synthetic data by adding noise or by varying the boundary 
conditions to see how best to develop rObustinversion techniques. 
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Figure 5.4. Two different attractors found by inversion of the se~ond synthetic 
case for the high conductivity in the center. 
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Figure 5.5. Transient drawdown response for the second synthetic case for the 
high conductivity in the center. 
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Figure 5.6. Two different attractors found by inversion of the second synthetic 
case for the low conductivity in the center. 
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Figure 5.7. Transient drawdown responses for the second synthetic case for the 
low conductivity in the center. 



-17 -

6.0 INVERSION OF DATA FROM HETEROGENEOUS POROUS 
MATERIALS 

A variety of well tests have been conducted on a shallow aquifer system 
composed of interbedded sands, silts, and clays at Kesterson ReseIVoir, located 
in the San Joaquin Valley in central California (yates, 1988). The hydrological 
properties of the aquifer/aquitard system are needed in order to study the tran
sport of various fonos s>f selenium and other salts between surface waters and 
underlying aquifers. The aquifer studied in the present example is about 18 m 
thick, and is underlain by an impermeable clay layer and overlain by a leaky 
aquitard. A multi-well transient pump test is analyzed to infer the spatial distri
bution of penoeability in the aquifer. 

In the test under consideration, a central well was pumped at a constant rate 
and, transient drawdowns were measured at eight obseIVation wells located 15 to 
107 m away from the pumping well (see Figure 6.1a)0 A two-dimensional areal 
finite element model is used to represent the aquifer. ,-

Figure 6.2 shows the obseIVed drawdown vs. time CUIVes and those cal
culated assuming a medium with uniform conductivity and storatiyity (no attrac
tor). The energy of the uniform-medium solution is E = 38. 
c 
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Figure 6.10 The two-dimensional finite element mesh used for the Kesterson cal
culation. Frame (a) shows the central part of the mesh with the well 
field superposed, frame (b) shows the entire mesh. , 
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Figure 6.2. The transient drawdown response in the Kesterson observation 
wells: observed data (black dots), calculated response assuming a 
uniform medium (dashed lines, E = 38), and the calculated response 
that produces the minimum energy (solid lines, E = 6). The arrange
ment of the plots on the. page follows the locations of the observa
tions wells in the well field (Figure 6.1a). 
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During the inversion the attractor is constrained to remain within the region 
I x I < 150, I y I < 150 m shown in Figure 6.1a. If this constraint is not 
included. the inversion tends to waste effort changing the attractor far from the 
well field. where changes have little impact on the observed drawdowns. Each 
point of the attractor increments the conductance of the nearest mesh element. 
The final attractor resulting from the inversion is shown in Figure 6.3. The draw
down vs. time curves for this attractor are shown in Figure 6.2 and correspond to 
an energy of E = 6. 

XBL 924-782 

Figure 6.3. The attractor that yields the minimum energy (E = 6) for the Kester
son data. 

In conclusion, the inverse method has worked well to match the observed 
head data. However, we' have used a two-dimensional model for a three
dimensional problem, and in so doing may have obscured the effects of some 
geologic heterogeneities and not represented leakage from over and underlying 
strata, 

To correctly analyze this well test, we should use a three-dimensional con
ceptual model. The IFS inversion method can be easily applied to these dimen
sions, but the computational effort will be greatly increased. Not only will the 
flow problem require far more computational time due to larger meshes, but a 
general three-dimensional attractor has 12 parameters for each affine transforma
tion. compared to 6 for a two-dimensional attractor, doubling the dimension of 
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the parameter space that must be searched by the inversion. Never the less, large 
three-dimensional inversions have been successfully computed using Simulated 
Annealing and it is well within the realm of possibility to perform three-
dimensional IFS inversions. . '. , 

7.0 INVERSION OF DATA FROM FRACTURED ROCK 

At the Stripa mine in Sweden, we have been investigating the hydrology of 
a subvertical fracture zone called the H-zone within a 150 m x 100 m x 50 m 
block of rock. A series of seven wells (CI, C2, C3, C4, C5, WI, W2) penetrate 
this zone. An interference test, called the Cl-2 test, was conducted in these holes. 
In this test, the Cl hole was pumped at a constant rate from a packed-off interval 
(interval 2) in the H-zone. Responses were measured in the other holes in inter
vals packed-off around the H-zone. A second experiment, called the Simulated 
Drift Experiment (SDE), measured the steady-state flow rate from the H-zone 
into an additional six parallel holes drilled within a I m radius (the D-holes). The 
entire data set is described in O1sson et al. (1989) and Black et al. (1991). An 
inversion of this data using Simulated Annealing is given in Long et al. (1991). 

Here we present an IFS inversion based on the CI-2 cross-hole test. We then 
use the model produced by the inversion to predict the flow rate into the D-holes 
in the SDE. We treat the H-zone as a two-dimensional feature. The C-, D-, and 
W-boreholes penetrate the plane of the H-zone. The IFS on the plane of the H
zone describes the high conductivity regions within the plane of the fracture 
zone. 

We first find an IFS which creates a hydrologic property diStribution that 
. reproduces the Cl-2 interference data, in which a constant-flow boundary condi
tion is applied at the CI hole. Then we use this model to calculate the steady
state inflow to the SDE, in which a constant drawdown is imposed at the D-holes. 

A two-dimensional variable-density mesh was used to model the H-zone, in 
order to maximize detail in. the vicinity of the D-holes, provide a large enough 
mesh to prevent the transients from reaching the boundary too soon, and minim
ize the number of elements and bandwidth. The outer boundary conditions in the 
model were chosen to represent the estimated eqUilibrium head values. . 

7.1 IFS Inversion Based on Cl;'2 

The inversion was done using. three affine. transformations in which each 
point on the attractor incremented both the conductance and the storativity of the 
nearest element. Figure 7.1 shows the well test data and the model results for the 
799th iteration where the energy had dropped to about E = 13 from an initial 
value of about E = 45. Figure 7.2 shows the attractor at iteration 799. 
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Figure 7.1. The well test data from theStripa Cl-2 test compared to the model 
results for iteration 799. 



- 22-

Iteration 799 

:5 -

o 

:5 -
-100 ·50 o 50 100 

XBL 119·2042 

Figure 7.2. The attractor found at iteration 799 for the central 200 x '200 m sec
tion of the mesh. The six D-holes are in the immediate vicinity of 
D 2· 

7.2. Prediction of Flow for the Simulated Drift Experiment (SDE) 

We then predicted the flow rate into the D-holes during the SDE by apply
ing a constant head at the D-holes such that we impose the same drawdown at the 
D-holes (220 m) as was imposed during the SDE. The actual flow rate 'to the D
holes from the H-zone during the SDE was estimated to be about 0.7 Umin. Our 
calculation gives 0.4 Umin which is low, but reasonably close. 

Some interesting attributes of this inversion are that the attractor first 
resided entirely in the upper left-hand comer of the mesh and consistently 
migrated to the lower right with each iteration. Thus, the conductance in the 
vicinity of the C- and D-holes consistently increased, which means that further 
iterations may continue to move the attractor down and improve the solution. 
However, another possibility is that we are using too many points in the attractor 
which results in too high a conductance contrast, effectively forcing the attractor 
to stay away from the center of the well field. These possibilities are under inves
tigation. 



- 23-

8.0 ITERATED FUNCTIONS TO DESCRIBE FRACTURE 
PATTERNS (JOINTS) 

One exciting possibility for IFS inversion is that we may be able to condi
tion the inversion on geologic information. If we can find Iterated Function Sys
tems that reproduce the geometry of a geologic system. then inversion searches 

. could be restricted to this class of functions. Probably the best way to find such 
classes of iterated functions is to base the functions on an understanding of how 
the system in question develops. For example. a meander belt might be described 
based on a physical understanding of its depositional history. For a set of joints, 
the functions couldreftect the growth mechanics of the joints. A preliminary . 
example of such a description of joint growth is given below. 

The IFS scheme considered here is stochastic but is based on fracture 
mechanics concepts. The cases we consider pertain to two~dimensional fracture 
growth in homogeneous. isotropic elastic materials under plane strain conditions. 

A commonly used criterion for fracture propagation is that fracture growth 
will be in the direction that minimizes the energy release rate G. For the two
dimensional case considered here 

(8.1) 

where KI and KIT are the mode I and mode II stress intensity factors. respectively 
(Lawn and Wilshaw. 1975). The terms v and E are elastic constants: v is 
Poisson's ratio. and E is Young's modulus. For an isolated mode I crack (dilatant 
fracture or joint). KIT equals zero and 

(8.2) 

whereO'd is the driving pressure and L is the length of the crack. Expressions 
(8.1) and (8.2) together show that 

Goc:L. (8.3) 

According to classical fracture mechanics, a fracture subject to a constant driving 
pressure will grow rapidly if a exceeds a critical level. Gc• which is a material 
property. By this criterion. once a fracture reaches a critical length it should con
tinue propagating with no. increase in the driving pressure. Subcritical (slow) 
fracture growth can occur if a is below Oc' The subcritical fracture growth rate 
v is commonly described by a power law. v oc: an, (Atkinson and Meredith. 
1987a). Although experimental values of the exponent n usually exceed 10 
(Atkinson and Meredith. 1987b). Olson (1990) argues that field evidence sug
gests that n commonly is near 1 under natural conditions. If so, this would mean 
that v oc: L for subcritical growth . 

. We assume that the relative probability of fracture growth (either by propa
gation of an existing fracture or by growth ofa new "daughter fracture" near the 
tip of a pre-existing parent) is proportional to G. Based on Equation (8.3) we 
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scale the relative growth probabilities to the fracture length L: 

{

=(1ILJ L L < Lc 
PI (fracture growth) =1 L ~ Lc (8.4) 

The constant of proportionality (lILJ acts as a critical length in Equation (8.4)., 
During a given iteration through the fracture-generating program. growth will 
occur for fractures longer than Le' Growth may occur for fractures shorter than 
Lc; this condition corresponds to subcritical crack growth. 

The IFS algorithm proceeds in four steps. with each fracture checked in a 
given iteration. First, a decision is made regarding fracture growth. The probabil
ity of fracture growth PI is calculated using Equation (8.4). and a random 
number Q1 between 0 and 1. If PI is greater than Q1' there will be growth; if not. 
another fracture is checked for growth. Second. a decision is made whether the 
pre-existing "parent" will grow or a new "daughter" crack will form. The 
parameter that defines the relative probability of in-plane propagation of a parent 
is P2; the relative' probability of a daughter nucleating is therefore (l-P~. 
Another random number Q2 between o and 1 is selected. If P2 is greater than Q2. 
the parent will grow; otherwise. a daughter will fonn. Third. the increment of 
growth & is calculated according to the expression 

(8.5) 

where L is the parent length, B is a maximum growth increment parameter set by 
the user ( 0 < B < 1), and ~ is a random number between 0 and 1. 

Fourth, if a daughter crack fonns, its location must be determined. The coor
dinates (r,e) of the center of a daughter crack are set relative to the tip of the 
parent crack (Figure 8.1). They are determined stochastically using two random 
numbers (~ and Qs) and a probability density distribution based on the stress 
state near a crack tip. The equation for the crack-perpendicular stress (O'yy) near 
the tip of a crack is (Lawn and Wilshaw. 1975):· 

O'yy(r.8) = (K{"21tr) cos(S/2)[1+sin(S/2) cos(38/2)] (8.6) 

-1t < 8 <1t, 0 < r < B 

The contributions that contain r and e in Equation (8.6) can be isolated and nor
malized to yield probability density distributions for daughter crack locations as 
a function of rand e. These distributions show that the probability density tails 
off with distance from the crack tip and has maxima near e = ± 60° instead of 
directly ahead of the crack tip. This causes a daughter crack to preferentially 
grow near the tip of a parent crack but off to the side. 

The number of iterations through the algorithm is set by the user. A larger 
number of iterations allows longer and more numerous fractures to be grown. 

There are four key aspects of this approach that should make it useful. First, 
it can generate fracture patterns in much less time than approaches that explicitly 
account for the mechanical interaction between fractures. Second, fracture 
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Figure 8.1. Diagram showing the relative positions of a parent fracture and a 
daughter fracture and the orientations of the most-compressive and 
least-compressive 'far-field stresses. .. 

. growth occurs only near crack tips (where stresses are particularly favorable), so 
in this regard it is consistent with fracture mechanics principles. Third, new 
cracks can develop; techniques that explicitly account for fracture interaction 
usually only allow pre-existing fractures to grow. Fourth; there are only a few 
parameters to manipulate (the starter crack distribution, P2' B, L c ' and the 
number of iterations). . 

An important assumption incorporated in the rules outlined above is that 
fracture interaction is weak and that every crack grows as though it were isolated. 
As a result the algorithm only permits a parallel set of fractures to grow. This 
approach most appropriately applies to cases where the far-field principal stresses 
(rather than crack interactions) dictate fracture shapes and the stress perturbations 
due to fracture interaction are weak (Le. the difference in magnitude between the 
remote principal stresses is large relative to the driving pressure in the fractures; 
driving pressure equals internal fluid pressure minus remote least compressive 
principal stress). Although this is a significant restriction, it should not invalidate 
the approach. The fracture traces in many natural sets are fairly straight, indicat
ing that fracture interaction commonly is not strong. 

From the simulations conducted to date, three main points em.erge. First, 
this approach can generate realistic-looking fracture growth sequences (Figure 
8.2) that compare favorably with detailed outcrop maps (e.g. Figure 8.3). 
Second, many starter cracks are needed to produce realistic-looking patterns. 
Third, most realistic-looking patterris are produced if the probability of daughter 
fracture generation is very low. If P2 = 1 (Le. only pre-existing cracks can grow) 
and the length of the starter cracks is is greater than L c' then the resulting fracture 
length distribution approaches a log-normal distribution as the number of itera
tions becomes large (Figure 8.4). Even a very small probability of daughter 
growth can cause a tremendous change in the fracture length distribution. Figure 
8.4 also shows a distribution produced when the probability of daughter growth 

'. I-P2 = 0.01. This distribution would be better described by a power-law func
tion. For cases such as this, the shortest cracks are concentrated in belts along the 
largest fractures. This type of pattern resembles joint zones. 
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Figure 8.2. Development of a fracture pattern from 200 randomly located starter 
cracks after (a) 0, (b) 110, and (c) 140 iterations. Each starter crack 
in· (a) is 1 cm long, a distance corresponding to the likely initial 
crack length of Figure 8.3. . 

.. 
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Figure 8.3. Map of fracture traces in a granite outcrop (modified from Segall and 
Pollard, 1983). The fractures dip steeply. Numbers indicate amount 
of lateral separation (in centimeters) across fractures. The feature 
marked by a double line is vein. Areas where the outcrop is covered 
are shown in gray. The pattern here is visually similar to that in Fig
ure 8.2c. 
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Figure 8.4. Comparison of two fracture length distributions developed from 200 
,starter cracks and 150 iterations. For P2 = 1.0 the distribution is 

. approximately lognormal; for P2 = 0.99 the distribution is better. 
'\ described by a power law. Fracture lengths are normalized by the 

longest fracture length. 

9.0 CONCLUSIONS AND RECOMMENDATIONS 

This paper gives some preliminary applications of a new inverse approach 
to modeling heterogeneous and fractured reseIVoirs. We believe this approach 
has great possibilities as a practical tool. However, to reach this goal, much 
remains to be done. We need to learn more about how the inversion process 
works. The techniques we have started with could be extended to apply to more 
complex cases and data sets. To do this we will have to improve the "intelli
gence" of the search for good solutions. In the real world, where we never know 
enough about the subsurface environment, this method can provide a series of 
comparable solutions that reproduce the behavior we know about and extend our 
abilities to predict behavior in the future. Below, we discuss these points. 
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9.1 The Inversion Algorithm 

(Ne are just beginning to see how the inversion algorithm works. The tech
nique has a strong scientific basis, but at this point the application requires arbi
trary decisions. We need to begin to dissect these decisions to see how they affect 
the solutions. For example. we assign changes in conductance to the elements of 
the background lattice in an arbitrary way~ We have chosen to increment conduc
tance but if, for example. we are looking at clay lenSes in sand, we might want to 
decrement conductance. In some cases we only incremented the element nearest 
the attractor pOint, in other cases we proportioned the increment according to 
proximity to the point in order to produce a smoother distribution. Different geo
logic systems may provide a reason for doing one or the other. The way in which 
we assign conductance increments will effect the resolution of anomalous 
features. 

We also connect the increment in conductance to an increment in stora
tivity. These two parameters are not necessarily uniquely related and we might 
need to determine when a more complex relationship is required. For example. 
clays may have high storativity and low conductance, whereas the opposite can 
hold for sands. We might have to define several conductivity and storativity rela
tionships and a set of rules for using one or the other. Similarly, we arbitrarily 
choose M, the number of points in the attractor. We could begin to include this 
parameter in the inversion. possibly by stopping the process after a certain 
number of iterations. optimizing M and then continuing. etc. 

9.2 Extensions of the Method 

At the present time we are able to look at two-dimensional systems and 
invert based on either one steady or transient well test. Obvious extensions 
include the ability to include more than one well test simultaneously. Preliminary 
work with Simulated Annealing .indicated that predictions based on two well 
tests significantly improved over those using one. Adding more well tests is 
analogous to increasing the ray coverage in producing a geophysical tomogram. 

Although we have never run a fully three-dimensional IFS inversion, there 
is in principle nothing preventing us from doing so even though it may be time 
consuming. For example, we might model the Kesterson case as several layers 
and in this way be able to inClude some of the partial penetration and leakage 
effects that we have had to neglect in our two-dimensional mode1. 

Use of diffusive phenomena such as pressure transients to resolve permea
bility anomalies has some inherent difficulties. When we receive a pressure tran
sient, we commonly have little idea of the geometry of the flow path between the 
source and the observation. The fact that this path may be significantly different 
than a straight line means that the pressure transient data is inherently hard to· 
interpret. One might say that the information in the signal is "diffused." This 
fact has always pointed to the use of tracer tests as an alternative data source for 
inversion. This is under consideration, but will probably introduce as illany 
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complications as it removes. It is probably true that one can do better predicting 
head by inverting head measurements, predicting flow by inverting flow meas
urements, and predicting tracer arrival times by inverting arrival time measure
ments. The task of building one model that can predict all of these simultane
ously is a research program in itself. . 

9.3 Efficiency 

Oearly if we want to make IFS inversion a practical tool we must find 
efficient algorithms. The inversions done for this paper were completed with very 
crude, simple codes which in no way optimized the calculations. They were run 
on a Solbourne 500 series workstation, with CPU times ranging from 25 minutes 
for the first synthetic case (which was specifically designed to run quickly) to 
about two days for the Kesterson inversion. 

The computer science aspects of this problem are important These can . 
include simply better programming and optimization algorithms, but might also 
include the use of chip design such that the relevant equations are hard-wired into 
the computer. Solvers based on computer architecture are very attractive for 
these problems where we expect to make many thousands of iterations. Another. 
interesting possibility is to learn to solve the diffusion equation analytically 
directly on the attractor, thus obviating the need for extensive numerical analysis 
of each iteration. (, . 

A more down to earth way to improve efficiency is to be smarter about the 
way that we search for solutions. We can incorporate a priori information such as 
geophysical data to force the search to look for permeability anomalies where 
there are geophysical anomalies. This is conceptually very simple and could be 
incorporated very easily simply by lowering the energy when an attractor point 
falls inside the geophysical anomaly. Co-inversion of bOth geophysical data and 
hydrologic data might be useful, but our experience is that it may be better to use 
the interpretation of the geophysical results as a priori information in the hydro
logic inversion. This is because a significant amount of expert judgment is called 
on to interpret geophysical measurements and this judgment would be over
looked in a co-inversion. 

9.4 Geologic Approach 

The work on fracture growth schemes has tremendous promise for being 
able to reproduce fracture patterns. Oearly, similar work could be done to .. 
describe other hydrologically. important geologic features. Sites which have been 
exhaustively explored will be critical for learning to build functions that describe 
heterogeneities for specific geologic conditions. Several such sites are being 
developed for the purpose of understanding heterogeneity and may be very useful 
for this work. 

The work on graphics using Iterated Function Systems has included 
development of techniques for finding the IFS that describes a given pixel plot. 
This work could be extended to three-dimensions in order to find the IFS that 
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describes the geology of a given quantified site. If we can then begin to examine 
the nature of these functions, we may characterize classes of IFS that represent 
geologic situations. 

If hydrologic inversions can be limited to geologically detennined classes of 
Iterated Function Systems, this would produce results that a priori resolve realis
tic features. In this way it may be'possible to improve the efficiency, resolution 
and extrapolation of hydrologic inversions. 

9.S Uniqueness and Prediction 

The problem of specifying the uniqueness of solutions always arises in the 
inverse problem, especially in the earth sciences. The fact is that we rarely if ever 
have enough data to completely specify an underground system and we have to 
accept uncertainty. What is especially attractive about the IPS inverse approaches 
we are developing is that they produce a range of solutions and thus can produce 
a range of predictions. 

We think it is important to design approaches to the reservoir characteriza
tion problem that recognize from the beginning that the solution to the inverse 
problem is non-unique and that predictions made with these models have errors 
which should be quantified in some way. A good research progran:1: in reservoir 
characterization should include a sequence of predictions and measurements in 
order to detennine if the model is converging to a useful predictive tool. A sim
ple example of this would be to use an inversion based on one well test to predict 
the results of a second; then the two tests to predict the results of a third, etc. In 
this way we can see how much data is needed to make predictions sufficient for 
the purpose at hand. 

9.6 Ev~luation 

The IFS inversion scheme seems to be a promiSing line of research. The 
approach is inherently interdisciplinary in nature and should be able to produce 
models that incorporate the many types of infonnation that are available for a 
reservoir. The models use behavior to predict behavior and are consequently 
inherently consistent. Some encouraging initial results have been obtained, but 
there is much left to do. 
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