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FRACTIONAL FACfORIAL MOMENTS AND "INTERMITIENT" 
BEHAVIOR OF MULTIPLIOTY DISTRIBUTIONS 

by 

Erwin M.Friedlander 
Lawrence Berkeley Laboratory,University of California, Berkeley CA 94720 

and 

Ivan Stern 
Institute for Space Research, Boston College, Newton,Mass. 02159 

With the advent of very high energy nuclear colliders, such as RIDC at 
Brookhaven and LHC at CERN, renewed attempts will be made to search by 
means of large acceptance detectors 1 for the - as yet elusive - expected 
signals for transition to an unconfined (QGP) parton phase. One such signal 
would be large "local" fluctuations of the produced hadron multiplicity in 
restricted intervals ("windows") of space phase. This Letter will deal with ways 
to define in quantitative terms the notion of "large" fluctuations 2 and to 
present a new tool to be used to this effect. 

Ever since it was first recognized 3 that the multiplicity distribution P(n) 
of secondaries recorded in finite rapidity windows - treated as "mini-events" 
- could provide more information about the collision dynamics than just the 
total multiplicity of the event, numerous investigations in a wide variety of 
reactions have shown, in essence, that: 

a) the relative width of P(n) - as measured by its normalized moments 
and/or cumulants - increases with decreasing width Ay of the interval 
considered, and 

b) this same relative width decreases when the center of the window 
shifts away from central c.m.s. rapidity, i.e. towards the "fragmentation" 
region. 

Lately, after the observation 4-6 of rare events with large multiplicity 
"spikes" in narrow rapidity windows, the interpretation of observation a), 
above, has centered around the idea 7 that the distribution of particles in 
phase space shows "intermittent" behavior. This would manifest itself 
through an increase (with decreasing Ay) of the normalized factorial 
moments Fq (i.e. of order q of P(n): 

(1) 



2-

where 

-
fq == L P(n).n(n-l)(n-2) .... (n-q+ 1) 

- n=O 
(2) 

are the ordinary ( i.e. un-normalized) factorial moments of order q. Most 
models based on the intermittency concept predict a power-law dependence 
of the Fq on fly. 

Irrespective of the model concepts underlying this approach, we 
suggest here that interesting information may additionally be gained by a 
detailed study of the dependence of the Fq- on the order q of the factorial 
moment, at fixed fly . The impulse for this investigation came from questions 
raised by the results of (fixed-target> experiments· on "central" nucleus-
nucleus collisions in the CERN SPS heavy ion beams 8 and their projections 
to experiments at RHIC 1. The Fq observed in such reactions are - as a rille 
- small, even for very small fly . In other words, the behavior of P( n) is very 
Poisson-like. 

This quasi-Poisson shape of P(n) could arise in several different ways, 
of which three are of special interest to us: 

i) The "true" (Le. underlying) distribution is indeed Poisson -
as would be expected, e.g. from a purely coherent source. The small 
deviations from a Poisson shape ( Le. of the Fq from unity, see below) could 
then be due to fluctuations of inelasticity and/or the imperfect stationarity of 
the rapidity distribution 9 over the y -range under consideration. 

ii) Nucleus-NuCleus. (A-A) collisions really result just in a 
(trivial) superposition of many independent nucleon-nucleon (n­
n)collisions. Since the P( n) of the latter are known to be rather well 
described 10 by negative binomial (NB) distributions, the folding of an 
increasingly. large number of identical NB's will quickly converge towards a 
shape almost indistinguishable from that of a Poisson distribution. 

To drive this point home, we show in Fig.l,a the (hardly discernible) 
frequency distributions of a Poisson of mean m =2 and of an NB of the same 
mean m resulting from the superposition of many n-n collisions. Inserts b) 
and c) in Fig.1 show (in terms of differences and ratios) the tininess of the 
differences between these two distributions, which are not readily visible in 
Fig.1 a. 

iii) Of real interest would be deviations caused by "real spiking" 
from the folding described above (which is at least to a certain extent 
unavoidable). It would be too much to expect that - once a certain energy 
and/or baryon density is attained - all collisions lead to the QGP phase 
transition. Rather one might expect the rare occurence of "spiked" events 
superimposed on a quasi-Poisson background. We proceed now to show one 
possible way to try to resolve these alternatives. 



Factorial moments of order q are conventionally defined 11 through the 
probability generating function (PGF): 

.. 
~z) = L,znP(n) (3) 

n=O 

by taking its q -th derivatives at z =1: 

(4) 

It is immediately seen that this definition of the fq coincides with the 
"intuitive" one [Eq. (2)] from which,incidentally, the name of factorial 
moments is derived [see below, Eq.(S)]. 

If one wishes to investigate in detail the dependence of Fq on q , the 
question arises how to interpolate between integer values of q . 

The intuitive definition (2) for the fq ,re-written as: 

f q = (n(n-1)(n-2) ... (n-q+ 1)) =((n~!) (5) 

lends itself in the easiest way to such an interpolation via the generalization 
of the factorials to gamma functions: 

f = tP(n) r(n+ 1) 
q n=O r(n-q+ 1) 

(6) 

The fq can thus be defined over the whole range of real numbers. 

data: 

By substituting in Eq.(6) estimates P It for P(n) derived from experimental 
n 

. wn 
Pn E--.. 

(7) L,Wi 
i=O 

where Wn are the numbers of events observed yielding n particles in the 
window Ay, one may empirically obtain estimates fq'" for fq over the whole 
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(real, >0) range of q .. For integer values of q these will, of course, coincide 
with the conventional (i.e. integer order) factorial moments~ 

If one wishes, however, to obtain in closed form the q -dependence of 
the fq of known distribution laws (and that of the Fq , as well) then the 
natural way is to extend the meaning of q to real numbers by applying 
differentiation of real order q in Eq.(4) , in other words by using the methods 
of fractional calculus 12-14. Of the several available definitions of a fractional 
derivative, the 'one most useful for our purpose is that 12 which applies if the 
whole set of ordinary derivatives G(r) (i.e. of integer order r) of G(z) are 
known. This (generalized) differentiation rule is: 

(8) 

Applying it to Eq.(4) we obtain: 

f = ~O) IT 
q r(l-q) r =0 r 

(9) 

where 

(10') 

and 

~+1_ 1 G(r+l) (0) (l0") 
~ -r-q+l G(r)(O) 

Summation of the series appearing in Eq.(9) is eased if a convenient recursion 

rule is also available for the G(r) (0) 15. 
In keeping with the nomenclature used in fractional calculus it seems 

convenient to refer to the fq as defined via (9) [or (6), when estimated from 
experiment] and to their generalized normalized form Fq [Eq.(1)] as fractional 
factorial moments ( for short, FFM's) . 

We now apply Eqs. (8) and (9) to the case of two multiplicity distribution 
laws which are both highly relevant to the physical subject discussed here and 
also happen to have very convenient recursion rules for the G(r ), namely: 

i) the Poisson distribution of mean m : 

(11) 

According to Eq.(3) this has the PGF: 

"~.I 
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~z) =em (Z-I) . (12) 

It is easily seen that (12) leads to the recursion rule 

G(r +1) (0) 
G(r) (0) =m 

(13) 

Using this in Eq.(10) we find that Eq.(9) turns into a hypergeometric series and 
we obtain finally the normalized FFM: 

(14) 

where 1~(a,~,z) is the degenerate confluent hypergeometric (or Kummer) 
function 16. 

We show in Fig.2 a few examples of the way the Fq _ curves depend on 
the mean m of the Poisson distribution. As expected, for integer values of q 
all Fq are equal to unity (this used to be regarded as the conventional 
"characteristic signature" of the Poisson distribution!) . However, between 
these "nodes", the Fq exhibit an oscillatory behavior with successive maxima 
and minima located near semi-integral values of q (thus corresponding to 
what are known in fractional calculus terminology 12 as semi-derivatives of 
G(z) ).The amplitudes of these extrema are strongly dependent on m, as can 
be seen from the insert 4) in Fig.2 

ii) The Negative Binomial (NB) or Planck-P61ya distribution 
(characterized by its mean m and - in its quantum-statistical interpretation 
- the number k of "phase-space-cells" ): 

where 

r(n+k) k n 

PI'S (n; m, k) == r(n+ l)r(k) (I-V) V 

m 
V==­

m+k 

The distribution (15) has the PGF [ef. Eq.(3)]: 

(15) 

(16) 
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(
I V Jk 

~z)=­
I-Vz 

Eq.(17) also leads to a simple recursion rule; 

(17) 

(18) 

When this is used in Eq.(10"), then Eq.(9) turns out to be another 
hypergeometric series and we obtain finally the normalized FFM: 

(19) 

where 2Fi (a,(3, 1, t) is the generalized confluent hypergeometric function 17. 

In Fig.3 we compare a few examples of FFM's computed for NB 
distributions having the same mean m =2 and increasingly large values of 
the number of "cells"k with the FFM of a Poisson distribution of the same 
mean m. 

As already stated, even at the lowest window widths fly investigated 
hitherto, n-n collisions appear 11,6 to be well described by NB distributions 
with k decreasing when fly decreases; then the most simplistic model in 
which A-A interactions reduce to a superposition of, say, v identical n-n 
collisions ( each of mean m

1 
and k1 cells) will lead to a pen) which is again a 

NB distribution with parameters vm
1 

and vkr One may thus imagine the 
different NB curves [ a through d in Fig.3 ] as describing collisions with 
increasingly heavy target nuclei. It is evident from a comparison between 
Fig.3 and Fig.l that FFM's allow a much better resolution than the 
frequencies pen) . It is serendipitous that while the search for "spiky" or 
"intermittent" behavior of rapidity density fluctuations focuses on very small 
Liy , hence on phase space regions popUlated with very small mean 
multiplicities m , the "oscillation amplitude" of the FFM's and thus the' 
sensitivity of their pattern to the details of the underlying multiplicity 
distributions happen to be optimal at very low values of m , too [ see Fig.2, 
insert 4) ). 

The two preceding examples of FFM's applied to the study of 
multiplicity. distributions illustrate the advantage of "mapping" the 
probabilities pen) onto the q -dependence of the FFM's ( F q ). The real test of 
the usefulness of this mapping lies in its ability to distinguish deviations 

" 
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from a quasi-Poisson behavior (NB at k »1) from the rare occurence of 
"spiky" events due to collisions in which the multiplicity distribution within 
a given Ay bin is "very wide", leading to unexpectedly frequent large values 
of n. In order to simulate such a situation we have computed the FFM's for a 
mixture: 

Pmix-(n;m,a,x, k) =(l-a)Pp(n; m) +aPt£ (n;xm, k) (20) 

which assumes that the distribution of n is essentially Poisson, except for a 
(tiny?) fraction a of events when it is of negative binomial shape with a mean 
x times larger than m and with a value of k chosen such as to maximize the 
relative width of the corresponding P NB (n) (as measured, e.g. by its second 
moment). This maximum width is reached for the NB at k =1; i.e. when pen) 
becomes the Bose-Einstein or geometric distribution, the limiting case of a 
purely chaotic quantum-statistical source (without squeezed quantum states). 
Incidentally, such a source would be a very good candidate for a hot (QGP ?) 
spot. 

In Fig.4 we compare, again for the same mean multiplicity m =2, the 
frequencies pen) and the FFM curves for the following five distributions: 

1: the negative binomial with k =200 (the same as in Fig.l); 
2 .. .4: three "spiky" mixtures 18 as described by Eq.(20) with parameters as 

indicated in the inset, and 
5: the Poisson distribution of mean m . 

For cases 2 through 4 the parameters x and k in Eq.(20) were chosen so as to 
yield not only the same mean m but also the same relative width of pen) as 
the NB (case 1) when measured by the second moment F2 (in other words 

curves 1 through 4 were forced to intersect at q =2). Different values of x were 
tried, since it is a priori hard to exclude that the chaotic component could 
have a considerably higher (local) mean multiplicity (xm ) than the 
underlying Poisson component (m ). 

It is seen in Fig.4 that the patterns reflecting different dynamics become 

much easier to disentangle after the pen) have been re-mapped onto Fq =F(q) . 
Although curves 3 and 4 - which correspond to "opposite" combinations of x 
and k - intersect again at q =3 they can still be distinguished through the 
whole trend of the F -curves. q 

The upper half of Fig.4 shows that one may expect about one order of 
magnitude more "spikes" with n >12 (if m =2) from the mix described by 
Eq.(20) than from the NB (of the order of one event expected when statistics 
get close to 106 sampled windows). The lower half of Fig. 4 suggests that the 
different behavior of the bulk of the "spiky"events ( not just the rare 
fluctuations with n »1 ) is reflected in the shape of the F -curves. q 

One (quite intuitive) explanation for this increased sensitivity of the F -

curves when q::t: integer can be found in the fact that for small m mo~t 
events will have very low multiplicity ( n =0,1,2.3, .... ) . The contribution of 
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such events to the factorial moments of integer order [ Eqs. (2) and (5) ] is 
strictly zero19 and only the (sparsely populated) high-n tail matters. This loss 
of information is avoided when Fractional Factorial Moments are analyzed. 
The interplay of the two components of Eq.(20) is illustrated in Fig.5 . . 

The obvious practical question of the statistical sample size needed to 
achieve the resolution offered by the FFM curves will be addressed in a 
separate paper. Suffice to say that a preliminary Monte Carlo calculation has 
shown that, with the kind of sample sizes expected from the luminosities 
prevailing at future colliders such as e.g. RHIC 20 ,the prospects for adequate 
resolving power look promising. 

This work was supported by the Director, Office of Energy Research,Office of 
High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. 
Department of Energy under Contract DE-AC03-76SF00098. 
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The Poisson distribution Pp(n;m) and the Negative Binomial -' 
distribution PNB(n;m,k) compared at the same value of m=2; 
for the NB, the ("cell") parameter k was chosen as k=200 

( z 1 00 n-n collisions, each with k=2, superimposed ). 
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FFM's of Poisson distributions at different m=<n> 
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FFM's of Negative Binomials P(n;mk) with the same· 
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