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Abstract 

A fonnalism is developed for the tomographic inversion of seismic travel time 

residuals. The travel time equations are solved both simultaneously, for velocity 

model tenns and corrections to the source locations, and progressively, for each set of 

tenns in succession. The methods differ primarily in their treatment of source mislo

cation tenns. Additionally, the system of equations is solved directly, neglecting 

source tenns. The efficacy of the algorithms is explored with synthetic data as we per

fonn simulations of the general procedure used to produce tomographic images of 

Earth's mantle from global earthquake data. 

The patterns of seismic heterogeneity in the mantle that would be returned reli

ably by a tomographic inversion are investigated. We construct synthetic data sets 

based on real ray sampling of the mantle by introducing spherical harmonic patterns of 

velocity heterogeneity and perfonn inversions of the synthetic data. 

Inversions of real data, supplied by the ISC, are also perfonned. We use P arrival 

data from January 1964 through January 1987 and our inversion algorithms to solve 

for three-dimensional P velocity models of the mantle and source mislocations. The 

three-dimensional velocity model is presented in conjunction with the resolution esti

mates produced by an inversion for a checkerboard test pattern. Covariance is 
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estimated by averaging results from inversions of realistic errors and by a jackknife 

procedure. 

The three-dimensional velocity model shows a fast anomaly in the lower mantle 

beneath the Tonga-New Hebrides subduction zone to a depth of 1670 Ian and another 

fast anomaly beneath the Japanese Island arc and eastern Asia reaching nearly to the 

core-mantle boundary. Continuity between these anomalies and shallower fast 

anomalies is not clear. A fast anomaly extending from 670 Ian to 2070 Ian depth 

appears beneath the eastern United States, Caribbean Sea, and Central South America. 

In addition, a number of slow anomalies associated with hotspots extend through the 

upper mantle but are extinguished in the lower mantle by our resolution weighting. 

Mid-ocean ridges are associated with moderately slow anomalies in the top 400 km of 

our model. The transition zone between depths of 400 and 670 Ian shows large 

1=1, 2, and 3 spherical harmonic components. 
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Chapter 1 

Introduction 

In Earth's mantle, lateral variations in a given material property generally amount 

to only a few percent of the property's value over thousands of kilometers while radial 

variations typically reach one hundred percent over similar distances. Accordingly, 

much effort and progress was made toward the elucidation of spherically-symmetric 

Earth structure in early seismological and geophysical studies and studies of these 

radially-varying properties remain important today. However, systematic lateral varia

tions do exist in the mantle and crust, at least, and with the advent of plate tectonics as 

a framework to help describe large-scale lateral variations, seismologists began studies 

of three-dimensional Earth structure on a global scale. The collection of data world

wide from sets of standardized instruments and the development of practical and fast 

computers facilitated these studies. 

This thesis documents attempts to image the three-dimensional ~seismic P velocity 

heterogeneity in Earth's mantle. The approaches considered here involve the tomo

graphic inversion of body wave travel time residuals and differ primarily in their treat

ment of the source location problem. The seismic inverse problem to determine struc

tural parameters of the medium (Earth) and parameters that describe the source is a 

complicated animal. The two sets of parameters are inextricably linked. Attempts to 

retrieve one or both sets typically concentrate on minimizing the influence of one set 

on the determination of the other set. This is the general approach we pursue here. 

We are most interested in the accurate estimation of Earth structure and will first try to 

simulate the general procedure by which tomographic inversions find models of Earth 

with body wave travel time data. We then find the effects of inaccurate source loca

tions on the velocity model estimate and show how the velocity model estimate may 
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be improved by consideration of the source location. 

1.1 Review of Previous Work 

Previous attempts to retrieve models of P velocity in Earth's mantle with body 

waves differ in their approaches to parametrizing the model mantle and in their formu

lation and solution of the constraining equations. Popular model parametrizations 

include regionalization of the crust and mantle based on geographical association with 

surface tectonic processes [e.g., Toksoz and Anderson, 1966; Okal, 1977; Tralli and 

Johnson, 1986], spherical harmonic series expansion of the anomalous velocity field 

[e.g., Dziewonski, 1984; Morelli and Dziewonski, 1985, 1986], cubic splines [e.g., 

Hovland et aI., 1981] and division into a number of non-overlapping blocks [e.g., 

Clayton and Comer, 1983; Inoue et al., 1990]. No one parametrization has been 

demonstrated to be clearly superior to the others. While the bias inherent in a tectonic 

regionalization renders such a scheme inappropriate for studies of the lower mantle, 

incomplete ray coverage makes it useful for studies of the upper mantle. Spherical 

harmonic expansions and cubic splines require fewer terms to describe a model to the 

same level of detail as a block parametrization, but do not offer the blocks' geometri

cal simplicity. With independent block parameters, one may examine the ray sampling, 

resolution, and covariance of a geographical location more easily. 

In addition to differences in model parametrization, studies differ in the their con

struction of the system of equations to be solved and the numerical methods employed 

to solve them. Early efforts to map the three-dimensional velocity structure of Earth 

[Aki et al., 1977; Dziewonski et al., 1977; Sengupta and Toksoz, 1976], all of which 

use a block parametrization, were limited in their detail of structure by numerical 

methods that calculate the explicit inverse of the coefficient matrix. These methods 

allow the formal calculation of covariance and resolution matrices in order to evaluate 

the reliability of the model, but severely restrict the number of parameters available to 
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describe the model due to limitations of existing computers. Aki et aZ. [1977] use 

1496 teleseismic P arrival times to find the 3-D slowness structure beneath the Norsar 

array, parametrized into 405 blocks, using both the generalized inverse formed from 

the products of singular value decomposition (SVD) of the coefficient matrix and the 

stochastic inverse of damped least squares. Their results are elegantly presented with 

the diagonal elements of the resolution matrix for direct evaluation of the models. On 

a global scale, Dziewonski et aZ. [1977] use nearly 700,000 P arrivals to find velocity 

perturbations for 120 blocks by means of the generalized inverse. These values, asso

ciated with individual blocks, are then expanded into spherical harmonics up to angular 

degree 3. While the resolution is easily evaluated, precision of the block model is lim

ited to wavelengths on the order of 4000 km. 

Dziewonski [1984] follows Dziewonski et aZ. [1977] in using about 500,000 P 

arrival times from 5,000 shallow (h SSO km) events from the International Seismologi

cal Centre (ISC) catalog (1964-1979). All arrivals were teleseismic, in the epicentral 

distance range 25° :S: A :S: 100°. Similar observations, while not averaged, are weighted 

so that all distinct raypaths receive the same weight in the normal equations, regardless 

of the actual number of observations. Sources are initially relocated and travel times 

corrected for ellipticity and elevation. The solution is based on the generalized inverse 

for 245 coefficients of spherical harmonics expanded with a depth function. After 

each solution, sources are relocated using corrections to the travel times through the 

one-dimensional model, PREM, caused by the new 3-D model, and the process is 

repeated. Station corrections are ca1cul~ted at each iteration. Standard errors for each 

model term (spherical harmonic coefficient) are calculated, but resolution and covari

ance are not formally assessed. The model's maximum anomalies, reaching 1.5%, are 

found at 670 km depth, the top of the model, and at the core-mantle boundary. 

Attempts to obtain more detailed models of mantle velocities have turned to itera

tive, backprojection methods that do not explicitly find the inverse of the coefficient 
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matrix. Sengupta et al. [1981] extend the work of Sengupta and Toksoz [1976] to 

find velocities for 3008 out of a possible 3888 blocks spanning the entire mantle, with 

3842 P arrivals. The block size, 10° x 10° x 500 km in depth, brings the model preci

sion down to roughly 1000 km. They use a method of successive approximation in 

which the velocity of each block is found one at a time by a weighted least squares 

procedure, accounting for the contributions to the travel time residual from the other 

blocks. This algorithm is iterated, considering the blocks in a random order, until con

vergence is reached. This method does not allow the calculation of resolution and 

covariance matrices. Their results for the first layer correlate qualitatively with surface 

tectonic features. Maximum velocity anomalies reach somewhat more than 2%. 

Clayton and Comer [1983, and presented in Hager and Clayton, 1988] use a 

Simultaneous Reconstruction Technique (SIRT) , which is similar to a Jacobi iteration 

technique for solutions to problems involving sparse matrices, in conjunction with 1.7 

million ISC arnvals for the decade 1970-1980 to find 48,604 block parameters for the 

mantle. Observations are restricted to the distance range 25° ~ !l ~ 95°, leaving the 

upper mantle relatively poorly sampled. A summarizing procedure for similar rays 

reduces the dimension of the coefficient matrix to 110,000 rows. The dimensions of 

the blocks are 5° x 5° x 100 km in depth, about 550 km on a side, and represent a 

significant increase in precision over previous models. The cost of this increased pre

cision is that resolution and covariance could not be calculated formally and presented 

alongside the mantle model. Several means to approximate resolution and covariance 

were developed in conjunction with, although they are not limited to, SIRT backpro

jections. For example, Humphreys and Clayton [1988] calculate a "point spread func

tion," a column of the non-symmetric resolution matrix, and invert model error distri

butions to investigate the propagation of errors in the data through the algorithm to the 

solution. Grand [1987] introduces an inversion ofa set of anomalies, each of which 

extends beyond the bounds of a single voxel, distributed throughout the model as a 
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means to evaluate resolution. Clayton and Comer's [1983; Hager and Clayton, 1988] 

results show maximum slowness perturbations of ±1 % after layer averages are 

removed. Long wavelength features generally agree with Dziewonski's [1984] model, 

with some notable exceptions. 

Tralli and Johnson [1986] use a tectonic regionalization derived from Jordan 

[1981] to find mantle P velocity anomalies associated with surface processes. Their 

study incorporates over 1.25 million ISC (1964-1981) P arrival times from shallow 

sources (h gO km) for 10° ~ !!. ~ 100° and divides the upper mantle into 5° x 5° cells 

that are assigned to one of seven distinct types of regions, depending on a cell's dom

inant or characteristic tectonic activity. Tau functions, from which velocity or slow

ness may be obtained immediately, are estimated as continuous profiles for each 

region. Maximum velocity perturbations reach about -2% for the top of the region 

representing young oceans. 

Spakman and Nolet [1988] use the conjugate-gradient variant LSQR algorithm, 

due to Paige and Saunders [1982], to find a 3-D P velocity model for the upper man

tle beneath the Mediterranean. Their procedure solves simultaneously for 9360 model 

blocks (lox 1° with variable thickness), 105 station corrections, and 10,604 source 

relocation parameters, for a total of 20,069 free parameters. The total data amounts to 

over. 480,000 rays from the ISC catalog (1964-1982) for the distance range 

0° ~ !!. ~ 90°, which is reduced to slightly more than 300,000 composite rays by an 

averaging procedure. Theoretical and practical concerns about the nonlinearity of the 

travel time vs. delta function in the epicentral distance range 18° ~ !!. ~ 25° (due to the 

triplication caused by refractions at the 400 km and 670 km discontinuities), the vali

dity of a ray description of the wave field in this range, and the data quality due to the 

nonuniqueness of arrivals in this range prove surmountable with judicious weighting of 

residuals based on their reliability. Maximum velocity perturbations reach over 3%. 
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Inoue et al. [1990] use a block parametrization, with cells 5° x 5° and variable 

thickness depending on depth, and over 2 million arrival times from the ISC catalog 

(1964-1985) in the range 0° S 11 S 95° to find P velocity perturbations for 32,768 

blocks. Starting from relocations of events in a 1-D model based on Herrin et al. 

[1968], an iterative algorithm is performed on subsets of the data in which sources are 

relocated in an updated 1-D model calculated in the previous iteration, a new 3-D 

model is generated by means of the LSQR algorithm, and the 1-D model is refined. 

Given the epicentral distance range of data used, the authors are able to produce a 

model for the entire mantle. Resolution and covariance are evaluated approximately 

with synthetic test inversions of checkerboard patterns and by inverting distributions of 

Gaussian errors. Slowness perturbations exceed 4% in the upper mantle. 

All the studies mentioned in this chapter employ finite-dimensional parametriza

tions. Consequently, assumptions are made regarding the smoothness of the medium 

to be imaged or that seismic rays sample only the smooth parts of the medium's struc

ture. These assumptions follow from the fact that seismic observations are made at 

finite frequencies, which implies that the rays are not infinitely thin but actually sample 

a finite volume of Earth and contain information about the average properties of that 

volume. For example, for a wavelength of 10 km, the maximum ray width varies 

from 36 km for a ray of 1000 km length to 112 km for a ray of 10000 km, length 

[Nolet, 1987]. When inferences are made about parts of the medium which are 

unsampled (or are assumed to be unsampled), an implicit assumption about the con

tinuity of measured properties is made. Typically smoothness is imposed on the model 

by the inclusion of a roughness penalty in the inversion, in addition to the finite 

dimension of the parameterization. There are two complications with this approach. 

First, the degree of smoothness is both arbitrary at the outset and indeterminate at the 

conclusion of the inversion. Second, the estimation of uncertainties and resolution is 

made more difficult and the estimates produced bear only indirectly on the problem of 
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imaging the real earth. The uncertainty in the image depends directly on the smooth

ness assumed, but this dependence is difficult to evaluate with the techniques 

developed so far. 

One alternative to a basis which spans Earth entirely is the "natural pixels" basis 

advocated by Michelena and Harris [1991]. Rather than parametrizing all parts of the 

medium under investigation, they estimate the actual sampling of the "fat" rays implied 

by finite frequency observations and find model values only for regions sampled. 

Explicit smoothing operators may then be used to interpolate between model values if 

a complete model is required. The "natural pixels" basis is not orthogonal, but is more 

flexible and rigorously correct in its representation of the reconstructed image. 

Perhaps more importantly, it allows a model to be parametrized with far fewer terms 

than are required with any of the orthogonal parametrizations mentioned above. This 

reduces the computational demands of the inversion and thus allows greater flexibility 

in the modeling process. 

While the studies cited here generally vary in their methods for obtaining model 

solutions and in their approaches to parametrizing the model, the data involved in each 

study of P velocity are nearly identical. The International Seismological Center col

lects seismic arrival times from around the world. They employ these times in a 

sophisticated procedure in which times are associated into "events" and the events are 

located with P arrival times and the one-dimensional, Jeffreys-Bullen (J-B) travel time 

tables [Jeffreys and Bullen, 1940] with a standard least-squares technique [Adams et 

al., 1982]. The system is far from perfect. Arrival times at stations around the world 

are read locally by different individuals from seismic records produced by different 

instruments. This variability surely propagates into the data. For the purposes of 

seismic imaging and accurate location of events, the geographical distribution of 

sources (earthquakes and large explosions) and seismographic stations, that so far are 

located almost exclusively on continents, is unfortunate. With the oceans nearly empty 
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of stations, large portions of Earth, particularly in the southern hemisphere, are under

sampled by recorded seismic energy and event locations are inadequately constrained 

geometrically. Also, using the one-dimensional J-B model, that has known 

deficiencies in its representation of the spherically averaged structure of Earth in addi

tion to its inability to account for lateral velocity variations, produces inaccurate event 

locations. Providing the means to correct this inaccuracy is one goal of our study. 

Another goal is to provide modeling constraints for studies of Earth's composition and 

dynamic processes, in order to investigate possible means by which Earth coalesced 

and evolved to its current state. 

Wielandt [1987] offers a note of caution relevant to all the studies mentioned in 

this chapter, including OUTS. The ray-theoretic approximation assumed to be valid in 

tomography does not hold in the presence of diffracted or laterally refracted waves. 

With a set of synthetic experiments, Wielandt [1987] shows that such waves should be 

commonly included in seismic observations and will often hinder the identification of 

direct phases. The effects of employing the linearity assumption required by tomo

graphic inversions would be to overestimate the size of positive (fast) velocity 

anomalies and to underestimate the amplitude of negative anomalies. He finds that the 

ray approximation is inadequate for negative anomalies in excess of 4% at 200 Ian dis

tance, 2% at 500 km, and 1% at 1QOO Ian. In each case a diameter of 100 Ian is 

assumed for the anomaly [Wielandt, 1987]. 

1.2 Topics Investigated in This Thesis 

In chapter 2 we develop and investigate the performance of three different 

schemes for inverting seismic travel time residuals. The first scheme solves simultane

ously for corrections to the source locations and for three-dimensional perturbations to 

the one-dimensional starting model. The second scheme solves the inverse problem 

progressively, for each set of terms in succession. We also solve the system of 
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equations directly, neglecting source terms, as a third approach that is not truly distinct 

from the simultaneous inversion. The efficacy of the inversion schemes is explored 

with both synthetic and real data. First, we perform simulations of the general pro

cedure used to produce tomographic images of Earth's mantle from global earthquake 

data. Next, we invert real data supplied by the ISC. Results are summarized from both 

the simulations and real inversions in terms of what they tell us about the problem of 

ambiguous source locations and implications for contamination in our velocity models. 

These results are emphasized above correlations with tectonic features and geological 

and geophysical interpretation of the models. Here our intent is to isolate the effects 

of source mislocation and a complete treatment of the tomographic inverse problem is 

not attempted. 

In chapter 3 we investigate which patterns of seismic velocity heterogeneity in the 

mantle would be returned reliably by a tomographic inversion in which the model 

mantle is parametrized by a set of discrete, non-overlapping voxels. We construct syn

thetic data sets based on real ray sampling of the mantle by introducing spherical har

monic patterns of velocity heterogeneity and perform inversions of the synthetic data. 

We expand the resulting voxel model in spherical harmonics and compare the power at 

each degree and in each model layer with the input spherical harmonics in order to 

determine which patterns produced by inversions of real data may be deemed reliable 

and to identify patterns that must be viewed with skepticism. 

In chapter 4 we present a more detailed model of P velocity in the mantle than 

the ones presented in chapter 2. The model mantle is parametrized by approximately 

equal-area blocks which are 5° x 5°, rather than the 10° x 10° blocks which are used 

previously. Also in contrast to the study described in chapter 2, individual rays which 

sample similar parts of Earth are averaged together to form summary rays. More than 

3 million rays from 46,000 shallow events satisfying selection criteria are averaged 

according to 2° x 2° x 10 km deep bins to construct nearly 726,000 summary rays for 
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the inversion. The construction of summary rays tends to average out contributions to 

the travel time residuals that arise due to heterogeneity of a scale too small to be 

resolved by our model blocks, and also averages out contributions due to mislocated 

sources. For the sake of completeness and in order to constrain as many degrees of 

freedom as possible, we solve simultaneously for summary source mislocation terms 

and demonstrate that these corrections are small. In this study we also solve for sum

mary station corrections. 

Resolution and co-variance are evaluated by approximate methods. Resolution is 

estimated by the inversion of a synthetic, checkerboard test pattern and the calculation 

of point spread functions for selected voxels. Covariance is estimated by averaging 

results from inversions of realistic errors and by a jackknife procedure. We present 

our three-dimensional velocity model in conjunction with the resolution estimates pro

duced by our checkerboard test. Normalized checkerboard output values, ranging from 

o to 1, are used to modify each voxel's red-blue velocity value from full color satura

tion, indicating good resolution, to white, which indicates no resolution. This presenta

tion aids us in a detailed interpretation of the correlation between our model and tec

tonic features at the Earth's surface and an evaluation of the significance of features 

deep in the mantle. 

Finally, we summarize the findings of these three separate studies in chapter 5 

and make suggestions for further work on these topics. 

The progressive inversion technique in chapter 2 was developed after a suggestion 

by Lane Johnson, my committee chairman. Advice and guidance provided by him and 

by Dan O'Connell-contributed greatly to my understanding of the technique. Lane 

Johnson's programs to trace rays in one and three dimensions were important aids to 

the work in this thesis. The work described in chapter 4 was undertaken in conjunc

tion with Don Vasco and Lane Johnson. Their contributions are integral to the study 

and cannot be identified individually. I thank them for the time they spent with me 
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and for sharing their ideas unselfishly. For the sake of consistency throughout the 

thesis, I use the tenns "we" and "our" rather than "I" and "my" to refer to the work 

carried out in these projects. 
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Chapter 2 

A Study of the ~ffects of Source Mislocation 

in Mantle Travel Time Tomography 

2.1 Introduction 

In this chapter a formalism is developed for the tomographic inversion of seismic 

travel time residuals. Once the tomographic system of travel time equations is con

structed, two methods are presented for its solution: simultaneously for both velocity 

model terms and corrections to the source locations and progressively, for each set of 

terms in succession. Both algorithms perform least-squares inversions that minimize 

the [2 norm of the residuals. The methods differ primarily in their treatment of source 

mislocation terms. Additionally, we solve the system of equations directly, neglecting 

source terms. The efficacy of the algorithms is explored in conjunction with synthetic 

data as we perform simulations of the general procedure used to produce tomographic 

images of Earth's mantle from global earthquake data. A data set is constructed in a 

way that mimics the practice of the International Seismological Centre (lSC) as it col

lects observations world-wide, associates observations with seismic events, locates the 

events, and distributes the codified data to interested researchers. These data consist of 

arrival times at reporting stations and estimates of earthquake locations calculated in a 

one-dimensional Earth model. Because of the three-dimensional nature of Earth, the 

ISC locations are only approximations to the true earthquake locations, so we investi

gate the effects of mislocations on the velocity model obtained in an inversion, and the 

ability of our simultaneous and progressive inversion techniques to correct mislocated 

earthquakes and produce an accurate velocity model. To simplify the problem and 

highlight the effects of source mislocation in our controlled simulations, we keep the 

numbers of data and model parameters small. 

15 
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Finally, we invert real data supplied by the ISC. We use P arrival data from Janu

ary 1964 through January 1987 and our inversion algorithms to solve for three

dimensional P velocity models of the mantle and source mislocations. The model 

mantle is parametrized by approximately equal-area blocks: 10° x 10° and generally 

200 km in depth. Nearly 345,000 rays from more than 3,000 .shallow events satisfying 

selection criteria are included in the inversions. The data are weighted by the inverse 

variance of travel time residuals as a function of epicentral distance; model parameters 

are weighted by a measure of the quality of sampling in each model block, or voxel. 

A roughness penalty is included in the inversions. 

We summarize results from both the simulations and real inversions in terms of 

what they tell us about the problem of ambiguous source locations and implications for 

contamination of our velocity models. These results are emphasized above correlations 

with tectonic features and geological and geophysical interpretation of the models. In 

this chapter we seek to isolate the effects of source mislocation and do not attempt a 

complete treatment of the tomographic inversion problem. We may still obtain valu

able insight into the structure of the problem, the inherent interdependence of the 

parameters and limitations as we try to disentangle them. 

2.2 Mathematical Development 

The i 'h arrival time from event j, that is recorded at a station k, may be 

represented as 

where 

't j = origin time for event j , 

Ti(rj,r~,c(r» = travel.time through the medium, c(r), from event location, rj' 

to station location, r~, 

(2.1) 
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(£i) j = reading error associated with ray i from event j, 

and 

i = 1,2, ... ,mj' j = 1,2, ... ,me , k = 1,2, ... ,ns ; 

where 

mj = number of arrival times reported for the J'h event, 

me = number of events in the data set, 

ns = number of stations reporting arrivals in the data set. 

In the general case, we have collected the observations (ti) j but do not know any of 

r the terms on the right hand side of equation (2.1). If we assume we know the velocity 

structure of the medium to within a few percent of the actual velocity, c (r), we may 

take a first-order Taylor expansion about our model, call it c (r), and try to estimate the 

error in our model by reconciling the perturbation terms of the expansion with the 

deviations of observed arrival times from arrival times calculated through the reference 

velocity model. Wielandt [1987] carries out a set of synthetic experiments to investi

gate the validity of the linearity assumption inherent in this ray-theoretic formulation. 

Performing the Taylor expansion and discarding higher terms we get 

where t j is an estimate of event origin time calculated using the starting velocity 

model. 

2.2.1 Contributions to the Travel Time Discrepancy 

(2.3) 

be the travel time for ray i connecting rj and r~ through velocity model c (r) , then 

the first-order term of the Taylor expansion may be expressed as the sum of three 



18 

terms: 

aT; (rJ. ,rk ',c (r» = aT; (rJ. ,rk ',c (r»I·' '(r) + aT; (rJ. ,rk ',c (r»I·, .' + aT; (rJ' ,rk ',c (r»I·, c'(r)' 
'l,C 'J ,'1 'J' 

(2.4) 

The first term on the right hand side of equation (2.4) represents the perturbation in the 

travel time due to a perturbation in the location of the earthquake's hypocenter. The 

second term represents the travel time perturbation due to perturbations in the velocity 
" 

model. The third term represents contributions to the travel time anomaly that are 

unique to a particular station. Strictly, this term represents travel time discrepancies 

due to poorly known station locations, but in practice the term serves to isolate the 

effects of velocity anomalies occurring in the vicinity of a station on a scale too small 

to be resolved by our model parametrization. Errors in observed travel time residuals 

resulting either from incorrect observations, such as instrument errors and systematic 

phase mispicks or misidentifications at a particular station, are also described by this 

"station" term. 

We define the travel time residual to be the observed arrival time minus a 

predicted arrival time, 

(2.5) 

Substituting equation (2.5) into equation (2.2) gives 

The perturbation to the origin time, Otj' may be viewed as a fourth hypocenter term. 

Then 
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(2.7) 

where 

In matrix notation, 

~to = Ho~ho 
U J J J' (2.8) 

where 

~tj = vector of travel time residuals for event j, 

iJT-
(Hil)j = iJh; Ii';,c(r) = matrix of source mislocation partial derivatives (/=1,2,3,4), 

~hj = (~'t, ~e, &p, ~z)j = vector of hypocenter perturbations for event j. 

The second term on the right hand side (RHS) of equation (2.6) represents the 

deviation of our starting velocity model, c (r) from the actual velocity structure, c (r) , 

~tl"odel = ~Ti (r
J

o ,rk ',c (r»lp. ,... 
J' k 

(2.9) 

The travel time along a ray, Si' is given by 

f ds 
t - --
i - Sj C (r) , 

(2.10) 

where c (r) is the velocity of the medium. Our task is to determine c (r) from a set of 

travel time observations ti, i = 1,2, ... M. This task is made more difficult by the impli

cit dependence of the ray path, Si, on the velocity model, c (r). Once again, we 

assume that our starting velocity model is within a few percent of the true structure 

and seek to reconcile the discrepancy by solving for the perturbation term. Let 

(2.11) 
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f ds 1 ds = S; e (r) - ; e (r) . 

Fennat's principle justifies the assumption that the raypath persists relatively 

unchanged in the presence of small three-dimensional velocities anomalies. This allows 

us to perfonn the line integrals as one integral along the initial raypath, i.e., 

~ model 1 1 1 ut· = = (- - -)ds, 
, . e (r) e (r) 

I 

=' -1 oe (r) ds, 
. e2(r) 
I 

where Si is the path of the ith ray through the starting velocity model, e (r) . 

(2.12) 

In order to represent the function of velocity perturbations over the medium of 

interest, we must choose a set of basis functions. Two approaches are popular. The 

first divides the medium under investigation into non-overlapping volume elements, or 

voxels. Following Nolet [1987], let 

if r is in cell k 

elsewhere (2.13) 

where vk is the volume of cell k. The functions fk fonn a basis that spans a subspace 

of the Hilbert space of all possible velocity models, e (r). Since the cells do not over-

lap, 

f f k (r)fl (r)d3r = Old' (2.14) 
volume 

A second popular set of basis functions consist of solid spherical harmonics [e.g., 

Dziewonski, 1984; Morelli and Dziewonski, 1986], 

where f k (r) is a set of orthogonal functions in radius. 
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Our choice of a local basis is arbitrary in many respects. A block parametrization 

allows a more accurate assessment of ray sampling of Earth and the resulting 

coefficient matrix is quite sparse. This sparseness may be exploited to solve the 

matrix problem efficiently. Fewer terms are required to describe the model to the 

same level of resolution with the global spherical harmonic basis (fewer by up to an 

order of magnitude), but the coefficient matrix in the spherical harmonic case is dense. 

It is important to note that choosing a model parametrization represents an opportunity 

to introduce bias into the inversion. Depending on the geometry of the inverse prob-

lem, a particular model parameterization mayor may not allow the accurate recon

struction of interesting features of the real earth, or it may require an inaccurate (Le., 

smeared or aliased) estimation of the model simply because of limitations in its 

representation of features. Michelena and Harris [1991] suggest a way to make the 

model parametrization more flexible and complete in its representation of model 

anomalies sampled by a set of data. Their representation acknowledges the finite width 

of the zone sampled by a given seismic ray and seeks to construct a solution in terms 

of the portions of Earth sampled by these "fat" rays. They call this representation a 

parametrization based on "natural pixels." 

Choosing the set of functions described in equation (2.13), we may represent the 

function of velocity perturbations as a linear combination of basis functions, 

n 
oc(r) = L'Ykfk(r). (2.15) 

k=l 

Substituting equation (2.15) into equation (2.12) results in an expression for the travel 

time perturbations in terms of velocity perturbation basis functions, 

I:: model_ ~ 1 'Ykfk(r) ds - ~A 
uti - ~- 2 - ~ ik'Yk> 

k=l . e (r) k=l 
I 

(2.16) 

where 
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A· = -I Ik(r) ds. 
ik A ( )2 s. c r . 

In matrix form, 

5tmodel = Ay. 

We express the "station" term of equation (2.4) as 

5tilation = S JI., 

where 

if k = station number 

if k * station number' 

Jl.k = the station correction for the eh station. 

(2.17) 

(2.18) 

Substituting equations (2.8), (2.17), and (2.18) into equation (2.6) for all rays 

(i = 1,2, ... ,mj) of all events (j = 1,2, ... ,me ) we find the problem we wish to solve is 

now 

(5t.). = (5t f7Wdel)· + (at ftypocenteT\. + (at~tation). 
I J ' J I }J ' J' 

or 

5t = A Y + H 5h + S 5J1., 

where 

5t E R Mx1 = vector of travel time residuals, 

A E RM><rIp = matrix of ray segments in voxels, 

"{ E R""Xl = vector of coefficients in the expansion of perturbations 
to the starting model, 

H E R Mx4n
• = matrix of partial derivatives for all events, 

5h E R 4n
•

X1 = vector of perturbations to the hypocenters, 

S E R Mxn
, = matrix of partial derivatives for stations, 

(2.19) 

(2.20) 
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~Jl E Rn,Xl = vector of station corrections, 

M = number of data (reported arrivals), 

ne = number of events, 

np = number of model blocks, 

ns = number of reporting stations. 

2.2.2 Progressive Inversion 

At this point we could combine matrices and solve for all parameters simultane

ously, but there are two reasons why we may choose not to do so. First, since re

locating the hypocenter of each event consists of estimating four terms: origin time 

plus three spatial coordinates, the number of hypocentral parameters totals 4me , where 

me is the number of events in the data set. The combined matrix would therefore 

have dimensions M x (np +4me ), resulting in considerable demands for core memory 

and mixing different classes of parameters. More importantly, it turns out that we may 

exploit the natural separation of the parameters to solve for each set of parameters in a 

step-wise fashion. This approach follows Pavlis and Booker [1980], Spencer and 

Gubbins [1980], lordan and Sverdrup [1981], and O'Connell and lohnson [1991], 

among others, and allows a more detailed analysis of resolution and uncertainty in the 

determination of mislocation terms than would be practical otherwise. The idea is to 

find an orthogonal transformation that will rotate the first coefficient matrix, in our 

case H, so that only the first four elements of the travel time residual vector have 

non-zero projections into the parameter space. Actually, the number of independent 

data providing information to the specification of parameters is equal to the rank of the 

original, unrotated matrix H, where 0 ~ rank (H) ~ 4. Pavlis and Booker [1980] call 

this orthogonal transformation an "annulling transformation" because its effect is to 

separate the problem involving two (or more) different classes of parameters into two 
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problems, the second of which is independent of the first class of parameters. The 

independent problem involves data that have been "annulled" with respect to the first 

parameter class. 

The orthogonal transformation we choose to employ comes from the singular 

value decomposition (SVD) of the matrix of hypocenter mislocation partial derivatives, 

H. Any matrix may be factored into the form, H = USVT [Lawson and Hanson, 

1974]. If H is an m xn matrix of rank k, then U is an m xm orthogonal matrix, V is 

an n Xn orthogonal matrix, and S is an m xn diagonal matrix of singular values in 

which k values are strictly non-zero. The orthogonal matrix UT may serve as an 

annulling transformation matrix, when used to pre-multiply through equation (2.20). A 

heuristic proof of this annulling property follows. 

Note that only k entries of the diagonal matrix S are non-zero, and that these 

non-zero elements are all positive. Since 

then 

H = USVT, 

UTH = UTUSVT, 

=SVT , 

= 

o 0 

Only the first k rows of UTH contain non-zero elements, therefore only the first k 

rows will project onto a non-zero (range) space. 

By partitioning the data set into individual events and disregarding the station 

term, equation (2.20) may be rewritten as 
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HI 0 0 
(~t)l 0 H2 0 (~h)l Al 
(~th 

0 
(~hh A2 

= + "( (2.21) 

. 
(~t)m. 

0 0 Hm 
(~h)m. Am. 

• 

where 

~h. E R 4xl 
U J ' 

mj = number of data for the /h event, 

j = 1,2, ... ,me • 

The effects of the station term could be dealt with in a fashion similar to the treatment 

of the source term, but the large numbers of data and parameters involved in our 

whole-mantle inversions render the full problem unwieldy. We expect the deleterious 

effects of the station errors on our retrieval of velocity parameters to be small com-

pared to the effects of source mislocation. Later we will test this assumption when we 

solve for subsets of the three parameters classes with the simultaneous inversion algo

rithm. 

The orthogonal transformation matrix now has the form 



(ul\ E R 4x4 = range space of hypocenter partial derivatives for the /h event, 

(Uk)j E R(mr4)X4 = null space of hypocenter partial derivatives for the /h event, 

j = 1,2, ... ,me · 

Applying the transfonnation matrix (2.21) to equation (2.22) we get 

[6IR] 
otN 1 [Htl 0 0 [1:1 

[6IR] 0 [Ht], 0 oh 1 [1~], otN 2 
oh 2 

0 
= + 1, (2.23) 

[HtL. 
Ohm • 

[61 ] 0 0 [AR] ot~ m. AN me 

where 

(otR)j = (UI)j Ot E R 4x1 = travel time residual in range space of hypocenter 

partial derivatives, 

(HR)j = (UI)jHj E R4x4 = rotated matrix of hypocenter mislocation partial 
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derivatives, 

Obj E R 4x4 = matrix of hypocenter mislocation partial derivatives 

for event i, 

(OtN)j = (Uk)jOt E R(mj-4)x4 = travel time residual in null space of hypocenter 

partial derivatives, 

j = 1,2,···,me· 

Rearranging (2.22) gives 

(HRh 0 0 (ARh 

(OtR')1 
0 (HRh 0 (ARh 

(otRh 0 

oh 1 

(otR )m. 0 0 (HR)m. oh 2 (AR)m. 

= + y. (2.24) 
(otN )1 0 0 0 (AN )1 

(otNh 
0 0 0 

Ohm • (ANh 

. 
(otN)m. 

0 0 0 (AN)m. 

We may now separate the two problems 

(2.25) 

and 

(2.26) 
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where 

m = M - 4me = (total number of data) - 4 x (the number of events). 

For an individual event, equation (2.25) becomes 

where 

(otR}j E R4Xl, 

(HR}j E R4x4, 

j = 1,2,···,me· 

(2.27) 

Equation (2.26) is independent of hypocenter mislocation, oh. We will solve it first, 

then use the solution obtained for y to substitute into equation (2.27) for all events and 

solve for (Oh}j. For the sake of standardization, note that equation (2.26) is of the 

general form 

Gx = b, (2.28) 

where 
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x = 'Y, 

2.2.3 Simultaneous inversion 

We may also choose to combine the three coefficient matrices and solve for all 

parameters simultaneously, i.e. 

(2.29) 

or 

Gx=b, (2.30) 

where 

G = [AIHIS]' 

X= [~, 
and 

b = ot. 

H and S are first scaled so that each row has the same euclidean norm as the same 

row of A. 

Equations (2.28) and (2.30) present us with a classical linear inverse problem. 

Typically, the M xN coefficient matrix, G, will have many more data than parameters 

(M >N) and, given that errors are contained in the data, the equations will be incon

sistent. We need to adopt a criterion for minimizing the misfit of parameters to data. 
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We choose to minimize the euclidean (12) nonn, resulting in the least squares problem: 

Min IIGx - bll2 = Min (Gx - b)T (Gx - b). (2.31) 

Differentiating equation (2.30) and setting the r~sult equal to zero yields the nor

mal equations 

(2.32) 

These nonnal equations will commonly be numerically close to singular. A direct solu

tion will produce either no parameter values at all, or will produce a set of large

magnitUde, grossly disparate parameters that delicately offset each other nominally to 

satisfy the least squares criterion. We may direct the solution of the nonnal equations 

(2.32) toward a particular solution by appending additional equality constraints to 

equation (2.28). This is often called "ridge regression" or "damped least squares" and 

may be perfonned by appending the additional equations Ix = ~ to Gx = b. This 

expresses a preference for a solution vector, x, that is close to the vector ~, but leaves 

the degree of this preference to be detennined implicitly by the relative magnitude of 

the elements of I and G. To express the degree of preference explicitly, we introduce 

a scaling factor, A.. Equation (2.28) becomes 

and the minimization we must perfonn is of the nonn 

2.2.4 Incorporating a priori Information 

2.2.4.1 Conditioning the Data Space 

(2.33) 

(2.34) 

Solving equation (2.28) directly involves the implicit assumption that all the data 

have equal significance. In the absence of explicit weighting, all the rows of G are 

treated equally. Should we have greater confidence in some of the data, and wish to 
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avoid allowing these better observations to be overwhelmed by those of poorer quality, 

we may add a weighting matrix to the scheme. If, for example, we are able to esti

mate a priori the covariance matrix of the data, Cd' we may multiply both sides of 

equation (2.28) by the weighting matrix W d = Cilh. Here W d represents the inverse 

matrix of standard errors of the data. In practice this left-multiplication serves as a 

row-scaling operation. Equation (2.33) becomes 

(2.35) 

and the least squares solution for x requires the minimization of 

(2.36) 

2.2.4.2 Conditioning the Parameter Space 

If we recognize that an unwanted bias exists in the elements of B or have reason

able estimates of the uncertainties in the elements of ~ as an a priori estimate of x we 

may attempt to correct this pre-existing bias with a right-multiplication of G by a 

weighting matrix W x' For example, we might have an estimate of the a priori 

covariance matrix of the model, Cm • In this case W x would be the matrix of inverse 

model standard errors: Wx = C~lh. Our intention is to transform the solution vector, 

x, to a vector in which all elements have approximately equal uncertainty and zero 

bias. We replace equation (2.35) with 

(2.37) 

where 

b = Wd(b - G~), 
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and, assuming both W d and W x are diagonal, minimize 

(2.38) 

In our case, our best estimate of the solution vector, x, is the zero vector, ; = 0, 

which assumes that our starting model is correct: We do not attempt to estimate the 

uncertainties contained in ; = 0 as an a priori estimate of x, as does Spakman [1988]. 

Instead, we assume that all these uncertainties are unity, so (at this point) 

A closer examination of the procedure used to construct the coefficient matrix, A, 

leads us to conclude that its elements contain bias from at least three sources. First, 

although the original voxels were constructed so as to have approximately equal sur

face areas, the voxels have widely varying volumes. Larger voxels will generally have 

longer ray segments, given a random or uniform sampling of voxels, than small vox

els. This ultimately produces an A matrix that weights large voxels more heavily than 

small voxels. Nolet [1987] offers an elegant demonstration of the deleterious effect of 

differing volumes on the velocities obtained from inversion. Second, since the ray 

sampling is not uniform, the A matrix will tend to over-weight more heavily sampled 

voxels. A third source of bias is the non-uniform distribution of directions of rays 

propagating through a voxel. Geometrically, a set of parallel rays will produce weaker 

constraints on a voxel's velocity than a set of rays well-distributed over the three 

orthogonal directions. We attempt to reduce the sampling bias inherent in the formula

tion of A by right-multiplying equation (2.28) by a matrix representing the quality of 

sampling of Earth afforded by the ISC data set. Our W x is diagonal, so right-

multiplication serves as a column-scaling operation to balance the euclidean norms of 

the columns of A. Now Wx consists of the elements 

ifllskll~O 

if IISkll = 0 
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where the vector s, of length np ' is a measure of sampling quality. Examples of such 

weighting schemes include (a) the vector of voxel volumes (in which case the norm of 

the kth column of Wx is simply the inverse volume of the eh voxel), (b) the vector of 

voxel "hits", (c) the vector of norms of A's column vectors, (d) a vector of factors 

indicating the distribution of directions of ray segments propagating through the vox

els. The weighting scheme we employ consists of ratios of average sampling of a par-

ticular voxel to the size of the voxel, i.e. 

where 

W = Xu 

1 n, 
-'LIj 
nk j 

vl'3 

Ij = the length of the ithray segment in voxel k, 

Vk = the volume of the kth voxel, 

nk = the number of ray segments that sample the eh voxel. 

(2.39) 

In equation (2.37), I may be replaced by by a more general "conditioning" matrix, 

B, to influence the character of the solution vector i. Appending equations Bi = 0 to 

equations (2.37) is equivalent to right-multiplying W dG by B. Because the matrix B 

is full-rank (i.e., non-singular), the set of vectors x = Bi + ~ where x minimizes 

lib - Gill is the same as the set of vectors x which minimizes lib - Gxll. However, 

because B is not normalized, the condition number of G will generally differ from that 

of G. The pseudorank of G (rank of G) may be less than the rank of G and the 

minimization of lIill alters the norm by which we determine the "minimum length" 

vector. By minimizing lIill (= IIB-1(x - ~)ID instead of x we will generally choose a 

different vector from the set that satisfy equation (2.28) than we would choose from 

the set that satisfy equation (2.17) [Lawson and Hanson, 1974]. For clarity, and to 

keep the number of floating point operations to a minimum in our row-active 
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implementation, we use the format of appended rows for the smoothing operation and 

right-multiplication to equalize the a priori bias contained in columns of G. 

Following Lees amI' Crosson [1989], we wish to minimize the variation of velo

city between adjacent voxels and seek to minimize the inverse of a discrete representa-

tion of a three-dimensional Laplacian operator applied locally in the neighborhood of 

each voxel. To do this, we append the rows Bi = 0, where B is an np x np matrix in 

which, for the eh row of B, Ba = 1 and the columns corresponding to all adjacent 

voxels in the same layer contain elements equal to (# of adjacent voxelsr1. Note that 

our model parametrization varies the size, in degrees, of the voxels as we move "from 

the equator to the poles, so the number of immediate neighbors a given voxel has will 

depend on its location in the model. The kth row of the equation Bx = 0 will be 

X "hb ~ 1Ielg or 0 
Xk - ~ = , 

n n 

where 

n = the number of voxels adjacent to the kth voxel. 

The equation we solve is 

[~] = [&]x, (2.40) 

where 

subject to the minimization of lIill2• It is important to recognize that once again we 

are minimizing an altered functional, so that the particular solution we choose will, in 

general, be different from the one we would choose if B == I. One might minimize the 
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norm (2.20) to find x and then apply the matrix B to find a smoothed solution 

xsmooth = Bx, but this procedure is not equivalent to minimizing the conditioned norm 

IIB-1xIl2. 

2.2.5 LSQR 

Equation (2.29) is difficult and time-consuming to solve. Because the coefficient 

matrix, G, is 0 (loSxl04), most common methods are not practical. Most computers 

cannot accommodate the entire matrix in core memory, so I/O operations to retrieve 

each row of the matrix from a disk file slow the inversion process even more. We can 

take advantage of the sparseness of G, however, and store only the non-zero elements 

in a collapsed vector format. Still, memory requirements are daunting and row-active 

methods, such as LSQR (a variant of the conjugate gradient method), Algebraic 

Reconstruction Techniques (ART), and Simultaneous Iterative Reconstruction Tech

niques (SIRn, must be used. 

Theoretically LSQR will converge to the true least squares solution in n itera

tions, where n is the size of the model space. Roundoff errors will interfere with this 

convergence property in practice, but we normally deal with numerically singular 

matrices of very large size, so we stop the algorithm after relatively few iterations. 

LSQR resembles Singular Value Decomposition in that it constructs its solution in a 

subspace of the model space that it generates by finding, at each iteration, one search 

direction vector that is orthogonal to all the vectors found previously. After p itera

tions, the solution is the vector x in the p -dimensional subspace that minimizes 

IIGx - t1l2, while also minimizing IIx1l2. Complete descriptions of the LSQR algorithm 

and its properties can be found in Paige and Saunders [1982] and Nolet [1985]. Spak

man and Nolet [1988] and van der Sluis and van der Vorst [1987] conduct detailed 

comparisons of SIRT and LSQR algorithms. 
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2.3 Synthetic Tests of the Algorithms 

In order to test the effectiveness of our algorithm in retrieving both velocity struc

ture and source mislocations we conduct a controlled simulation of the general pro

cedure used to produce tomographic images of the mantle from synthetic global earth

quake data, similar to the data supplied by the ISC. These data consist of arrival times 

at reporting stations and estimates of earthquake locations calculated in a one

dimensional Earth model. Because of the three-dimensional nature of Earth, the ISC 

location estimates are only approximations to the true locations, so we investigate the 

effects of mislocating the earthquakes on the velocity model obtained in an inversion, 

and the ability of our simultaneous and progressive inversion techniques to correct 

mislocated earthquakes and produce an accurate velocity model. 

The steps we follow to perform these simulations are outlined in figure 2.1. To 

produce synthetic data such as those provided by the ISC we distribute sources and 

receivers around a model Earth (step 1). We want to address the problem of source 

mislocation in a three-dimensional medium, and not the problem of poor ray coverage 

of Earth, so we intend to distribute sources and receivers adequately to allow accurate 

retrieval of velocity anomalies given "true" source locations (Le., the starting source 

locations). To this end, we distribute nine sources around Earth, located at depths 

ranging from 40 to 180 km, and a total of 207 stations, for an average of 45 reporting 

stations per event (see figure 2.2). To check the adequacy of the geometrical con

straint placed on the source location by the ray coverage we immediately re-Iocate the 

introduced sources using a damped least-squares procedure and the one-dimensional 

Jeffreys-Bullen (I-B) P velocity model (step la). At this point, no velocity anomalies 

are present in the model. The standard errors on these direct re-Iocations tell us the 

best we can expect to do later, when we correct the deliberately mislocated sources. 

Next we introduce four velocity anomalies (step 2) and calculate travel times 

through the new 3-D model (step 3). The ray tracing performed here is for a fully 3-D 
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medium. Travel times are calculated through the 3-D model by a shooting method 

involving the direct numerical integration of the eikonal equations that uses a Newton

type search for the solution to the two-point boundary value problem. We parametrize 

the model Earth with approximately equal-area voxels, 30° x 30°, at the equator and 

six layers, which makes each layer about 500 km thick and gives a total of 276 voxels. 

Figures 2.3 and 2.4 show the ray coverage for layers two and three. Highlighted in 

light gray and black are the voxels in which positive and negative velocity anomalies, 

respectively, are introduced. All four anomalous voxels are located in these two 

layers. Magnitudes of the anomalies range from 1.5% to 2.0% of the local velocity. 

These anomalies are located in reasonably well-sampled voxels, but not the most 

heavily sampled. 

Our choice of a block model parametrization causes problems for the 3-D raytrac

ing required to produce synthetic data. The eikonal equations can only be solved prac

tically for a reasonably smooth model. Instead of a smooth model, our blocks confront 

the ray tracer with an overwhelming set of discontinuities in both lateral and radial 

directions that cause unwarranted and physically implausible complexity. We smooth 

an introduced, "spike" anomaly by placing the anomalous velocity at the center point 

of its assigned voxel and requiring the value to decrease linearly toward the voxel 

boundaries. Thus the velocity experienced by each ray that visits an anomalous voxel 

will be well below the peak value located at the voxel center. This is a technical point 

that affects only the velocity perturbations returned by our inversion scheme and not 

the relative values as they are altered by the effects of source mislocation. To find the 

absolute values, we perform an inversion based on the travel times through the 3-D 

model from the true source locations (step 3a). In practice, these true locations are 

never known. The purpose of this exercise is to construct a controlled simulation in 

which we isolate the effects of just one type of error. Here we retain control of the 

velocity problem and seek to isolate the effects of source mislocation. 
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At this point, we have synthesized data analogous to those provided to the ISC by 

observers located around the world. Next we use the travel times through the 3-D 

model as arrival times to re-Iocate the sources in a I-D model (step 4). Again we use 

the J-B model. Now we have a set of data analogous to the catalog provided by the 

ISC to researchers world-wide. Next we calculate residuals by subtracting the synthetic 

arrival times from the travel times through the J-B model from the new, re-Iocated 

source (step 5) and invert these residuals in three ways: 

1.) directly, neglecting source mislocation terms (step 6a), 

2.) simultaneously for velocity and source terms (step 6b), and 

3.) by means of the progressive inversion scheme, in which the velocity problem 

is separated from the source mislocation problem and solved separately (step 6c). 

In each of these cases we use the conjugate-gradient projection method LSQR. Gaus

sian noise with mean and variance matching those of the residual distribution is added 

to the synthetic data. Finally, we compare the corrected source locations to the true 

locations and the estimates of the four velocity anomalies produced in each inversion, 

along with smearing and artifact anomalies (step 7). 

2.3.1 Source Mislocations 

Tables 2.1-2.9 show the source corrections resulting from both the simultaneous 

and progressive -inversions. The tables show, for each source parameter, the "a priori" 

standard error in the first column. This is the standard error from the first computed 

location of the sources introduced to the J-B model and "located" with the FORTRAN 

program BERQLY (by Lane Johnson) in the J-B model with no anomalies present. 

These standard errors represent the best our algorithm can hope to achieve with the 

given ray coverage. The second column contains the initial parameter offset. For each 

parameter, these are the amounts the source re-Iocated in the 3-D model differs from 

the true source location. Depending on the proximity of the introduced anomalies to 

the earthquake hypocenter, a given hypocenter will be moved a great deal (e.g., events 



39 

4 and 5) or only slightly (e.g., events 1, 2, and 7). Column 3 contains the results after 

source corrections obtained from simultaneous inversion have been applied to the ini

tial parameter offset and it shows how far away the corrected location is from the true 

source location. The fourth column shows how much the simultaneous inversion 

improved the source location. Columns 5 and 6 present the same information as 

columns 3 and 4, but for corrections that emerge from the progressive inversion. To 

interpret these results, compare the second column to the first column of each table to 

see if the improvements indicated are significant. Is the initial offset greater than the 

"a priori" standard error? If so, does the correction applied reduce the parameter offset 

or increase, it? 

For example, the origin time, latitude, and longitude parameters for Events 1 and 

7 are not significantly offset. Therefore the resulting corrections may be misleading. 

Events 2, 3, and 9 have unusually small initial offsets, locations this accurate would 

not require corrections anyway. For both the simultaneous and progressive inversions, 

event 4 shows significant improvement of an initially poorly located source. Perhaps 

the latitude and longitude terms are less significant. Event 5 has the most dramatic 

results. All parameters are initially offset a significant amount and for the progressive 

inversion, all but the longitude term were corrected to well within the "a priori" stan

dard error. Particularly with respect to the origin time and source depth parameters, 

the progressive inversion performed better than the simultaneous inversion for these 

two most significant events, 4 and 5, as it generally did throughout these tests. Of par

ticular concern is the poor estimation by the simultaneous inversion of the corrections 

to origin time and depth. Events 6 and 8 show good, though mixed, results. In all 

cases in which a parameter is offset an amount greater than the standard error, the 

correction produced by the progressive inversion reduces the offset to within the stan

dard error. The simultaneous inversion produced just one exception to this rule (the 

longitude correction for event 8). In cases in which the initial offset is still within the 
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standard error the correction usually reduces the offset further, but it may also result in 

a greater offset from the true source. In all but one of the cases in which the offset 

rendered by the progressive inversion is an increase over the initial offset, the final 

offset is still within the parameter's "a priori" standard error. This is true for all but 

four of the offsets rendered by the simultaneous scheme. Apparently once an offset is 

within the standard error, attempts to decrease the mislocation further result in a 

waffling about within a range of the true value roughly bounded by the standard error. 

This "loose" bound, rather than than a "hard", inviolable bound is expected for the 

standard error. We tested this further by performing another iteration of the imaging 

scheme in which our source location estimates are updated by applying the corrections 

resulting from the first iteration and the entire algorithm is repeated, based on the new 

locations. Indeed, in every case in which the first iteration's offset sti11lay outside the 

"a priori" standard error, the second iteration improved the offset to within this stan

dard error. In addition, for the progressive inversion five more parameters corrected 

after the first iteration to within the standard error jumped outside of the standard error 

after the second iteration. Perhaps if the initial offsets were larger, and generally more 

significant according to the "a priori" standard errors, the second iteration would be 

warranted and helpful. In our test case, the second iteration produced negligible 

improvement and, in fact, resulted in a degradation of source location estimates as 

often as improvement. The important result, however, is that the "a priori" standard 

error estimates allow the reliable determination of the significance of a particular 

correction. These standard errors are supplied by the ISC along with their location 

estimates. 

Ideally, sources would be re-Iocated in a three-dimensional model rather than with 

corrections produced asa by-product of an inversion for velocity. Both the location 

and velocity estimation problems are nonlinear and should be approached with an 

optimization scheme. But an iterative scheme for a fully three-dimensional Earth that 
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incorporates enough data and parameters to constrain interesting features of Earth is 

beyond our computational capacity at present. At this stage our greatest interest is in 

finding an inversion scheme that decouples the source location and velocity problems 

as much as is possible. In the next section we explore the consequences of removing 

the contributions of source mislocations from the travel time residual for our retrieval 

of a 3-D velocity model. 

2.3.2 Velocity model 

Table 2.10 shows estimates for the four input anomalies and a fifth entry for the 

next largest value emerging from the inversion. This fifth entry is the largest artifact 

anomaly and does not represent the same voxel across the bottom row of the table. 

Column 2 shows the number of rays sampling each model block. The most-sampled 

voxel had 96 hits; several voxels had more than 72 hits. The 3-D anomalies we intro

duced to the J-B model are indicated as "peak" anomalies in column 3. However, in 

order to trace rays through the three-dimensional model, given the model parametriza

tion into discrete voxels, we first smooth the input velocity model. To smooth the 

input model, we place a "peak" anomaly at the center point of a voxel and constrained 

the anomaly to decrease linearly toward the voxel's boundaries. The average velocity 

encountered by each ray is therefore well below the "peak" anomaly. To find the 

actual image we are trying to recover, neglecting the effects of imperfect ray coverage 

(Le. to assess the effects of smoothing the four input "spikes"), we invert residuals cal

culated by subtracting the synthetic travel times from travel times through the J-B 

model from the true source locations. This result, listed in column 4 of Table 2.10, 

contains the effects of imperfect ray coverage, which introduces a skewed average 

velocity depending on what parts of each voxel are sampled by rays and the type of 

function employed to smooth the input velocity "spikes". Columns 5 and 6 show the 

results of directly inverting the data from mislocated sources. Neglecting the effects of 

source offset results in underestimating the velocity anomalies by over 50% in some 
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cases, 

and produces artifact anomalies with absolute values greater than estimates for true 

values. Columns 7 and 8 show the same information for the simultaneous estimation 

of source and velocity terms. Note the overshoot in two cases, gross underestimate in 

one case, and the large artifact anomaly. The last columns of Table 2.10 show the 

results of our progressive inversion scheme. Here we retrieve a much greater portion 

of the velocity, with slight overshoot in one case, and with artifacts attaining a max

imum magnitude of about one quarter the smallest true anomaly. 

2.3.3 Summary of Results 

With the simulations described in this section we discover that ignoring the 

effects of source mislocation in a tomographic inversion results in underestimating 

velocity anomalies by up to 50%, creating smeared anomalies in adjacent voxels with 

values up to 50% of the retrieved velocity of its neighbor, and creating anomalies else

where in the mantle with values greater than those estimated for true anomalies. 

Simultaneous inversion for corrections to the source location and for a velocity model 

usually improves source locations when initial offsets are "significant" in the sense that 

ray coverage is distributed in azimuth and distance well enough to constrain the source 

location to a range smaller than the offset Velocity estimates are generally accurate, 

though the magnitudes of the anomalies are less reliable. Also, entirely inaccurate 

anomalies, produced as artifacts of the inversion, reach disturbingly high values. Pro

gressive inversion improves source locations 60-80% and successfully retrieves velo

city anomalies after one iteration for velocity anomalies of 1-2%. The largest ghost 

image is small compared to the smallest true anomaly. 

The success of these tests in correcting the source mislocation and in retrieving 

the overwhelming portion of the anomalous velocity is probably due to the small 
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source offsets produced by our four velocity anomalies. These small offsets are due, 

in part, to the relatively good constraints provided by our source-receiver geometry 

and, in part, to the small number of low-amplitude anomalies introduced to the velo

city model. 

These results were obtained with tomographic imaging based on ray tracing 

through a one-dimensional velocity model. For larger anomalies, more iterations and 

three-dimensional ray tracing may be necessary. However, computational requirements 

may not be feasible for such a scheme and better results are not guaranteed. When we 

perform a second iteration of our algorithms in which the source corrections are 

applied and rays are calculated from the new locations through the same I-D model 

we started with initially, results for both source corrections and velocity terms are 

mixed. This is probably due to the success of the first iteration. The remaining offsets 

are small with regard to the standard errors of the first computed source locations. 

In our row-active implementation, the progressive inversion scheme used 40% 

more CPU time than the direct LSQR in vectorized mode. Requirements for disk 

space (or core memory if the application is small enough to allow the coefficient 

matrix to be stored in core) is about 5 times the requirements of the simultaneous 

inversion. As the projections are performed in the progressive scheme, columns of the 

previously sparse coefficient matrix are filled in, resulting in a more dense matrix. 

2.4 Inversions of Real Data 

2.4.1 Data selection 

The data inverted in this study were obtained from the catalog of the International 

Seismological Centre (ISC) for the period January 1964 through January 1987 (frontis

piece). To avoid contamination of our mantle phases by Earth's core we limit the 

range of our coverage to epicentral distances between 0° and 96°. The scatter caused 

by refractions from the 400 km- and 670 km discontinuities, at about 15° to 25°, is 
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dealt with in the inversion process by weighting each summary ray by the inverse of 

the standard error of travel time residuals as a function of delta. To ensure that 

sources are well-located, each event must have a minimum of forty reporting stations, 

and source depths, as reported by the ISC, must be greater than 0 lan and less than 70 

Ian. In addition, maximum standard errors for the ISC locations must be 1 sec for ori

gin time, 0.10 for both latitude and longitude, and 10 lan for depth. We discard all 

events located by the ISC at Earth's surface, but retain events located at the other 

default depths. To ensure adequate and reasonably uniform ray coverage of Earth we 

keep a maximum of twenty-five events in each voxel. The set of events retained for 

each voxel always includes the events with the most observations. In this study we do 

not form summary rays. All observations are corrected for ellipticity by numerical 

integration along the raypath of the travel time perturbation arising from deviations of 

a hydrostatic figure from a sphere. Lengths of ray segments in voxels are found by 

integrating distance along the curved raypath and finding the intersections of rays with 

voxel boundaries. Rays associated with residuals greater than seven seconds are dis

carded. Approximately 345,000 rays satisfy these criteria. Figures 2.6 and 2.7 show 

the locations of the selected events and seismographic stations, respectively. 

Figure 2.9 shows a histogram of travel time residuals binned in 10 intervals asso

ciated with sources located by the ISC at depths between 0 and 70 lan, inclusive. 

Poorly constrained events are assigned by the ISC to default depths of 0, 5, 10, 15, 

and 33 km. We examined histograms of travel time residuals associated with events 

assigned by the ISC to these five different default depths, and compared the residual 

distributions for these events to the residual distribution of remaining events. The 

travel time residuals associated with sources located at 0 km depth (figure 2.10) show 

a much different distribution than that of the remaining residuals. Due to a problem 

with our FORTRAN subroutine, ISC records in which the source depth was left blank 

defaulted to zero source depth. Although the residual distribution shows a clear 
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bimodal pattern, we are unable to distinguish reliably between true, zero-depth loca

tions and defaulted locations after the data are been extracted from the ISC master set. 

For this study we discard all events with source depth equal to zero. Histograms for 

the remaining default depths are nearly identical to the histogram for all remaining 

events, so we cannot justify culling events with source depths of 5, 10, 15, or 33 Ian. 

A histogram of the winnowed data set, along with the first four moments of the travel 

time residual distribution is shown in figure 2.11. 

2.4.2 Model 

The starting model used in this study is a one-dimensional, spherically-symmetric 

P velocity model modified from Jeffreys [1960]. Modifications to the Jeffreys velo

city model are necessary to obtain a model consistent with the Jeffreys-Bullen 

[Jeffreys and Bullen, 1940] travel time tables. These modifications are small but 

important because they remove a systematically slow trend for the mid-mantle from 

the model published by Jeffreys and make the model more consistent with the tables, 

that were used by the the ISC to find source locations originally. 

The model mantle is divided into 14 layers, approximately 200 Ian thick, with 

radial boundaries located at Earth's major discontinuities. Each layer contains 406 

approximately equal area voxels, 100 x 100 at the equator, for a total of 5,684 model 

parameters. The exceptions to the 200 Ian thick layers occur in the upper mantle, in 

order to place a radial boundary at the 670 Ian discontinuity (resulting in a 270 Ian 

thick layer) and above the core-mantle boundary, where the lowermost layer is 228 Ian 

thick. One layer of our model parametrization is shown in figure 2.8. 

Figures 2.12a-h show the ray coverage of the mantle provided by the approxi

mately 345,000 observations included in our data set. Sampling is described in terms 

of the number of rays that traverse each voxel. The most-sampled voxel has over 

50,000 samples. Only 166 of 5684 voxels are un sampled. Figure 2.12a shows the 
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clear demarcation of plate boundary source regions that, along with Asia, North Amer

ica, Europe, and Australia, are well-sampled. In contrast, other regions tend to be 

quite poorly-sampled. There are also large oceanic areas in the first few layers that are 

completely unsampled by our data set. These voxels do not enter into the inversion. 

The next depth layer, figure 2.12b, shows a broadening of the well-sampled regions 

and a slight reduction of the unsampled oceanic areas. At 400-670 Ian and 670-870, 

figures 2.12c and d, these trends continue, and by the mid-mantle, figures 2.12e and f, 

virtually all voxels are sampled. In general, sampling becomes more homogeneous 

with depth and at the bottom of the mantle, figures 2.12g and h, the sampling is much 

more uniform than in the first layer. Note in all eight figures the strong bias toward 

the northern hemisphere, in general, and toward continents in particular. However, in 

absolute numbers the sums of ray segments in voxels decrease with depth, even as 

more voxels are sampled in each layer. Table 2.11 details the average number of hits 

for sampled voxels in each layer along with the the average sum of ray segments in a 

voxel at a given depth and the number of voxels sampled in each depth interval. 

These averages include only voxels that have non-zero sampling. The trends in Table 

2.11 show that while homogeneity of sampling increases with depth, voxels tend to be 

less frequently and less heavily traversed by recorded seismic rays. 

2.4.3 Inversion Results 

Inversions of the ISC data were performed directly, neglecting source terms, 

simultaneously for source mislocation and velocity terms, and progressively for each 

set of terms. The resulting models are named ISClO_direct, ISClO_sim, and 

ISCI0 yro, respectively. The weights applied in each inversion are identical and the 

LSQR algorithm is performed for 20 iterations in each case. Convergence was deter

mined by the relative change of the residual norm after each iteration. At 20 itera

tions, each model produces a slightly different variance reduction of the travel time 

residual distribution. For model ISCIO direct the variance reduction is 12%, for 
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model ISClO _sim it is 14%, and for model ISClO yro it is 16%. Minimum and max

imum velocity perturbations are [-1.8%,2.0%] for ISClO_direct, [-1.5%, 1.9%] for 

ISClO_sim, and [-2.1%, 2.2%] for ISClOyro. 

Figures 2. 13a-f, 2. 14a-f, and 2.15a-f show six of the fourteen layers for each 

inversion. Despite the large voxel size, the top layers, 0-200 km depth (figures a) and 

200-400 km (figures b), show quite strong correlations with surface tectonics. All 

models show fast anomalies in the Asian, Australian, and North American shield 

regions. The Indian subcontinent and southern Africa are consistently fast in all the 

models' top layers. Also in the top layers, a ring of slow anomalies surrounds the 

Pacific basin, though the ring is not as continuous a feature of the progressive model. 

Nevertheless, the Central American subduction zone, Nazca Plate, Galapagos hotspot, 

northwestern South America and all of the North American Great Basin and Range 

Province, including the Yellowstone and Raton, New Mexico hotspots, are covered by 

a broad, unusually slow anomaly. All models share this feature in the 0-200 km layer. 

In the 200-400 km depth range ISClO_direct and ISClO_sim show an intruding fast 

anomaly that extends across northern Mexico and Baja California while ISClO yro 

remains slow, consistent with the layer above. The first two models show this same 

fast anomaly in the 400-670 km depth range while ISClOyro remains slow. 

Elsewhere around the Pacific, slow backarc basins appear to compete with fast 

subducting lithosphere to claim the dominant anomaly for a particular region. From 

southern Alaska westward along the Aleutian island arc all the models begin with a 

fast anomaly and switch to a slow anomaly as the backarc basin comprises a larger 

portion of the next voxel to the west. Still further west, the next voxel also includes 

parts of the Kurile arc as well as the Aleutian arc and model ISClO yro returns a posi

tive anomaly while ISClO_direct and ISClO_sim are marked by slow anomalies. 

Similar differences between the first two models and the progressive model appear in 

the northern Japanese, Mariana, Philippine, Micronesian, Tongan, and Chilean 
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subduction zones. 

Further similarities between all three models include slow anomalies in East 

Africa, which are associated with a broad slow anomaly that persists through the first 

three layers of each model, the Mediterranean Sea, and the Hawaiian/Emperor hotspot. 

Another common feature is the abrupt change at the 400-670 km layer in each model 

of the sign of the anomaly associated with continental shields. Only the Australian 

shield remains largely a fast region. In the northern hemisphere, slow anomalies have 

displaced the fast anomalies in the continents' southern portions. 

Further differences between the models arise in a comparison of mid-ocean 

ridges. Models ISC 10_ direct and ISC 10_ sim are fairly consistently marked by slow 

anomalies in the top layers, with exceptions arising almost exclusively in the southern 

hemisphere, where ray coverage is relatively poor. ISCI0 yro shares the same nega

tive sign for most anomalies, but ridges in the southern hemisphere are more con

sistently slow and the mid-Atlantic ridge is not marked by the same broad slow ano

maly as in the first two models. 

Figures 2.13d-f, 2.14d-f, and 2. 15d-f present the three models for the 1270-1470 

km, 1470-1670 km, and 2470-2670 km depth ranges, respectively. In the mid-mantle 

(figures d and e), models ISClO_direct and ISClO_sim show larger-scale anomalies, 

less broken by small-scale intrusions, than does model ISClO yro. Surprisingly, con

tinental regions in the northern hemisphere are generally associated with fast anomalies 

and oceanic regions are generally associated with slow anomalies. Continents in the 

southern hemisphere are not marked by fast anomalies. Most striking are fast 

anomalies beneath eastern North America, the Caribbean, and northwestern South 

America, and the fast features beneath Tonga and Japan/eastern Asia. The fast ano

maly beneath eastern North America and the Caribbean appears in the same location as 

a large S-velocity anomaly reported by Grand [1987]. Similar features for P velocity 

appear in the inversions performed by van der Hilst [1990] for the Caribbean and 
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Central American region. The fast feature beneath Tonga broadens and continues to 

dip to the west to a depth of 1670 kIn. Beneath Japan and eastern Asia the fast ano

maly is diffuse but extends all the way to the core-mantle boundary. 

The 2470-2670 kIn depth layer (figures f) shows a more broken, fast pattern 

beneath the Pacific basin at the mantle's bottom. A ring of slow anomalies around the 

Pacific is emerging, but is not nearly as strong as the ring observed by Dziewonski 

[1984], Morelli and Dziewonski [1985, 1986], and Clayton and Comer [1983; Hager 

and Clayton, 1988] in the lowermost mantle. Seeking to avoid contamination of our 

data by diffractions at the core-mantle boundary, we impose an epicentral distance 

limit of 960 on our observations. The resulting ray coverage does not allow us to be 

confident of our results for the lowermost layer (Oil). Regardless of differences 

between our models and models produced previously by others, it is clear that 

differences between the upper mantle layers of our three models are greater than are 

differences between layers of the lower mantle. 

2.4.4 Comparison of Small-scale Model Features 

The upper mantles of our three models apparently differ from each other more 

than do the lower mantles. To test this observation more rigorously at the scale of 

individual model blocks we employ a statistical correlation technique. Because we do 

not know the probability distribution function from which our sample model values are 

drawn we prefer a non-parametric procedure, and since we already know that our 

models generally differ in the amplitudes of individual model values we are most 

interested in a technique that compares the heterogeneity patterns of two models rather 

than the individual values of heterogeneity. For these reasons we choose to evaluate 

model layer correlations with a non-parametric rank-order correlation procedure. 

When comparing a given layer of two models we replace each velocity value from the 

first model with its rank among the N -1 other values in the same layer, and do 
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likewise with values from the same layer of the second inodel. Now the series to be 

examined for correlation consist of integers, 1 to N, that are drawn from a perfectly 

known distribution. If some of the velocity values are identical, they are assigned rank 

equal to the mean of the rank: they would have had were they distinct. This assigned 

rank will not, and need not, necessarily be an integer. Regardless, the sum of all 

assigned ranks will equal the sum of the numbers 1 to N. What results is two sets of 

rankings, generally the integers 1 to N, for which statistics have been invented and 

well-used. As the most straight-forward of the common rank-order correlation statistics 

we choose to employ the Spearman statistic, which is defined as 

(2.41) 

where 

R = series indicating the rankings of the first model's velocity 

values for a given layer, 

S = series indicating the rankings of the second model's velocity 

values for the same layer. 

Figure 2.16 shows the Spearman rank-order correlations between layers of each set of 

two models. Clearly the models ISClO_direct and ISClO_sim are quite similar even at 

the scale of individual model blocks. Still, the small differences that do exist tend to 

be located in the upper portions of the models. These difference disappear with depth. 

Correlations between models ISCI0 _sim and ISCIO yro are fairly consistent 

throughout the lower mantle, though a small peak appears again at the 1270-1470 km 

depth layer. In the upper mantle, however, the top two layers display a marked 

decrease in correlation. This concentration of differences in the top layer, in which all 
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our sources are located, and the next lower layer indicates that our inversion pro

cedures' different treatment of the source location terms portends important differences 

only for these layers at short wavelengths. 

2.4.5 Comparison of Large-scale Model Features 

To serve as a low-pass filtering procedure, we calculate surface spherical har

monic series expansions to degree 10 by integration around the globe for each 

coefficient, rather than by fitting coefficients to model values by least squares. The 

associated Legendre polynomials are fully normalized, i.e., 

[ ]
~ 

pt(9) = (2-0m 0)(2/+1) (~-m); Pt(cos9). 
. (+m). 

(2.42) 

Figures 2.17, 2.18, and 2.19 show the total power in the series expansions for 

each model plotted as a function of depth. The distribution of power with depth is 

quite similar for ISCI0_direct and ISCIO_sim, though the total power contained in the 

direct model is greater than that in ISCI0_sim. ISClOyro shows a slightly different 

pattern. Unlike the first two models, the most heterogeneous layer is the topmost, 0-

200 km. The anomalously low power in the 200-400 km layers of all our models is 

probably due to the fact that rays bottoming in this layer, which emerge at the epicen

tral distance range 15° ~ !l ~ 20°, have the largest variance of all the travel time resi

duals. These rays are the most sensitive to velocity perturbations in the 200-400 km 

layer, but in our inversion their influence on the final model is downweighted by the 

inverse of the residuals' standard errors. The transition zone, 400-670 km, contains 

the highest power in models ISCIO _direct and ISCI 0_ sim, indicating the greatest 

heterogeneity in these models occurs at these depths. Note that the absolute magni-

tudes of these transition zone power totals are comparable to, and do not exceed, the 

power in the ISCIO yro transition zone. Because our starting model does not contain 

discontinuities, our theoretical ray coverage of the transition zone is more uniform than 
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is the case for models of the mantle that include discontinuities at 400 and 670 kIn 

depth. As a result, we are probably mapping more power into the transition zone for 

all three models than is justified. Deeper in the mantle a relative peak appears at 

about 1300 kIn depth and is followed by diminished heterogeneity at greater depths. 

This increase in power at the 1270-1470 kIn depth layer may be attributed to 

anomalously large I = 1, 2, and 3 components in all three models. At the bottom of 

the mantle, ISCI0_direct and ISCIO_sim show a dramatic increase in heterogeneity 

while the ISCI0 yro shows only a modest increase. The drop in power from the 

2470-2670 Ion layer to the lowermost layer, 2670-CMB, is probably due to the poor 

ray coverage in this bottom layer that results from our epicentral distance limit of 96°. 

Figures 2.20, 2.21, and 2.22 show, for each model, the power in series expansions 

of each layer as a function of angular degree. As figures 2.17-19 would lead us to 

expect, power at all degrees in the top two layers of models ISCIO_direct and 

ISCI0_sim is smaller than the power contained in the top two layers of ISClOyro. 

Particularly striking are the large values of the I = 5 and I = 6 components and the 

consistent importance of the I = 6 component throughout the upper third of the mantle. 

The finding of a large I = 2 component in the transition zone confirms previous 

reports, but a prominent I = 3 also appears in all models. The progressive model 

shows a large I = 6 harmonic as' well. In the mid-mantle, 1070-1670 km, the I = 2 and 

3 components rise above the higher-degree harmonics with nearly the same pattern for 

all models. More differences arise in the lowermost mantle, where the dominant 

heterogeneity of model ISCIO yro is concentrated in the I = 3 term, while the first 

two models show anomalous I = 1 components. 

Since sign information is not included in p,ower calculations, figures 2.20-2.22 do 

not offer any clues as to how the distribution patterns for all layers combine construc

tively or destructively to form a pattern for the whole mantle. Figures 2.23-2.25 show 

the power in the spherical harmonic expansions for the respective models averaged 
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through the whole mantle and through the upper and lower mantle separately. The 

averaging is performed on the the individual harmonic coefficients, weighted at each 

layer by the square of the layer mid-point's radius, which normalizes the power in 

each layer to the layer's surface area. Here, differences between the models appear 

most dramatically. For the upper mantle the ISClO"'pro (figure 2.25) power spectrum 

shows a dominant I = 6 component, along with prominent I = 2,5, and 8 terms. In 

contrast, the ISClO_direct (figure 2.23) and ISClO_sim (figure 2.24) power spectra 

show no constructive patterns other than a quite prominent I = 2 pattern. When aver

aged over the lower mantle alone the three models show quite similar patterns, apart 

from a slightly more prominent I = 2 harmonic in the progressive model. Apparently 

there is some type of compensation at work, either numerical tradeoff between layers 

of our computed models or physical compensation of velocity heterogeneity in the real 

Earth. When individual layer series are averaged over the entire mantle, the prominent 

patterns of the ISClO"'pro upper mantle nearly disappear and the components of the 

ISClO_direct and ISClO_sim upper mantles decrease in power. Only the large I = 2 

term survives the whole mantle average. 

In an effort to find the location in the mantle of the primary long-wavelength 

differences between our three models, we calculate correlation coefficients between 

spherical harmonic expansions of a given layer for two models at a time. We employ 

a correlation coefficient, r, defined as 

(2.43) 

where 

R lmi = first model harmonics (superscript i = 1 refers to cosine term, 

i = 2 refers to sine term), 
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Simi = second model harmonics. 

Figures 2.26, 2.27, and 2.28 show the correlations between spherical harmonic degrees 

as functions of depth between models ISCIO _direct and ISCIO ....Pro. The differences 

found at small-scales (figure 2.16) are not duplicated exactly here, but some trends are 

similar. Most degrees show relatively low correlation in the first two layers, 0-200 Ian 

and 200-400 Ian, which improves in the upper part of the lower mantle. Correlations 

in the lowermost mantle are erratic, though the higher degrees (1 = 8, 9, and 10), show 

a gradual decrease in correlation with depth. Exceptions to these general trends 

include 1 = 4 (figure 2.26) and 1 = 6 (figure 2.27). Results in the lowermost mantle 

do not reflect the results found for the small-scale correlations, but simulations per

formed elsewhere (see chapter 3) with long-wavelength patterns indicate that 

higher_degree harmonics are not resolved reliably in the lower mantle. Most impor

tant to our purpose here is the observation that correlations between models are gen

erally weak in the upper mantle. 

2.4.6 Source Corrections 

Figures 2.29 and 2.30 show source correction vectors produced by the simultane

ous and progressive inversions, respectively, for the same 400 events. These reloca

tionsare representative of the corrections required by each inversion procedure for the 

3077 events used in this study. In each case the starting location (found by the ISC) is 

indicated with either an asterisk or hexagon and a scaled vector points in the direction 

of the correction required by the latitude and longitude adjustments. For each event 

the direction of the depth correction is indicated by the type of symbol marking the 

relocation vector's endpoint. Events that receive a shallowing correction are marked 

with asterisks; events that are relocated deeper are marked by a hexagon. Origin time 

corrections are not shown. Both . figures 2.29 and 2.30 are scaled to the same max

imum vector length. 
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The most striking feature of these figures is that the corrections produced by the 

progressive inversion (figure 2.30) are clearly larger than the corrections produced by 

the simultaneous inversion (figure 2.29). Overall the progressive corrections are gen

erally two to four times the simultaneous corrections, although in some cases the pro

gressive corrections are far greater. The corrections required in remote regions, where 

we might expect the constraints provided by the station distribution to be relatively 

weak, are not generally the largest in either case. The simultaneous inversion, particu

larly, produces small corrections in such remote regions as the Carlsberg and Indian 

Ocean ridges. The progressive inversion produces much larger corrections, but these 

corrections are not generally larger than the corrections produced in well-instrumented 

regions such as western North America, the eastern Mediterranean, and the Japanese 

subduction zone. The progressive corrections do not claim to be unerringly correct, 

they simply find that more of the travel time residual can be explained by moving the 

source than does the simultaneous, which finds a best-fitting location. Recall that 

poorly-located events, as determined by the standard errors of the ISC locations, were 

culled from our data set originally. Each source used here is one of the best

constrained of the ISC events located in its vicinity. 

Though the corrections from the two inversions differ in size, some recognizable 

patterns and similarities emerge from a comparison of figures 2.29 and 2.30. In the 

northern parts of Japan, both sets of corrections are overwhelmingly oriented north

ward and slightly west of north. These corrections are some of the largest in each set. 

Whether this direction is correct, or at least expected from what we know of the loca-

tion of lithosphere subducting underneath Japan, depends on whether the events actu

ally occur predominantly on one side of the descending slab or are well-distributed 

throughout the slab. The depth corrections are moderate (5< oh ~10) for both inver

sions. Along the west coast of North America an interesting pattern shows up in both 

sets of corrections. Proximate events, in regions well-covered by seismic 
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instrumentation, are corrected large amounts in nearly opposite directions. This result, 

along with non-systematic and unexpected corrections elsewhere, such as at Hawaii, 

the Mediterranean Sea and Middle East, lead us to the expected conclusion that the 

progressive inversion did not find a realistic source correction. 

2.4.7 Discussion 

Our visual comparison of models ISCIO_direct, IS C lO_sim , and ISClOyro 

reveals that upper mantle differences are located overwhelmingly in source regions, 

implying that the model differences result from the differences in our treatment of the 

source terms. That the differences between models ISCIO direct and ISClO sim are 

smaller than the differences between ISClO_sim and ISClOyro is surprising, but is 

probably due to the fact that the progressive scheme actually extracts all of the travel 

time residual that may be attributed to source mislocation, not just the portion that is 

independent of the velocity terms. Despite the concentration of model differences in 

source regions, the effects of different treatments of the source appear in the velocity 

models at both long and short wavelengths in the upper mantle. Differences between 

the models diminish with depth. 

Our comparison of the source corrections produced by simult~eous and progres

sive inversion support ~his interpretation. Source corrections emerging from the pro

gressive inversion are generally two to four times greater than the simultaneous 

inversion's corrections. Some events get extremely large corrections with the progres

sive inversion, but only moderate corrections with the simultaneous inversion. 

Progressive inversion is intended to remove as much of the travel time residual as 

can possibly be attributed to source mislocation and then use the remainder to find a 

velocity model. While this procedure might be expected to remove the contamination 

due to source mislocation from the velocity inversion, it should also tend to overesti

mate source corrections. Included in the source terms are the effects of vagaries in ray 
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coverage and some portion of the noise in the data. These effects show up most 

noticeably in the estimates of origin times and source depths. The direct P phase is 

notorious for its poor control of these two parameters. Due to the downward takeoff 

angles of P phases from the source, there is generally a strong tradeoff between them. 

The addition of pP and/or S phases to the inversion better constrains these two param

eters [O'Connell and Johnson, 1991]. 

2.S Conclusions 

For simulations of a global tomographic inversion scheme, ignoring the effects of 

source mislocation results in underestimating velocity anomalies by up to 50%, creat

ing smeared anomalies in adjacen~ voxels with values up to 50% of the retrieved vel<r 

city of its neighbor, and creating anomalies elsewhere in the mantle with values greater 

than those estimated for true anomalies. We would expect these results to be even 

more exaggerated in the real case, in which source mislocations and velocity contrasts 

are greater than in our simulations. Clearly, careful treatment of the source location 

problem is critical to the accurate retrieval of three-dimensional velocity variations. 

The progressive inversion developed here generally produces more accurate source 

corrections and velocity anomaly estimates than does an inversion scheme in which 

both source corrections and velocity terms are found simultaneously. These results are 

superior particularly with respect to the suppression of artifact anomalies in the velo

city estimation. The success of the progressive scheme, and the satisfactory perfor

mance of the simultaneous scheme, may be attributed to the strong geometrical con

straints provided by our set of stations on the source locations and the relatively small 

amplitudes of the introduced velocity anomalies. There is no reason to expect that 

corrections to source locations provided by a progressive inversion will be more accu

rate that those provided by a simultaneous inversion for cases in which reporting sta

tions are not well-distributed around a source or additional systematic errors are 

present in the data. In such cases, the progressive inversion will generally 
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overestimate the source correction in its effort to find a velocity model free of contam

ination. Looking at the source mislocation terms themselves reveals that the sizes of 

corrections emerging from the progressive inversion are generally two to four times 

greater than corrections produced by the simultaneous inversion. In some cases the 

progressive corrections are far greater. In the simultaneous case, the relative scaling of 

velocity and source terms is critical. With a judicious choice of weights, one could 

emphasize fitting the source terms at the expense of the fit to the model, but this is not 

the same as first extracting the entire portion of the travel time residual that may be 

explained by source mislocation. In the first case, the simultaneous inversion with 

hypocentral partial derivatives more heavily weighted than velocity coefficients, the 

algorithm is still trying to find a best-fitting solution to the source mislocation problem. 

In the second case, the progressive inversion, the algorithm is not finding a solution for 

the source corrections initially. It simply considers the geometry of the problem, 

including the strength of the constraints on hypocenter location, and finds the max

imum travel time discrepancy that might be accounted for by moving the source loca

tion. 

As our inversions of real data demonstrate, the two inversion schemes produce 

clearly different velocity models. Moreover, these differences are concentrated near 

the models' surfaces, in general, and in source regions, in particular. The bulk of the 

models' differences are therefore due to the algorithms' differences in their treatment 

of source terms, and, as the simulations performed at the beginning of this chapter 

attest, the progressive inversion is more successful at retrieving accurate estimates of 

velocity anomalies. 
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2.7 List of Tables 

Table 2.1 The source corrections resulting from the simultaneous and progressive 

inversions for Event 1, located under the Kamchatka Peninsula. For each 

source parameter the first column indicates the "a priori" standard error. This 

is the standard error from the initial location of the sources introduced into the 

J-B model and located in the J-B model with no anomalies present These 

standard errors represent the best any algorithm can hope to achieve with the 

given ray coverage. The second column contains the initial parameter offset 

For each parameter, these are the amounts the sources re-Iocated in the 3-D 

model differ from the true source locations. Column three contains the results 

after source corrections obtained from the simultaneous inversion have been 

applied to the initial parameter offset and it shows how far away the corrected 

source are from the true sources. The next column shows how much the 

simultaneous inversion improved the source locations. Columns five and six 

contain information similar to columns three and four, but for corrections that 

emerge from the progressive inversion. 

Table 2.2 The information contained in Table 2.2 is similar to the information con

tained in Table 2.1, but for Event 2, located in the Chilean Subduction Zone. 

Table 2.3 The information contained in Table 2.3 is similar to the information con

tained in Table 2.1, but for Event 3, located in the Mariana Subduction Zone. 

Table 2.4 The information contained in Table 2.4 is similar to the information con

tained in Table 2.1, but for Event 4, located in Mongolia, China. 

Table 2.S The information contained in Table 2.5 is similar to the information con

tained in Table 2.1, but for Event 5, located in the Aleutian Islands. 

Table 2.6 The information contained in Table 2.6 is similar to the information con

tained in Table 2.1, but for Event 6, located in the Central American 
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Subduction Zone. 

Table 2.7 The infonnation contained in Table 2.7 is similar to the infonnation con

tained in Table 2.1, but for Event 7, located in the South China Sea. 

Table 2.8 The infonnation contained in Table 2.8 is similar to the infonnation con

tained in Table 2.1, but for Event 8, located in the Himalayas. 

Table 2.9 The infonnation contained in Table 2.9 is similar to the infonnation con

tained in Table 2.1, but for Event 9, located in the South Pacific Ocean. 

Table 2.10 Estimates for the four input anomalies and a fifth entry for the next larg

est value emerging from the inversion. This fifth entry is the largest artifact 

anomaly and does not represent the same voxel across the bottom row of the 

table. Column 2 shows the number of rays visiting each anomalous block. We 

place a "peak" anomaly at the center point of a voxel and constrain the ano

maly to decrease linearly toward the voxel's boundaries. To find the actual 

image we are trying to recover, neglecting the effects of imperfect ray cover

age, we invert residuals calculated by subtracting the synthetic travel times 

from travel times through the J-B model from the true source locations. This 

result is listed in column 4. Columns 5 and 6 show the results of directly 

inverting the data from mislocated sources. Columns 7 and 8 show the same 

in~onnation for the simultaneous estimation of source and ,velocity tenns. The 

last two columns show the results of our progressive inversion scheme .. 

Table 2.11 Details of the model parametrization and the sampling provided by our 

data set. Include are the average number of hits for sampled voxels in each 

layer along with the the average sum of ray segments in a voxel at a given 

depth and the number of voxels sampled in each,depth interval. These aver

ages include only voxels that have non-zero sampling. 
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2.8 List of Figures 

Figure 2.1 Flow chart outlining the steps perfonned in the tomography simulations. 

Figure 2.2 Locations of sources (large gray spheres) and stations (small black dots) 

used to construct the synthetic data set for the simulations. The data set con

sists of 9 events and a total of 207 stations. An average of 45 arrivals are cal

culated for each event. 

Figure 2.3 Model parametrization and input anomalies for layer 2: 483-966 km. The 

model mantle is parametrized as voxels, 300 x 300 at the equator and 500 km 

thick, for a total of 276 model parameters. Voxels in a given layer have 

approximately equal surface area. The introduced velocity anomalies are 

highlighted in gray (0.15 kmls) and black (-0.20 kmls). 

Figure 2.4 Input anomalies for layer 3, 966-1449 km depth, are 0.30 kmls and 

0.10 kmls. 

Figure 2.5 (a-O Ray coverage of the mantle is indicated in tenns of the number of 

rays that sample each voxel. The most-sampled voxel has 96 hits; several vox

els has more than 72 hits. All six depth layers of our model are shown: (a) 0-

483 km, (b) 483-966 km, (c) 966-1449 km, (d) 1449-1932 km, (e) 1932-2415 

km, (0 2415-2898 km. 

Figure 2.6 Locations of sources used in the inversions of real data. The data set 

consists of about 3,000 shallow events located by the ISC for the time period 

January 1964 - January 1987. A minimum of forty observations was required 

to include an event. 

Figure 2.7 Locations of seismographic stations that reported the observations used 

in this study. 

Figure 2.8 The model mantle is parametrized as voxels, 100 x 100 at the equator 

and generally 200 km thick, for a total of 5684 model parameters. Voxels in a 

1; 'I' 
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given layer have approximately equal surface area. 

Figure 2.9 Histogram of approximately 409,000 travel time residuals for sources 

located by the International Seismological Centre (ISC) at depths between 0 

and 70 km, inclusive. Also shown are the first four moments of the distribu

tion. 

Figure 2.10 Histogram of about 65,000 travel time residuals for sources located by 

the IS C .. at 0 km, which is an ISC default depth. The bimodality of the distri

bution arises from a programming problem in which a blank depth field in the 

ISC catalog is read as 0 km. 

Figure 2.11 Histogram of the nearly 345,000 travel time residuals associated with 

the events included in this study, Source depths are greater than 0 km and less 

than 70 km. 

Figure 2.12 (a-h) Ray coverage of the mantle provided by the approximately 

345,000 observations included in our data set is shown in terms of the number 

of rays that sample each voxel, The most-sampled voxel has over 50,000 sam

ples. Only 166 of 5684 voxels are un sampled. The layers shown are: (a) 0-

200 km, (b) 200-400 km, (c) 400-670 km, (d) 670-870 km, (e) 1270-1470 km, 

(0 1470-1670 km, (g) 2470-2670 km, and (h) 2670-2898 km. 

Figure 2.13 (a-t) Six depth layers of model ISClO _direct, the direct inversion that 

neglects source terms: (a) 0-200 km, (b) 200-400 km, (c) 400-670 km, (d) 

1270-1470 km, (e) 1470-1670 k~, and (t) 2470-2670 km. Each layer's mean 

has been removed. Velocity perturbations grade from red (slow) to blue (fast). 

Maximum and minimum velocity variations are 

Figure 2.14 (a-f) Six depth layers of model ISClO_sim, the simultaneous inversion 

for both source and velocity tenns. The layers shown are the same as in figure 

2.13. 
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Figure 2.15 (a-f) Six depth layers of model ISClO yro, the progressive inversion for 

source and velocity terms in succession. The layers shown are the same as in 

figure 2.13. 

Figure 2.16 The Spearman rank-order correlations between layers of each set of two 

models as functions of depth. When comparing a given layer of two models 

we replace each velocity value from the first model with its rank among the 

N -1 other values in the same layer, and do likewise with values from the same 

layer of the second model. This statistic allows us to examine correlations 

between small-scale features of the models. 

Figure 2.17 Power contained in surface spherical harmonic series expansions of 

model ISClO direct as a function of depth. 

Figure 2.18 Power contained in surface spherical harmonic senes expansions of 

model ISClO _sim as a function of depth. 

Figure 2.19 Power contained in surface spherical harmonic series expansions of 

model ISClOyro as a function of depth. 

Figure 2.20 Power in the spherical harmonic expansions for each depth interval of 

model ISClO _direct as a function of angular degree. All values are normalized 

to the maximum value appearing in the figure. Numbers on the right refer to 

the maximum power for each layer. 

Figure 2.21 Power in the spherical harmonic expansions for each depth interval of 

model ISClO sim as a function of angular degree. Figure conventions are the 

same as in figure 2.20. 

Figure 2.22 Power in the spherical harmonic expansions for each depth interval of 

model ISClO yro as a function of angular degree. Figure conventions are the 

same as in figure 2.20. 
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Figure 2.23 Power in spherical harmonic series generated by averaging 

ISC1O_direct layer expansions through the whole mantle and through the upper 

and lower mantle separately. Figure conventions are the same as in figure 

2.20. 

Figure 2.24 Power in spherical harmonic series generated by averaging ISC10 sim 

layer expansions through the whole mantle and through the upper and lower 

mantle separately. Figure conventions are the same as in figure 2.20. 

Figure 2.25 Power in spherical harmonic series generated by averaging ISCIO yro 

layer expansions through the whole mantle and through the upper and lower 

mantle separately. Figure conventions are the same as in figure 2.20. 

Figure 2.26 Correlations between spherical harmonic degrees as functions of depth 

between models ISC1O_direct and ISC1Oyro. Shown are I = 2, 3, and 4. 
, 

These correlations allow us to compare large-scale features of the models. 

Figure 2.27 Correlations between spherical harmonic degrees as functions of depth 

between models ISC1O_direct and ISC1Oyro. Shown are I = 5, 6, and 7. 

Figure 2.28 Correlations between spherical harmonic degrees as functions of depth 

between models ISC1O_direct and ISC1Oyro. Shown are I = 8,9, and 10. 

Figure 2.29 Source correction vectors produced by the simultaneous inversion for 

400 of the 3077 events used in this study. In each case the starting location is 

indicated with either an asterisk or hexagon and a scaled vector points in the 

direction of the correction required by the latitude and longitude adjustments. 

For each event the direction of the depth correction is indicated by the type of 

symbol marking the relocation vector's endpoint. Size of the depth correction 

is indicated by the size of the symbol. Events that require a shallowing correc

tion are marked with asterisks; events that are relocated deeper are marked by a 

hexagon. Origin time corrections are not shown. Both figures 2.29 and 2.30 
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are scaled to the same maximum vector length. 

Figure 2.30 Source correction vectors produced by the progressive inversion for the 

same 400 events shown in figure 2.29. Figure conventions are the same as for 

figure 2.29. 



Table 2.1 

Source 
parameter 
origin time (sec) 
latitude (deg) 
longitude (deg) 
depth (kIn) 

Table 2.2 

Source 
parameter 
origin time (sec) 
latitude (deg) 
longitude (deg) 
depth (kIn) 

Table 2.3 

Source 
parameter 

origin time (sec) 
latitude (deg) 
longitude (deg) 
depth (kIn) 
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Event 1: Kamchatka Peninsula 
(53.0 0 N, 160.00 E, 73.9 km) 

After correction 

"a priori" Initial Simultaneous Progressive 
standard parameter parameter .% parameter 
error offset offset improved offset 

0.00 0.00 -0.08 0.04 
0.163 -0.008 0.003 63% 0.002 
0.420 -0.080 -0.008 90% -0.034 
0.329 2.70 -0.75 72% 0.07 

Event 2: South American Subduction Zone 
(31.1°S, 67.9°W, 72.2 km) 

After correction 

% 
improved 

77% 
58% 
97% 

"a priori" Initial Simultaneous Progressive 
standard parameter parameter % 
error offset offset improved 

0.14 0.00 -0.09 
0.022 -0.006 0.004 33% 
0.029 0.006 0.004 33% 
0.18 0.10 1.00 -900% 

Event 3: Mariana Subduction Zone 
(18.9°N, 144.8°E, 41.0 km) 

parameter % 
offset improved 

0.00 
0.002 75% 
0.001 90% 
0.16 -67% 

After correction 

"a priori" Initial Simultaneous Progressive 
standard parameter parameter % parameter % 
error offset offset improved offset improved 

0.26 0.18 -0.03 83% 0.01 92% 
0.019 0.031 -0.024 23% 0.003 92% 
0.015 -0.012 -0.001 92% 0.001 90% 
2.82 0.30 1.75 -483% 0.55 -85% 



Table 2.4 

Source 
parameter 

origin time (sec) 
latitude (deg) 
longitude (deg) 
depth (Ian) 

Table 2.5 

Source 
parameter 

origin time (sec) 
latitude (deg) 
longitude (deg) 
depth (Ian) 

Table 2.6 

Source 
parameter 

origin time (sec) 
latitude (deg) 
longitude (deg) 
depth (Ian) 

Event 4: Mongolia 
(50.0oN, 110.0oE, 180.0 km) 

After correction 

"a priori" Initial Simultaneous Progressive 
standard 
error 

0.00 
0.031 
0.047 
0.31 

"a priori" 
standard 
error 

0.69 
0.024 
0.036 
6.57 

parameter parameter % 
offset offset improved 

-0.05 -0.02 60% 
0.005 0.003 40% 
0.041 0.015 63% 
8.70 4.58 47% 

Event 5: Aleutian Islands 
(51.0oN, 178.0oW, 50.0 km) 

parameter % 
offset improved 

0.00 100% 
0.001 80% 
0.016 61% 
0.01 100% 

After correction 

Initial Simultaneous Progressive 
parameter parameter % parameter % 
offset offset improved offset improved 

2.09 2.04 2% 0.08 96% 
0.024 -0.005 79% -0.006 74% 

-0.l59 -0.022 86% -0.066 58% 
24.30 23.81 2% 0.55 98% 

Event 6: Central American Subduction Zone 
(9.5°N, 84.1°W, 66.6 km) 

After correction 

"a priori" Initial Simultaneous Progressive 
standard parameter parameter % parameter % 
error offset offset improved offset improved 

0.23 0.00 0.15 0.09 
0.013 -0.023 -0.017 26% -0.009 63% 
0.014 -0.012 0.024 -100% 0.003 76% 
2.52 -3.10 -0.71 77% -1.46 53% 



Table 2.7 

"a priori" 
Source standard 
parameter error 
origin time (sec) 0.12 
latitude (deg) 0.208 
longitude (deg) 0.228 
depth (Ian) 15.84 

Table 2.8 

"a priori" 
Source standard 
parameter error 
origin time (sec) 0.28 
latitude (deg) 0.022 
longitude (deg) 0.027 
depth (Ian) 2.84 

Table 2.9 

"a priori" 
Source standard 
parameter error 
origin time (sec) 0.45 
latitude (deg) 0.022 
longitude (deg) 0.020 
depth (Ian) 4.33 
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Event 7: South China Sea 
(18.8°N, 111.9°, 53.0 km) 

After correction 

Initial Simultaneous 
parameter parameter % 
offset offset improved 

-0.01 -0.13 -1200% 
0.029 0.01 66% 
0.010 0.003 70% 
2.50 0.46 82% 

Event 8: Himalayas 
(30.5°N, 79.4°E, 88.0 km) 

Progressive 
parameter % 

offset improved 
-0.10 -900% 
0.003 90% 
0.004 63% 
1.30 48% 

After correction 

Initial Simultaneous 
parameter parameter % 
offset offset improved 

-0.12 -0.05 42% 
0.022 0.004 82% 
0.038 0.084 -120% 
0.20 1.45 -625% 

Event 9: South Pacific 
(20.8 126.9°W, 87.8 km) 

Progressive 
parameter % 

offset improved 
-0.06 50% 
0.000 100% 
0.011 71% 

-0.13 36% 

After correction 

Initial Simultaneous Progressive 
parameter parameter % parameter % 
offset offset improved offset improved 
0.00 -0.08 -0.01 
0.001 0.061 -6000% -0.002 -50% 

-0.007 0.005 29% 0.001 80% 
0.60 0.12 80% 0.23 61% 



Table 2.10 

, 

anomaly # hits peak 
1 18 0.100 
2 56 0.300 
3 72 0.150 
4 38 -0.200 

next 0.000 

Velocity Anomalies 

Inversions 

With source offset 
No source 
offset Direct Simultaneous 

kmlsec kIn/sec % kmlsec % 

0.063 0.038 60% 0.066 105% 
0.187 0.168 90% 0.170 91% 
0.079 0.036 46% 0.087 110% 

-0.088 -0.058 66% -0.055 63% 
0.010 -0.042 0.051 

I 

Progressive I 

kmlsec 
0.064 101% 
0.184 98% I 

0.079 100% 
-0.080 91% I 
0.017 

.....,J 
o 



Table 2.11: Model layer depths and average voxel sampling 

Average Number Average 
Average voxel of % of Average column 

Layer Depth range velocity volume voxels voxels number sum of A 
number (km) (lcm/s) (108 lan3) sampled sampled hits (104 Ian) 

I 0-200 7.94 2.43 333 82 2375 51.25 
2 200400 8.58 2.28 352 87 2122 47.66 I 

3 400-670 9.88 2.85 383 94 2115 66.96 
! 

4 670-870 10.95 1.94 394 97 1900 53.72 
5 870-1070 11.40 1.81 402 99 1712 51.23 

-....J -
6 1070-1270 11.68 1.67 406 100 1460 42.23 
7 1270-1470 11.96 1.55 406 100 1293 37.54 
8 1470-1670 12.24 1.43 406 100 1134 32.74 
9 1670-1870 12.51 1.31 406 100 1008 29.31 

10 1870-2070 12.76 1.20 406 100 908 27.19 
11 2070-2270 13.01 1.09 406 100 768 24.22 
12 2270-2470 13.24 0.99 406 100 587 18.75 
13 2470-2670 13.47 0.89 406 100 430 14.64 
14 2670-2898 13.64 0.91 406 100 164 5.78 

----_.- - -"-
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Figure 2.1 

1. Distribute sources & 
receivers around a 
model earth. 1. (a) Re-Iocate sources to 

I check constraint of 
, station distribution 

on source locations. 

2. Introduce 3-D velocity 
anomalies into a 1-0 
model. 

! , 
3. Calculate travel times 

through 3-D model. 3. (a) Invert residuals 
calculated from 

I actual source 
locations. 

4. Re-Iocate sources in 
the 1-0 model. 

t 
5. Calculate travel time 

residuals from the 
re-Iocated source. 

6.lnvert travel time residuals. I 
I 

I 6. (a) Directly, for velocity model only. 

6. (b) Simultaneously for velocity 
model and source terms. 

6. (c) Progressively for velocity 
model and source terms. , 

7. Compare results of inversions 6. (a), (b), and (c). I 



73 

Figure 2.2 

Figure 2.3 
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velocity (km/s) 
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Figure 2.5 

o number of samples 
50 
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Figure 2.5 

Cd) 

o number of samples 50 
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Figure 2.8 
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Figure 2.9 
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Figure 2.10 
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Figure 2.13 
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Figure 2.13 
(d) -
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Figure 2.14 

(a) 

(b) 

(c) 

-0.5% velocity (%) 0.5% 



85 

. Figure 2.14 
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Figure 2.15 
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Figure 2.16 
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Figure 2.17 
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Figure 2.18 

MODEL-ISC3C SIMULTANEOUS 

1.0 

0.9 

--.. 0.8 
N 

* * (/) 0.7 

"'" N 

* * 0.6 
) 

~ 
~ 

t-') 0.5 
I 

* * 0.4 0 --"--' 

a::: 0.3 w 
3= 
0 

0.2 a... 

0.1 

0.0 

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 

DEPTH (KM) 



91 

Figure 2.19 

MODEL ISC3C PROGRESSIVE 
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Figure 2.26 
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Figure 2.27 . 
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Figure 2.28 
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Chapter 3 

What Patterns of Heterogeneity in Earth's Mantle 

Can be Revealed by Seismic Travel-Time Tomography? 

3.1 Introduction 

Global tomographic studies require massive volumes of data and huge numbers of 

model parameters to image Earth's interior to any helpful level of detail. That such 

studies are feasible at all is a tribute to innovative numerical techniques that solve the 

constraining equations iteratively and to the impressive speed of modem computers. 

However, our current computational capability has not quite reached the point where 

we can readily calculate resolution and covariance matrices to accompany our single, 

best-fitting solution (velocity model). To date, tomographic studies have bypassed the 

traditional formalism developed by geophysicists to evaluate the structure of the 

inverse problem and the reliability of its result. Approximate methods are employed 

instead. 

Hwnphreys and Clayton [1988] explore the resolution of an inversion by means 

of a synthetic test in which a velocity perturbation is introduced to one or more voxels 

(volume elements) in a region of interest. Using Fermat's principle, which holds that 

travel times calculated through the three-dimensional Earth are insensitive to changes 

in raypath, one may calculate the travel time residuals that would be produced by the 

synthetic anomalies without tracing rays in the 3-D model. The inversion of the syn

thetic data may be performed and the cells adjacent to the perturbed voxel examined 

for smeared and "ghost" images that are artifacts of the inversion. The result may be 

thought of as the response of the algorithm to an impulse introduced to the system and 

forms one column of the resolution matrix, that is non-symmetric. Hwnphreys and 

Clayton [1988] call this vector the "point spread function", distinguishing it from the 
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"resolving kernel" that is the corresponding row of the resolution matrix. Inoue et al. 

[1990] show a way to approximate the resolving kernel for one model parameter, as 

well as the corresponding row of the covariance matrix. The drawback of calculating 

a single row or column of the resolution matrix is that each interesting feature must be 

examined individually and a separate inversion performed for each. 

A similar, though more complete approach is to introduce a full model, so that a 

value is specified for every block, and invert the synthetic data generated through this 

model. With this method only a single resolution "value" is produced for each voxel. 

Each value may be regarded as a superposition of point spread functions. We are 

therefore unable to estimate a spread function, that would indicate the tradeoff in our 

resolution of one model voxel with others. Inoue et al. [1990] advocate a checker

board pattern in which adjacent voxels alternate between two extreme values. The 

approximate model image may then be compared to the starting model to identify 

regions with poorly recovered values. Spakman and Nolet [1988] use a harmonic 

function instead of a checkerboard pattern. Both test patterns share the advantage that 

a more complete sense of resolution for the model may be presented with just a few 

figures. Unfortunately, they also share the disadvantage that separate inversions must 

be performed for various input models with different wavelengths and amplitudes. 

Both patterns are parametric in the sense ~at we assume before. inversion that we have 

some idea of the spatial scale and amplitudes of interesting features of the real Earth. 

Impulse tests assume we know the location and amplitude of interesting features. Both 

methods require the same computation time as generating the best-fitting solution 

itself. 

Nolet and Snieder [1990] suggest a less time-consuming means of producing a 

resolving kernel with a reduced basis, produced by the LSQR algorithm. It is common 

for coefficient matrices in tomographic problems to be numerically singular, so the 

matrix is rank-deficient and the space may be spanned by a basis that is considerably 
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smaller in dimension than the original matrix. For each iteration of the LSQR algo

rithm a single search direction vector is produced. One must decide when a sufficient 

number of vectors have been produced to represent the solution to the desired degree 

of accuracy. In the absence of the singular value spectrum, this decision presents a 

serious problem. Scales [1989] offers a way to obtain the singular values from the 

tri-diagonal matrix also produced by the LSQR algorithm, but he points out that 

numerical round-off errors can produce erroneous entries in the set of singular values. 

Vasco [1991] presents an extremal bound approach to evaluating resolution and 

uncertainty in a tomographic inversion. Instead of finding the single model that is 

"best-fitting" in some sense, he finds the range of models that are consistent with the 

data. While this method is much different in its approach, it shares the computational 

drawbacks of "point spread function" methods mentioned previously. Each parameter 

must be considered individually and the computation time required for each voxel is 

comparable to the time required to find the entire best-fitting model. A subset of the 

model parameters could be examined but calculating bounds for every voxel is not yet 

feasible. 

Even if all these techniques produce excellent approximations to resolution or 

covariance matrices, some basic questions remain unanswered. What are these tomo

graphic models good for? Specifically, can they help us locate earthquakes more accu

rately? Can they help us constrain the composition of deep-Earth materials? Can they 

help us interpret the structure and scale of Earth's dynamic processes? In this paper 

we address only the last question. Rephrasing, we ask: If a particular pattern of flow 

exists in Earth's mantle and is reflected in the mantle's velocity structure, can that pat

tern be revealed by our tomographic imaging procedure? 
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3.2 Synthetic Experiments 

There are many reasons why an existing pattern in velocity may not be observ

able seismically. The most obvious is that the amplitude of the anomaly is too small 

and is subsumed into the noise of the data. Second, approximations employed when 

parametrizing the model mantle and formulating the constraining equations might 

obscure a particular pattern. The finite size, shape, and distribution of cells in a voxel 

parametrization or pole orientation in a spherical harmonic series parametrization might 

not allow some patterns to be reproduced. Third, sampling of Earth by recorded 

seismic energy may be insufficient to show particular patterns. Plots of ray coverage 

for tomographic inversions show that large areas of Earth are either unsampled or 

under-sampled. In a sense, completely un sampled regions, provided they are small, are 

less of a problem than are regions in which sampling is inadequate to constrain model 

parameters sufficiently. Anomalies localized in one region or depth layer may be 

smeared into adjacent voxels or appear as "ghost" images elsewhere in the model as 

artifacts of the inversion. Some combination of these factors and others may conspire 

to obscure even the dominant patterns of heterogeneity in Earth. So what sorts of pat

terns can be revealed by seismic tomography and, equally important, what sorts of pat

terns are preferentially revealed by seismic tomography? 

We investigate these questions with the set of experiments diagrammed in figure 

3.1. We start by parametrizing our model mantle into approximately equal-area blocks 

of uniform velocity perturbation, 5° x 5° at the equator and varying thickness (see 

table land figure 3.2). To construct a synthetic data set based on real ray coverage of 

the mantle, we extract 45,000 events from the ISC data set, January 1964-January 

1987, for each of which there are a minimum of 25 reported arrivals. We construct 

summary rays in order to minimize the effects of grossly redundant ray coverage and 

to filter out the effects of heterogeneity on a scale too small to be resolved by our vox

els. After forming summary rays, the details of which are not relevant to this study, 
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our number of data are reduced from more than three million "actual" rays to about 

726,000 summary rays. Further details of both data preparation and inversion pro

cedure can be found in Pulliam et al. [1991]. Figure 3.3 shows the power contained 

in spherical harmonic expansions for each layer of the distribution of "hits", i.e., the 

number of times each cell is visited by rays, provided by the ray coverage of our data 

set. We calculate surface spherical harmonic series expansions by integrating around 

the globe for each coefficient, rather than by fitting coefficients to model values by 

least-squares. In this way, coefficients are independent of each other and coefficient 

values are independent of the point of truncation of the harmonic series. That is, 

coefficients do not change if the series expansion is calculated a second time with a 

different number of terms. The associated Legendre polynomials are fully normalized, 

i.e., 

pt(cosO) = [(2-lim ,0)(21 + 1) ~::: ~: r Pt(cos 0), 

Figure 3.4 shows the power contained in spherical harmonic expansions of the sum of 

ray segments sampling each voxel. These series basically represent the coefficient 

matrix, which is the true weight applied to each model parameter in the inversion. 

The quantities expanded here are simply the column sums of the coefficient matrix. 

We first introduce a simple spherical harmonic pattern into a single layer by 

allowing one term of the series to have a non-zero coefficient and recombining har

monics to find values for each voxel (step 1). At this point (step 1a) we check the 

effects of our model parametrization by immediately re-expanding our test model into 

spherical harmonics and examining the coefficients. Next (step 1b) we check the 

effects of our null coverage by zeroing out cells that are not sampled by rays in our 

data set and then expand the resulting model in spherical harmonics. Some smearing 

will necessarily occur and this simple result shows us the filter through which we view 

all of our results from global inversions with real data performed with our model 
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parametrization. The first re-expansion indicates degradation due to our block 

parametrization; another sort of velocity representation might suffer more or less than 

ours. The second re-expansion basically reflects the limitations of the ISC data set. 

Subsets extracted by other workers from the ISC master set will differ slightly, as indi

vidual decisions regarding data acceptability differ, but ultimately the ray coverage in 

each data subset will be similar. 

In step 2 we calculate a synthetic data set of travel time residuals. Invoking 

Fermat's principle, which holds that travel times of seismic rays are insensitive to 

changes in raypath, to first order, we assume that the raypaths calculated through our 

starting, one-dimensional velocity model will persist unchanged in the presence of the 

three-dimensional anomaly. We may then calculate the perturbation in travel time that 

the introduced anomaly would contribute to each ray and replace the vector of real 

travel time residuals with the newly calculated vector and perform an inversion as 

detailed in Pulliam et al. [1991] (step 3). Finally, we expand the resulting voxel 

model in spherical harmonics and compare the power at each degree and in each 

model layer with the input spherical harmonics (step 4). We repeat these steps for 

more complex harmonic patterns, with and without added noise, using the results of 

previous seismic investigations of the mantle as guides to choosing patterns. 

3.3 Results and Discussion 

We choose test patterns based on the results of Pulliam et al. [1991]. These 

results are summarized, for the purposes of this paper, in figures 3.5 and 3.6. Figure 

3.5 shows the power in series expansions of each layer as a function of angular degree. 

The top two layers appear relatively devoid of power at the lower degrees despite the 

strong concentration of ray coverage in the northern hemisphere and in continental 

regions, which are distributed primarily in I = 1, 2, and 4 patterns. However, in the ' 

400-670 km layer 1 = 1, 2, 3, and 6 dominate. The finding of a large 1 = 2 component 
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confinns previous reports, but to our knowledge, no other study has shown the equally 

prominent I = 1 and 3 components. In the mid-mantle power is more or less evenly 

distributed across the harmonic terms. The exception is in the depth layer 1270-1470 

kIn, where the I = 1 harmonic appears strongly and the I = 2 and 3 components rise 

above the higher-degree harmonics. These components clearly are responsible for the 

unexpected power total of this layer. 

Since sign information is not included in power calculations, figure 3.5 does not 

offer any clues as to how the distribution patterns fpr all layers combine constructively 

or destructively to form a pattern for the whole mantle. Figure 3.6 shows the power in 

the spherical harmonic expansions averaged through the whole mantle and through the 

upper and lower mantle separately. The average is performed on the the individual 

harmonic coefficients, weighted at each layer by the square of the layer mid-point's 

radius, which normalizes the power in each layer to the layer's surface area. For the 

upper mantle the power spectrum shows a dominant I = 6 component, along with 

prominent I = 2, 5, 12, and 13 terms. The I = 1 power for the upper mantle is low, 

simply reflecting the results in figure 3.5 which show the I = 1 components of the first 

two layers to be small. However, in the lower mantle the same component is unex-

pectedly low, given the large values in several of the individual layers. This may 

mean the I = 1 component is poorly resolved in the lower mantle and trades off 

between layers in our model. In general, high power in harmonic degrees of the upper 

mantle coincide with high power in the same degrees of the lower mantle, though rela

tive amplitudes once again point to the concentration of heterogeneity in the upper 
f 

mantle. Degrees 2, 5, and 12 dominate the expansion averaged through the whole 

mantle. Surprisingly, degree 6 appears as a minimum even though its power dom

inates the top layers and contributes significantly to the lower mantle's total. From the 

relatively low power of the whole-mantle average compared to the separate lower- and 

upper-mantle averaged series, it is clear that either one part of the real mantle is 
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compensating for anomalies in the other part or our inversion scheme is trading off 

power between the lower and upper portions of our model mantle. The possibility of a 

numerical tradeoff in our inversion is investigated with these experiments. 

3.3.1 Single Harmonics 

When we include arrivals whose epicentral distances extend all the way back to 

0° our intention is to allow better ray coverage of the upper mantle which, in turn, 

would permit us to image structure in that region. One problem with this strategy is 

that coverage is generally limited to regions which contain both sources and stations, 

typically these are tectonically-active continental regions. Although the ray coverage 

of the top layer is the least complete in the mantle, it is unique in the quality of its 

sampling. The many short rays which sample the top layer allow us to determine the 

contributions of individual voxels well, while the poorly sampled voxels contribute a 

moderate amount and the unsampled ones contribute not at all. Only in the top layer 

are some cells sampled individually, without being subject to trade off with other 

parameters, or sampled in small groups, trading off between just a few parameters and 

in many cases not trading off with any voxels below. Another problem arises from the 

extreme heterogeneity in the upper mantle and crust, which has been documented by 

other studies. Heterogeneity that has a coherent wavelength of less than about 550 km 

will not be seen in our results. This oversight should not affect our investigation of, 

and results for, longer wavelengths, but we should keep in mind that we may be miss

ing the dominant forms of heterogeneity' and concentrating on patterns that are less 

strong. The most serious problem arises from errors in travel time data for the upper 

mantle. The jumps in the mantle's spherically-symmetric velocity profiles at the 400 

km and 670 km discontinuities cause triplications in the P travel time curve in the epi

central distance range 15° to 25°. The presence of more than one arrival on a seismo

gram at these distances frequently results in misidentifications of phases and contami

nation of the P database. This contamination is visible in increased variance of the 
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travel time residuals as a function of epicentral distance in the range 15° to 25°. Our 

purpose here is to explore the limitations in resolution due to the geometrical structure 

of the inverse problem, not to analyze the errors in the data. Gudmundsson et al. 

[1990] present an elegant analysis of the incoherency inherent in ISC P-arrival data. 

In the top layer, 0-200 lan, we examine the I = 3, m = 0 harmonic (figure 3.7a). 

The amplitude of the input pattern is quite large compared to amplitudes we might 

expect to find in the real Earth. For the moment we are most concerned with the 

redistribution of input anomalies and do not want these results to be obscured by ran

dom noise or systematic errors. In these first tests, of single harmonic input patterns, 

no noise has been added to the synthetic residuals. A set of experiments more realistic 

with respect to amplitudes follows the tests of single harmonics. The series terms 

combined on our model grid and re-expanded with contributions from all voxels (Le., 

with "ideal" ray coverage) degrade the pattern very slightly (figure 3.7b). When vox

els with no ray samples are zeroed out ("null coverage"), the re-expansion degrades 

quite a bit further but is still more than adequate to identify the pattern (figure 3.7c). 

Only 60% of the input power is contained in blocks that have nonzero sampling. This 

value represents the maximum we can hope for our inversion to return; anomalies 

placed in voxels that are not sampled cannot be recovered. 

Figures 3.8a-c show the results of an inversion performed with a set of synthetic 

travel time residuals produced by estimating the delays caused by the introduced I = 3 

velocity anomaly. Though the pattern in the Pacific and Atlantic oceans and the 

Southern hemisphere is poorly retrieved, this simple pattern is still recognizable in the 

top layer (figure 3.8a). Portions of this same pattern are just barely discernible in the 

second layer (figure 3.8b), to which no anomaly was introduced. By the third layer 

the pattern is gone, though traces of stray anomalies are observed. 

Though visually compelling as representations of the input pattern's distortion, 

these figures do not facilitate a quantitative analysis of the redistribution of power by 
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our inversion scheme. Figures 3.9a and 3.9b are more helpful for this purpose. Figure 

3.9a, analogous to figure 3.7a, shows the power input to the model's first layer and the 

re-expansions with ideal and null ray coverage. Figure 3.9b shows that the power 

returned by our test inversion is overwhelmingly concentrated in the 1 = 3 term, but 

significant aliasing to other hannonics occurs. The largest-amplitude aliased harmonic 

is the 1 = 4 term, immediately adjacent to the anomalous term on the short-wavelength 

side of the power spectrum. This is a tendency we observe throughout these tests. 

The largest-amplitude smearing is generally to the next larger degree, followed by 

smaller-amplitude smearing to the next larger degree and so on. The 1 = 3 harmonic 

is also smeared downward slightly to adjacent layers, though not significantly. Note 

that the 1 = 1 harmonic returns nearly devoid of power, despite the strong bias of our 

ray sampling to that term (see figure 3.4). The total power returned in our inversion's 

top layer comprises 0.136 (kmlsec)2 of the 0.151 (kmlsec)2 introduced to sampled 

voxels. Of this layer's total power, just over a third is contained in the 1 = 3 com

ponent. However, the lower layers contain .022 (kmlsec)2. Thus the inversion 

slightly overestimates the power in the input model, which is unusual for tomographic 

inversions and is not the case for any but the top layer. We will discuss the problem 

of power estimation later. 

The 1 = 10 test for the first layer (figure 3.lOa) illustrates the effects of our model 

parametrization and incomplete ray coverage on inversion results for shorter 

wavelength features. When re-expanded with ideal ray coverage, the input power of 

the 1 = 10 term is underestimated by nearly 20%, though the total power in the re

expanded series comprises 95% of the input. The expansion of just the sampled vox

els contains only 60% of the input power. Figure 3.lOb shows results similar to those 

of the 1 = 3 test, including aliasing to other hannonics in the same layer and slight 

smearing to the 1 = 10 harmonic in lower layers. The total power contained in the 

1 = 10 test inversion comprises 75% of the sampled blocks' input. 
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An entirely different story is told by tests of our model's second layer, 200-400 

kIn. In the expansion using only sampled voxels the 1 = 2 harmonic alone contains 

64% of the input power, though the entire series contains 75% of the input (figure 

3.lla). Inversion results show significantly less aliasing of power to other terms in the 

same layer, but significantly more power is smeared to the layers above and below the 

anomalous region. Testing the 1 = 4 harmonic in the second layer (figures 3.l2a and 

b) gives results similar to the 1 = 2 test. The 1 = 4 input harmonic is of the same 

amplitude as the 1 = 2 anomaly (figure 3.l2a), but the re-expansion of the combined 

series with "ideal" ray coverage shows that even at this relatively low degree, the 

uneven nature of our model parametrization has a deleterious effect. As one moves 

from the equator to Earth's poles the voxels subtend greater and greater longitudinal 

angles in order to have approximately the same surface area as other voxels in the 

same layer (see figure 3.1). Ultimately this construction of voxels will limit the 

wavelength that our parametrization can resolve. Aliasing to other harmonics in layer 

tw.o is more extreme than with 1 = 2, but the smearing to layers above and below is 

not quite as strong. An explanation for this smearing might be that the conditioning 

we apply to rows of the coefficient matrix and vector of travel time residuals down

weights the rays that bottom in the second and third layers. This conditioning is the 

inverse variance of the travel time residuals as a function of epicentral distance and 

reduces the effective weight given to rays emerging at about 15° to 25° because of 

these residuals' large variance. However, were it not for results in layers one and 

three, which show far less smearing in depth, the results for layer two would be 

expected and even encouraging. Poor depth control in the upper mantle with body

wave tomography can be accepted and explained easily by geometrical arguments 

involving crossing versus parallel rays. One might argue that our inclusion of rays all 

the way back to 0° gains us little because we are forced to downweight these contribu

tions based on the scatter of residuals, but our results for layer one and the impressive 
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lateral control (absence of aliasing) in figure 3.11 argue otherwise. The power total for 

the layer 2, I = 2 test inversion is only 30% of the power contained in sampled voxels, 

far short of the 90% and 75% found for the tests in which I = 3 and I = 10 were 

introduced to the first layer. The 30% for I = 2 and 39% for I = 4 found here are 

more characteristic of the totals found for subsequent tests and actually make more 

sense than values approaching 100%. Tomographic inversions typically deal with a 

poorly conditioned system of constraining equations and the model space of solutions 

is quite large. Additional prejudices must be added in order to find (or define) a 

unique solution. We employ a minimum norm criterion and also apply a smoothing 

operator which reduce the variability of our voxel values. Our dilemma requires choos

ing between a generally smooth model and a model which fits the data exactly. As a 

result, the model we pick from the set of acceptable solutions has both a small norm 

and low variability b~tween adjacent voxels. It is reasonable to believe that this model 

will generally underestimate the power contained in the real Earth, or in a simulated 

Earth input to our inversion scheme. We could easily pick other models from ,the 

range of least squares solutions that overestimate actual power, but we do not currently 

know how to specify a unique model that estimates actual power accurately and is 

physically plausible. 

We choose four single harmonics to test for the transition zone, 400-670 km. 

These are I = 2, due to its prominence in the results of previous studies [e.g., Masters 

et al., 1982, Romanowicz et al., 1987, Inoue et al., 1990, Vasco et al., 1990, and Pul

liam et al., 1991], I = 4, due to its intriguingly small value in figure 3.5, I = 6, 

because of its moderately large value in figure 3.5 and its constructive behavior when 

several layers in the upper mantle are averaged, and I = 12, in order to test the resolu

tion of our model parametrization at higher degrees. Figure 3.13a shows the input pat

tern for the I = 2 pattern introduced to the transition zone and the re-expansions with 

all' voxels contributing, first, and with only the sampled voxels contributing, second. 



115 

The pattern is returned almost exactly when all voxels are incorporated. Of course, 

this result is not unique to this layer since it does not depend on ray coverage. The 

power lost with un sampled voxels amounts to just 15% of the input. Figure 3.13b 

shows the power contained in the inversion performed with synthetic residuals. The 

pattern is indeed returned as I = 2, with some smearing to adjacent layers above and 

below but with more aliasing to other degrees within the same layer. Interestingly, 

I = 1, 3,5, and 6 all show equivalent power, but I = 4, which also shows small values 

in studies of the real Earth, returns a relatively small component. The structure of the 

problem seems to discourage placing power in the I = 4 degree. Although the largest 

harmonic, I = 2, is returned as 0.04 (km Isec)2 the total power contained in the entire 

model is 0.07 (km Isec )2. This total represents about 30% of the power contained in 

sampled voxels. 

Results for the I = 2 harmonic test suggest we perform a similar test for the I = 4 

degree in the same layer. At I = 4 the parametrization interferes with the full recovery 

of the input harmonic, but only slightly (figure 3.14a). Likewise, the re-expansion per

formed with un sampled voxels set to zero reveals 80% of the input power is returned 

to the I = 4 component, but small amounts are returned to adjacent degrees, for a total 

of 88% of the input in the harmonic series. More surprising results turn up in the 

inversion of synthetic residuals (figure 3.14b). While significant power is aliased to 

other harmonics within the same layer and some power is smeared to the I = 4 har

monics above and below the anomalous layer, very little power appears elsewhere in 

the model. The total power in the output model is 43% of the power input to the sam

pled voxels, comparable to the 36% retrieved in the I = 2 case. The harmonic that 

shows the most power other than I = 4 is I = 5, which fits the tendency noted above 

to move power to the next higher harmonic. Here that tendency is observed even 

though the I = 5 component appears with a relatively small value in a model produced 

for the mantle with real data (ISC5 _ LSQR, presented in Pulliam et al., 1991. In short, 
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the I = 4 component would be expected to show up noticeably if it exists in the transi

tion zone of the real Earth, but would be preferentially aliased to the I = 5 hannonic. 

The fact that neither of these hannonics appears significantly in our mantle models, 

coupled with these experiments, leads us to believe the I = 4 hannonic is not 

significant in the mantle's pattern of heterogeneity. 

Results for a test of I = 6 in the second depth interval (figures 3.15a,b) are nearly 

identical to the I = 4 results. 44% of the sampled voxels' input is returned to the 

inverted model. The next higher harmonic, I = 7, benefits most from the inversion's 

. misplacement of power. Smearing upward and downward in depth is minimal and the 

pattern contained in the output model is unambiguously recognizable as the input pat

tern. Figures 3.5 and 3.6 indicate that I = 6 is a large component of heterogeneity in 

the upper mantle and the results shown here, combined with results described below 

for a more general test, suggest that an existing I = 6 pattern should be clearly 

. revealed in an inversion. 

Pushing our model parametrization to the limits of its resolution with a spherical 

hannonic representation, we test the 1 = 12 hannonic in the transition zone (figures 

3. 16a,b). The most drastic degradation of the input pattern occurs when the series is 

recombined to the model grid and re-expanded with all voxels' contributions (figure 

3.16a). Only 76% of the input power is contained in the I = 12 component of this 

second series, though 93% is contained in the entire series. In contrast, the loss due to 

un sampled pixels is only an additional 8% of the input I = 12 power. The test inver

sion results (figure 3.16b) show that more power is moved to the next higher hannonic 

than is observed for any other component, though the I = 12 signal still achieves a 

value comparable to the I = 2 signal in its test for this layer. In this case, however, the 

signal-to-ghost ratio has dropped considerably, to 2.5. Though absent here, in the 

presence of systematic and random data errors and more complex patterns of hetem-
I . . 

geneity, the I = 12 component may approach or exceed the resolvability limit of our 
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model parametrization and ray coverage. We explore this resolvability in the presence 

of random errors and complex heterogeneity in the next section. 

3.3.2 A Higher;.order I = 2 Pattern in the Upper Mantle 

Modeling of heterogeneity in the upper mantle with free oscillations [e.g., Mas

ters et al., 1982] and surface waves [e.g., Romanowicz et al., 1987] reveals an 

anomalously large I = 2 harmonic component. In addition, tomographic studies of 

body waves also point to an important degree two component [e.g., Inoue et al., 1990; 

Vasco et al., 1990; Pulliam et al., 1991]; yet some disagreement remains about the 

depth range at which this pattern of heterogeneity is most dominant. Masters et al. 

[1982] localize the pattern to the transition zone, 400-670 Ian. Romanowicz et al. 

[1987] find a similar pattern at 300-400 Ian depth. The body wave studies all suggest 

the transition zone is the most likely location, but special considerations concerning 

ray coverage and the determination of raypaths in the upper mantle lead us to wonder 

how strong is our radial control of velocity anomalies in the upper mantle. We pursue 

this question with two experiments in which we place the best-fitting pattern found by 

Masters et al. [1982] in the 200-400 Ian layer, first, and in the 400-670 Ian layer, 

second, and perform separate synthetic tests for each case. Figures 3.17a and 3.17b 

show recombined Mollweide projections of the input pattern and the re-expansion with 

ideal coverage, respectively. Figure 3.18 shows the same information for the harmonic 

series before they are recombined for presentation in figures 3.17a and 3.17b. Here we 

show the amplitudes, rather than power, of the spherical harmonic series coefficients. 

Due to the confusing concentration of information in this figure, only power will be 

shown in figures for subsequent tests. This long-wavelength pattern is retrieved almost 

exactly when re-expanded with ideal ray coverage (figures 3.17b and 3.18). However, 

since the ray coverage in the upper mantle is so incomplete, the re-expansions with 

null ray coverage show some degradation of the input pattern. Figures 3.17c and 3.18 

show the null coverage re-expansion for the 200-400 Ian layer; figures 3.17d and 3.18 
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show the 400-670 Ian layer. The highs and lows are recovered adequately even in the 

southern hemisphere. Only the portions with amplitudes near zero and values in oce

anic regions are poorly recovered. The deeper layer, which has more complete ray 

coverage, shows a more faithful facsimile of the input, though both layers' results are 

acceptable. 

Inversion results for the 200-400 Ian layer are far superior to the 400-670 Ian 

results, particularly with regard to depth control. For the 200-400 Ian layer ·(figures 

3.19 and 3.20) the B i coefficient is well-recovered, as are all coefficients but Ai, 

which nearly disappears. A great deal of aliasing to higher harmonics within the same 

layer occurs and the power smeared to the 400-670 Ian layer reaches nearly the same 

level as the power recovered in the 200-400 Ian interval. In contrast, when the pattern 

is input to the 400-670 Ian depth layer (figures 3.21 and 3.22) the inversion returns 

both a more faithful reproduction better confined to the input layer. Higher harmonics 

in the same layer receive less of the prodigal power and the anomalies transferred to 

adjacent layers above and below are smaller in amplitude than are the smeared 

anomalies in the 200-400 Ian case. 

3.3.3 Coherent Patterns in the Upper Mantle 

To test whether a coherent pattern of heterogeneity for the upper or lower mantle 

is recoverable, we must first choose the pattern to test. Our guide to this choice is 

figure 3.6, in which the results for an actual inversion are averaged over the top three 

layers (0-670 Ian depth) for the upper mantle and the bottom eleven layers (670-2898 

Ian depth) for the lower mantle. For the lower and upper mantle we choose two test 

patterns each, all of which are drawn from the results shown in figure 3.6. In each 

case, the first test deals with a pattern that appears prominently in the actual results 

and the second test considers' a pattern that generally shows low power in the actual 

inversion. The amplitudes of these input coefficients are drawn from actual inversion 
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results. Figure 3.23a shows the input pattern for the first test of the upper mantle, the 

series averaged over the top three layers of the ideal coverage re-expansions, and the 

average formed from series re-expanded with actual ray coverage. Also shown are the 

averaged outputs from test inversions performed with and without random noise added 

to the synthetic travel time residuals. The added noise follows a two-sided exponential 

distribution with variance adjusted to match the variance of actual residuals calculated 

(approximately) through model ISC5_LSQR of Pulliam et al. [1991]. Figure 3.23b 

shows the patterns re-expanded for each layer with ideal and actual ray coverage. 

Note the increase in power contained in each series with increasing depth. This trend 

reflects the greater number of voxels sampled in each layer at greater depths, though it 

does not reflect the increasing homogeneity with depth of ray coverage among sampled 

voxels. The total power in the re-expansion with ideal ray coverage is 96% of the 

input; the re-expansion with actual coverage, representing the best inversion results we 

can hope to obtain, totals 72%. The inversion results contain 80% of the total power 

in sampled voxels, for the case without noise, and 96%, for the case with noise. 

Whereas the addition of exponentially-distributed noise to an inversion procedure that 

minimizes the 12 norm of the residuals clearly influences the total power contained in 

output models, the spherical harmonic patterns generated in each case are nearly ident

ical (figure 3.23c and 23d). The largest values are returned in the topmost layer, 0-200 

Ian. Again, this is not a complete surprise since the epicentral distance range of our 

rays extends to 00
, which allows some portion of these rays to bottom in the upper

most layer. The greatest aliasing to adjacent harmonics occurs in the top layer. This 

may be due to the extremely uneven ray sampling in this layer; one voxel under 

Europe is visited more than 20,000 times by our set of rays while large portions of the 

oceans, particularly in the Pacific and the southern hemisphere, are not sampled at all 

and many voxels are sampled by just a few rays. Still, the input harmonics return with 

power two to three times that of the closest ghost harmonic, clearly dominant and 
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unambiguous when compared to the real anomalies' nearest neighbors. The second 

layer, 200-400 km, of figures 3.23c and 3.23d show the same disturbing effect with 

respect to the layers above and below. Power is consistently underestimated in this 

layer, although the power ratio of real to ghost harmonics is higher than for the top 

layer. This effect may be due to a defect in our one-dimensional starting model, a 

modified Jeffreys-Bullen P-velocity model {Jeffreys, 1960], which contains no discon

tinuities. Many studies have pointed to the need for sharp jumps in velocity at 400 km 

and 670 km depth; one effect of these discontinuities on our initial ray tracing would be 

that first arrivals would commonly be from waves refracted at the discontinuities. 

Fewer raypaths would have their turning points in the 400-670 km depth layer in a 

model with discontinuities. With respect to the real Earth our rays probably oversam

pIe the 400-670 km layer at the expense of the 200-400 km layer. The 400-670 layer 

in figures 3.23c and 3.23d show the best ratios of actual to ghost harmonics of all 

three upper mantle layers. The amount of smearing to layers below the three per

turbed layers is small. fully an order of magnitude below the values returned for actual 

perturbations. The tendency to alias power upward, rather than downward in the spec

trum, is observed even for the I = 2 harmonic, despite the strong I = 1 component of 

the ray coverage expansions (figures 3.3 and 3.4). 

The second test for the upper mantle, shown in figures 3.24a-d, considers a pat

tern that appears in actual results with small power. The ratios of maximum power of 

inputs to outputs and total power of inputs to outputs are quite similar to those found 

in the first upper mantle test (compare figures 3.23a and 3.24a). Similarly, the increase 

in power recovered when noise is added to the synthetic data mirrors the increase 

found previously and the portions of signal lost due to incomplete ray coverage follow 

the percentages established in the first test (figure 3.24b). The output patterns tell a 

slightly different story, however. Once again the second layer recovers the minimum 

power total, though the discrepancy is not nearly so drastic, and the third layer shows 
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the cleanest signal (figure 3.24c). Aliasing to shorter wavelengths occurs in all layers, 

though the dominant occurrence is again in the 0-200 km depth layer. The I = 8 har

monic is barely distinguishable from the noise in the top layer, and only reliably 

retrieved in the 400-670 km depth range. The smearing of power downward in the 

mantle appears to be a greater problem for these harmonics; though surprisingly the 

aliased power propagates more strongly than the perturbed harmonics. Particularly 

worrisome is the I = 2 component, which does not exist at all in the input pattern but 

appears significantly in the 670-870 km depth layer. There it reaches one-third the 

power of the largest harmonic recovered in the layer above. The addition of noise 

(figure 3.24d) generally degrades the signal to ghost power ratio for the perturbed 

layers, smears power from perturbed harmonics downward from the 400-670 km layer 

to the 670-870 km layer, and reduces the power of the ghost I = 2 component in this 

lower mantle layer. The addition of noise to the synthetic data apparently obscures a 

structural tendency of the inverse problem to funnel power to the I = 2 harmonic. 

3.3.4 Lower Mantle 

The first test for the lower mantle considers the I = 2, 7, and 12 harmonics 

(figures 3.2Sa,b,c and d), which appear with relatively large power when model 

ISC5 _ LSQR is averaged over the lower mantle (figure 3.6). The input pattern is taken 

directly from the model ISCS LSQR and the same constructive pattern seen 

throughout the lower mantle model is introduced to each of the eleven layers spanning 

the depth range 670 km to 2998 km. The re-expansions of the input pattern for ideal 

and null ray coverage, shown averaged over all layers in figure 3.25a, and for indivi

dual layers in figure 3.2Sb, show only slight degradation of the input pattern. The 

total power contained in the eleven lower mantle layer expansions with ideal coverage 

comprises 96% of the power contained in the input series. The total power contained 

in the null coverage expansions (figure 3.2Sb) amounts to 95% of the input. Again 

tests with and without added noise were performed and the two inversions (figures 
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3.25c and d) show the noise to have the same effects demonstrated in the upper mantle 

tests. Amplitudes of recovered harmonics differ, but the redistribution of power, the 

effect relevant to our purpose here, is the same for each inversion. The residuals' vari

ance is reduced by nearly 85% in the noise-free case, while the noisy data show only a 

10% variance reduction. Figures 3.25c and d show good recovery of the 1 = 2 har

monic, though some power is smeared into the upper mantle layers and the lowermost 

layer, D", is very poorly imaged. Again it is surprising that almost no power is aliased 

to the 1 = 1 term even though the ray coverage shows a strong 1 = 1 component. 

Some power is alia sed to the 1 = 3 term, though not very much. The 1 = 7 term 

aliases power in both directions in the power spectrum, with an apparently greater ten

dency to move power upward to I = 8. Recovery of the higher harmonics drops off 

with depth, simply as a result of the decreasing ratio of the small wavelengths of the 

higher harmonic patterns to depth. Still, the 1 = 7 harmonic is recoverable in the 

depth range 2470-2670 Ian but is indistinguishable from noise in D". This must be an 

effect of inadequate ray coverage rather than wavelength, in contrast to the 1 = 12 har-:

monic which drops into the noise at about 2270 Ian depth. As discussed earlier, this 

layer suffers from poor ray coverage because we restrict our epicentral distance range 

to less than 96°. 

A second test for the lower mantle considers a pattern that appears at low power 

in model ISC5 _ LSQR. Harmonics I = 1, 4, 8, and 11 are introduced with the same 

procedure described for the first lower mantle test (figure 3.26a). Because of the fairly 

complete ray coverage of the lower mantle, 95% of the input power is contained in the 

re-expanded series of sampled voxels' contributions. Figure 3.26b shows the full 

recovery of power for all layers but the 670-870 Ian and the 870-1070 Ian layers. The 

inversion for noise-free data (figure 3.26c) returns 37% of the sampled voxels' input 

power to its spherical harmonic series. The inversion for noisy data (figure 3.26d) 

returns 52%. The inversion results for noise-free and noisy data show more aliasing of 
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power to other hannonics in the second lower mantle test than in the first lower mantle 

test (compare figures 3.26c,d to figures 3.25c,d). Though the pattern is clearly recog

nizable in each case, the spurious hannonics in the second test return with much 

greater power than do the spurious peaks in the first test. We infer from this result 

that the pattern that appears prominently in inversions of real data is probably retrieved 

reliably, but stands out with relatively high power because other patterns, such as the 

one introduced in our second lower mantle test, are not retrieved as reliably. 

3.3.5 Lowermost Mantle 

A last test considers the pattern of heterogeneity found in the lowermost mantle 

by Dziewonski [1984] and contained in the P-velocity model L02.56. We extract only 

the dominant hannonic components which correspond to our deepest two layers, 

2470-2670 ian and 2670-2898 ian. Model L02.56 documents deviations from PREM, 

a different radial average than our starting model, and so our adoption of this pattern is 

not rigorously correct. However, these tests are intended as examples and the particu

lar patterns tested and the amplitudes of these patterns are not critical to the effects we 

wish to investigate. Figures 3.27a and 3.27b show the input patterns to the 2470-2670 

kIn and the 2670-2898 km layers, respectively. Figures 3.27c and 3.27d show the re

expansions with null ray coverage for the same layers. These re-expansions are nearly 

identical to the re-expansions with ideal coverage. While the ray sampling of the 

mantle's two deepest layers is nearly complete, in the sense that nearly every voxel is 

sampled, the quality of sampling in terms of strength of constraints placed on model 

values is quite poor. This is partly due to our restriction of rays to less than 96° and 

partly due to the fact that each ray that samples the lowermost mantle also samples 

many voxels in the remaining portions of the mantle. The two layers considered here 

comprise just 8% of the mantle's volume. Figures 3.3 and 3.4 document the uneven 

sampling for these two layers compared to the rest of the mantle. Figure 3.28a shows 

the input power contained in the 1 = 2 and 1 = 6 hannonics only, and the re-
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expansions for ideal and null ray coverage. The re-expansions return 99% and 98% of 

the input power, respectively. The test inversion for noise-free data (figure 3.28b) 

returns an entirely inadequate image for the lowermost layer. Only 4.5% of the power 

input to sampled voxels is recovered. While the 1 = 2 component is recognizable 

above spurious signals, its power is fully two orders of magnitude below the input, and 

just a factor of three above the 1 = 3 ghost harmonic. The 1 = 6 component is not 

recognizable above the power of aliased harmonics. Recalling results for the 1 = 7 

harmonic in the bottom layer of the first lower mantle test, we know that this result is 

due partly to the diminished resolvability of shorter wavelengths with depth. Another 

contributor is the poor ray sampling in this layer. The layer just above, 2470-2670 

lan, returns much more power to the I = 2 component, but this level is still an order of 

magnitude less than the input power. Again, the I = 6 component is not distinguish

able from spurious peaks. Results for an inversion of noisy data (figure 3.28c) are 

similar to the noise-free results, although instead of drastically underestimating the 

input power the total power in the output model exceeds the input by 25%. Results of 

the noisy inversion for the bottom four layers are shown as recombined patterns in 

figure 3.29. Power in the southern hemisphere is particularly underestimated and the 

breadth and details of the input pattern are not recovered. Only general features of the 

1 = 2 pattern are recognizable; details of the shorter-wavelength I = 6 pattern have 

been lost. Clearly, our inversion results for the lowermost mantle are not reliable. 

3.4 Conclusions 

We find that while the unique ray sampling of our top layer allows us to recover 

the power input to a particular pattern of heterogeneity, the pattern itself is poorly 

determined in this layer. This result confirms our intuitive expectation. Sparse sam

pling of the spherical harmonic pattern results in a poor fit of the series to the data. In 

contrast to .the top layer, a pattern in the 200-400 lan layer is more precisely deter

mined, though the power contained in the pattern is consistently underestimated and 
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more leakage to the first and third layers occurs. The transition zone, 400-670 km, 

shows similarly strong control of lateral heterogen~ity patterns but tests return a more 

accurate estimate of input power than for the second layer. Lateral control of hetero

geneity patterns is nearly as strong as lateral control in the lower mantle. The 

I = 2, 4, and 6 components all are recovered accurately in the 400-670 km layer. This 

supports previous findings from inversions with real data that I = 2 is a significant pat

tern of heterogeneity in the mantle's transition zone, and that I = 4 is not a significant 

pattern. For the upper mantle, I = 6 appears to be a dominant, constructive pattern. 

Similarly, the clear recovery of an I = 1 pattern and absence of aliasing to this pattern 

from other harmonics confirms the absence of an I = 1 component in the 0-200 km 

and 200-400 km layers, and the reliability of a strong I = 1 component in the 400-670 

km layer of model ISC5 _ LSQR. 

The I = 1 component in the lower mantle is also recovered reliably. Model 

ISC5 _ LSQR contains a large I = 1 component through the transition zone, changes 

sign at about 1100 km depth, increases in amplitude through the mid-mantle, then 

decreases in amplitude and again changes sign at about 1900 km depth. An examina

tion of I = 1 coefficients for each layer of our lower mantle test does not reveal the 

change of sign which appears in model ISC5_LSQR. Nor does such a change of sign 

occur for any other harmonic. The ISC5 _ LSQR result apparently cannot be explained 

as an artifact of our inversion procedure or ray coverage. These tests also demonstrate 

the inability of our inversion scheme to retrieve shorter-wavelength features in the 

lower mantle. Results of inversions with real data for our lowermost layer, D", must 

be considered suspect due to the inadequate constraints placed on model values by our 

ray coverage. 

The approach to evaluating the resolvability of mantle features presented here is 

specific to large-scale, coherent patterns of heterogeneity. Short wavelength features 

such as rift and subduction zones are considered, in a general sense, because their 
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large velocity contrasts contribute significant power to the long wavelength patterns of 

mantle heterogeneity. However, there will be additional effects due to scattering of 

short wavelength seismic energy which will diminish our capacity to image these 

features by means of body-wave, travel time tomography. Snieder et al. [1991] con

duct a detailed study of the effects these small-scale features have on the splitting of 

normal modes and the consequences of scattering for global inversions performed with 

normal mode data. In addition, complications due to poor data quality will further 

degrade our inversion results. Nevertheless, our approach can help to evaluate the use

fulness of global tomographic results as modeling constraints in geodynamics, to 

confirm the patterns produced by inversions of real data, and to identify patterns that 

must be viewed with skepticism. 
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3.6 List of Tables 

Table 3.1 Details of the model parametrization and the sampling provided by our 

data set Include are the average number of hits for sampled voxels in each 

layer along with the the average sum of ray segments in a voxel at a given 

depth and the number of voxels sampled in each depth interval. These aver

ages include only voxels which have non-zero sampling. 

3.7 List of Figures 

Figure 3.1 Flow chart outlining the steps performed in the series of experiments. 

Figure 3.2 The model mantle is parametrized as approximately equal-area voxels, 5° 

x 5° at the equator and generally 200 km thick, for a total of 22,876 voxels. 

Figure 3.3 Power in the spherical harmonic expansions of ray samples ("hits") of 

voxels for each depth interval as a function of angular degree. All values are 

normalized to the maximum value appearing in the figure. Numbers on the 

right refer to the maximum power for each layer. 

Figure 3.4 Power in the spherical harmonic layer expansions of the column sums of 

our coefficient matrix, A, indicating the total sampling of each voxel by our 

data set. 

Figure 3.5 Power in the spherical harmonic expansions of model ISC5~LSQR for 

each depth interval as a function of angular degree. 

Figure 3.6 Power in spherical harmonic series generated by averaging ISC5 _ LSQR 

layer expansions through the whole mantle and through the upper and lower 

mantle separately. 

Figure 3.7 a) The spherical harmonic I = 3, m = 0 pattern introduced to the 0-200 

krn layer of our model. The amplitude of the A f coefficient is 0.25 km/sec. 

(b) The pattern produced after the input series is recombined onto our model 
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grid and re-expanded using values from all voxels ("ideal" ray coverage). (c) 

The re-expansion using only values for voxels which are sampled by our data 

set ("null" ray coverage). 

Figure 3.8 The results of an inversion performed with a set of synthetic travel time 

residuals produced by estimating the delays caused by the introduced I = 3 

velocity anomaly are shown. The top three layers are shown sequentially from 

top to bottom: 0-200 kIn, 200-400 kIn, and 400-670 kIn. 

Figure 3.9 a) The power contained in the spherical harmonic series presented in 

figure 3.7 on Mollweide projections is presented here in more detail. At the 

top is the power of the spherical harmonic I = 3 pattern introduced to our 

model's top layer. In the middle is the power contained in the spherical har

monic series produced after the input series is recombined and re-expanded 

with ideal ray coverage. At bottom is the re-expansion with null ray coverage. 

b) Power in the spherical harmonic expansions for selected layers of a model 

produced by inverting synthetic data generated with our input heterogeneity 

pattern. 

Figure 3.10 a) The I = 10 power introduced to the 0-200 kIn layer (top), the re

expansion with ideal ray coverage (middle), and the re-expansion using only 

sampled voxels (bottom). b) Power contained in the spherical harmonic layer 

expansions of our layer 1, I = 10 test inversion results. 

Figure 3.11 a) The I = 2 power introduced to the 200-400 kIn layer (top), the re

expansion with ideal ray coverage (middle), and the re-expansion using only 

sampled voxels (bottom). b) Power contained in the spherical harmonic layer 

expansions of our layer 2, I = 2 test inversion results. 

Figure 3.12 a) The I = 4 power introduced to the 200-400 kIn layer (top), the re

expansion with ideal ray coverage (middle), and the re-expansion using only 
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sampled voxels (bottom). b) Power contained in the spherical harmonic layer 

expansions of our layer 2, I = 4 test inversion results. 

Figure 3.13 a) The I = 2 power introduced to the 400-670 Ian layer (top), the re-, 

expansion with ideal ray coverage (middle), and the re-expansion using only 

sampled voxels (bottom). b) Power contained in the spherical harmonic layer 

expansions of our layer 3, I = 2 test inversion results. 

Figure 3.14 "a) The I = 4 power introduced to the 400-670 Ian layer (top), the re

expansion with ideal ray coverage (middle), and the re-expansion using only 

sampled voxels (bottom). b) Power contained in the spherical harmonic layer 

expansions of our layer 3, I = 4 test inversion results. 

Figure 3.15 a) The I = 6 power introduced to the 400-670 Ian layer (top), the re

expansion with ideal ray coverage (middle), and the re-expansion using only 

sampled voxels (bottom). b) Power contained in the spherical hannonic layer 

expansions of our layer 3, I = 6 test inversion results. 

Figure 3.16 a) The I = 12 power introduced to the 400-670 Ian layer (top), the re

expansion with ideal ray coverage (middle), and the re-expansion using only 

sampled voxels (bottom). b) Power contained in the spherical harmonic layer 

expansions of our layer 3, I = 12 test inversion results. 

Figure 3.17 Recombined Mollweide projections of (a) the higher-order degree 2 pat

tern of Masters et al. (1982) input to our experiment, (b) the re-expansion with ' 

ideal coverage, and the null coverage provided by (c) the 200-400 Ian depth 

layer and (d) the 400-670 Ian layer. 

Figure 3.18 Amplitudes of individual series coefficients in the layer expansions of 

the higher-order I = 2 test pattern. Coefficients are grouped in pairs: [Ar, Br]. 

Recall that the Blo coefficient is always zero. 
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Figure 3.19 Recombined Mollweide projections of the output from a test inversion 

in which the higher-order I =2 pattern is introduced to the 2()()-400 km layer. 

Results shown are for the depth intervals (a) 0-200 km, (b) 200-400 km, and 

(c) 400-670 km. Note the change of scale from the input patterns (figure 3.17). 

Figure 3.20 Series coefficients in the top five layers' expansions of the inversion 

results for the test in which the pattern is introduced to the 200-400 km layer. 

Figure 3.21 Recombined Mollweide projections of the output from a test inversion 

in which the higher-order I =2 pattern is introduced to the 4()()-670 km layer. 

Results shown are for the depth intervals (a) 200-400 km, (b) 400-670 km, and 

(c) 670-870 km. 

Figure 3.22 Series coefficients in the top five layers' expansions of the inversion 

results for the test in which the pattern is introduced to the 400-670 km layer. 

The output anomaly is more completely confined to the anomalous input layer 

than is the output of the 200-400 km test (figure 3.20). 

Figure 3.23 a) At the top is the power of the spherical harmonic pattern input for 

our first upper mantle test to all three upper mantle layers of our model. Next 

is the power contained in the spherical harmonic series after the input series is 

recombined onto our model grid and re-expanded using values from all voxels 

("ideal" ray coverage). Third is the average of the re-expanded series for each 

layer using only values for voxels which are sampled by our data set ("null" 

ray coverage). Fourth and fifth are the series expansions averaged over all 

three layers of the test inversions using synthetic data without noise and with 

noise, respectively. b) Power in the re-expansions for all three layers individu

ally using ideal ray coverage (top) and null coverage (bottom). c) Power con

tained in the layer series expansions of our test inversion using noise-free syn

thetic data. d) Power contained in the layer series expansions of our test inver

sion using synthetic data with noise which follows a two-sided exponential 
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distribution. 

Figure 3.24 Figure captions are the same as for figure 3.23 for the second upper 

mantle test. 

Figure 3.25 a) At the top is the power of the spherical harmonic pattern input for 

our first lower mantle test to all 11 lower mantle layers of our model. Second 

is the power contained in the spherical harmonic series after the input series is 

recombined onto our model grid and re-expanded with ideal ray coverage. 

Third is the average of the re-expanded series for each layer using null ray 

coverage. Fourth and fifth are the series expansions averaged over all 11 layers 

of the test inversions using synthetic data without noise and with noise, respec

tively. b) Power in the re-expansions for all 11 layers individually using null 

coverage (bottom). c) Power contained in the layer series expansions of our 

test inversion using noise-free synthetic data. d) Power contained in the layer 

series expansions of our test inversion using synthetic data with added noise 

which follows a two-sided exponential distribution. 

Figure 3.26 Figure captions are the same as for figure 3.25 for the second lower 

mantle test. 

Figure 3.27 The pattern extracted from model L02.56 (Dziewonski, 1984) input to 

our experiment for (a) the 2470-2670 kIn layer, (b) the 2670-2898 kIn interval, 

and the re-expansions with null ray coverage for the same two layers: (c) 

2470-2670 kIn, (d) 2670-2898 kIn. 

Figure 3.28 a) The top two traces show the power of the spherical harmonic pattern 

input to the bottom two layers of our model. . The middle two traces show the 

power contained in the respective layer expansions after the input series is 

recombined onto our model grid and re-expanded with ideal ray coverage. The 

bottom two traces indicate the power contained in the respective layer 

J 
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expansions using null ray coverage. b) Power contained in the layer series 

expansions of our test inversion using noise-free synthetic data. c) Power con

tained in the layer series expansions of our test inversion using synthetic data 

with added noise which follows a two-sided exponential distribution. 

Figure 3.29 The results of our test inversion with a pattern extracted from L02.S6 

(Dziewonski, 1984) and introduced to our two lowermost layers. Noise follow

ing a two-sided exponential distribution has been added to the synthetic travel 

time residuals. The bottom four layers are shown: (a) 2070-2270 km, (b) 

2270-2470 km, (c) 2470-2670 km, and (d) 2670-2898 km. 



Table 3.1: Model layer depths and average voxel sampling 

Average Number 
Average voxel of % of Average _, 

Layer Depth range velocity volume voxels voxels number 
number (km) (kmIs) (107 km3) sampled sampled hits 

1 0-200 7.94 6.06 1195 73.1 1586 
2 200-400 8.58 5.67 1333 81.6 1342 
3 400-670 9.88 7.07 1494 91.4 1409 
4 670-870 10.95 4.82 1577 96.5 1261 
5 870-1070 11.40 4.49 1604 98.2 1149 
6 1070-1270 11.68 4.16 1627 99.6 991 
7 1270-1470 11.96 3.85 1631 99.8 881 
8 1470-1670 12.24 3.55 1632 99.9 816 
9 1670-1870 12.51 3.26 1634 100.0 753 

10 1870-2070 12.76 2.98 1634 100.0 675 
11 2070-2270 13.01 2.72 1634 100.0 604 
12 2270-2470 13.24 2.46 1634 100.0 494 
13 2470-2670 13.47 2.22 1634 100.0 395 
14 2670-2898 13.64 2.26 1626 99.5 179 

-_._--

Average 
column 

sum of A 
(104 km) 

31.02 
25.97 
34.34 
27.38 
25.21 
21.29 
18.38 
16.96 
15.62 
13.79 
12.45 
10.04 
8.11 
3.68 

...... 
w 
~ 
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Figure 3.1 

1. Transform a spherical 
harmonic series to 
model blocks. 

1. (a) Re-expand with 
contributions 
from all blocks. 

1. (b) Re-expand with 
contributions only 

a from blocks which 
are sampled by 
rays. 

2. Calculate a synthetic 
data set. 

3. Invert the synthetic f 

data set. 

4. Expand the block model 
in spherical harmonics. 

+ 
5. Compare series found in step (4) 

to series found in steps 1 (a) and 1 (b) 
and input series. 
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Figure 3.2 
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Figure 3.7 

(a) 

(b) 

(c) 

-0.1 
velocity (km/s) 

0.1 



142 

Figure 3.8 
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Chapter 4 

A Simultaneous, Tomographic Inversion of ISC Travel-Time 

Residuals for Mantle P velocity, Source Mislocations, 

and Station Corrections 

4.1 Introduction 

Attempts to image the three-dimensional seismic heterogeneity of Earth's mantle 

differ in their approaches to parametrizing the model mantle and in their formulation 

and solution of the constraining equations. Popular model parametrizations include 

regionalization of the crust and mantle based on geographical association with surface 

tectonic processes, spherical harmonic series expansion of the anomalous velocity field, 

cubic splines, and division into a number of non-overlapping blocks. No one 

parametrization has been demonstrated to be clearly superior to the others. The bias 

inherent in a tectonic regionalization makes such a scheme inappropriate for studies of 

-- the lower mantle, uneven and incomplete ray coverage makes it useful for studies of 

the upper mantle. Spherical harmonic expansions and cubic splines require fewer 

terms to describe a model to the same level of detail as a block parametrization, but do 

not offer the blocks' geometrical simplicity. With independent block parameters, one 

may examine the ray sampling, resolution, and covariance of a geographical location 

more easily. 

In addition to differences in model parametrization, studies differ in their con

struction of the system of equations to be solved and the numerical methods employed 

to solve them. Early efforts to map the three-dimensional velocity structure of Earth, 

all of which use a block parametrization, were limited in their structural detail by 

numerical methods that calculate the explicit inverse of the coefficient matrix. Those 

methods allow the formal calculation of covariance and resolution matrices to evaluate 
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the reliability of the model, but severely restrict the number of parameters available to 

describe the model due to limitations of existing computers. Increased detail became 

_ possible when iterative, approximate techniques were employed to solve the system of 

constraining equations. The cost of this increased detail was that resolution and 

covariance could not be calculated formally and presented alongside the mantle model. 

Several means to approximate resolution and covariance were developed in conjunction 

with SIRT backprojections and other methods. For example, some workers calculate a 

"point spread function", a column of the non-symmetric resolution matrix, and invert 

model error distributions to investigate the propagation of errors in the data through 

the algorithm to the solution. Others perform an inversion for a set of anomalies, each 

of which extends beyond the bounds of a single voxel, distributed throughout the 

model as a means to evaluate resolution. 

While global studies performed to date vary in their methods for obtaining model 

solutions and in their approaches to parametrizing the model, the data involved in each 

study of P-velocity are nearly identical. Since 1964, the International Seismological 

Center has collected seismic arrival times from around the world. They employ these 

times in a sophisticated procedure in which times are associated into "events" and the 

events are located with P-arrival times and the one-dimensional, Jeffreys-Bullen (I-B) 

travel time tables and a standard least-squares technique [Adams et al., 1982]. For the_ 

purposes of seismic imaging and accurate location of events, the geographical distribu

tion of sources (earthquakes and large explosions) and seismographic stations, that so 

far are loc~ted almost exclusively on continents, is unfortunate. With the oceans 

nearly empty of stations, large portions of Earth, particularly in the southern hemi

sphere, are poorly sampled by recorded seismic energy, and event locations are inade

quately constrained geometrically. Also, using the one-dimensional J-B model, which 

has known deficiencies in its representation of the spherically averaged structure of 

Earth in addition to its inability to account for lateral velocity variations, produces 
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inaccurate event locations. The problems surrounding these inaccuracies in source 

locations form a central concern of this thesis. 

In this chapter we use ISC P-arrival data from January 1964 through January 

1987 (frontispiece) and the LSQR algorithm to solve for a three-dimensional P-velocity 

model of the mantle, source mislocations, and station corrections. Reliability of our 

model is checked by approximate means, and the models produced by Dzi~wonski 

[1984], Clayton and Comer [1983; Hager and Clayton, 1988], and Inoue et a/. [1990] 

provide valuable comparisons. Our study differs from Clayton and Comer's [1983; 

Hager and Clayton, 1988] in that we use the LSQR algorithm instead of the SIRT 

algorithm to solve the constraining equations, and that we solve for source and station 

terms simultaneously. In contrast to Dziewonski [1984] who parametrizes the model 

mantle with spherical hannonics, and solves the equations with the generalized inverse, 

we use a block parametrization and the LSQR algorithm. Inoue et al.'s [1990] pro

cedure severely downweights outliers, while ours does not. The consequences of 

disregarding outliers are discussed more fully later in this chapter. Also, we solve for 

source and station terms differently than Inoue et a/. [1990], use summary rays formed 

from the entire data set instead of using subsets consisting of actual rays, and perform 

the model smoothing differently. A companion study to this one, undertaken by Vasco 

et al. [1990] with the same data set, considers the case in which the 11 norm of the 

travel time residuals is minimized, rather than the 12 norm. The former case more 

closely approximates Inoue et al.'s [1990] treatment of outlying residuals than the 12 

minimization performed in this chapter. 

4.2 Method 

4.2.1 Model Parametrization 

The starting model used in this study is a one-dimensional, spherically-symmetric 

P-velocity model modified from Jeffreys [1960]. Modifications to the Jeffreys 
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velocity model were necessary to obtain a model consistent with the J-B travel-time 

tables [Jeffreys and Bullen, 1940]. These modifications are small but important 

because they remove a systematically slow trend for the mid-mantle from the model 

published by Jeffreys and make the model more consistent with the tables, that are 

used by the the ISC to find source locations. We use the modified J-B model rather 

than PREM [Dziewonski and Anderson, 1981] or the Herrin model [Herrin et al., 

1968], because in tests it provides equally accurate locations for sources with known 

hypocenters, and because using a model consistent with the J-B tables, that are used by 

the ISC to locate the events, eliminates the need to relocate all events in a new velo-

city model. 

Our three-dimensional model is parametrized with approximately equal-area 

volume elements (voxels), 5° by 5° laterally and 14 shells, generally 200 km thick, for 

a total of 22,876 voxels (see figure 4.1 and table 1). The exceptions to the 200 km 

thick shells occur in the upper mantle, in order to place a radial boundary at the 670 

km discontinuity, resulting in a 270 km thick shell, and above the core-mantle boun

dary, where the lowermost shell is 228 km thick. 

We write the vector of travel time residuals for a single event as the sum of three 

terms: 

at. = t fJbs - t ~alc = c;t J:iypo + c;t '!Wdel + at ~talion 
J J J J J J' 

(4.1) 

where the length of all vectors, mj' is equal to the number of arrival times reported for 

the /h event. The hypocentral term itself has four contributions: so 

(4.2) 

where 

ti = the travel time for the i th ray, 

ah 1. = origin time correction for the /h event, 
J 
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Bh2. = latitude correction for the ph event, 
J 

Bh 3. = longitude correction for the ph event, 
J 

Bh4. = depth correction for the ph event, 
J 

i = 1,2, ... ,mj; j = 1,2, ... ,ne , 

mj = the number of arrival times for the ph event, 

ne "= the number of events in the data set 

In matrix notation, 

BttrYpo = H· ~h· 
J J U J' (4.3) 

where 

at· 
(HjJ)j = a~ = matrix of source mislocation partial derivatives, 

I = 1,2,3,4, 

Bh j = vector of hypocenter corrections for event j. 

The "model" term in equation (4.1), Btjdel, represents the deviation of travel 

times predicted by our starting velocity model, c (r) from travel times through Earth's 

actual velocity structure, e (r), for the ph event. For single travel time residual, 

BtFeI
, we assume that our starting velocity model is within a few percent of the true 

structure and seek to reconcile the discrepancy by solving for the perturbation term, 

B model f ds I ds 
ti ~ Sj e (r) - Sj c (r) 

::: (- - -)ds 1 
1 1 

j e (r) c(r) 

::: - I Be (r) ds , 
Sj c2

(r) 

(4.4) 
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where Si is the path of the i th ray through the starting velocity model, c (r) . 

We represent the velocity perturbations as a finite linear combination of "basis" 

functions, 

n 
ac(r) = L'Ykfk(r), (4.5) 

k=l 

and choose a set of local basis functions in which the medium under investigation is 

divided into no.n-overlapping cells, or voxels. Following Nolet [1987], let 

if r is in cell k 
elsewhere (4.6) 

Our choice of a local basis is arbitrary in many respects. We prefer the block 

parametrization to a series representation because it allows a more accurate assessment 

of ray sampling of Earth and the resulting coefficient matrix is quite sparse. This 

sparseness may be exploited to solve the matrix problem efficiently. Fewer terms are 

required to describe the model to the same level of resolution with the global spherical 

harmonic basis (fewer by up to an order of magnitude), but the coefficient matrix in 

the spherical harmonic case is dense. 

An expression for the travel time perturbations in terms of velocity perturbation 

basis functions results: 

(4.7) 

where 

A. =-j fk(r) ds. 
ik A ( )2 

Sj C r 

In matrix form, 

~tmodel = A 'Y. (4.8) 
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The "station" tenn of equation (4.1) includes errors in observed travel time resi

duals resulting from incorrect observations, such as instrument errors and systematic 

phase mispicks or misidentifications at a particular station, or from inaccuracies in the 

starting model near the station that occur on a scale too small to be resolved by the 3-

D model parametrization. We express these contributions to the travel time residual as 

where 

if k = station number 
if k :¢: station number, 

J.!.k = the station correction for the eh station. 

(4.9) 

Substituting equations (4.3), (4.8), and (4.9) into equation (4.1), we find the prob-

lem we wish to solve is 

~t = A 'Y + H ~h + S ~J.!., (4.10) 

where 

at E R Mxl = vector of travel time residuals, 

A E RM><np = matrix of ray segments in voxels, 

'Y E R""XI = vector of coefficients in the expansion of perturbations 

to the starting model, 

H E R Mx4n
• = matrix of partial derivatives for all events, 

, 

ah E R 4n. xl = vector of perturbations to the hypocenters, 

S E R Mxn
, = matrix of partial derivatives for stations, 

~ R n xl f' . uJ.!. E ' = vector 0 statIon correctIons, 

M = number of data (reported arrivals), 
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ne = number of events, 

np = number of model blocks, 

ns = number of reporting stations. 

4.2.2 Simultaneous vs. Progressive Inversion 

At this point we may combine matrices into a single, partitioned matrix and solve 

for all parameters simultaneously, or take advantage of the problem's natural separa

tion into three distinct classes of parameters and solve for each class progressively. 

Each approach has its appeal. Simultaneous inversion is simpler conceptually and 

requires fewer computational operations, but deals with a much larger matrix 

(O(M x np + 4ne + ns )), so it demands more core memory, even in row-active imple

mentations. Further, due to the different nature of the parameters to be estimated and 

their differing scales, results are very sensitive to the scaling applied to the coefficient 

matrix. Progressive inversion, on the other hand, enables us to exploit the natural 

separation of the matrix problem to solve for each set of parameters in a step-wise 

fashion, reducing demands for core memory and eliminating the need for careful scal

ing of parameter classes. This approach follows Pavlis and Booker [1980], Spencer 
. , . 

and Gubbins [1980], Jordan and Sverdrup [1981], Kennett and Williamson [1988] 

and O'Connell and Johnson [1991], among others, and allows a more detailed analysis 

of resolution and uncertainty in the determination of mislocation terms than would be 

practical otherwise. Unfortunately, the projections involved for each source misloca-

tion matrix tend to fill in elements in originally sparse coefficient matrices, which 

increases the computation time required to solve the complete problem and increases 

disk-access time for row-active algorithms. This last point is critical for global-scale 

problems involving large data sets and large numbers of model parameters. Still, each 

method is feasible for problems involving matrices of the order 106 x let. Preliminary 

results of a progressive inversion algorithm have been presented [Pulliam and 
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Johnson, 1989b], as well as synthetic tests of the algorithm [Pulliam and Johnson, 

1989a] (see chapter 2). 

4.2.3 Simultaneous Inversion 

Here we choose to combine the three coefficient matrices and solve for all param

eters simultaneously, i.e. 

(4.11) 

or 

Gx = ~t, (4.12) 

where 

and 

/ 

H and S are first scaled so that each row has the same euclidean norm as the same 

row of A. 

Equation (4.12) presents us with a classical linear inverse problem. Typically, the 

M xN coefficient matrix, G, will have many more data than parameters (M >N) and, 

given that errors are contained in the data, the equations will almost surely be incon

sistent. As a criterion for minimizing the misfit of parameters to data we choose the 

euclidean (12) norm, resulting in the least squares problem: 

Min IIGx - ~t1l2 = Min (Gx - ~tl (Gx - ~t). (4.13) 
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This is not a simple choice. Strictly, least-squares is most appropriate for problems 

involving a Gaussian distribution of errors. When applied to such a distribution, 

least-squares produces the maximum likelihood solution to the linear matrix equation. 

However, residuals contained in ISC travel time data are not clearly Gaussian [Ruland, 

1984; Vasco et aI., 1990]. More observations are found in the distribution's tails than 

one would expect in a Gaussian distribution. We may transform the entire matrix 

problem to one involving a Gaussian distribution of residuals by applying a set of 

weights to rows of the problem (4.12). These weights may be obtained through uni

form variance reduction analysis of the original vector of residuals, at [Jeffreys, 

1939; Ruland, 1986]. Alternatively, we can remove the bulk of the blunders and gross 

random errors by truncating the distribution. We choose to truncate the summary resi

dual distribution (figure 4.7) at ±7 seconds. This truncation value assures us we will 

not discard too many reliable observations and, as a test of whether we are keeping too 

many unreliable observations, we apply the uniform variance reduction method to our 

truncated set of residuals. After inverting the sets of modified and unmodified sum

mary residuals, we find differences in velocities for individual voxels on the order of 

0.01 %. Apparently the outliers are sufficiently few in number, relative to the central 

portion of the distribution, that the influence they exert on the final model is minor. 

Analysis of a set of travel time residuals to which corrections for a three

dimensional .model are applied reveals that their distribution may be more similar to a 

two-sided exponential than a Gaussian. If this is true, minimizing the 11 norm would 

be more appropriate than 12 minimization. Since the 11 norm is less sensitive to 

outliers in the distribution of residuals, gross errors in the dataset -- due to mis

identification of phases, mis-readings of time codes, faulty instruments, and source 

mislocation, for example -- would be less likely to propagate through the inversion to 

the model. On the other hand, some of the outlying residuals in the tails of the distri

bution constitute real and significant data, indicating relatively large velocity 
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differences between the real earth and our starting model. Ray tracing from "calibra-

tion" events, sources with known locations, produce travel time residuals amounting to 

5 seconds or more at some stations. Providing the residuals resulting from the more 

extreme velocity anomalies in the real earth do not violate the assumptions under 

which we linearized the originally nonlinear travel time problem, these data are the 

ones we wish to emphasize in the inversion, not the extreme errors or the minor devia

tions clustered around zero. Both 12_ and II-minimization approaches warrant our 

attention in order to compare resulting models. The II-minimization is pursued in a 

companion study by Vasco et al. [1990] using the same dataset. 

From here on our development parallels the development of the inverse problem 

in chapter 2. Ultimately we arrive at the modified set of equations 

[~] = [&]x. (4.14) 

where 

G = WdGWx , 

b = Wdat, 

x=W X x I 

subject to the minimization of IIx1l2. Our estimate of W d comes from the standard 

errors of ISC travel time residuals as a function of epicentral distance. Assuming the 

data are independent, we form the diagonal matrix 
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1 
0 0 

0'1 

0 
1 

0 
0'2 

0 
Wd= 

o o 

M = number of rays in the data set, 

O'i = standard errors of ISC travel time residuals, 

i = 1,2, ... ,M. 

Our estimate of W x is 

where 

Ii = th~ length of the i th ray segment in voxel k, 

, 
Vk = the volume of the kth voxel, 

nk = the number of ray segments in the k'h voxel. 

We solve these equations with the LSQR algorithm. 

4.3 Data 

4.3.1 Data Selection 

The data inverted in this study were obtained from the catalog of the International 

Seismological Centre (ISC) for the period January 1964 through January 1987 (frontis

piece). To avoid contamination of our mantle phases by Earth's core we limit the 
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range of our coverage to epicentral distances between 0° and 96°. The confusing 

scatter caused by refractions from the 400 km and 670 km discontinuities at about 15° 

to 25° is dealt with in the inversion process by weighting each summary ray by the 

inverse of the standard deviation of travel time residuals as a function of delta. A sin

gle event must have a minimum of twenty-five reporting stations, and source depths as 

reported by the ISC must be greater than 0 km and less than 70 km. We discard all 

events located by the ISC at Earth's surface, but retain events located at the other 

default depths. All observations are corrected for ellipticity by integration along the 

raypath. Travel time residuals are formed by subtracting the time calculated by tracing 

rays through the spherically-symmetric starting velocity model from the observed time 

corrected for ellipticity. Ray tracing is performed by a shooting method involving the 

direct numerical integration of the eikonal equations with an integration scheme that 

checks the local error at each integration step. Lengths of ray segments in voxels are 

found by integrating distance along the curved raypath and finding the intersections of 

rays with voxel boundaries. Rays associated with residuals greater than seven seconds 

are discarded. Approximately 3.02 million rays satisfy these criteria. Figures 4.2 and 

4.3 show the locations of the selected events and seismographic stations, respectively. 

We examined histograms of travel time residuals associated with events assigned 

by the ISC to five different default depths, 0, 5, 10, 15, and 33 km, and compared the 

residual distributions for these events to the residual distribution of remaining events. 

Due to a problem with our FORTRAN subroutine, ISC records in which the source 

depth was left blank defaulted to zero source depth. Although the residual distribution 

shows a clear bimodal pattern, we were unable to distinguish reliably between true, 

zero-depth locations and blank-depth locations after the data had been extracted from 

the ISC master set. For this study we discarded all events with source depth equal to 

zero. However, histograms for the four remaining default depths are indistinguishable 

from the histogram for all remaining events, so we cannot justify culling events with 
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source depth = 5, 10, 15, or 33 kIn. A histogram of the culled data set is shown in 

figure 4.4 along with the first four moments of the travel time residual distribution 

4.3.2 Summary Rays 

Summary rays were formed as composites of rays that sample nearly the same 

portion of Earth. Bins consist of 2° by 2° voxels divided into seven depth intervals of 

10 kIn each, for a total of 71,904 bins. Residuals of rays emanating from and ending 

in the same two bins are averaged into a single, summary ray. These bins are quite 

small, even compared to our model voxels. The result is a set of summary rays in 

which most are composed of very few actual rays, typically two or three. We apply 

no minimum cutoff, so nearly half of the resulting rays consist of just a single ray, not 

a composite at all. By constructing summary rays we seek to reduce the redundancy 

of the data set, in order to mitigate the effects of nonuniform sampling of Earth on our 

final model, and remove variations in travel times due to heterogeneity on a scale 

smaller than our velocity model parametrization. At the same time we would like to 

preserve as much of the original variation of residuals as possible. We wish to allow 

the inversion algorithm to reconcile the discrepancies in travel times, rather than 

remove these discrepancies in a pre-processing step. This approach allows us to evalu

ate the performance of our algorithm using test cases that better represent the true case 

of inconsistent and erratic travel times in Earth. Figures 4.5 and 4.6 show the loca

tions of summary events and summary stations. 

Our final data set consists of a total of 725,993 summary rays emanating from 

5,986 summary events. Figure 4.7 (compare to figure 4.4) shows the mean, variance, 

and skewness of the data are reduced significantly by constructing summary rays. 

However, the statistics of the two distributions are not directly comparable because we 

truncate the summary residuals at ±7 seconds. Compared to the distribution of actual 

residuals, the distribution of summary residuals is slightly more like a Gaussian 
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distribution, as indicated by the sizes of its tails, and slightly less like a two-sided 

exponential, as indicated by a comparison of cumulative distributions, than is the dis

tribution of actual residuals. Ultimately, the residuals remaining after three

dimensional structure is accounted for will resemble a two-sided exponential distribu

tion more closely than a Gaussian. 

4.3.3 Ray Coverage 

Figures' 4.8a-f show the distribution of ray segment lengths that make up our 

coefficient matrix, A. These values consist of column sums, indicating the total sam

pling of each individual voxel by the data set used in this study. In the absence of a 

weighting matrix, W x' that balances the column norms, results of an inversion would 

be expected to follow this pattern quite closely. Figure 4.8a shows the clear demarca

tion of plate boundary source regions that are well-sampled. Asia, North America, 

Europe, and Australia are also well-sampled. In contrast, other regions tend to be quite 

poorly-sampled. There are also large oceanic areas that are completely unsampled by 

our data set. These voxels do not enter into the inversion. The next depth layer, figure 

4.8b, shows a broadening of the well-sampled regions and a slight reduction of the 

un sampled oceanic areas. At 400-670 Ian and 670-870 (figures 4.8c and 4.8d) these 

trends continue, and by the mid-mantle (figure 4.8e) virtually all voxels are sampled. 

In general, sampling becomes more homogeneous with depth, and at the bottom of the 

mantle (figure 4.8f) the sampling is much more uniform than in the first layer. How

ever, in absolute numbers the sums of ray segments in voxels decrease with depth, 

even as more voxels are sampled in each layer. Table 4.1 details the average number 

of hits for sampled voxels in each layer along with the the average sum of ray seg

ments in a voxel at a given depth and the number of voxels sampled in each depth 

interval. These averages include only voxels that have non-zero sampling. The trends 

in Table 4.1 show that while homogeneity of sampling increases with depth, voxels 

tend to be less frequently and less heavily traversed by recorded seismic rays. Note in 
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all six figures the strong bias toward the northern hemisphere and toward continents. 

As we will discover in our treatment of resolution and covariance, the uneven mantle 

sampling translates directly into uneven constraints and resolution for our final model. 

3.4 Stochastic vs. Deterministic Analysis 

Gudmundsson et al. [1990] show that there exists a'minimum level of stochastic 

noise in the ISC data set below which we cannot expect to resolve structure and which 

casts doubt upon the reliability of schemes such as ours to resolve the apparently small 

velocity anomalies in the lower mantle. This noise might arise from reading or instru

ment errors or very small-scale structure in the upper mantle that causes multi-pathing, 

or a breakdown of the ray approximation in general. However, Gudmundsson et al.'s 

[1990] analysis indicates the level at which the behavior of travel time residuals 

becomes non-systematic is well below the starting level of our data. For the scale of 

our model blocks, 5° x 5°, their figures show maximum extrapolated variances of 

somewhat greater than 2 sec2 at the distance range contaminated by reflections from 

discontinuities, 15° to 25°, and averaging slightly less than 1 sec2 outside this range. 

In contrast, our residuals average variance is 3.1 sec2 for the raw travel time residuals, 

which is reduced. to 2.6 sec2 after the formation of summary rays and 2.1 sec2 after 

inversion. Our variance values are not consistent with those of Gudmundsson et al. 

[1990] because they choose to truncate the residual distribution at 4 sec, whereas we 

truncate at 7 sec. Clearly, even if half the original variance in travel time residuals 

cannot be accounted for by our inversion method, the half that can be accounted for is 

substantial and significant Gudmundsson et al. [1990] note as well thatthe signal to 

random noise ratio in the teleseismic ISC P-wave data is about SIN=2. Their other 

results elegantly confirm previous indications that upper mantle structure is 

significantly more heterogeneous than mid- and lower-mantle structure. These results 

do not stand in the way of imaging lower mantle structure, where that structure is 

comparable in amplitude to upper mantle heterogeneity, with the portions of the travel 
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time residuals that do vary systematically. 

4.4 Resolution and Uncertainty 

Equally important to producing a seismic velocity model is a thorough investiga

tion of the reliability of that model. We need to evaluate the "resolution," the image 

of an input model as seen through the "filter" of the inverse method, and the "uncer

tainty," the errors contained in our output resulting from errors in the input data that 

propagate through the inversion. For a discrete problem of the form (4.14) in which 

the data contain Gaussian errors, the estimate of uncertainty takes the form of an a 

posteriori covariance matrix [Tarantola, 1987], 

The resolution matrix is then 

R = Cm e;T Cite;. 

(4.15) 

(4.16) 

However, due to the large numbers of data and model parameters required to 

image Earth's interior to a useful level of detail, formal calculation of covariance and 

'resolution matrices has been beyond our computational capacity. Calculation of reso

lution and covariance matrices in tomographic inversions have been necessarily 

approximate and incomplete, and a number of methods have been developed to evalu

ate a tomographic model's reliability. 

4.4.1 Approximating Resolution 

Humphreys and Clayton [1988] explore the resolution of an inversion by means 

of a synthetic test in which a velocity perturbation is introduced to one or more voxels 

in a region of interest. Using Fermat's principle, which holds that travel times calcu

lated through the three-dimensional Earth are insensitive to changes in raypath, one 

may calculate the travel time residuals that would be produced by the synthetic 

anomalies without tracing rays in the 3-D model. Synthetic data is constructed with 
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the same raypaths as the original data set and the same model parametrization. The 

synthetic data is inverted and the voxels adjacent to the perturbed voxels examined for 

smeared and "ghost" images that are artifacts of the inversion. The result may be 

thought of as the response of the algorithm to an impulse introduced to the system, 

and forms one column of the resolution matrix, which is non-symmetric. Humphreys 

and Clayton [1988] call this vector the "point spread function," distinguishing it from 

the "resolving kernel" which is the corresponding row of the resolution matrix. One 

limitation of this approach is that the anomalies are introduced in the span of the 

parametrization, and the resulting estimate of "resolution" may therefore be mislead

ingly high. 

Figures 4.9-4.14 show point spread functions for six voxels. A 5% velocity ano

maly is introduced at (17°S, 178°W, 600 km depth) beneath the Tonga subduction 

zone (figure 4.9a), and an inversion returns a value of 3.7% for the anomalous voxel 

(figure 4.9b). Note the relatively small leakage to adjacent voxels, indicating the 

region is well-resolved by our method. The maximum smeared anomalies occur in 

voxels directly above and below the perturbed voxel, at 0.7% and 0.6%, respectively. 

No other smeared anomaly exceeds 0.2%. A second impulse of 3%, shown in figure 

4. lOa, was placed beneath the New Hebrides subduction complex at (16°S, 166°W, 

900 km depth). The inversion returns a value of 2.1 % and neighboring voxels 

returned 0.4%, 0.1 %, 0.2%, and 0.1 % in the same layer (figure 4.lOb). Some streak

ing along raypaths to the south and north appears at low amplitudes. Both images of 

anomalies placed in subduction zones (figures 4.9b and 4.lOb) display the broadening 

and smearing with depth noted by Spakman et al. [1989] in simulated tests with a 

much finer model grid. Although the amplitudes of the smeared anomalies are quite 

small, the smearing is indeed systematic and apparently oriented along the dip of the 

subduction zone features we will discover later in our model. The voxels above and 

below return 0.2% and 0.6%, respectively. The voxel two layers below the introduced 



205 

anomaly returns 0.3%. 

The third and fourth tests examine negative anomalies. The first, shown in figure 

4.11a, is introduced to the first layer beneath the Hawaiian islands at (21.4°N, 158°W, 

70 Ian depth). The -3% anomaly is returned as -2.1 %, and the maximum spurious per

turbation, -0.66%, occurs in the voxel immediately below and to the west of the per

turbed voxel (figure 4.11 b). Note the smearing in this case into voxels to the west and 

east, which lie along common raypaths to sources in the northwest Pacific and to 

North America, respectively. This smearing results from poor geometrical constraint 

of the voxels beneath Hawaii; most arriving rays travel along parallel paths. An ano

maly beneath Iceland produces a similar smearing pattern to the east and west. A -4% 

anomaly at (65°N, 18°W, 70 km depth) (figure 4.12a) returns as -2.5% with a smeared 

value in the voxel just below reaching -1.5% and the voxel two layers below reaching 

-0.3% (figure 4.12b). Figure 4.13a shows a 3% anomaly introduced beneath central 

South America at (0°, 65 oW, 800 Ian depth). A value of 1.8% is returned by our 

inversion, with smeared values above reaching 0.4% and below reaching 0.3% (figure 

4.13b). A systematic smearing feature dips to the east, possibly along rays emanating 

from subduction zone events, but at very low amplitudes. A 4% velocity anomaly is 

introduced at (400 N, 85°W, 800 Ian depth) beneath the eastern North America (figure 

4.14a), and an inversion returns a value of 2.5% for the anomalous voxel (figure 

4. 14b). Here the leakage to adjacent pixels displays an interesting pattern. As we will 

see later, a significant anomaly appears in our model through the Carribbean and into 

central South America that corresponds to the smeared velocities shown here. As in 

other tests, the largest values appear in voxels directly above and below the perturbed 

voxel, both at 0.5%. No other value exceeds 0.2%. While the amplitudes of smeared 

values are small, the systematic error suggests we would not have strong control on 

the spatial extent of an actual anomaly and warns us to be cautious in the interpreta

tion of results in this region. In addition to the values returned to perturbed voxels 
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and their immediate neighbors, the test inversion produces several "ghost" images 

away from introduced anomalies. The largest of these amounts to 0.1 %, or one-tenth 

of the smallest value returned by the inversion for an introduced anomaly. 

Inoue et al. [1990] show a way to approximate the resolving kernel for one 

model parameter, as well as the corresponding row of the covariance matrix. The idea 

is to use the LSQR algorithm to solve 

-T-
G Gx· =e· J J' 

where ej is a vector whose /h element is 1, while all other elements are O. After Xj 

is found, the /h row vector, Yj of R is given by 

The drawback of calculating a single row or column of the resolution matrix is that 

each interesting feature must be examined individually with a separate inversion. The 

result is a visual representation of resolution presented in a number of figures that must 

be compared simultaneously to the model produced with real data. 

A similar, though more complete, approach is to introduce a full model, so that a 

value is specified for every voxel, and invert the synthetic data generated through this 

model. Inoue et al. [1990] advocate a checkerboard pattern in which adjacent voxels 

alternate between two extreme values. Let the model checkerboard pattern be 

where Cj = 1 or -1 and ~ is a scaling factor. Calculate the synthetic travel times from 

real sources to the real stations included in the data set (e.g., using the data kernel G), 

so 

Use the LSQR algorithm to solve for an estimate of mcb: 
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m b = f.lR~,.·e· = f.l~c·e· c p ~J J p~ J J' 
j j 

that is simply a superposition of point spread functions. The estimated model image 

may then be compared to the starting model to identify regions with poorly recovered 

values. Spakman and Nolet [1987] use a harmonic function instead of a checkerboard 

pattern. Both test patterns share the advantage that a more complete sense of resolu-

tion for the model may be presented with just a few figures. Unfortunately, they also 

share the disadvantage that separate inversions must be performed for various input 

models with different wavelengths and amplitudes. Both patterns are parametric in the 

sense that we assume before inversion that we have some idea of the spatial scale and 

amplitudes of interesting features of the real earth. Impulse tests assume we know the 

location and amplitude of interesting features. Both methods require the same compu

tation time as generating the best-fitting solution itself. 

Figure 4.15a shows our input checkerboard model. Values alternate between +0.3 

km/s and -0.3 km/s for adjacent voxels. Figure 4.15b shows the results for the top 

layer, 0-200 km. Well-resolved regions correlate strongly with good ray coverage 

(figure 4.8a), though continents are generally imaged more clearly than mid-ocean 

ridges. This discrepancy is probably due to better geometrical constraints on continen

tal voxels. At mid-ocean ridges, rays connecting to seismographic stations propagate 

more vertically than horizontally, thus rays sampling ridges tend to be parallel. Con

tinental voxels are generally sampled by a more complex set of criss-crossing rays that 

provide stronger constraints on the continental voxel's velocity. Checkerboard results 

for subsequent layers are incorporated into maps of our velocity model, which are 

shown in the next section. 

Nolet and Snieder [1990] suggest a less time-consuming means of producing a 

resolving kernel with a reduced basis, produced by the LSQR algorithm. It is common 

for coefficient matrices in tomographic problems to be numerically singular, so the 
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matrix is rank-deficient and the range space may be spanned by a basis that is consid

erably smaller in dimension than the original matrix. Each iteration of the LSQR algo

rithm produces a single basis vector of the range space. One must decide when a 

sufficient number of basis vectors has been produced to represent the solution to the 

desired degree of accuracy. In the absence of the singular value spectrum, this deci

sion presents a serious problem. Scales [1989] offers a way to obtain the singular 

values from the tri-diagonal matrix also produced by the LSQR algorithm, but he 

points out that numerical round-off errors can produce artifact entries in the set of 

singular values. We performed tests on a real, cross-hole tomographic problem in 

which the results of Scales' method were compared to singular values obtained via 

SVD and confirmed the deleterious effect of these errors, which do not allow the 

singular value spectrum to be produced reliably. 

Vasco [1991] presents an extremal bound approach to evaluating resolution and 

uncertainty in a tomographic inversion. Instead of finding a single model that is 

"best-fitting" in some sense, he finds properties of the range of models that are con

sistent with the data. While this method is much different in its approach, it shares the 

computational drawbacks of methods mentioned previously. Each parameter must be 

considered individually and the computation time required for each block is compar

able to the time required to find the entire "best-fitting" model. A subset of the model 

parameters could be examined, but calculating bounds for every block is not feasible. 

4.4.2 Approximating Covariance 

Attempting to evaluate covariance, we examine the distribution of travel time 

residuals and find that it more closely resembles a two-sided exponential distribution of 

deviates than a Gaussian, though it falls somewhere between the two [Vasco et ai" 

1990]. To investigate the propagation of these errors through the inversion procedure 

to the final model, we replace the vector of travel time residuals with a vector of 
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synthetic residuals that are distributed, in the first case, as a two-sided exponential and, 

in the second case, as a Gaussian. In each case, the variance of the random distribu-

tion after truncation is adjusted to the same level as that of the actual data. We per-

fonn 25 inversions with different residual vectors for each case and find corresponding 

"model" vectors, en, where n = 1, 25. An estimate of the model covariance may be 

obtained as 

c·· = 1- ~ e!'E~ 
IJ N ~ I J 

n=l 

where 

Ei = value for voxel i produced by inversion of errors. 

Figures 4.16a and 4.16b show the covariance estimates for our model's top layer, 

0-200 lan, for the Gaussian and exponential cases, respectively. Results for both types 

of distribution share the same general patterns. Locations of large and small errors are 

quite similar; only the amplitudes of the errors vary significantly. This difference fol

lows immediately from the main difference between Gaussian and exponential distribu

tions: the exponential distribution has much longer tails than does the Gaussian. Given 

our inversion procedure, which minimizes the [2 residual nonn and therefore weights 

large deviates more heavily than small ones, the longer-tailed distribution naturally 

translates into larger "model" values. The most striking feature of these covariance 

estimates is their strong correlation with ray coverage. Areas sampled by many rays 

have large errors associated with them, while sparsely-sampled areas tend to have 

smaller errors. This reflects the tendency of the LSQR algorithm to image anomalies 

where they are well-constrained, but to bias model values toward zero where there is 

inadequate coverage. This tendency is desirable when dealing with real data and a real 

model; regions of large uncertainty receive small values rather than large values. How

ever, the same tendency renders the values produced by this method poor estimates of 
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model covariance. In fact, these figures do indicate where random errors in our data 

are mapped in our model, but with the noise maps alone we cannot assess the reliabil

ity of individual model parameters. Perhaps the maps do serve as reliable estimates of 

model uncertainty in regions that are constrained reasonably well, but distinguishing 

regions that have reliable estimates from regions which must be dismissed from con

sideration is not possible. 

A second approach to estimating model covariance, the jackknife, is outlined by 

Efron [1982] and applied to seismic data by Lees and Crosson [1989]. Here we need 

not assume a particular distribution for the errors, since model variability is assessed 

directly from the variability of the data. Unfortunately, our algorithm still comes into 

play and we must be again be wary of the influence of uneven ray coverage and 

artifacts of our parametrization. To form the jackknife estimate we perform N inver

sions of the real data, leaving out a subset of the data without replacement. For each 

inversion we produce a model 

A 1 ~ An 
m=-~m 

N n=l 

which has the variance 

where 

N = number of data subsets. 

Figure 4.15 shows a map of jackknife standard errors for the. 0-200 kIn depth 

layer. The general tendency of the jackknife estimate is also to place anomalies in 
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heavily-sampled regions, but some features distinguish the jackknife estimate of vari

ance from the model error distributions estimates. The jackknife estimates show a 

weaker correlation with the number of rays sampling a voxel and the sum of ray 

lengths in a voxel than do the model error distributions' estimates, and shows more 

variability due to the geometrical distribution of rays sampling a given voxel. If leav

ing out a few rays produces a velocity estimate for a given voxel much different from 

previous estimates, the voxel is poorly constrained. However, the known effect of our 

algorithm again causes us to distrust the results of the jackknife procedure. Poorly 

constrained voxels are biased towards zero, exactly the opposite tendency we desire for 

an investigation of covariance. 

Keeping in mind our algorithm's tendency, we should simply disregard results in 

poorly sampled regions and concentrate on portions of Earth that are well-sampled. 

Distinguishing well- from poorly-sampled regions is easily done with a block model 

parametrization. We adopt this approach in our presentation of model maps in the 

next section. 

4.5 Results and Discussion 

4.5.1 Source Mislocations and Station Corrections 

The averaging procedure employed to construct summary rays should reduce both 

the mislocation of events and the station errors, at least in the cases where several 

actual stations are averaged into one summary station, and so we expect to see only 

general features of source mislocations and station errors in our results. These terms 

are included for the sake of a realistic formulation of the problem, and for stability in 

the inversion. When an inversion is performed without source mislocation or station 

terms, variance is reduced by 18%. Solving for velocity and source terms, but not for 

station terms, the total variance of summary travel time residuals is reduced by 19%. 

Solving for all velocity, source, and station terms reduces residual variance by 22%. 
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. The amount of variance explained by our model depends critically on the weights 

given to the roughness penalty and damping coefficient; further reduction may be 

, achieved by relaxing the minimum norm criterion and at the expense of a reasonably 

smooth and physically plausible model. However, the relative increase in variance 

reduction as velocity, source mislocation, and station terms are progressively included 

is a consistent feature of the inversions. While not orthogonal, the three parameter 

classes clearly account for distinct parts of the travel time residuals. Leaving out one 

set of terms from the inversion leaves a corresponding portion of the residual variance 

unexplained. 

Due to the averaging procedure employed to construct summary events, source 

location corrections are generally small. Source location corrections in subduction 

zones generally move the source toward the positive velocity anomaly. Sources in 

continental regions have the smallest, nearly insignificant, corrections. Station correc-

tions range from -0.94 to +1.07 sec, with no obvious correlation to tectonics or eleva-

tion of the station region. 

4.5.2 Velocity Model 

Figures 4.18a-c illustrate the technique we use to show maps of individual layers 

of our P velocity model for the 670-870 km depth r~ge. For each layer we take the 

results from our checkerboard test (figure 4.18a), find the absolute value for each pixel, 

and normalize so the checkerboard output represents the portion of the recovered input 
. 

value. The checkerboard results now range from 0 to 1. For the layer velocity map 

(figure 4.18b) we remove the mean from each layer and show velocity in gradations of 

red to blue. Red indicates slower-than-average velocity and blue marks a faster-than

average region. Next we apply the normalized checkerboard results, for a given layer, 

to that layer's velocities (figure 4.18c). Colors range from full saturation to white as 

each pixel's velocity is modified by its Checkerboard resolution value. Full recovery 
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of the input checkerboard value is indicated by full color saturation and no recovery 

produces zero color saturation, in which case the pixel is white. Areas not sampled by 

our data set are left black. Figures 4.19a-f show six additional depth layers of model 

ISC5_LSQR. 

4.5.3 Correlations with Surface Tectonics 

4.53.1 Rift Zones 

A significant feature of model ISC5 _ LSQR is slow anomalies associated with 

mid-ocean spreading centers (figure 4.19a). The mid-Atlantic rift, tracing the middle 

of the Atlantic Ocean, appears quite clearly, although not continuously. Anomalies 

reach -1.5%, but average closer to -0.25%. Resolution for parts of the rift is poor but 

anomalies that do appear are consistently slow, as expected. Resolution is particularly 

. poor for the discontinuous parts of the anomaly in the South Atlantic. The rift extend

ing to the South Sandwich subduction zone appears faintly, as do the Chile and East 

Pacific rifts. These areas, along with most of the southern hemisphere, suffer from 

poor resolution in our checkerboard tests. 

A reasonably continuous, slow anomaly emerges from the Red Sea along the 

Carlsberg and mid-Indian rifts and diverges into two anomalies where the mid-Indian 

rift splits into the Southeast and Southwest Indian rifts. The anomaly associated with 

the Southeast Indian rift extends through the southern Indian Ocean and south of Aus

tralia, after which it disappears. The checkerboard tests indicate this anomaly is poorly 

resolved. The anomaly marking the Southwest Indian rift continues around the tip of 

South Africa to join the mid-Atlantic anomaly. The perturbations associated with 

Indian Ocean spreading centers reach -1 %, but again average closer to -0.25%. The 

East African rift shows quite clearly in our model, with anomalies reaching -2.0%. 

The only major rift zone that finds no reliable expression in our model is the ridge that 

extends across the southern Pacific. The ISC catalog contains very few events located 
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along this ridge (see figure2), which results in poor resolution. 

Many of the rift zone anomalies that appear in the 0-200 km range of model 

ISC5_LSQR also appear in the 200-400 km layer (figure 4.19b), including the mid

Atlantic, East African, and mid-Indian rifts in particular. All of these are diminished 

in their magnitudes, spatial extent, and continuity. Many anomalies associated with 

rifts do not appear at all, despite generally increased resolution in the second layer. 

By the third layer, 400-670 km depth, only the anomalies associated with the 

Carlsberg, mid-Indian, and East African rifts are clearly visible (figure 4.19c). In the 

fourth layer (figure 4.18c) the strong correlation between rift zones and slow anomalies 

is gone, although diffuse, slow anomalies beneath the mid-Indian and East African rifts 

persist. 

4.53.2 Subduction Zones 

The backarc basins in the western Pacific are clearly marked by slow anomalies 

that average around -1.0% (figure 4.19a). At 200-400 km the pattern is still clear 

(figure 4.19b), but in several cases, such as beneath the Aleutians and the Japanese 

island arc, the slow anomaly has been pinched out by an adjacent fast anomaly. This 

may be due to the dominance of the subducted slab over the excess volatiles released 

by slabs in mantle material below 200 km. However, in the Tonga-Kermadec and 

New Hebrides subduction zones the fast anomaly shows the opposite effect, having 

been partially displaced by a slow anomaly. Still, the Tonga anomaly is fast and 

clearly continuous through the 400-670 km layer (figure 4.19c). Another fast anomaly, 

much larger in lateral extent, appears in the 670-870 km layer and extends to more 

than 1670 km depth, but the continuity between this deep anomaly and the shallower 

anomaly associated with the subduction beneath Tonga is questionable. The shallower 

fast anomaly, 0-670 km, is consistent with the results of the regional study of Zhou 

[1990], though our model grid is not able to show the finer detail of the slow backarc 
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basin directly above the dipping slab. The large fast anomaly to the west of the Tonga 

trench does not appear in Zhou's cross-sections. Beneath Japan and the Kurile Islands 

another fast anomaly protrudes into the lower mantle at a much shallower angle than 

the Tonga feature. Again the continuity between a fast upper mantle anomaly dipping 

to the northeast, and a broadened, diffuse, but similarly fast anomaly below 670 km 

depth is not clear. The deeper anomaly appears to be continuous all the way to the 

lowermost layer in the mantle beneath northeastern Asia. The shallower features of 

our model correspond to anomalies shown by Zhou and Clayton [1990] but the deeper 

anomalies of model ISC5 _ LSQR fall in regions not included in their cross-sections. A 

fast anomaly beneath the Andes is abruptly pinched out in the second layer by slow 

anomalies. The fast anomaly reappears in the third layer below South America and 

continues into the 670-870 km layer. The Bering Sea appears as a slow anomaly, con

sistent with other back-arc basins around the Pacific. In the second layer a fast ano

maly extends along the Aleutian trench and displaces the southernmost extension of 

the slow, Bering Sea anomaly. In the 400-670 km and 670-870 km layers the fast 

anomaly becomes progressively more dominant, but diminishes in the 870-1070 km 

depth interval. A significant fast anomaly appears in the 400-870 km depth range 

beneath the Mariana subduction zone, and a broad, fast region occurs in the 670-870 

km layer underneath the Philippines. 

In general, the broadening and flattening to sub-horizontal noted by Zhou [1990] 

and Zhou and Clayton [1990] also appear in our model at the 670-870 km layer 

(figure 4.18). Van der Hilst and Spakman [1989] demonstrate that inaccuracies of the 

J-B model in the upper mantle and the geometry of ray coverage provided by the P 

phase can lead to a similar sort of flattening and horizontal extension purely as 

artifacts of the imaging procedure. They caution that the interpretation of such images 

must be approached with caution, though a more accurate one-dimensional starting 

model can help limit these flattening artifacts. Our starting model differs from the 
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starting model used by van der HUst and Spakman [1989] in that we do not include 

discontinuities in the upper mantle, but is similar in that we do not include a low

velocity zone in the uppermost mantle either. Without discontinuities our one

dimensional model will generate raypaths that appear to sample the transition zone 

well, while in fact the travel time residuals associated with those rays actually 

,correspond to rays that were refracted at the discontinuities. One effect may be the 

inaccurate mapping of anomalies to locations in the transition zone, and perhaps to 

locations below the 670 Ian discontinuity. The extent of this mis-mapping is unclear. 

A second problem is associated with the apparent existence in some regions of the real 

earth of a low-velocity zone, which is not present in our starting model. A low

velocity zone in Earth's mantle would produce a shadow zone at the surface in which 

few rays would emerge and those that did emerge would have small amplitude. 

Readers of seismograms might overlook the actual first arrival and instead pick a 

larger-amplitude arrival that was refracted at the 400 Ian discontinuity or turned 

upward by a steep gradient below the low-velocity zone. Unless we can re-identify 

the picks supplied to the ISC and discard or use appropriately the late arrivals (which 

we cannot with a J-B model) we will introduce a set of systematically slow residuals 

which will propagate through the inversion to produce slow anomalies in our model. 

The distribution of travel time residuals as a function of epicentral distance contains an 

anomalously sparse section clustered about zero seconds between 10° and 17° but 

indeed shows a systematic trend toward slow (positive) residuals. Rays emerging at 

these distances follow paths that bottom between 100 and 250 Ian in the J-B model. 

Rays are most sensitive to velocity perturbations near their sources, receivers, and bot

toming points, so unexpected slow anomalies found in these depths in models pro

duced with J-B starting model should be considered suspect. If low-velocity zones 

were distributed according to some pattern, preferentially under continents rather than 

oceans, for example, rather than appearing consistently worldwide, the effect could be 
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even more difficult to uncover. Rather than appearing as a slow mean to the three

dimensional model, which may be removed and used to update the one-dimensional 

model, the effect would be specific to particular regions. This may provide an alterna

tive explanation for images that suggest a detached slab feature due to a lack of con

tinuity between fast features above and below about 200 km depth. We believe our 

results are relatively, though not entirely, uncontaminated by this effect since the 

inverse weighting by residuals' standard errors applied to rows of the constraining 

matrix equation reduces the influence of these data. 

4.5.3.3 Continental Shields 

Fast anomalies show quite clearly in continental shield regions (figure 4. 19a). 

Alaska, Canada, Greenland, Fennoscandia, Siberia, and northern Australia all show fast 

anomalies on the order of + 1.5%. All of these fast anomalies persist through the 200-

400 km layer (figure 4.19b), but appear broken and discontinuous in the transition 

zone. Northern Africa and eastern South America are poorly resolved. 

4.5.3.4 Hotspots 

A number of hotspots correlate well visually with strong slow anomalies in our 

model. The Azores, Cape Verde, Canary Islands, Afar/Ethiopia, Lake Victoria/East 

Africa, Comores Islands, Kerguelen, Christmas Island, Tasmania, Caroline Islands, 

Hawaii, Galapagos, Vema Seamount, and Mt. Erebus hotspots all appear as isolated, 

negative velocity perturbations (figure 4.19a). In addition, the Yellowstone and Raton, 

New Mexico hotspots appear subsumed into the general slow anomaly covering the 

western United States. The Mehetia/Society Islands/Tahiti hotspot appears as one 

member of a complex set of four hotspots, including the MacDonald Seamount, and 

Marquesas Islands and Pitcairn Island/Gambier Islands hotspots. Between these four 

hotspots, marked by two diffuse slow anomalies, lies an apparent change to a fast ano

maly. The Jan Mayen and Iceland hotspots appear as parts of the mid-Atlantic rift, as 
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does the St Helena hotspot just to the west of Africa. It is interesting to compare the 

St. Helena hotspot anomaly to the Ascension hotspot, located about 8° closer to Africa, 

which finds no expression in our model. St. Helena is located near the rift and is thus 

illuminated by seismic events associated with the formation of new oceanic crust. In 

all, about half the set of hotspots compiled by Richards et al. [1988] are marked by 

slow anomalies in at least the first layer of our model. 

None of these anomalies changes sign through the first three layers. Below 670 

km none clearly changes, but the Yellowstone and Iceland anomalies appear displaced . 
• 

In the 870-1070 km range, several more hotspot anomalies are displaced from their 

surface locations, but each anomaly persists in some form nearby. Beneath Hawaii a 

slow anomaly, reaching -1.5%, extends deep into the mantle, trailing off to the 

northwest with depth. Both Vasco et al. [1990] and Inoue et al. [1990] show this 

area to have a weak fast perturbation, contrary to our expectation. This difference can 

probably be explained by the differences in the way we treat the data. Inoue et al. 

[1990], though they use an 12 residual norm minimization, severely downweight 

outliers. Vasco et al. [1990] minimize an II norm of the residuals. Experience with 

calibration events that have known locations shows that some of the most extreme, 

slow travel times are recorded at the Hawaiian stations. Downweighting these extreme 

residuals in the inversion procedure causes the algorithm to overlook the anomalies 

that give rise to these slow travel times. 

4.5.4 Transition zone 

In the transition zone, 400-670 km, the pattern of anomalies changes completely 

(figure 4. 19c). The correlations between anomalous velocities and surface tectonics 

observed in the top two layers do not exist here. Shield regions are not generally fast 

and backatc basins are not generally slow, though the region extending northward and 

westward from New Zealand, a complex subduction zone, is quite slow. A striking 
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slow feature, amounting to -2%, appears under southern Eurasia and India. The fast 

feature beneath Tonga is not clearly continuous through this layer, though neighboring 

voxels show a similar anomaly to the west in the next lower layer. 

Several hotspot anomalies including those at Hawaii, Kerguelen, Iceland, Lake 

Victoria, Yellowstone, Raton, Afar, Mt. Erebus, Galapagos, Canary Islands, and Mehe

tia persist through this layer. In the 670-870 km layer, the features at Tonga spread 

laterally to the west. The slab-related anomaly under Japan has migrated a similar dis-
, " 

tance westward but without similar lateral extension. 

Overall, our topmost layer shows a similar pattern to Irwue et al.'s [1990] 78-148 

km layer, though our layer is not so heavily smoothed. Our 400-670 km layer is also 

quite similar to their 478-629 km layer in regions for which we have ray coverage. 

Though they do not show their hitcount map for this layer, the long slow feature 

extending northeast-southwest across the Pacific in their model may be an artifact of 

their smoothing procedure. Our data set shows the central Pacific to be largely unsam

pled in this depth range. 

4.5.5 Mid Mantle 

Confirming results of previous studies, our model shows diminished amplitudes of 

velocity anomalies in the mid-mantle. There is no obvious large-scale radial continuity 

throughout the mid-mantle. On a smaller scale, several hotspot anomalies persist. 

Most striking are fast anomalies beneath eastern North America, the Caribbean, and 

central South America, and the features, mentioned earlier, beneath Tonga and 

Japan/eastern Asia. The fast anomaly beneath eastern North America and the Carib

bean appears in the same location as a large S-velocity anomaly reported by Grand 

[1987] and the anomaly's apparent continuation beneath South America also appears in 

Grand's recent results (personal communication) (see figures 4.18c and 4.20b). Simi

lar features for P-velocity appear in the inversions performed by van der Hilst [1990]. 
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The fast feature beneath Tonga broadens and continues to dip to the west to a depth of 

1670 km. Beneath Japan and eastern Asia the fast anomaly is diffuse but extends all 

the way to the core-mantle boundary. 

4.5.6 Lower Mantle 

The lowermost layers, 2470-2670 km (figure 4.19f) and 2670 km-CMB, show a 

significantly different pattern from the mid-mantle. In general, our results for the 

2470-2670 km' layer agree with both Dziewonski's L02.56 model and Hager and 

Clayton's [1988] smoothed version of Clayton and Comer's [1983] model. When 

expanded in spherical harmonics and recombined using only lSi S:6, our model also 

shows a large slow anomaly over southern Africa, though this anomaly is displaced 

relative to L02.56 and in a way that is more consistent with Hager and Clayton's 

result. Other slow anomalies appear beneath the southern Pacific Ocean, beneath the 

Bering Sea and toward the North Pole, in the northern Atlantic Ocean, and beneath 

Papua New Guinea. Fast anomalies appear beneath Asia, South America, and north of 

New Zealand. Some oscillation appears to occur between the lowermost layer and the 

2470-2670 km layer just above. In the South Pacific, a large-amplitude slow anomaly , 

just above the CMB trades off with a fast anomaly above it. A ring of slow material 

surrounds the fast anomaly in the second-to-bottom layer. The checkerboard tests 

show reasonable resolution in this area, but such oscillations may be just the sort of 

problem checkerboard tests cannot reveal. Results for -the bottom layer, 0", are 

suspect because Our restriction to rays with epicentral distance less than 960 results in 

poor coverage of this layer. This restriction is intended to avoid contamination of our 

data set by arrivals diffracted at the core. Reduced resolution in the bottom layer is 

the price we pay for avoiding this contamination. 



221 

4.7 Continuity of Features 

Figure 4.20a shows several of the features described above in a set of cross

sections through model ISC5 _ LSQR. A constant-latitude slice at 24°S through the 

Tonga-New Hebrides subduction complex shows the associated fast anomaly dipping 

to the west. A fast continental root appears further to the west at this latitude under 

northern Australia. To the east the Pitcairn Island/Gambier Islands hotspot is associ

ated with a slow anomaly. Note the pinching out of the dipping Tonga anomaly 

between the 200-400 km and the 400-670 km layers. The appearance of such a broad 

and deep fast anomaly to the west of the subduction zone, extending to 1670 km depth 

in the dip direction of the down going slab, offers tantalizing circumstantial evidence 

for slab penetration into the lower mantle. Further evidence is shown in the other 

constant-latitude cross-section of figure 4.20a, at 52°N, where a fast anomaly appears 

under the Kuriles and dips to the northwest. This anomaly is much broader, extending 

continuously through the Japanese Island arc and under eastern Asia (see cross-section 

at 124°E), but is less distinct than the Tonga anomaly. A slight fast anomaly beneath 

the Aleutians is also shown. 

A constant-longitude slice at 84°W, under eastern North America, the Caribbean, 

and western South America shows a distinct fast anomaly beginning at about 1070 km 

depth and extending to 2070 km. Under North America and the Caribbean, the ano

maly is consistent in both size and location with an S-velocity anomaly reported by 

Grand [1987]. The fast anomaly veers to the east south of the Caribbean (see figure 

4.20b). Above the fast anomaly in the Caribbean and through Central America the 

model is slow. A constant-depth section shows the 2470-2670 km layer with longer

wavelength anomalies than the upper mantle. A slow anomaly appears under the 

western Pacific and a region beneath the eastern Pacific and North America is fast. 

Figure 4.20b shows the long fast anomaly beneath eastern North America, the 

Caribbean, and South America in a depth section at 670-870 km. A constant-longitude 



222 

slice at 88°W shows that this depth constitutes the top of the anomaly at this longi

tude, though the fast continental shield in the northern United States and Canada 

appears at the top of the section. To the east of the fast anomaly in the northern hemi

sphere lies a broad slow anomaly under the Atlantic Ocean. A slice at 29°S latitude 

shows the fast anomaly under central South America extends continuously to the sur

face at the Chilean subduction zone. A section at 64°N shows fast shields beneath 

Canada, Greenland, and Fennoscandia and a slow anomaly beneath Iceland. A broad 

slow region appears at 32°E under the East African rift zone. 

4.5.8 Spherical Harmonic Expansion 

Surface spherical harmonic series expansions to degree 15 were calculated by 

integration around the globe for each coefficient, rather than by fitting coefficients to 

model values by least-squares. In this way, coefficients are independent of each other 

and coefficient values are independent of the point of truncation of the harmonic 

series. That is, coefficients do not change if the series expansion is calculated a second 

time with a different number of terms. The associated Legendre polynomials are fully 

normalized, i.e., 

Figure 4.21 shows the total power in the series expansion for each layer plotted 

as a function of depth. The anomalously low power in the 200-400 Ian layer probably 

is due to the fact that rays that bottom in this layer, which emerge at the epicentral 

distance range 15° S 8. S 20°, have the largest variance of all the travel time residuals. 

These rays are the most sensitive to velocity perturbations in the 200-400 Ian layer, 

but in our inversion their influence on the final model is (severely) downweighted by 

the inverse of the residuals' standard errors. The first layer (0-200 km) and the transi

tion zone (400-670 Ian) have the highest power, indicating the greatest heterogeneity 
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in our model occurs at these depths. Again, because our starting model does not con

tain discontinuities at 400 and 670 km depth we are probably mapping more power 

into the transition zone than is justified. Power decreases in the mid-mantle and 

increases again as we approach the core. The small increase in power at the 1270-

1470 km depth layer is the result of an unusually large I = 1 component. The drop in 

power from the 2470-2670 km layer to the lowermost layer, 2670-CMB, is probably 

due to our poor ray coverage. Figure 4.22 shows the power in series expansions of 

each layer as a function of angular degree. The top two layers appear relatively 

devoid of power at the lower degrees, despite the strong concentration of ray coverage 

in I = 1-5 patterns. In the 400-670 km layer I = 1, 2, 3, and 6 dominate. The large 

I = 2 component confirms previous reports, but to our knowledge, no other study has 

shown the equally prominent I = 1 and 3 components. In the mid-mantle power is 

more or less evenly distributed across the harmonic terms. The exception is in the 

layer 1270-1470 km, where the I = 1 harmonic is strong and the I = 2 and 3 com

ponents rise above the higher-degree harmonics. These components clearly are respon

sible for the high power total of this layer. 

Since sign information is not included in power calculations, figure 4.22 does not 

show how the distribution patterns for all layers combine constructively or destruc

tively to form a pattern for the whole mantle. Figure 4.23 shows the power in the 

spherical harmonic expansions averaged through the whole mantle and through the 

upper and lower mantle separately. The averaging is performed on the the individual 

harmonic coefficients, weighted at each layer by the square of the layer mid-point's 

radius, which normalizes the power in each layer to the layer's surface area. For the 

upper mantle the power spectrum shows a dominant I = 6 component, along with 

prominent I = 2, 5, 12, and 13 terms. The I = 1 power for the upper mantle is low, 

simply reflecting the results in figure 4.22 which show the small I = 1 components in 

the first two layers. However, in the lower mantle the same component is 
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unexpectedly low, given the large values in several of the individual layers. This may. 

mean the I = 1 component is poorly resolved in the lower mantle and trades off 

between layers in our model. In general, high power in harmonic degrees of the upper 

mantle coincides with high power in the same degrees of the lower mantle, though 

relative amplitudes once again suggest that heterogeneity is concentrated in the upper 

mantle. Degrees 2, 5, and 12 dominate the expansion averaged through the whole 

mantle. Surprisingly, degree 6 has the lowest average power even though its power 

dominates the top layers and contributes significantly to the lower mantle's total. 

From the relatively low power of the whole-mantle integration compared to the 

separate lower- and upper-mantle averaged series, it is clear that either one part of the 

real mantle is compensating for anomalies in the other part or our inversion scheme is 

trading off power between the lower and upper portions of our model mantle. 

4.6 Conclusions 

We present a three-dimensional P-velocity model for the Earth's mantle found by 

inverting ISC travel time data for the time period January 1964 - January 1987. Our 

inversion minimizes the 12 nonn of the travel time residuals, by means of the conju

gate gradient variant LSQR algorithm. Model maps show values only for sampled 

voxels, with a weighting scheme based on our estimate of model resolution. This 

allows the most realistic presentation of what is known about mantle velocity structure. 

Model values and patterns for the top two layers correlate well visually with sur

face tectonics. Backarc basins, rift zones, and some known hotspots all find expres

sion as slow anomalies in our model while continental shields and some subduction 

. zones are marked by unusually fast velocities. Comparison of model ISC5 _ LSQR to 

the model of Inoue et al. [1990] reveals great visual similarities in patterns of fast and 

slow velocities. Overall, the mid- and lower mantle show distinctly less heterogeneity 

than the upper mantle. Fast anomalies appear in both the mid- and lower mantle 
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beneath the Tonga subduction zone, eastern North America, the Caribbean, central 

South America, and Japan/eastern Asia. The lower mantle correlates well at low ord

ers with the models reported by Dziewonski [1984], Morelli and Dziewonski [1985, 

1986], and Clayton and Comer [1983; Hager and Clayton, 1988], though we cannot 

be confident of our results for the lowermost layer (0"). 

Seismological studies of lateral heterogeneity in the mantle differ in their general 

approaches and in specific decisions made along the way. Our model parametrization 

differs significantly from those employed by Dziewonski [1984] and Inoue et al. 

[1990], and differs slightly from Clayton and Comer [1983; Hager and Clayton, 

1988]. We use summary rays while Dziewonski [1984] and Inoue et al. [1990] do 

not. We weight rows of the matrix problem by the inverse standard errors of the 

travel time residuals as a function of delta, a measure of data quality, while Inoue et 

al. [1990] weight preferentially according to the size of the residual. We weight 

columns of the coefficient matrix by a measure of the quality of each voxel's sam

pling, while Clayton and Comer [1983; Hager and Clayton, 1988] weight by the 

number of hits, and Inoue et al. [1990] do not weight columns at all. We use the 

LSQR algorithm to solve the constraining matrix equation while Clayton and Comer 

[1983; Hager and Clayton, 1988] and Dziewonski [1984] do not. While each of these 

differences has consequences that may be traced to differences in our final models, our 

results are quite similar in general. All these studies depend on traditional ray theory 

and Fermat's principle in the construction of the tomographic equations and, perhaps 

most importantly, each study makes use of the same set of global travel time data. 

4.7 References 

Adams, R.D., A.A. Hughes, and D.M. McGregor, Analysis procedures at the Interna

tional Seismological Centre, Phys. Earth. Planet. Int., 30, 85-93, 1982. 

Buland, R., Residual statistics, Terra Cognita, 4, 268, 1984. 

Buland, R., Uniform reduction error analysis, Bull. Seis. Soc. Am., 76, 217-230, 1986. 



226 

Clayton, R.W., and R.P. Comer, A tomographic analysis of mantle heterogeneities 

from body wave travel times, EOS Transactions AGU, 64, 776, 1983. 

Dziewonski, A.M., Mapping the lower mantle, Determination of lateral heterogeneity 

in P velocity up to degree and order 6, J. Geophys. Res., 89, 5929-5952, 1984. 

Dziewonski, A.M., and D.L. Anderson, Preliminary reference Earth model, Phys. Eanh 

and Planet. Int., 25, 297-356, 1981. 

Dziewonski, A.M., B.H. Hager, and R.J. O'Connell, Large-scale heterogeneities in the 

lower mantle, J. Geophys. Res., 82, 239-255, 1977. 

Efron, B., The Jackknife, the Bootstrap and other Resampling Plans, Soc. for Ind. and 

Appl. Math., Philadelphia, Pa, 1982. 

Grand, S., Tomographic inversion for shear velocity beneath the North American Plate, 

J. Geophys. Res., 92, 14065-14090, 1987. 

Gudmundsson, 0., J.H. Davies, and R.W. Clayton, Stochastic analysis of global travel

time data, mantle heterogeneity and random errors in the ISC data, Geophys. J. Int., 

102, 25-43, 1990. 

Hager, B.H., and R.W. Clayton, Constraints on the structure of mantle convection 

using seismic observations, flow models, and the geoid, in Mantle Convection, W. 

R. Peltier (Ed.), Gordon and Breach, New York, 657-763, 1989. 

Herrin, E., W. Tucker, J.N. Taggert, D.W. Gordon, and J.L. Lobdell, Estimation of 

surface focus P.,....travel times, Bull. Seism. Soc. Am., 58, 1273-1291, 1968. 

Humphreys, E., and R.W. Clayton, Adaptation of back projection tomography to 

seismic travel time problems, J. Geophys. Res., 93, 1073-1085, 1988. 

Inoue, H., Y. Fukao, K. Tanabe, and Y. Ogata, Whole mantle P-wave travel time 

tomography. Phys. Eanh and Planet. Int., 59, 294-328, 1990. 

Jeffreys, H., and K.E. Bullen, Seismological Tables. British Association for the 

Advancement of Science, London, 1940. 

Jeffreys, H., Theory of Probability, Clarendon Press, Oxford, 1939. 



227 

Jeffreys, H., The Earth, Cambridge University Press, London, 1960. 

Jordan, T.H., and K.A. Sverdrup, Teleseismic location techniques and their application 

to earthquake clusters in the South-Central Pacific, Bull. Seis. Soc. Am., 71, 

1105-1130, 1981. 

Kennett, B.L.N., and P.R. Williamson, Subspace methods for large-scale inversion, in 

Mathematical Geophysics, N.J. Vlaar, G. Nolet, M.J.R. Wortel, and S.A.P.L. Cloe

tingh (eds.), Reidel, Dordrecht, pp. 139-154, 1988. 

Lawson, C.L., and R.I. Hanson, Solving Least Squares Problems. Prentice-Hall, 

Englewood Cliffs, N.J., 340 pp., 1974. 

Lees, J.M., and R.S. Crosson, Tomographic inversion for three-dimensional velocity 

structure at Mount S1. Helens using earthquake data, J. Geophys. Res., 94, 

5716--5728, 1989. 

Morelli, A., and A.M. Dziewonski, Stability of aspherical models of the lower mantle, 

EOS Transactions AGU, 66, 975, 1985. 

Morelli, A., and A.M. Dziewonski, 3D structure of the Earth's core inferred from 

travel-time residuals, EOS Transactions AGU, 67, 311, 1986. 

Nolet, G., Solving or resolving inadequate and noisy tomographic systems, J. Compo 

Physics, 61, 463-482, 1985. 

Nolet, G., Seismic wave propagation and seismic tomography, in Seismic Tomography, 

G. Nolet (ed.), Reidel, Dordrecht, pp. 1-23, 1987. 

Nolet, G., and R. Snieder, Solving large linear inverse problems by projection, Geo

phys. Jour. Int., 103, 565-568, 1990. 

O'Connell, D.R.H., Seismic velocity structure and microearthquake source properties at 

the Geysers, California, geothermal area, PhD. Dissertation, University of Califor

nia, Berkeley, 1986. 

O'Connell, D.R.H., and L.R. Johnson, Progressive Inversion for Hypocenters and 

P-wave and S-wave Velocity Structure, Application to the Geysers, California, 



228 

Geothennal Field, submitted to J. Geophys. Res., 

Pavlis, G.L., and J.R. Booker, The mixed discrete-continuous inverse problem, appli

cation to the simultaneous detennination of· earthquake hypocenters and velocity 

structure, J. Geophys. Res., 88, 4801-4810, 1980. 

Pulliam, R.J., and L.R. Johnson, Effects of source mislocation in mantle delay time 

tomography, Seismological Research Letters, 60, 10, 1989a. 

Pulliam, R.J., and L.R. Johnson, A Tomographic, Progressive Inversion of ISC P-wave 

Travel Times for 3-D Mantle Slowness Variations and Source Mislocations, EOS 

Transactions, 70, 1213, 1989b. 

Richards, M.A., B.H. Hager, and N.H. Sleep, Dynamically supported geoid highs over 

hotspots, Observation and theory, J. Geophys. Res., 93, 7690-7780, 1988. 

Scales, J. A., Tomographic inversion via the conjugate gradient method. Geophysics, 

52, 

Spakman, W., and G. Nolet, Imaging algorithms, accuracy and resolution in delay time 

tomography, in Mathematical Geophysics, N.J. Vlaar, G. Nolet, M.J.R. Wortel, and 

S.A.P.L. Cloetingh (eds.), Reidel, Dordrecht, pp. 155-187, 1987. 

Spakm an , W., S. Stein, R. van der Hilst, and R. Wortel, Resolution experiments for 

NW Pacific subduction zone tomography, Geophys. Res. Letters, 16, 1097-1100, 

1989. 

Spencer, C., and D. Gubbins, Travel-time inversion for simultaneous earthquake loca

tion and velocity structure detennination in laterally varying media, Geophys. J. R. 

Astron. Soc., 63, 95-116, 1980. 

Tarantola, B., Inverse Problem Theory, Elsevier, Amsterdam, 1987. 

van der Hilst, R.D., Tomography with P, PP, pP delay-time data and the tbree

dimensional mantle structure below the Caribbean region. Ph.D. Dissertation, 

University of Utrecht, The Netherlands, 1990. 

van der Hilst, R.D., and W. Spakm an , Importance of the reference model in linearized 



229 

tomography and images of subduction below the Caribbean Plate, Geophys. Res. 

Letters, 16, 1093-1096, 1989. 

Vasco, D. W., Bounding seismic velocities using a tomographic method, Geophysics, 

56, 472-482, 1991. 

Vasco, D.W., R. Jay Pulliam, and Lane R. Johnson, Tomographic inversion of ISC 

travel times for mantle P wave velocity structure using an 11 norm criterion, submit

ted to J. Geophys. Res., November 1990. 

Zhou, H.W., Mapping of P-wave slab anomalies beneath the Tonga, Kermadec and 

New Hebrides arcs. Phys. Earth and Planet. Interiors, 61, 199-229, 1990. 

Zhou, H.W., and R.W. Clayton, P and S wave travel time inversions for subducting 

slab under the island arcs of the northwest Pacific. J. Geophys. Res., 95, 6829-6851, 

1990. 



230 

4.8 List of Tables 

Table 4.1 Details of the model parametrization and the sampling provided by our 

data set. Include are the average number of hits for sampled voxels in each 

layer along with the the average sum of ray segments in a' voxel at a given 

depth and the number of voxels sampled in each depth interval. These aver

ages include only voxels which have non-zero sampling. 

4.9 List of Figures 

Figure 4.1 The model mantle is parametrized as voxels, 5° x 5° at the equator and 

generally 200 km thick, for a total of 22,876 model parameters. Voxels in a 

given layer have approximately equal surface area. 

Figure 4.2 Locations of sources used in this study. The data set consists of about 

46,000 shallow events located by the ISC for the time period January 1964 -

January 1987. 

Figure 4.3 Locations of seismographic stations reporting to the ISC 10 January 

1987. 

Figure 4.4 Histogram of the 3.02 million travel time residuals associated with the 

events included in this study. Also shown are the first four moments of the 

distribution. 

Figure 4.5 Locations of summary sources. The averaging procedure, based on a 2° 

x 2° grid, reduces the number of sources to about 6,000. 

Figure 4.6 Locations of summary stations. The number of stations is reduced to 

979 by the ray averaging procedure. 

Figure 4.7 Histogram of the summary residuals with the first four moments of the 

distribution. . 
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Figure 4.8 The distribution of column sums of our coefficient matrix, A, indicating 

the total sampling of each voxel by our summary data set Shown in each 

panel is a different depth layer: (a) 0-200 km, (b) 200-400 km, (c) 400-670 km, 

(d) 670-870 km, (e) 1270-1470 km, and (f) 2470-2670 km. 

Figure 4.9 (a) A 5% velocity anomaly introduced at (17°S, 178°W, 600 km depth), 

beneath the Tonga subduction zone and (b) the resulting point spread function. 

Cross-sections are at 200S, 174°W, 6°E, and 1700 km depth. 

Figure 4.10 (a) A 3% anomaly placed beneath the New Hebrides subduction zone at 

(16°S, 166°E, 900 km depth) and (b) the resulting point spread function. 

Cross-sections are at 200S, 168°E, 12°W, and 2470 km depth. 

Figure 4.11 (a) A -3% anomaly introduced to the first layer beneath the Hawaiian 

islands at (21.4°N, 158°W, 70 km depth) and (b) the resulting point spread 

function. Cross-sections are at 200N, 156°W, 24°E, and 1700 km depth. 

Figure 4.12 (a) A -4% anomaly introduced to the first layer beneath Iceland at 

(65°N, 18°W, 70 km depth) and (b) the resulting point spread function. 

Cross-sections are at 64°N and 1300 km depth. 

Figure 4.13 (a) A 3% anomaly introduced to the fourth layer beneath central South 

America at (0°, 65°W, 870 km depth) and (b) the resulting point spread func

tion. Cross-sections are at 0°, 62°W, 118°E, and 1400 km depth. 

Figure 4.14 (a) A 4% anomaly placed beneath eastern North America at (400N, 

85°W, 870 km depth) and (b) the resulting point spread function. Cross

sections are at 42°N, 58°W, 122°E, and 1900 km depth. 

Figure 4.15 Map of the top layer, 0-200 km, of the resolution test using a synthetic 

"checkerboard" model. (a) Input values alternate between ±O.3 km/s. (b) Out

put of the test inversion. 
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Figure 4.16 Model standard error estimates for the 0-200 Ian layer using (a) a 

Gaussian distribution of deviates in place of the real data as input to the inver

sion and (b) a two-sided exponential distribution as input. 

Figure 4.17 Model standard error estimates for the 0-200 Ian layer obtained with a 

jackknife procedure. 

Figure 4.18 A set of layer maps for the 670-870 Ian depth range illustrating the 

technique used to plot velocity maps. The checkerboard resolution test results 

(a) are used to modify the velocity values for each block (b) based on the per

centage of input value recovered by the test inversion. Final values (c) range 

from red (slow) to blue (fast) and from full color saturation, indicating full 

recovery of the input checkerboard value, to white, indicating no recovery. 

Figure 4.19 (a-f) Six depth layers of model ISC5 LSQR: (a) 0-200 Ian, (b) 200-400 

Ian, (c) 400-670 Ian, (d) 1270-1470 lan, and (e) 1470-1670 Ian, and (f) 2470-

2670 lan. Each layer's mean has been removed. Velocity perturbations grade 

from red (slow) to blue (fast). In addition, color values are modified from full 

saturation, indicating the voxel is well-resolved as determined by the checker

board test, to white, which indicates no recovery of the checkerboard value. 

Figure 4.20 Cross-sections of model ISC5 _ LSQR. Shown in (a) are two constant

latitude slices at 24°S and 52°N, constant-longitude slices at 124°E and 84°W, 

and a constant-depth section showing the 2470-2670 Ian layer. Shown in (b) 

are two constant-latitude slices at 24°S and 64°N, two constant-longitude slices 

at 34°E and 98°W, and a constant-depth section at 670-870 Ian. 

Figure 4.21 Power contained in surface spherical harmonic series expansions of 

model ISC5 _ LSQR for each depth layer. 

Figure 4.22 Power in the spherical harmonic expansions for each depth interval as a 

function of angular degree. All values are normalized to the maximum value 
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appearing in the figure. Numbers on the right refer to the maximum power for 

each layer. 

Figure 4.23 Power in spherical harmonic series generated by averaging ISC5 _ LSQR 

layer expansions through the whole mantle and through the upper and lower 

mantle separately. 





Table 4.1: Model layer depths and average voxel sampling 

Average Number 
Average voxel of %of Average 

Layer Depth range velocity volume voxels voxels number 
number (kIn) (km/s) (107 km3) sampled sampled hits 

1 0-200 7.94 6.06 1195 73.1 1586 
2 200-400 8.58 5.67 1333 81.6 1342 
3 400-670 9.88 7.07 1494 91.4 1409 
4 670-870 10.95 4.82 1577 96.5 1261 
5 870-1070 11.40 4.49 1604 98.2 1149 
6 1070-1270 11.68 4.16 1627 99.6 991 
7 1270-1470 11.96 3.85 1631 99.8 881 
8 1470-1670 12.24 3.55 1632 99.9 816 
9 1670-1870 12.51 3.26 1634 100.0 753 

10 1870-2070 12.76 2.98 1634 100.0 675 
11 2070-2270 13.01 2.72 1634 100.0 604 
12 2270-2470 13.24 2.46 1634 100.0 494 
13 2470-2670 13.47 2.22 1634 100.0 395 
14 2670-2898 13.64 2.26 1626 99.5 179 

--~ -- -------- ~--------- ----.--~ 

Average 
column 

sum of A 
(104 km) 

31.02 
25.97 
34.34 
27.38 
25.21 
21.29 
18.38 
16.96 
15.62 
13.79 
12.45 
10.04 
8.11 
3.68 

- ---- --

I 

, 

N 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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Figure 4.7 
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Figure 4.8 
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Figure 4.9 (a) (b) 
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Figure 4.11 (a) (b) 
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Figure 4.13 (a) (b) 
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Figure 4.15 
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Figure 4.16 
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Figure 4.18 
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Figure 4.22 

o 300 600 900 1200 1500 1800 2100 2400 2700 3000 

DEPTH (KM) 



Figure 4.23 

Model sc5s 12 

0-200 km 

I I I I I I I I I I I I I I I 
I 

I I I I I I I I I I I I I 

ma x I mum 
pow er 

0 . 10E- 03 

200-400 km i I I 1 I 1 0 . 75E- 04 

400-670 km I I I I I I I I 0 . 15E - 0 3 

670-870 km I 1 I I I I I I 0 . 77[-0 1\ 

870-1070 km I I I I I 1 I I 0 . 69E- 04 

1070-1270 km I I I 1 I 0 . 58E-04 N 
U\ 

1270-1470 km I I I I U\ 
0 . 78E - 0 4 

1470-1670 km I 1 I 0.50E- 04 

1670-1870 km 1 _1 I 0 . 46E - 04 

1870-2070 km I 0 . 45E- 04 

2070-2270 km I I 0.73E- 01\ 

2270-2470 km I I _I 0 . 88E- 04 

2470-2670 km I I I I I I I I 1 0.91E- 04 

2 6 70 km - eMB I I I I I I 1 0.10E-0 3 

I I I L _ I I I I I I I I I I I 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Angular degree (I) 



Figure 4.24 

Model sc5s 12 
ma x I rnurn 

power 

upper mantlel · 1 10.41E-04 

lower mantlel 10.17E-04 

whole mont Ie ~~~--~~--~~--~~--~~--L-~~~~~~10.92E-05 

Angular degree (I) 

N 
U\ 
0\ 



Chapter 5 

Conclusions 

5.1 Summary and Discussion 

We develop a formalism for the tomographic inversion of seismic travel-time 

residuals and solve the resulting system of travel-time equations in three ways: (a) 

directly, neglecting source terms, (b) simultaneously for both velocity model terms and 

corrections to the source locations, and (c) progressively, for each set of terms in suc

cession. Both algorithms perform least-squares inversions which minimize the 12 norm 

of the residuals. The methods differ primarily in their treatment of source mislocation 

terms. We explore the algorithms' performance in conjunction with synthetic data 

through simulations of the general procedure used to produce tomographic images of 

Earth's mantle from global earthquake data. Specifically, we investigate the effects of 

mislocated earthquakes on the velocity model obtained in an inversion and the ability 

of our simultaneous and progressive inversion techniques to correct mislocated earth-
" 

quakes and produce an accurate velocity model. 

Simulations of a global tomographic inversion scheme demonstrate that ignoring 

the effects of source mislocation results in underestimating velocity anomalies by up to 

50%, creates smeared anomalies in adjacent voxels with values up to 50% of the 

retrieved velocity of its neighbor, and creates anomalies elsewhere in the mantle with 

values greater than those estimated for true anomalies. Clearly, careful treatment of 

the source location problem is critical to the accurate retrieval of three-dimensional 

velocity variations. The progressive inversion developed here generally produces more 

accurate source corrections and velocity anomaly estimates than does an inversion 

scheme in which both source corrections and velocity terms are found simultaneously. 

These results are superior particularly with respect to the suppression of artificial 
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anomalies in the velocity estimation. 

We also invert real data supplied by the ISC. We use P arrival data from January 

1964 through January 1987 and our inversion algorithms to solve for three-dimensional 

P velocity models of the mantle and source mislocations. The model mantle is 

parametrized by approximately equal-area blocks: 10° x 10° and generally 200 km in 

depth. Nearly 345,000 rays from more than 3,000 shallow events satisfying selection 

criteria are included in the inversions. 

Our visual comparison of the models found by neglecting source terms 

(ISCI0_direct), by solving simultaneously for source and velocity terms (ISCIO_sim), 

and progressively (ISCIO ""pro) reveals that upper mantle differences are located 

overwhelmingly in source regions, implying that the model differences result from the 
r 

differences in our treatment of the source terms. Despite the concentration of model 

differences in source regions, the effects of different treatments of the source appear in 

the velocity models at both long and short wavelengths in the upper mantle. 

Differences between the models diminish with depth. 

Our comparison of the source corrections produced by simultaneous and progres

sive inversion supports the interpretation that model differences are concentrated in 

source regions. Source corrections emerging from the progressive inversion are gen-

erally two to four times greater than the simultaneous inversion's corrections. Some 

events get extremely large corrections, in the progressive inversion, but only moderate 

corrections in the simultaneous inversion. 

We investigate which patterns of seismic heterogeneity in the mantle would be 

returned reliably by a tomographic inversion in which the model mantle is 

parametrized by a set of discrete, non-overlapping voxels. We find that while the 

power input to a particular pattern of heterogeneity in the 0-200 km layer is generally 

recovered accurately, the pattern itself is poorly determined in this layer. A pattern in 

the 200-400 km layer is more precisely determined, though the power contained in the 
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pattern is consistently underestimated and more leakage occurs to the layers above and 

below. The transition zone, 400-670 km, shows similarly strong control of lateral 

heterogeneity patterns, but tests return a more accurate estimate of input power than 

for the second layer. The 1 = 2, 4, and 6 components are all recovered accurately in 

the 400-670 km layer. This result supports previous findings from inversions with real 

data that 1 = 2 is a significant pattern of heterogeneity in the mantle's transition zone 

and that 1 = 4 is not a significant pattern. For the entire upper mantle, 1 = 6 would be 

retrieved reliably and its constructive behavior in upper mantle models derived with 

real data is confirmed. These tests also demonstrate the inability of our inversion pro

cedure to retrieve shorter-wavelength features in the lower mantle. Results for our 

lowermost layer, D", must be considered suspect due to the inadequate constraints 

placed on model values by our ray coverage and the sensitivity of these results to 

noise in the data. 

In an effort to find the most accurate and smallest-scale model possible for the 

mantle, we use ISC P-arrival data (1964-1987) and the LSQR algorithm to solve for a 

three-dimensional P-velocity model, source mislocations, and station corrections simul

taneously. The model mantle is parametrized by approximately equal-area blocks: 5° 

x 5° and generally 200 km in depth. More than 3 million rays from 46,000 shallow 

events satisfying selection criteria are averaged according to 2° x 2° x 10 km deep 

bins to construct nearly 726,000 summary rays for the inversion. 

Due to the averaging procedure employed to construct summary events, source 

location corrections are generally small. Source location corrections in subduction 

zones generally move the source toward the positive velocity anomaly. Sources in 

continental regions have the smallest, nearly insignificant, corrections. Station correc

tions range from -0.94 to + 1.07 sec, with no obvious correlation to tectonics or eleva

tion of the station region. 
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Resolution and covariance are evaluated by approximate methods. Resolution is 

estimated by the inversion of a synthetic checkerboard test pattern, and calculating 

point spread functions for selected voxels. Covariance is estimated by averaging 

results from inversions of realistic errors and by a jackknife procedure. 

We present our three-dimensional velocity model in conjunction with the resolu

tion estimates produced by our checkerboard test. Normalized checkerboard output 

values, ranging from 0 to 1, are used to modify each voxel's red-blue velocity value 

from full color saturation, indicating good resolution, to white, which indicates no 

resolution. The velocity model shows a fast anomaly in the lower mantle beneath the 

Tonga-New Hebrides subduction zone to a depth of 1670 km, and another fast ano

maly beneath the Japanese Island arc and eastern Asia reaching nearly to the core

mantle boundary. Continuity between these anomalies and shallower fast anomalies is 

not clear. A fast anomaly extending from 670 km to 2070 km depth appears beneath 

the eastern United States, Caribbean Sea, and Central South America. In addition, a 

number of slow anomalies associated with hotspots extend through the upper mantle 

but are extinguished in the lower mantle by our resolution weighting. Mid-ocean 

ridges are associated with moderately slow anomalies in the top 400 km of our model. 

The transition zone shows large 1=1, 2, and 3 spherical harmonic components. Dimin

ished heterogeneity in the lower mantle, reported by other authors, is confirmed by our 

study. 

5.2 Recommendations for Further Studies 

The checkerboard resolution tests and noise maps presented in chapter 4 indicate 

that the quality of our mantle images leave much to be desired in the southern hemi

sphere and in oceanic regions throughout the depths of the mantle. These tests offer 

visual images of the strength of the constraints placed on model values by P waves 

propagating directly through the mantle. Undersampling of a given voxel, in the sense 

, 

I 
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that the sampling is inadequate to provide a good average of the voxel's velocity varia

tions, and parallel orientation of rays in a voxel will provide relatively weak con

straints on the voxel's value. Completely unsampled regions cannot be imaged and 

thus decrease the value of our model as an independent reference for modeling of 

other physical parameters. One way to increase both the extent and quality of mantle 

ray coverage is to introduce additional seismographic stations in sparsely sampled or 

un sampled regions. While long recognized as a priority by seismologists, technical 

and cost considerations have slowed the realization of such a venture. Un sampled 

regions are generally in the deep oceans. Still, plans are underway to place a few pro

totype seismographs in the open ocean, if only temporarily and on relatively shallow 

ridges or seamounts. The problem of determining the ideal locations for the next few 

seismic instruments is not trivial. With cost and technical issues so daunting, instru

ment placement decisions cannot be made solely in pursuit of specific seismological 

goals. A formalism should be developed through which the value of additional instru

ments in various locations to different types of studies may be assessed. Unfortunately 

for our purposes here, placement decisions would probably be driven by the needs of 

global or regional surface wave studies and local studies of various types, rather than 

by body-wave studies of the deep Earth. Body-wave studies such as ours require data 

collected at many stations over quite a few years, so the marginal improvement to our 

models provided by an additional few stations operating for a few years would be 

small. Surface wave inversions, in contrast, use much more information from each 

seismogram and would benefit far more from a few new stations. 

In the meantime, more extensive ray coverage with better geometrical orientation 

may be obtained by including additional phases from the ISC catalog in our inversions. 

Pioneering efforts by vanderHilst and Engdahl [1991] demonstrate the utility of 

reflected P phases, pP and PP, to inversions. The price we pay for these additional 

constraints is the larger errors inherent in data that arise from an indeterminate bounce 
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point. Reflections at the Mohorovicic discontinuity, the ocean-crust interface, and the 

ocean's free surface are likely to arrive within about 10 to 15 seconds of each other 

and would therefore all be included in a residual distribution truncated at ±7 seconds 

or greater. Corrections for bathymetry or topography would be approximate as well. 

The increased time spent by a bouncing phase in the upper mantle makes it relatively 

more sensitive to upper mantle, rather than lower mantle, structure. This is an advan

tage in that it allows us better to constrain upper mantle velocity anomalies and control 

the downward mapping of upper mantle anomalies. An additional advantage, particu

larly with the inclusion of pP data, is the improved constraint of earthquake hypocenter 

locations. 

With respect to a three-dimensional model's veracity, every effort should be made 

to start the linearization required by the inversion about an accurate average (i.e., one

dimensional) model. Our starting model, the Jeffreys-Bullen P model, has known 

deficiencies. The upper mantle contains no discontinuities and no low velocity zone. 

The lower mantle was corrected from the model provided by Jeffreys [1960] to pro

duce an accurate match to the J-B travel-time tables [Jeffreys and Bullen, 1940] 

which removed a systematic slow trend in the mid- to lower mantle. The ultimate 

effects of the lack of discontinuities and low velocity zone in our starting model is dis

cussed extensively in chapter 4. Repeating our imaging procedure with a more accu

rate model, such as the iasp91 P model [Kennett and Engdahl, 1991] would surely 

produce a more accurate result for the upper mantle, though significant improvement in 

the lower mantle is not guaranteed. The cost of such a project is that the entire ISC 

catalog of events must first be relocated in the new one-dimensional model. 

In the imaging procedure itself, one might correct the one-dimensional model 

after a three-dimensional model is produced, relocate the events in the updated I-D 

model; and again produce a 3-D model, as do Inoue et al. [1990]. This represents a 

closer approximation to a nonlinear optimization for the solution to the travel-time 



263 

equations. However, this scheme will almost certainly produce a solution to the linear

ized problem that is associated with a local, rather than global, minimum to the non

linear problem. Assessment of the estimated solution's deviation from the true solu

tion is not possible and the improvement of the solution which emerges from several 

'imaging and relocation steps over the solution found after one step is also problematic. 

Complete relocation of the events in a 3-D model is not yet feasible, but the 

strongest three-dimensional effects on subduction zone events may be taken into 

account by a regionalized model, such as the ones produced by Tralli and Johnson 

[1986a] and used to relocate events by Tralli and Johnson [1986b] or by a subduction 

zone model only, such as the procedure used by Engdahl and vanderHilst [1991]. A 

regionalized relocation scheme which accounts for subducting lithosphere may provide 

significantly superior locations for the great majority of the world's earthquakes. From 

the point of view of tomographic imaging, a more sophisticated relocation procedure 

introduces additional possibilities for bias into the inversion for velocity structure. 

This is unfortunate but does not necessarily detract from the value of resulting models 

if the event relocations are demonstrably superior to the original locations. 

The choice to minimize the 12 norm of the travel-time residuals in the inversion is 

not a simple one. Strictly, least-squares is most appropriate for problems involving a 

Gaussian distribution of errors. When applied to such a distribution, least-squares pro

duces the maximum likelihood solution to the linear matrix equation. But residuals 

contained in ISC travel-time data are not clearly Gaussian. More observations are 

found in the distribution's tails than one would expect in a Gaussian distribution. A 

precise characterization of the distrib~tion of errors contained in the travel-time residu

als, minimization of the appropriate residual norm, and an analysis of the consequences 

for the resulting velocity models would be an important contribution. A companion 

study to the one undertaken in chapter 4, by Vasco et al. [1990], considers the case in 

which the ZI norm of the travel-time residuals is minimized, rather than the Z2 norm. 
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Further analysis of the implications this choice holds for the velocity models is in 

order. 

Regional models of similar spatial resolution and global models of somewhat 

larger scale-length resolution have been produced with surface waves by researchers 

with data from various instruments [e.g., Woodhouse and Dziewonski, 1986; Nata! et 

al., 1986; Tanimoto, 1990; Montagner and Tanimoto, 1990] These data and inversion 

schemes can constrain more physical variables, such as density and attenuation, than 

can studies such as ours that use travel-time picks for individual phase arrivals. How

ever, global surface wave and free oscillation studies will likely not be able to repro

duce the small scale-length resolution of body-wave studies in the upper mantle for 

some time to come, and perhaps may never be able to offer small scale-length models 

of the lower mantle. These global surface wave models for S velocity do provide 

valuable comparisons for our P velocity models and would provide comparisons for an 

S model produced with body waves as well. Such models have been produced on 

both a regional scale [e.g., Grand and HeImberger, 1984; Grand, 1987] and a global 

scale [Davies, 1986], but a procedure involving the relocation of events in an accurate 

one-dimensional model and perhaps solving simultaneously for both P and S velocity 

would provide an important tool for geophysicists. For geodynamical modeling, in 

particular, a reliable map of three-dimensional density variations in the mantle is more 

valuable than a map of variations in seismic velocity. A density map produced with 

both P and S models would be more accurate than a map produced by assuming a sim

ple proportional relation between density and either P or S velocity alone. 

Finally, the issue of resolution and uncertainty remains unsettled. The sheer size 

of the matrices involved in the linearized inversions renders both the calculation and 

evaluation of resolution and covariance matrices problematic. The capacity to calCU,. 

late these matrices is within our reach, due to recent advances in massively-parallel 

computing, and initial attempts to evaluate the resolution and uncertainty in mantle P-
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wave tomography have already proven infonnative with respect to tradeoffs between 

velocity parameters and spatial averaging [Vasco et al. 1990]. Resolution· and covari

ance ideally would be calculated at the same time for all model parameters (velocity. 

source, and station tenns) and the tradeoffs between different classes of parameters 

could be evaluated. 
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