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Quantum-Limited Detection of Millimeter Waves 

Using Superconducting Tunnel Junctions 

By 

Carl Atherton Mears 

Abstract 
The quasiparticle tunneling current in a superconductor-insulator­

superconductor (SIS) tunnel junction is highly nonlinear. Such a 
nonlinearity can be used to mix two millimeter wave signals to produce a 
signal at a much lower intermediate frequency. We have constructed 
several millimeter and sub-millimeter wave SIS mixers in order to study 
high frequency response of the quasiparticle tunneling current and the 
physics of high frequency mixing. We have made the first measurement of 
the out-of-phase tunneling currents in an SIS tunnel junction. We have 
developed a method that allows us to determine the parameters of the 
high frequency embedding circuit by studying the details of the pumped I­
V curve. We have constructed a 80-110 GHz waveguide-based mixer test 
apparatus that allows us to accurately measure the gain and added noise of 
the SIS mixer under test. Using extremely high quality tunnel junctions, 
we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is 
within 25 percent of the quantum limit imposed by the Heisenberg 
uncertainty principle. This measured performance is in excellent 
agreement with that predicted by Tucker's theory of quantum mixing. We 
have also studied quasioptically coupled millimeter- and submillimeter­
wave mixers using several types of integrated tuning elements. 
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Chapter 1 
Introduction 

The quasiparticle tunneling current in a superconductor-insulator­
superconductor (SIS) tunnel junction is highly nonlinear. There is an 
extremely rapid onset of tunneling current at a voltage corresponding to the 
sum of the energy gaps of the superconductors on either side of the junction. 
Such a nonlinearity can be used to mix two millimeter wave signals; a strong 
local oscillator at frequency ffiLO and a weaker signal at frequency ffis to 
produce a signal at a lower or intermediate frequency ffilF. An SIS tunnel 
junction can thus be used as the mixer in a millimeter wave heterodyne 
reciever. At frequencies higher than about 30 GHz where it is difficult to 
build sensitive amplifiers, a mixer is typically the first element in the 
receiver. In Fig. 1.1 we show a block diagram of a typical high frequency 
receiver. Usually, ffilF is much less than ffiLO and ffis, so (J)IF is low enough so 
that it is possible build a sensitive intermediate frequency amplifier. 

The important parameters that characterize a mixer are the conversion 
gain Gm and the spectral density of the added noise Sm. The conversion gain 
is defined as the ratio of the output power of the mixer at 'the intermediate 
frequency to the available power input at the signal frequency. The added 
noise is refered to the input of the' mixer. Traditionally this has been 
expressed as the equivalent temperature (noise temperature) of a blackbody 
placed at the input to account for the added noise. For a typical receiver, Sm 
»tiffis, and thus Tm = Sm/kB. However, an SIS mixer can have noise levels 
low enough that Sm - tiffis. In this regime, the different definitions of noise 
temperature used by various authors yield different results. To avoid this 
ambiguity, we report values of Sm measured in units of quanta (tiffis) of the 
signal radiation. 

As we can see in Fig 1.1, a receiver contains an intermediate frequency 
amplifier with added noise of spectral density SIF. The spectral density of the 
overall noise added by the receiver is given by 

(1.1) 

In order for the receiver to have good overall noise performance, it is 
necessary to make Sm and Sif small and Gm as large as is practical. 

Because the voltage scale of the nonlinearity of the SIS junction is 
smaller than the voltage associated with a photon of millimeter wave 
radiation tiffis, we must use a quantum theory to predict its high frequency 
response. The quantum theory was worked out by Tucker.1, 2 The Tucker 
theory makes several surprising and important predictions. First, the 
conversion gain Gm can be greater than unity.3 This was unexpected since 
classically Gm ~ 1.0. The theory also predicts that the added noise can 
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approach the quantum limit, i.e. be limited only by the .1<j>.1n uncertainty 
relation. 

SIS heterodyne receivers are currently the most sensitive coherent 
receivers over a broad range of the millimeter and sub-millimeter 
electromagnetic spectrum.4 However, even the best of these receivers have 
fallen short of the performance predicted by the Tucker theory. Because of the 
lack of detailed comparison between experimental and theoretically calculated 
performance, it has been unclear whether this discrepancy arises 
from difficulties in coupling the signal to the mixer, or from problems with 
Tucker's theory. 

The purpose of this work is to provide a detailed comparison between 
the predictions of the Tucker theory and experimental measurements of the 
millimeter wave behavior of SIS tunnel junctions. The following outline 
provides a framework for our investigations. In Chapter 2 we review 
relevant details of the BCS theory of superconductivity, especially as it applies 
to quasiparticle tunneling. We discuss Werthamer's5 derivaton of the high­
frequency response function for an SIS junction and introduce the Tucker 
theory of quantum mixing. We also discuss the quantum noise limit as it 
applies to mixers. In Chapter 3 we discuss measurements of the high 
frequency response of a SIS tunnel junction in the small signal limit. We 
have made the first measurement o{ the out-of-phase component of the 
quasiparticle tunneling current.6, 7 This out-of-phase current is roughly 
analogous to the cos<j> term in the Josephson or pair tunneling current. In 
Chapter 4 we use the Tucker theory to explain the dependence of the shape of 
the pumped I-V curve on embedding admittance seen by the junction.8 We 
have fit the shapes of experimentally measured pumped I-V curves to 
deduce the value of the high-frequency embedding admittance under the 
actual experimental conditions.9, 10 In Chapter 5 we discuss extremely 
accurate mixer measurements using high quality tunnel junctions.9, 10 These 
measurements were carried out in a waveguide-based mixer test apparatus 
specially designed to perform accurate measurements of mixer noise and 
gain. We have measured the lowest added mixer noise reported to date. 
Measured performance is in excellent agreement with that predicted by the 
Tucker theory. This represents the first detailed comparison between 
experimentally measured noise performance and the Tucker theory. In 
Chapter 6 we discuss the the development of a quasioptically-coupled 
submillimeter-wave receiver.ll This receiver utilizes planar lithographed 
antennas to couple the radiation to the mixer, as well as several types of 
integrated tuning elements to resonate the capacitance of the junction. 
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Chapter 2 
Theoretical Overview 

This chapter provides the basic theoretical background necessary for 
understanding the discussion of high-frequency response of tunnel junctions 
and the discussion of quasiparticle mixers operated in the quantum limit that 
is presented in the following chapters. First we discuss the BCS theory of 
superconductivity, focusing on those aspects related to superconducting 
tunnel junctions. We then discuss tunneling between superconductors, 
including the treatment of high-frequency response worked out by 
Werthamer. We then turn our attention to Tucker's quantum theory of 
mixing, and discuss its remarkable predictions. We finish this chapter with a 
discussion of quantum limited sensitivity. This minimum added noise in 
the mixing process is imposed by the Heisenberg uncertainty principle. 

21 BCS Theory 
Excellent treatments of the BCS Theory of superconductivity already 

exist in a number of books,12 as well in the original work,13 so only the results 
essential to understanding quasiparticle tunneling are presented here. The 
basic idea of the BCS theory is that an attractive interaction exists between two 
electrons due to an exchange of a virtual phonon. Because of this interaction, 
the Fermi sea of electrons is unstable to the formation of bound pairs of 
electrons (Cooper pairs) with roughly equal and opposite momentum. Below 
a critical temperature, a new ground state consisting of these Cooper pairs is 
formed - the superconducting state. Excitations above this ground state are 
called quasiparticles. There are no low-lying quasiparticles, as all 
quasiparticles have an energy of at least /1, the superconducting energy gap. 
The density of quasiparticle states diverges at the gap energy. This divergence 
is the cause of the extreme nonlinearity in the quasiparticle currents in a 
superconducting tunnel junction. 

22 Superconducting Tunnel Junctions 
Since the discovery of tunneling between superconductors, tunneling 

phenomena have been studied extensively. SIS tunnel junctions exhibit 
tunneling currents due both to the tunneling of Cooper pairs, or Josephson 
tunneling, and to the tunneling of single-particle excitations, or quasiparticle 
tunneling. Josephson tunneling has been studied extensively, and is the basis 
of the SQUID (Super conducting QUantum Interference Device), several types 
of digital logic circuits, and studies of macroscopic quantum phenomena. The 
focus of the work presented in this thesis is the extremely nonlinear 
tunneling currents due to the divergence in the quasiparticle density of states 
discussed in section 2.1. We now discuss the physical origin of this nonlinear 
I-V curve. 
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Following the treatment by Cohen, Falicov and Phillips,14 we use a 
Hamiltonian theory to describe the quasiparticle tunneling through a 
potential barrier. The Hamiltonian used is 

(2.2) 

where HL and HR are the many-body Hamiltonians describing the left and 
right electrode respectively. V(t) is the applied voltage, and NL is the number 
operator for the left side, 

NR = L c~ck . 
k 

(2.3) 

HT describes the transfer, by tunneling, of a quasiparticle from one electrode 
to another and is given by 

HT = L (TkqCkC~ + T~qCqC~) . (2.4) 
k,q 

Here, Ck (Cq) and Ckt (Cqt) are the quasiparticle destruction and creation 
operators for the right (left) side electrode. The tunneling matrix elements 
Tkq characterize the strength of the coupling between the superconducting 
electrodes. They are assumed to be small enough that HT may be analyzed 
using lowest order perturbation theory. A calculation of the tunneling 
current using linear response theory yields a dc quasiparticle current, 

[f(llroL) -f(llroR)] 8(eV III + roL - roR) (2.5) 

Here f(llro) = (etiro / kT + 1)-1 is the Fermi-Dirac distribution function, and 
AL,R are the single particle spectral distribution functions for the left and right 
side electrodes. In the BCS theory, the spectral distribution function is given 
by 

(2.6) 

where Vk2 = 1-Uk2 = 1/2(1- Ek/Ek) is the probability that a given pair (ki, -
k..1.) is occupied in the BCS ground state. Here Ek is the normal state energy of 
an excitation with momentum tik, and Ek= (E2 + .12)1/2 is the energy of an 
excitation of momentum tik in the superconducting state. A(k,ro) depends 
only on Uk2 and Vk2 , so no "coherence factors" of UkVk enter into the 
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tunneling current. If we substitute the spectral distribution function (Eq. 2.6) 
into the expression for the tunneling current (Eq. 2.5), and rewrite everything 
in terms of Ek, we obtain the simple expression, 

f 
.. 

T. (V) _ 1 I E'I IE' - eVI 
~cSIS - --

, eRN _ (E,2 - Lli)l/2 [(eV - E'f - Llilll/2 
(2.7) 

X [f(E' - eV) - f(E')] dE' 

Note that we have assumed that Tkq is constant and absorbed it into RN, the 
normal resistance of the junction. Because no coherence terms are present in 
the expression for the tunneling current, we are able to use a simple 
"semiconductor" model for discussion. In Fig. 2.1, we plot the density of 
states for single-particle excitations D(E) as a function of energy for each 
electrode. At T=O, there are no thermally excited quasiparticles, and there is 
an energy gap 2Ll for each electrode required to break a Cooper pair to produce 
two quasiparticle excitations. As we increase the voltage V, no tunneling 
takes place until eV = Lll + Ll2. Here there is sufficient energy to allow an 
electron to tunnel into an empty quasiparticle state above the gap on the 
right, leaving behind an unpaired electron quasiparticle on the left. Because 
of the singularity of the density of states, the onset of tunneling current is 
extremely rapid. Above the sum-gap voltage Vg = (Lll + Ll2)/e, Ide 
asymptotically approaches V IRN, :where RN is the normal resistance. Ide,SIS 
is plotted for several reduced temperatures t = T ITe in Fig 2.1b. Note that for t 
near 1 there is also a structure at the difference-gap voltage I Lll - Ll2 II e due to 
thermally excited quasipartiqes. 

In an ideal junction, the current rise at the sum-gap voltage is 
infinitely sharp. In real junctions, the current rise is rounded by effects such 
as short quasiparticle lifetimes, gap anisotropy, or gap inhomogeneity. 

23 High-Frequency Response of Tunnel Junctions 
Based on a perturbation theory using the tunneling Hamiltonian,14-l8 

Werthamer5 derived an expression for the tunneling current as a function of 
time in the presence of both dc and ac bias: 

let) = Im J J dOldOl' [W(Ol)W'(Ol)e-i<ro-rolt jqp(ro'+eVo/l\) + 
(2.8) 

+ W(ro)W(ro)e-i{C1>+co)t+icp jp(ro' +e V o/ll)] 
where jqp and jp are the response functions of quasiparticles and Cooper pairs 
respectively. The first term in Eq. (2.8) is the quasiparticle tunneling current. 
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, 
The second term is the pair tunneling current which depends on the phase 
difference <j> between the supercondueting ground state wave functions on the 
two sides of the junction. The real parts of the response functions correspond 
to the reactive components, and the imaginary parts correspond to the 
resistive components. W(co) is the Fourier transform of the time-varying 
phase factor W(t) caused by the ac bias voltage: 

W(t) ; exp { -i~r dt'[V(t) - Vol} ; f droW(ro) e-irot (2.9) 

For BCS-like superconductors, jqp and jp can be calculated using the density 
of states of quasiparticles and Cooper pairs. However, the calculation is quite 
complicated.5 The following shows that the quasiparticle response function 
jqp can be measured directly from the dc I-V curve. When the bias voltage 
V(t) contains only a dc component Vo, then W(co) = 8(0), and from Eq. (2.8) we 
have, 

(2.10) 

where coo=eV o/ti. Since both the sin<j> and cos<j> terms oscillate at the 
Josephson frequency COj=2eVo/ti, the only dc component in Eq. (2.10) is the 
first term. Therefore, Im[jqp(eVo/ti)] is equal to the dc quasiparticle I-V curve 
Idc(Vo), . 

(2.11) 

Eq. (2.11) implies that the imaginary part of the quasiparticle response function 
at frequency coo=eVo/ti is equal to the dc tunneling current at bias voltage Yo. 
Because of the absence of Re[jqp(coo)] in Eq. (2.10), it is clear that the reactive 
part of the quasiparticle response function has no contribution to the 
tunneling current when the bias voltage is time-independent. In contrast to 
the quasi particle response function, both the real and imaginary parts of the 
pair response function contribute to the tunneling current at dc bias. The real 
part of jp gives rise to the familiar Josephson sin<j> term, while the imaginary 
part of jp gives the Josephson cos<j> term. 

The real and imaginary parts of both quasiparticle and Cooper pair 
response functions are related through a frequency Kramers-Kronig 
transform, as required by any causal, finite response. For jqp(w),l 
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Re [jqp(co)] = pl~ dco' Im [jqp(co')] - ~co' I eRn 
1t co-co -

= Ikk(V) = p 1~ dV' ~c(V') - V IRn 
1t V' - V -

(2.12) 

In Eq. (2.12), we have used Eq. (2.11) to replace Im[jqp(co')] with Idc(V'), eV'/ll = 
co' and eV III = co. We subtract an Ohmic term from the quasiparticle I-V 
curve to prevent divergence of the integral. This is allowed because only the 
nonlinear portion of Idc(V) gives rise to a reactive component. The 
frequency-independent Ohmic response corresponds to an instantaneous 
current-voltage relation and thus does not contribute to the reactive 
component. It can be shown from Eq. (2.8) that all measurable quantities 
depend only on differences between values of IKK(V) and not on their 
absolute magnitudes. In Fig. 2.2(a) and 2.2(b), we plot an experimentally 
measured I-V curve of an SIS junction and the voltage Kramers-Kronig 
transform calculated from Eq. (2.12). The peak of Ikk at the gap voltage V g 
corresponds to the sharp nonlinearity of the dc I-V curve Idc(V) at V g. At T = 
0, for an ideal SIS junction whose quasiparticle density of states is given by the 
BCS theory, the peak in Ikk diverges logarithmically at V g.1, 2, 5, 19-21 

Eqs. (2.11) and (2.12) suggest a very powerful way of deducing the 
frequency dependent response function of quasiparticles. The dc current 
Idc(V) as a function of dc bias voltage gives the imaginary part of the response 
function as a function of frequency; its voltage Kramers-Kronig transform 
gives the real part of the response function. Therefore the dc I-V curve, 
which can be easily measured, contains all the information about the 
response of the quasiparticles in an SIS junction at high frequencies. Two 
conditions must be satisfied for this statement to be valid. First, the 
quasiparticle tunneling must be elastic within the tunnel barrier so that the dc 
1-V curve gives direct information about the density of states ,of the 
quasiparticles in the two sides of the junction. Second, the tun'neling 
probability must be small enough that tunneling does not significantly 
change the density of states on either side. These two conditions are met for 
SIS junctions with modest current densities ~ 104 AI cm2, and high quality 
tunnel barriers which are free from impurities and imperfections. 

24 N.fixerTheory 
2.4.1 Basic Terminology 
Before discussing the quantum mixer theory, let us first introduce 

some basic mixer terminology. A mixer contains a non-linear element, in 
our case an SIS tunnel junction. The weak signal, at frequency COs , and the 
the strong local oscillator, or "pump", at frequency roLO are coupled into the 
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nonlinear device, where they produce an intermediate frequency OlIF = 1 Ols -
roLO I. The performance of the mixer is characterized by two quantities, the 
added noise referred to the input, and the conversion gain. The noise added 
by the mixer is characterized by the spectral density of the added noise referred 
to the input of the mixer. Traditionally, this has been reported as the 
temperature (the noise temperature) of a fictitious blackbody placed at the 
input of a noiseless, ideal mixer to account for the noise produced by the real 
mixer. This works well as long as the blackbody is in the Rayleigh-Jeans 
limit at the signal frequency. For an SIS mixer operating near the quantum 
limit, this is no longer true. Under these conditions, the definition of noise 
temperature becomes ambiguous. We choose to report the spectral density of 
the mixer noise in units of tiro of the signal radiation. 

The conversion gain is defined as: 

G _ power delivered to the IF Load 
m - available power at the signal frequency 

(2.13) 

The mixer will produce an output at rolF from either of two input 
frequencies, the upper sideband, at musb = roLO + OlIF, and the lower side band, 
at rolsb = roLO - rolF. Clearly, there are two distinct conversion gains, Gusb and 
Glsb at the two frequencies. Sometimes equal powers are applied at the upper 
and lower side bands, in which case it is useful to define a double-sideband 
conversion gain Gdsb = Glsb + Gusb. This quantity is appropriate when the 
input signal is from a blackbody, as is the case when the mixer noise is being 
measured. 

When the signal is in only in one sideband, that frequency is referred 
to as the "signal" frequency, and the other sideband is referred to as the 
"image" frequency. A mixer with Gs »Gi (image rejecting) is called a 
single-sideband (SSB) mixer. If Gusb = Glsb, the mixer is called a double­
sideband (DSB) mixer. 

24.2 Classical Mixer Theory 
The classical theory of mixers has been discussed by many authors.22, 23 

Classical mixer theory, as well the quantum mixer theory that we will discuss 
later, uses the Y matrix to describe the small signal mixing properties. The Y­
matrix is defined by 

where 

im = L Ymm, V m' 

m 

00 

m=-oo 

(2.14) 

(2.15) 
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· R ~ . "iro.nt Isig = e ~ Imc- , 

m=~ (2.16) 

and 
COm = mCOLO + COIF m = 0, ±1, ±2,.. . . (2.17) 

Note that Vsig is only the small signal voltage, and does not contain the local 
oscillator, or pump, voltage. The Y-matrix describes how the nonlinear 
element, under the influence of the strong local oscillator signal, converts 
signals between the various frequencies, or ports, of the mixer. The 
equivalent circuit of the mixer that we use is shown in Fig. 2.3. The mth port 
of the mixer is assumed to be terminated by an embedding admittance Ym. 
Signals are coupled to the mixer by currents sources in parallel with the 
Ym's. Typically the mixer is operated with a signal injected at the m=l (signal) 
port, and the output measured at the m=O (IF) port, as shown in the figure. 

If we know the Y-matrix, analysis of the mixer is straightforward. For 
each port we have the equation, 

m' (2.18) 
which we invert to yield 

vm = L Zmm'Im' 

m' (2.19) 
where 

(2.20) 

When a signal source Is is placed at the m=l port, the output voltage at the 
m=O (IF) port is given by 

Vo = Zoo Aol Is , (2.21) . 
where 

Aol = Z01 . 
Zoo (2.22) 

It is easy to show that Aol is independent of Yo, the IF load admittance. The 
SSB mixer gain is given by 

(2.23) 

In the classical theory, the elements of the Y-matrix are determined 
from the time-dependent modulation of the dc I-V curve which produces a 
time-dependent conductance 
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00 

Gel (t) = ~ ldc (vo + VLOCOS rot) = L Gel (mro) eimcot , 
dVo m=~ (2.24) 

which yields 

~m' = Gel [( m-m') ro] (2.25) 
The classical calculation assumes that the high-frequency response of the 
junction is given by Eq. 2.24. As we have already seen in section 2.3, this is 
not the case when the frequency of the radiation is so high that 11rol e is larger 
than the voltage scale of the nonlinearity of the junction. Thus a quantum 
version of the Y -matrix is required. 

2.4.3 Quantum Mixer Theory 
Tucker's quantum theory of mixingl , 2 describes a method of analyzing 

the performance of nonlinear resistive mixers where the voltage scale of the 
nonlinearity is small compared to 11rol e. The theory assumes that the 
measured I-V curve of the device under study is entirely determined by 
elastic tunneling. This is a good assumption for high quality SIS tunnel 
junctions. The validity of this assumption will be discussed in more detail in 
chapter 5. 

In order to calculate the Y-matrix using this theory, we must first 
determine the local oscillator waveform VLO(t) impressed across the device. 
In general this is a very difficult problem, both because it is difficult 
mathematically and also because it requires knowledge of the embedding 
admittance at all harmonics of the local oscillator frequency. Fortunately, for 
most practical mixers, we can use the 3-port approximation. In this 
approximation, we assume that all higher harmonics of the LO are shorted by 
the geometrical capacitance of the junction. In this case, VLO(t) = V cocos rot. 
Also implicit in this assumption is that all signal ports with Iml ~ 2 are also 
shorted, so that no voltages appear at these ports. Thus the only remaining 
ports are those with m = l,O,-I. 

Once we know the magnitude V co of the LO drive voltage, we can 
determine the elements Ymm' = Gmm ' + iBmm' from l ,2 
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• and 

e ~ (ev ro) (ev ro) Gmm, = 2t'ico
m

' ~ In t'i co In' t'i co 8m-m,8n-n, 

n,n 

[ Ide (V 0 + n't'iro/ e + lirom) - ~e (V 0 + n't'ico/ e) + 

+ ~e (V 0 + nt'ico/ e) - ~e (V 0 + nt'ico/ e - t'icom')] 

[ Ikk (V 0 + n't'ico / e + t'icom') - Ikk (V 0 + n'lico / e) + 

+ Ikk (V 0 + nt'ico/ e) - Ikk (Vo + nt'ico/ e - t'icom')] 

(2.26) 

(2.27) 

Here Ikk(V) is the Kramers-Kronig transform of the dc I-V curve defined in 
Eq.2.12. 

2.4.4 Noise in the Quantum Theory 
Under the influence of the local oscillator, large tunneling currents 

flow at frequencies that are multiples mco of the LO drive. These currents 
will be discussed in more detail in chapter 4. These large currents are due to 
the tunneling of individual quasiparticles, so they produce shot noise at all 
other frequencies. Some of this noise will appear at the various signal ports, 
and thus will be mixed down and appear at the intermediate frequency. In 
this section we will outline the calculation of this noise. . 

The noise can be analyzed by placing a current noise source [I(t) - (I(t»] 
in parallel with an ideal, noiseless mixer.1, 2 I(t) is the current operator for the 
tunnel junction, and (I(t» is the time-averaged current given in Eqs. 3.6 and 
3.7. The difference then characterizes fluctuations about these average 
currents. We define the Fourier transform of the current operator as 

T/2 

IT co = -~- eH.ot I(t 
21t 

() i dt' ., ) 

~ ~~ 
T is some long time period which will become infinite at the end of the 
calculation. IT(CO) has large spikes at multiples mco of the LO frequency, and a 
randomly fluctuating noise "floor" in between these spikes. Since the spikes 
do not occur at the sideband frequencies, the noise source [I(t) - (I(t»] can be 
modeled by placing a noise source 81m (t) at each port of the mixer. The 
expression for the noise source is 
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oIm(t) = l(dm+
IlB 

dro' [IT(ro)e-iro't + IT(-ro)eiro't] . 

~ a~ 
B is the bandwidth at the intermediate frequency over which the 
measurement is done. These noise generators appear at every port of the 
mixer and are all mixed down to the intermediate frequency. Thus we can 
refer all these sources to the output frequency using an effective current 
generator 

oI8ff(t) = l"'m+
IlB 

dro' [11.ff(ro')e-iro't + Irff(-co')eiro't] , 
(dm-

IlB (2.30) 
where 

11#(ro') = L ~mIT(mro + ro') . 
m (2.31) 

The time-averaged mean-square noise current from this effective 
noise source that appears in the IF bandwidth is the output noise of the mixer 
and is given by 

([010]2) = Lim llT/2 d~[oIBff(t)]~ = B Lim 41t2 ([I~,ff(roo),lfff(-roO)] ). 
T ~oo T -T/2 . T ~oo T + (2.32) 

We can define the current correlation matrix Hmm' so that, 

m,m' (2.33) 
where 

(2.34) 
Tucker calculated the elements of this matrix using linear response theoryl, 2 
and found 

e ~ (ev ro) (ev ro) Hmm' = 2 om,m' + e ~ In Ii ro In' Ii ro om-m' on-n' 
n,n 
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The first term is due to quantum fluctuations in the incident radiation field.24 

The second term describes the shot noise produced by the dc current and the 
LO-induced currents through the tunnel junction. In order to refer this 
noise to the input, we must divide by the mixer gain, which yields an added 
noise spectral density of 

m,m' (2.36) 

Here n = +1 or -1 depending on whether the mixing is done from the 
upper (n=+1) or lower (n=-1) sideband. The expression has a minimum 
value of tiro. Half of this noise can be considered to be already present as 
vacuum fluctuations on the incoming signal, so only tico/2 of noise is added 
by the mixer, in concordance with the quantum limit discussed in section 2.5. 
The minimum value of Eq. 2.36 is not obvious because of the dependence of 
AOm on Ym. 

Extremely low noise, approaching this quantum limit, is predicted 
when the calculation is done with experimentally measured I-V curves of 
high quality SIS junctions. This low noise is mostly due to the large values of 
conversion gain and to the low values of sub-gap "leakage" current. 

The Tucker theory of mixing predicts the high-frequency performance 
of a tunnel junction mixer from its dc I-V curve, its Kramers-Kronig 
transform, and from the values of the embedding admittance at the various 
frequencies involved. Much of chapter 5 is a comparison between 
experimentally measured and calculated mixer performance. The scheme 
used to deduce the hard-to-measure high-frequency admittances is also 
discussed there. 
25 Quantum Limit 

The accuracy of any simultaneous measurement of two conjugate 
variables is ultimately limited by quantum mechanics. An SIS mixer (or any 
phase preserving amplifier) simultaneously measures the photon number 
and phase of the incoming radiation, so some noise must be added in the 
measurement process. This is in contrast to a square-law detector, such as a 
bolometer, which only measures the photon number, thus to which there is 
no fundamental limit to its sensitivity. 

Recently, Caves, using very general quantum-mechanical arguments, 
has shown that any narrow-bandwidth, linear, phase-preserving amplifier 
must add noise of spectral density referred to the input of 25 

(2.37) 

where Gp is the photon number gain. An SIS mixer in the weak signal limit 
and operated in the single-sideband mode is linear, preserves phase, and 
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amplifies photon number. Therefore, the above limit applies. Since the IF 
frequency is always much less than the signal frequency, an SIS mixer 
operates in the regime of large photon number gain. In this regime, the 
quantum limit reduces to 

(2.38) 

A mixer operated in the double sideband mode is sensitive to the relative 
phase of the local oscillator and the signals in the upper sideband and the 
lower sideband and thus this limit does not apply, and the added noise can be 
zero. 
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Chapter 3 
Measurement of the Quantum Susceptance 

3.1 Introduction 
Tunneling of quasiparticles is a quantum mechanical phenomenon. 

One of the consequences. of such processes is that the current-voltage 
response is usually not instantaneous in the presence of an ac drive, provided 
the driving frequency is higher than the inverse of the lifetimes of the 
eigenstates involved. This non-instantaneous current-voltage relation 
consequently gives rise to a reactive component 1,2,5, 19-21 of the tunneling 
current in addition to a dissipative, resistive one. If the tunneling processes 
are elastic then the I-V curve contains direct information about the density of 
states on the two sides of the junction. In this case, the resistive (dissipative) 
tunneling is given by the dc I-V curve of a tunnel junction. The reactive 
(non-dissipative) component is related to the resistive component through a 
frequency Kramers-Kronig transformation, as required for any causal, linear 
response.26 Therefore, the high-frequency response of the junction can be 
completely deduced from the dc I-V curve. Consequently, the frequency­
dependent conductance which is associated with a nonlinear elastic tunneling 
1-V curve should give rise to a susceptance. The subject of this chapter is the 
effect of this susceptance, called quantum susceptance herein, on the small 
signal response of Superconductor-Insulator-Superconductor (SIS) junctions 
to high-frequency radiation., . 

It is well known that there are two types of charge carrier that tunnel 
across an SIS junction: Cooper pairs and quasiparticles. They arise from the 
superconducting condensate and the excitations, respectively. Due to the 
non-instantaneous current-voltage relation, the tunneling current from 
each carrier contains two components in the presence of an ac drive. The in­
phase component is dissipative (resistive) while the out-of-phase 
component is nondissipative (reactive). For Cooper pair tunneling, the in­
phase component of the current is the Josephson coscj> term,while the out­
of-phase component is the Josephson sincj> term.5, IS, 16, 19-21 For 
quasiparticles, the in-phase component is given by the dc quasiparticle I-V 
characteristic, while the out-of-phase component is the quantum 
susceptance or quantum reactance. 1, 2, 19-21 The reactive quasiparticle 
tunneling current is a result of "quantum sloshing." If the energy difference 
of the initial and final states on two sides of the junction is different from the 
photon energy, no photon-assisted-tunneling can take place. Instead, the 
quasi particles slosh back and forth between the two sides by absorbing and 
then emitting photons of the same frequency. 

Werthamer derived an expression for the response function of both 
Cooper pairs and quasiparticles.5 The real parts of the response functions 
correspond to the reactive components of the tunneling currents; and the 

15 



1----

imaginary parts correspond to the resistive components. Using Werthamer's 
theory, Harris19- 21 analyzed the response of an SIS junction to an RF radiation 
in the small signal limit. He correctly predicted the small effect of the 
quantum susceptance at zero dc bias voltage. While Josephson tunneling and 
quasiparticle resistive tunneling have been extensively studied, quantum 
susceptance has been largely ignored. This is because the contribution from the 
quantum susceptance to the tunneling current is only significant at 
frequencies high enough that the voltage associated with a quantum of the 
radiation, V=tlro/ e, is larger than the voltage scale on which the I-V 
characteristic of an SIS junction is nonlinear. 1 Josephson effect devices 
originally showed greater promise as useful high-frequency devices, so the 
effects of both sin<l> and cos<l> terms on the response of Josephson junctions 
have been studied extensively.27,28 The quasiparticle tunneling was originally 
studied as a measure of the density of states for excitations. This measurement 
is done essentially at zero frequency so the quantum susceptance makes no 
contribution. This situation has changed since the invention of SIS 
quasiparticle direct detectors and SIS quasiparticle mixers which utilize 
quasiparticle tunneling for high-frequency operation. Tucker1 first studied the 
reactive quasiparticle tunneling at arbitrary dc and RF bias voltages. He 
predicted that an SIS mixer which has a non-instantaneous current-voltage 
relation may have a mixer gain greater than unity. In contrast, a classical 
resistive mixer, whose current-voltage relation is instantaneous, has a 
maximum mixer gain of unity.22 It was speculated that this mixer gain is due 
to a parametric amplification from the nonlinear quantum susceptance. 
However, a detailed analysis29 indicated that the effect of the quantum 
susceptance is quite subtle and is not directly responsible for the predicted 
mixer gain. It was further argued that, like the Josephson cos<l> term,30 the 
quantum susceptance should be difficult to detect experimentally. 

In this chapter, we report experimental evidence for the quantum 
susceptance from a measurement of a shift of the resonant frequency of a 
superconducting micros trip stub resonator which contains an SIS junction. 
This shift of the resonant frequency is due to the change of the quantum 
susceptance as a function of dc bias voltage. In the following chapter we 
present an analysis of dc I-V curves of an SIS junction pumped with 
sufficient RF power that the photon-assisted-tunneling steps are clearly 
seen. There we demonstrate that the quantum susceptance is essential to the 
explanation of the negative photon-assisted-tunneling steps observed when 
the junction is pumped at frequencies slightly below the resonant frequency.8 
This chapter is organized as follows: the theoretical background will be 
discussed in section 3.2, "the experimental details will be described in section 
3.3, the comparison between the theory and the experiments will be discussed 
in section 3.4, and finally the results will be discussed in section 3.5. 
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3.2 Theoretical background 
As discussed in section 2.3, the real and imaginary parts of the 

quasiparticle response function are given by, 

[. ( )] _ i~ dro' 1m [jqp(ro')] - tiro' / eRn 
Rejqpro -p - , 

1t ro-ro -
= Ikk(V) = p i~ dV' ~c(V'), - V' /Rn 

1t V - V -

(3.1) 

and 
Im[jqp(roo)] = lde(Vo) . (3.2) 

As discussed in chapter 2, we can obtain the Im[ jqp(roo)] by simply measuring the 
dc I-V curve of the junction. Re[ jqp(roo)] can then be calculated using equation 
3.1. 
In Fig. 3.1(a) and 3.1(b), we plot an experimentally measured I-V curve of the 

SIS junction studied and its voltage Kramers-Kronig transform calculated 
from Eq. (3.1). The peak of Ikk at the gap voltage V g corresponds to the sharp 
nonlinearity of the dc I-V curve Ide(V) at V g. . 

Tucker 2 , using the above response functions, calculated the quasiparticle 
tunneling current in the presence of a time-dependent bias voltage, V(t) = Vo + 
V O)cosrot. He found that 

00 

I(t) = ao + L [2amcos (moot) + bmsin (mrot)] . (3.3) 

m=l 

The coefficients of the current at frequency ro and its harmonics are given by 

n= ..... 

(3.4) 
00 

n= ..... 

Here, Ide and Ikk are the same as in Eqs. (3.1) and (3.2), In is the nth Bessel 
function, and a,=eV O)/tiro is the dimensionless RF voltage. Eqs.(3.3) and (3.4) 
indicate that many harmonics of the drive frequency ro exist in an SIS 
junction. The amplitudes of these current components have a nonlinear 
dependence on the RF drive voltage V 0). The non-zero value of bm for m=l 
indicates that there exists an out-of-phase reactive component sinrot as well 
as an in-phase component cos rot. We will show later that the current 
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amplitude of the two components can be comparable. It should be noted that 
the dc I-V curve Icic(V 0) = ao of a voltage-pumped SIS junction is completely 
independent of the real part of the quasiparticle response function Ikk· 
Therefore, Re(jqp) cannot be measured from the dc I-V curves of a voltage­
pumped SIS junction. This is in contrast to the pair response function, whose 
real part Re(jp) (Josephson sinq, term) contributes to a dc current at some 
discrete voltages which correspond to Shapiro steps. From the width of the 
Shapiro steps as functions of RF voltage amplitude, Re(jp) can be measured as 
a function of frequency.31 

The analysis of the response of the quasiparticle tunneling current to a 
large amplitude RF radiation is very complicated since multi-photon 
nonlinear processes are involved. In general, numerical computation is 
required and it is difficult to gain an intuitive understanding of the physics 
involved. However, in the small signal limit, a. « 1, only the one-photon 
process is significant, so the problem is linear. If we define an admittance 
Yq(ro) as the ratio of the induced RF quasiparticle current and the RF voltage, 
Yq(ro)=Ioo/V 00, then from Eqs. (3.3) and (3.4) to the leading order of a., the real 
and imaginary parts of Yq(ro) are given by 

e 
Gq(ro) = Re[Yq(w)] = 2tiro [Idc(Vo + tiro/ e) -

Icic(Vo - tiro/e)] , 
(3.5a) 

e 
Bq(ro) = Im[Yq(ro)] = 2tiro [Ikk(Vo + tiro/e) - 2Ikk(Vo) + 

+ Ikk(Vo - tiro/e)] 
(3.5b) 

G q and Bq are called quantum conductance and quantum susceptance, 
respectively, in this thesis and in the previous papers.6, 7 In the limit of low 
frequency, the quantum conductance Gq(ro) reduces to the classical limit dI/ dV as 
expected for any system whose characteristic frequency is much higher than the 
driving frequency. In the limit of high frequency, Gq(ro) approaches the inverse 
of the normal state resistance I/Rn at frequencies far above the gap frequency. 
This implies that the response of an SIS junction is like a classical diode at low 
frequencies and becomes Ohmic when the photon energy is much greater than 
the gap energy. We have shown6 that the quantum conductance Gq and the .. 
quantum susceptance Bq defined in Eqs. (3.5a) and (3.5b) are related through a 
frequency Kramers-Kronig transform, as required for any causal, linear 
response,26 

B (ro) = P dro ---.:;;..Q-J
oo ,G (ro') 

Q x ro'-ro (3.6) 
--00 
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This approach is simpler than the one we discussed above. However, in this 
thesis, we are interested in the case of arbitrary signal strength, so we started 
with Eqs. (3.3) and (3.4) which apply to the general case. 

, Expression (3.Sb) for the quantum susceptance Bq can be interpreted 
geometrically. Bq(ro) is a measure of the curvature of the three points Ikk(Vo + 
tiro/e), Ikk(Vo), and Ikk(Vo - tiro/e). When the curvature is upward, Bq is 
positive and capacitive; when the curvature is downward, Bq is negative and 
inductive. It can be seen from Fig. 3.1(b) that as we change the dc bias voltage 
V 0 from zero, the curvature of Ikk changes from positive to negative and back 
to positive. This implies that the quantum susceptance changes from 
capacitive to inductive and back to capacitive as shown in Fig. 3.1(d). Bq has 
the largest capacitive value at one photon voltage tiro/ e below the gap voltage 
V g and the largest inductive value at Vg. In Fig. 3.1(c), we also plot the 
quantum conductance Gq as a function of bias voltage. Gq is large only within 
one photon voltage tiro/ e below and above V g' which corresponds to the 
voltage where a quasiparticle can tunnel to the other side by absorbing or 
emitting one photon. 

It is easy to understand that the quantum conductance Gq comes from 
the photon-assisted tunneling. It is less straightforward that the quantum 
susceptance Bq comes from a sloshing back and forth of quasiparticles. We 
will use the semiconductor model in Fig. 3.2 to help to understand both the 
photon-assisted tunneling and the quantum sloshing. The superconducting 
energy gap U splits the density of quasiparticle states into two separate bands, 
the conduction band and the valence band. At T = 0, all the states in the 
valence band are full and all the states in the conduction band are empty. The 
dc bias voltage V 0 shifts the relative Fermi levels on the two sides by e V o' 
Consider an SIS junction in the presence of a photon field with photon 
energy tiro. Conservation of energy allows transitions to take place only 
between two states whose energy difference is tiro. Also at T = 0, the Pauli 
exclusion principle requires that if one state is in the valence band then the 
other state must be in the conduction band. 

The tunneling between states A and B in Fig. 3.2, which satisfies the 
condition EA + tiro = EB, is the photon-assisted tunneling32, 33 which gives 
rise to a step-like structure on the dc I-V curve of a pumped SIS junction. 
This tunneling can also be assisted by absorbing more than one photon if the 
photon field is strong enough. The tunneling of a quasiparticle in an initial 
state A to final states other than B cannot occur because it violates 
conservation of energy. However, this does not imply that the tunneling 
between two such states can never take place. A quasiparticle in state A can 
absorb a photon tiro temporarily to tunnel to a state on the right side other 
than state B, then emit a photon of the same energy and tunnel back to state 
A. This movement has been called "quantum sloshing" and its effect is to 
alter the phase of the photon field and leave the total photon number 
unchanged. 1 Therefore, the contribution of this quantum sloshing to the 
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quasiparticle tunneling current is the reactive component, which is what we 
called quantum susceptance. 

The sign of the susceptance contributed by the quantum sloshing 
between two states with energies EL and ER depends on whether the energy 
difference IER - ELI is larger or smaller than the energy of the photons tlro of 
the RF drive. If IER-ELI > tiro, then the susceptance is capacitive; if IER-ELI < 
tiro, the susceptance is inductive. When the energy difference between the 
two states is equal to the energy of the photons, the tunneling is purely 
resistive. These results can be understood if we model the SIS as a 
superposition of two-level systems. 

Consider two quasiparticle states, one on the left side and the other on 
the right side of an SIS junction whose energy difference is tlro2-1. The 
transition between these two states is analogous to the transition between two 
levels in an atom. Following Yariv's derivation,34 the electrical dipole 
moment pet) induced by such a transition can be characterized by the "atomic" 
susceptibility X = X' - iX", such that pet) = Re(EoxEeirot), where E is the external 
electrical field. The current associated with this time-varying dipole is the 
time derivative of the electrical dipole moment, I(t) oc dP (t) / dt = 
Re(iroEoxEeirot). Since the RF voltage V ro is proportional to the electrical field 
E, the RF admittance Y2-R (ro) is proportional to (iroEoX). Here the subscript "2-
.e" is to emphasize that this admittance is the contribution only from the 
tunneling between these two specific states. Then from Eq. (8.1-19) in Yariv's 
book, we obtain the expression for the quantum conductance and susceptance 
which arise from these two states in the absence of inelastic scattering during 
the tunneling, 

(3.7a) 

(3.7b) 

Here 't is the lifetime of the quasiparticle concerned. From Eq. (3.7b), at ro > 
ro2-R, B2-R is negative and the susceptance is inductive; and at ro < ro2-R, B2-R 
is positive and the susceptance is capacitive. Finally, at ro = 002-R I B2-R is zero 
and the admittance is purely resistive and the conductance G2-R takes a 
maximum value. If we assume that the quantum sloshing processes are 
uncorrelated,35 the total quantum conductance Gq(ro) and the quantum 
susceptance Bq(ro) are computed by integrating G2-R and B2-R over all the 
quasiparticle tunneling processes allowed by the Pauli principle. These results 
can also be understood qualitatively from the behavior ofa classical harmonic 
oscillator with an intrinsic frequency ro2-R. When the drive varies slowly 
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with time, ro < ro2-~ the displacement, which is proportional to the dipole 
moment, follows the drive, Le. P oc E. When the drive varies rapidly with 
time, ro > ro2-~, the displacement is 1800 out of phase with the drive, so P oc -

E. 
Returning to the formal theory, we plot in Fig. 3.3 the calculated 

quantum conductance Gq(ro) and the quantum susceptance Bq(ro), using Eqs. 
(3.5) and (3.8) and the lcic and Ikk in Fig. 3.1, as functions of frequency at a fixed 
dc bias voltage Vo = 2.50 mY. The peak of Gq at 62 GHz occurs when the 
photon energy is equal to the energy difference between the edge of the 
"conduction" band on one side and the edge of the "valence" band on the 
other side of the junction. This frequency is a simple function of dc bias 
voltage, fo = (Vg - Vo)/h. Slightly above this frequency, the quantum 
susceptance Bq vanishes just as we expect for a two-level system. At 
frequencies below fo, Bq is positive and the quantum susceptance is capacitive; 
at frequencies above fo, Bq is negative and the quantum susceptance is 
inductive. The plot in Fig. 3.3 is strikingly similar to Fig. 8.2 in ref. 65, where 
the real and imaginary parts of the atomic susceptibility x' oc B2-~ / ro and X" oc 

G2-~ / ro are plotted as functions of frequency. This strong similarity suggests 
that an SIS junction can be approximated as a voltage-tunable two-level 
system whose energy difference is e(V g- V 0). This approximation is valid 
because the singularities of the quasiparticle density of states at the gap energy 
cause a large portion of the quasiparticles to occupy the states near the gap. 

Using the discussion in the last two paragraphs, we can provide a 
detailed physical explanation of the voltage dependence of the quantum 
susceptance. At V 0 < V g - tiro/ e, the energy difference between all the states in 
the conduction band on one side and all the states in the valence band on the 
other side is greater than the photon energy, Le. ro2-~ > roo Therefore, Y2-~ (ro) 
from all possible quantum sloshing events are capacitive. As V 0 increases 
from zero to V g - tiro/ e, the difference (ro2-~ -ro) becomes smaller, so the 
denominator in Eq. (3.7b) decreases. This results in a maximum capacitive 
value of the quantum susceptance Bq at Vg - tiro/e, as show in Fig. 3.1(d). As 
the bias voltage V 0 increases from V g - tiro/ e, there will be states in the 
conduction band with energy less than tiro greater than some states in the 
valence band on the other side. For these pairs of states, ro2-~ < ro, so their 
contribution to the quantum sloshing is inductive. This explains why the 
quantum susceptance Bq becomes more inductive as V 0 increases from V g -
tiro/ e, and has the largest inductive value at the gap voltage V g, as shown in 
Fig. 3.1(d). 

Although the above discussion was carried out at T=O for simplicity, 
the results are still valid at finite temperature. Two modifications should be 
introduced in the' above discussion at finite temperatures. First, the 
superconducting energy gap is reduced. Second, the states in the valence band 
are not completely filled, the occupation probability is given by the Fermi 
distribution f(E). Similarly, the states in the conduction band are not 
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completely empty, and the unoccupied probability is given by 1 - f(E). These 
two modifications at finite temperature affect the dc I-V curve in the same 
way as they affect the high-frequency response of the SIS junction. Therefore, 
the RF admittance of an SIS junction is still given by Eqs. (3.8a) and (3.8b) as 
long as its dc I-V curve at T ;¢:. 0 is still due to elastic tunneling.19- 21 , 

In the general case, a = eVeo/tiro can be any value and we must consider 
a complicated nonlinear solution of Eq. (3.4) to analyze the response of an SIS 
junction to RF radiation. We can still define an admittance Y(ro)=Ieo/V eo, 
where leo and Veo are the current and voltage at frequency ro. In this case, Y(ro) 
will be a function of Veo as well as a function of V 0 and ro. Numerical 
computation is required for detailed analysis. However, some of the 
qualitative features discussed above in the linear limit will still apply as long 
as a is not so much greater than unity that multi-photon processes dominate 
the one-photon process.8 One of the important features is that the quantum 
susceptance takes its maximum capacitive value at one photon voltage below 
the gap V g - tiro/ e, and changes to an inductive value as the bias voltage 
increases to the gap voltage V g. We will show later in chapter 4 that this 
feature is responsible for the photon-assisted-tunneling steps with negative 
dynamic resistance which were observed when the embedding admi~tance is 
slightly inductive. 

3.3 Experimental details 
As discussed in section 3.2, the reactive part of the quasiparticle 

response function (or, equivalently, the quantum susceptance Bq) has no 
contribution to the tunneling current when the bias voltage is purely dc, i.e. 
V(t) = Yo. Also, the quantum susceptance Bq has no effect on the dc I-V curve 
of an SIS junction pumped by an RF voltage source whose amplitude Veo is 
independent of dc bias voltage. Consequently, the quantum susceptance 
cannot be measured in a dc voltage biased SIS junction, or from the dc I-V 
curves of an RF voltage biased SIS junction. 

The most straightforward and convenient way to measure a reactive 
element is to measure the resonant frequency of a resonator which contains 
the element to be measured. In a less direct way, the quantum susceptance Bq 
can be measured from the shape of the I-V curves of an SIS junction pumped 
by an RF source with a non-zero output impedance. The first method gives a 
direct and definitive measurement of the quantum susceptance. The second 
method gives an independent check and can also help in understanding the 
role of the quantum susceptance in the RF impedance match, especially in the 
large signal limit. This impedance match is crucial for many SIS devices, such 
as SIS direct detectors,36 SIS heterodyne mixers,2 and SIS parametric 
amplifiers.37 In this chapter we focus on the first method of measurement. 

We have constructed a millimeter wave resonant circuit by using a 
superconducting micros trip stub and an SIS junction. This resonator is 
quasioptically coupled to the radiation source by a planar antenna and several 
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lenses.11 A photograph and a schematic drawing of the junction and 
microstrip stub located at the center of a log-periodic antenna are shown in 
Figs. 3.4(a) and 3.4(b). The response of this resonator to an RF signal can be 
analyzed using the equivalent circuit shown in Fig. 3.4(c). The signal and the 
antenna are represented by an RF current source in parallel with its source 
admittance YA. The SIS junction is represented by the parallel combination of 
the quantum conductance Gq(ro), quantum susceptance Bq(ro), and the 
geometric capacitance C. The admittance of the superconducting microstrip 
stub is essentially reactive and can be represented by a susceptance Bstub(ro). 
The loss of the stub at the RF frequency can be modeled by a conductance in 
parallel with Bstub(ro). This loss does not affect the value of the susceptance 
Bstub(ro) to first order, and therefore it is unimportant in the determination of 
the resonant frequency. 

In order to measure the quantum susceptance Bq, we need to know the 
imbedding susceptance Bernb, which is the total susceptance that is 
independent of dc bias voltage. In the equivalent circuit in Fig. 3.4(c), the 
imbedding susceptance Bernb is the sum of the susceptances of the junction 
capacitance roC, and of the microstrip stub Bstub(ro), and of the antenna 
Im(YA). The resonance of the equivalent circuit of Fig. 3.4(c) corresponds to 
the condition Btotal = Bq(ro) + Bernb(ro) = O. Without the quantum susceptance 
Bq, the resonant frequency would be independent of bias voltage. However, 
since Bq changes rapidly with dc bias voltage Vo as shown in Fig. 3.1(d), we 
expect that the resonant frequency will change as V 0 changes. 

The susceptance of the capacitance is simply roC, and the susceptance of 
the stub Bstub(ro) can be calculated using formulas in a standard microwave 
engineering text book. 38 The expression of the susceptance of an antenna can 
be quite complicated in general. However, for a special class of planar 
antennas called "self-complementary antennas", in which the pattern of the 
metallic part is the same as that of the dielectric part, the admittance of the 
antenna is real and independent of frequency.39 The antenna admittance is 
given by YA = (1+Er)I/2 3.74x10-3 a-I, where Er is the relative dielectric 
constant of the substrate. Use of a self-complementary antenna greatly 
simplifies the characterization of the embedding admittance. In this 
experiment, we have used a circular-toothed log-periodic antenna which has 
been measured to have a high antenna efficiency ( ... 60%) and a nearly 
Gaussian antenna beam pattern.39,40 As shown in Fig. 3.4(a), the antenna is 
self-complementary. We have used a fused quartz substrate, which has a 
relative dielectric constant Er = 3.85 at millimeter wave frequencies.41 , 42 This 
gives an antenna admittance of YA = 8.3 x 10-3 W-I. 

We have used a superconducting micros trip stub with the stub made 
out of Pb-In-Au alloy and the ground plane of Nb. As shown in Figs. 3.4(a) 
and 3.4(b), the stub contains two sections, a narrow section 1 and a wide 
section 2. The widths and the lengths of the two sections are: WI = 6 J..lm, W2 = 
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40 J.1m, R. 1 = 135 J.1m, and R. 2 = 260 J.1m. The phase velocity within the 
micros trip line is v = 1/(LsC s)1/2, where Ls = (Jlo/kro)[t + A1coth(t1/ IQ) + 
A2coth(t2/A2)] is the inductance per unit length,74 and Cs = kErEow /t is the 
capacitance per unit length.43 t and Er are the thickness and the dielectric 
constant of the insulating layer (SiO in our case), t1,2 and A1,2 are the 
thicknesses and the London penetration depths of the ground (Nb) and top 
(Pb-In-Au) plane, and k is a fringing factor close to unity. Using the designed 
values, Er = 5.7,44 t = 3000 A, t1 = 2000 A, t2 = 4250 A, ANb = 850 A,44 APb-In-Au = 
1450 A,44 the phase velocity is v = 0.30±O.01 c. The length of the wider section 
is 1/4 of the wavelength at 87 GHz, so the wider section transforms an RF 

open circuit at point A to an RF short circuit at point B in Fig. 3.4(b).38 This 
two-section stub has a slower variation of the susceptance as a function of· 
frequency than an one-section open-ended stub, so the effect of the quantum 
susceptance is more profound.45The length of the narrow section is 1/8 of the 
wavelength at 85 GHz which transforms the RF short to an inductive 
admittance. The total susceptance of the two-section stub is given by38 

Y1 [Y2 tan (p.eV + Y1 tan(pR.1)] 
Bstub(ro) = -------:-:::--:---~--:--

Y 1 - Y 2 tan (p.e 1) tan (PR. V 
(3.8) 

Where P = ro/v, Y1,2 = (Cs1,2/Ls1,2)1/2 are the characteristic admittances of 
section 1 (narrow) and section 2 (wide) of the stub, Y1 = 0.124 a-I, and Y2 = 
0.637 a-1. We have shown that the expression of the susceptance of the stub 
Bstub(ro) remains the .same when there is a small RF loss in the stub.46 

In order to measure the small-signal frequency response of the 
junction/ stub resonator, the RF power coupled to the resonator must be less 
than 10 pW so for Gq=O.OI a-1 a = eV co/tiro « 1 at 75 GHz and Eq. (3.8) applies. 
Consequently, we need a very sensitive- detector. Also, the frequency 
dependence of the detector must be known in order to separate the frequency 
response of the resonator from that of the detector. We have used the 
internal detection mechanism in the SIS junction to measure the frequency 
response of the resonator. SIS direct detectors are known to be among the 
most sensitive 4.2 K video detectors at millimeter wave frequencies,47 and 
they have been proved to be very useful in measuring the frequency response 
of millimeter -and submillimeter wave resonators.46The frequency­
dependent responsivity of the SIS direct detector can be easily calculated from 
Tucker's theory.1 There is also a major advantage of this scheme: because of 
the proximity of the SIS detector to the resonator, there is no Fabry-Perot 
interference between them. The output of the SIS detector as a function of RF 
frequency is the product of the frequency response of the resonator, the 
spectrum of the source, and the frequency-dependent responsivity of the SIS 
detector. 
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The current responsivity SI of an SIS direct detector, defined as the 
induced dc current per unit RF power absorbed, as a function of frequency is 
given by,I 

SI(ro) = ~c =JL ~c(Vo+tiro/e) - ~c(V) + ~c(Vo-fi(O/e) 
PO) ti ro Idc(V 0 + tiro / e) - ~c(V 0-tiro / e) 

(3.9) 

Here Pro = Re(Iro V ro '" /2) is the RF power actually dissipated in the SIS 
junction. Note the absence of the reactive quasiparticle response function Ikk 
in Eq. (3.12), which implies that the quantum susceptance Bq does not affect 
the responsivity. As pointed out by Tucker} SI(ro) reduces to a frequency­
independent classical current responsivity (d2I/ dV2)/2(dI/dV) at low 
frequencies; and approaches a quantum limit e/tiro at frequencies so high that 
the voltage associated with one photon tiro/ e is larger than the width of the 
current rise at the sum gap voltage. The induced dc current per unit available 
RF power P A in the SIS junction as a function of RF frequency is then given 
by 

(3.10) 

where YJ = Gq + i(Bq + roC + Bstub) is the total admittance of the SIS junction 
and the stub, and SI(ro) is the current responsivity defined in Eq. (3.9). The 
second factor on the right hand side of Eq. (3.10) is the RF coupling coefficient 
CRF defined in previous publications. 1 1 CRF is the fraction of the available RF 
power which is delivered to the dissipative element Gq. Eq. (3.10) implies that 
the induced dc current is the product of the RF coupling coefficient CRF(ro) 
and the current responsivity SI(ro). Since SI(ro) is a smooth function of 
frequency except at e(Vg - Vo)/ti, the frequency dependence of the RF­
induced dc current 6Idc is mainly determined by the frequency dependence of 
CRF(ro). Therefore, the frequency which corresponds to the maximum 6Idc is 
mainly determined by the resonance condition of the resonator, that is, Im(Yj) 
= Bq + roC + Bstub = O. When this condition is met, the RF coupling coefficient 
CRF has the maximum value. 

, We also need to know the power spectrum of the RF source. We have 
used both a tunable coherent millimeter wave source which utilizes the 
Gunn effect48 and an incoherent source from the output of a Fourier 
transform spectrometer (FTS). Calibration of the coherent power incident 
upon the resonator' was difficult due to Fabry-Perot resonance within the 
source. These resonances have sharper peaks than that of the stub/junction 
resonator so they dominate the measured response. The short coherence 
length of the radiation from the FTS eliminates most of this problem. In this 
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paper, the resonant frequencies and the widths of the resonances of the 
stub/junction resonator were measured using the FrS. The coherent source 
was used to study the shape of the photon-assisted-tunneling I-V curves. 

The FTS used in this experiment is a far-infrared Michelson 
interferometer49 operated in the step-and-integrate mode. The output 
spectrum of the FrS is the blackbody radiation from a Hg-arc lamp at 500 Co, 
modified by the efficiency of a 250 mm thick Mylar beamsplitter. Since the 
antenna-coupled SIS direct detector is sensitive to only a single 
electromagnetic mode, and the source is in the Rayleigh-Jeans limit, the 
power spectrum of the source is given by a constant multiplied by the 
beamsplitter efficiency l1bm, which is a smooth function of frequency.46 For 
250 mm thick Mylar film at 450 to the beam with a relative dielectric constant 
Er = 3, the beamsplitter efficiency l1bm is slowly increasing with frequency in 
the frequency range of interest.46 

The experimental apparatus used in this work is essentially the same as 
was used in our quasioptical SIS mixer experiments to be discussed in detail 
in chapter 6. The output of the FrS is connected to the cryostat through a 1-
meter long, ll-mm diameter light pipe. The cryostat has a 25-mm diameter 
window which is covered with a 25-mm thick polypropylene window, which 
transmits almost 100 per cent at millimeter wave frequencies. Within the 
cryostat, the signal beam is focused by a f/0.85 TPX lens, and then further 
focused by a hyperhemispherical quartz lens to a f/O.5 converging beam 
whose beam waist occurs at the flat side of the hyper hemispherical quartz 
lens, where the log-periodic antenna with the junction and the resonator is 
centered. The quartz lens is heat sunk to the liquid helium tank through a 
copper support. The temperature of the SIS junction is estimated to be 4.5 K 
for an unpumped helium bath. Under unpumped condition, the liquid 
helium in the cooling tank can last about 10 hours as compared to -5 hours 
when the helium is pumped. The longer hold time allows us to improve the 
signal/noise ratio by using longer integration times. Therefore, all the results 
reported in this chapter were obtained at 4.2 K bath temperature. This 
temperature is cold enough for our experiment since our all-Nb SIS 
junctions have a relatively high Tc (-9 K) so the operating temperature is 
about half of the transition temperature. 

The SIS junction used in this experiment was fabricated at the National 
Institute of Standards and Technology at Boulder. It is a Nb/ A1203/ Nb 
sandwich made using the tri-layer process.50 The critical current density of 
the SIS junction is about 500 A/ cm2 . The normal resistance of 70 Q is 
approximately matched to the antenna impedance. The I-V curve of the 
junction shows a low leakage current and a sharp gap structure even at 4.5 K, 
as shown in Fig. 3.1(a). The sharp gap structure causes a dramatic peak in 
Ikk(V) at the gap voltage V g' This peak, and the associated large values of 
curvature, are essential to observe the effects of the quantum susceptance as 
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discussed above. The junction has been thermally cycled between room 
temperature and liquid helium temperature over 30 times, and the I-V 
characteristic has not changed. The junction area is estimated to be 2.Sx2.5 
J..Lm2, which gives a geometric capacitance of 0.28±0.03 pF if we assume a 
specific capacitance value of 4S±S fF/mm2.51 This capacitance value gives a 
susceptance of 0.14 Q-l at 80 GHz. Fig. 3.1(d) indicates that the change of the 
quantum susceptance is as large as O.OS Q-l between 2.4 and 2.7 mV,which is 
significant compared to that of the junction capacitance. Therefore, the 
change of the quantum susceptance as a function of dc bias voltage should 
have a very noticeable effect on the resonant frequency of the stub / junction 
resonator. 

3.4 Data Analysis 
In this chapter, we present the measured resonant frequency and the 

width of the resonance peaks as functions of dc bias voltage. These data were 
obtained from spectra measured in the small signal limit using a Fourier 
transform spectrometer. The effects of the quantum susceptance were easily 
measurable from these data. In chapter 4, we will present the dc I-V 
characteristics for junctions exposed to large amplitude narrow-band 
millimeter-wave radiation. Analysis of those data in the large signal limit 
provides an additional, though less direct measurement of the quantum 
susceptance. After these measurements were made, additional 
measurements were performed at Yale University52 using a millimeter­
wave reflectometer which provided further evidence for the quantum 
susceptance. The Yale measurements were done both in the small and large 
signal limits. 

The interferograms in this experiment were obtained from the RF­
induced dc current .1ldc as defined in Eq. (3.10) as a function of the difference 
between the two optical paths of the FTS. These interferograms were 
measured in the step-and-integrate mode, with the integration time 
typically -loS seconds. The spectra were obtained by Fourier transformation of 
the product of the interferogram and the apodization function.49 We chose to 
use an apodization function with a form of [1 + cos (X1t/xmax)]/2, where x is 
the path length difference and Xmax is the maximum of the path length 
difference used in the experiment. This apodization function lowers side 
peaks of the instrument function at the expense of a moderate increase of the 
width of the resonance peak. Figs. 3.5(a) and 3.S(b) show interferograms 
measured at two bias voltages, Vo = 23S0 mV, and Vo = 2.500 mY. At Vo = 
2.3S0 m V, the value of the quantum conductance Gq is low as shown in Fig. 
3.1(c), so the Q-value of the stub/junction resonator is high and the peak of 
the resonance is narrow. Consequently, the fringe amplitude decreases slowly 
as the path difference increases as shown in the interferogram in Fig. 3.S(a). 
At Vo ::: 2.S00 mV, the value of the quantum conductance Gq is high due to 
the onset of the photon-assisted-tunneling, so the Q-value of the 
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stub/junction resonator is low and the peak of the resonance is broader than 
that measured at Vo = 2.350 m V. Consequently, the fringe visibility in the 
interferogram decreases rapidly as the path difference increases as shown in 
Fig. 3.5(b). The corresponding spectrum shown in Fig. 3.5(d) shows a broader 
peak than that in Fig. 3.5(c). Besides the apparent difference in the widths of 
the resonances in the two spectra, the frequencies which correspond to the 
peaks of the two spectra differ by a noticeable amount. 

In order to improve the signal/noise ratio of the measured spectra, we 
co-added 5-10 spectra measured at a given bias voltage. After normalizing 
these spectra to the beamsplitter efficiency llbm, we obtain the resonant 
frequencies by least-mean-square fitting the top 50% part of the resonance 
peaks with 2nd to 4th order polynomials. The degree of the polynomials in 
the fitting is determined by the asymmetry of the peak. The error bars on the 
measured resonant frequencies are chosen as the frequency ranges in 
whichthe fitting polynomials are over 90% of their peak values. The result is 
plotted in Fig. 3.6(a) as a function of dc bias voltage Vo. Below 2.150 m V and 
above 2.650 mV, the signal/noise ratio of the spectra is very poor due to the 
roll-off of the current responsivity SI of the SIS direct detector. Therefore, no 
data are plotted outside of this range. The error bars are twice as large for V 0 > 
2.450 m V as those for < 2.450 m V because the peaks are broader for V 0 > 2.450 
mV due to the sharp increase of the quantum conductance Gq. Fabry-Perot 
fringes appear on these broad peaks if we keep the resolution of the FTS the 
same as for the narrow peaks. These Fabry-Perot fringes probably arise from 
the standing waves between the SIS junction and the TPX lens. In order to 
average over those Fabry-Perot fringes, we have used a lower resolution of 
0.3175 cm-1 in our FTS which resulted in large error bars for the measured 
resonant frequencies above 2.450 mY. The experimentally measured resonant 
frequencies clearly show a smooth shift as the dc bias voltage changes. The 
most dramatic change of the resonant frequency takes place within the 
voltage range from 2.400 mV to 2.650 mV, where it changes from 73 GHz to 87 
GHz. From Fig. 3.1(d), we can see that the quantum susceptance Bq changes 
rapidly from capacitive to inductive in exactly the same voltage range. 

In order to make accurate comparisons between theory and 
experiment, we obtain the theoretically calculated resonant frequencies using 
the same method used to obtain the experimental resonant frequencies. First, 
we compute the RF-induced dc current as a function of RF frequency using 
Eq. (3.10). Second, we convolve these computed spectra with the Fourier 
transform of the apodization function which was used in the Fourier 
transformation of the experimental interferograms.49 Third, we chose the 
same number of computed data points at the same discrete frequencies as we 
did from the experimental data. Finally, for each spectrum, we fit these 
discrete computed points with a polynomial with the same degree as was 
used in fitting the experimental data. The theoretically calculated curve for 
the resonant frequency as a function of V 0 is shown in Fig. 3.6(a) as the solid 
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line, and it is in excellent agreement with the experimental results. We 
would like to emphasize that the values of two key parameters, the junction 
capacitance C = 0.275 pF, and the phase velocity v = 0.286 c, which were used 
in our theoretical computation, are essentially the same as the ones we 
estimate from the geometric dimensions, 0.28±0.03 pF and 0.30±0.01 c. As a 
comparison, the dashed line, which is essentially flat and obviously differs 
from the experimental results, is the theoretically calculated resonant 

. frequency as a function of Vo without including the quantum susceptance Bq. 
The weak voltage dependence of the dashed line is due to the change of the 
current responsivity SI(W) with yo. Clearly, these results provide decisive 
evidence for the quantum susceptance. 

We have also investigated the effect of Josephson oscillation on the 
shift of the resonant frequency by applying a magnetic field to change the 
Josephson critical current. From Eqs. (3.1) and (3.2), we can see that the pair 
tunneling current also contains a reactive component, the sin<j> term. This 
reactive component from the pair tunneling may also affect the resonant 
frequency of the stub/junction resonator. If there is any significant effect from 
the pair tunneling, then this effect should be changed as we modulate the 
Josephson critical current with a magnetic field. We did not measure any 
Change of the resonant frequency within our experimental accuracy up to a 
field corresponding to several quanta of magnetic flux in the SIS junction. 
This is probably because, at bias voltages from 2.15 to 2.65 m V, the Josephson 
current oscillates at frequencies above 1 THz, which is strongly shunted by the 
junction capacitance. 

We discovered a strong signal at the output of the SIS detector at Vo = 
0.158 mY, which corresponds to a 77 GHz Josephson oscillation. The level of 
this strong signal is comparable to the largest signal obtained in the voltage 
range from 2.100 mV to 2.650 mV using quasiparticle direct detection. This 
detection is a result of a Josephson homo dyne detection in a self-pumped 
mode. In this mode, the Josephson current, which oscillates at wjl21t = 2eVo/h 
= 77 GHz, which coincides with the resonant frequency of the microstrip stub 
resonator, mixes with the RF signal at the same frequency and produces a dc 
output. We found that the signal level at the output of the detector is a very 
sensitive function of the dc bias voltage. At voltages below 0.150 mV and 
above 0.170 mY, the signal level decreases to essentially the level of the 
broadband noise. A similar detection mode was reported by Richards and 
Sterling53, in which the Josephson detector exhibited a very narrow frequency 
response at the resonant frequency of a cavity. The interferogram obtained in 
this detection mode is very similar to those obtained using quasiparticle direct 
detection. The peak frequency of the resonance is the same as the Josephson 
oscillation frequency, 77 GHz. We would like to point out that at this low bias 
voltage, the curvature of Ikk(V) is almost zero, as can be seen from Fig. 3.1(b). 
So the quantum susceptance is negligible compared to that of the embedding 
structures. In addition, the susceptance of the Josephson sin<j> term is 
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negligible at this low RF power leve1.27 Therefore, the measured resonant 
frequency should be the resonant frequency of the microstrip stub and the 
junction capacitance. The coincidence of this measured resonant frequency 
and the calculated one without including the quantum susceptance (dashed 
line in Fig. 3.6(a» is an additional verification of the values of the junction 
capacitance C and the phase velocity v which are used in our calculations. 

In Fig. 3.6(b), we plot the 3-dB linewidths M of the resonance peaks as a 
function of the dc bias voltage. The experimental value of df were obtained 
from the best fitted polynomials. The solid line is calculated using the same 
apodization function used in the experiment. Again, the agreement between 
experiment and theory is excellent. This comparison provides an additional 
verification of the values of C and v in our calculations. The sharp increase of 
df at 2.450 mV corresponds to the sharp increase of the quantum conductance 
G q at one photon voltage tiro/e below the gap voltage Vg. Note from Fig. 
3.1(d) that the quantum susceptance has the largest capacitive value at this 
voltage, V g - tiro/ e, so the resonant frequency is the lowest as shown in Fig. 
3.6(a). There is some disagreement between the theoretical and experimental 
values of df at Vo = 2.45 m V. This discrepancy arises because the quantum 
conductance Gq depends on the I-V curve around Vo + tiro/ e which, at Vo = 
2.45 mV, lies just above the sum gap voltage. Our junction exhibits a negative 
resistance in this region due to the proximity effect54 . This is not correctly 
measured by our I-V curve measurement system. 

3.5 Discussion 
Quantum mechanical tunneling usually results in a non­

instantaneous current-voltage relation if the time scale of the modulation is 
shorter than the lifetime of the quasipartic1es involved. This non­
instantaneous current-voltage relation will consequently give rise to a 
nondissipative reactive component as well as a dissipative, resistive 
component in the tunneling current. Such a reactive component, which is 
called the quantum susceptance, should exist in many types of tunneling 
devices. In a special case in which the tunneling is elastic so the quasiparticles 
emitted from one side of a junction reach the other side at the same energy 
level, the high-frequency response function can be simply measured from 
the dc I-V curve. SIS tunnel junctions with high quality tunnel barriers is an 
example. Other devices, such as quantum well resonant tunneling devices in 
which electrons tunnel through a double barrier quantum well, may also 
exhibit similar behavior. 

The effect of the quantum susceptance is usually complicated at low 
frequencies because the experimentally acceptable signal/noise ratio requires 
that the dimensionless RF voltage a=eV ro/tiro»1. In this limit multi-photon 
processes dominate so the system is highly nonlinear. In a linear scheme in 
which a«l, the effect of the quantum susceptance can be predicted 
analytically. However, a«l requires sufficiently high frequency so V ro is 

30 



' .. 

.. 

large enough for an acceptable signal/noise ratio. We have obtained 
definitive experimental evidence for the existence of the quantum 
susceptance by studying the response of an SIS junction to a weak RF 
radiation at millimeter wavelengths. We have measured the shift of the 
resonant frequency of a resonator which contains an SIS junction. The 
observed 19% shift, from 73 GHz to 87 GHz as the dc bias voltage is changed 
from 2.40 m V to 2.65 m V, is due to the change of the quantum susceptance 
with bias voltage. This is in excellent agreement with Werthamer-Tucker 
theory and is a direct experimental evidence of the existence of the quantum 
susceptance. Our result has therefore, for the first time, directly verified one 
of the important aspects of this theory . 
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Chapter 4 
Analysis of Pumped I-V Curves 

4.1 Introduction 
When millimeter wave radiation is incident on an SIS tunnel 

junction, a series of steps is observed on the dc I-V curve above and below 
the current rise at the sum-gap. These steps correspond to the stimulated 
emission or absorption of one or more photons during the tunneling process. 
The I-V curve with radiation applied is commonly called the pumped I-V 
curve. This chapter gives a detailed discussion of the influence of the source 
admittance as seen by the junction (the embedding admittance) on the exact 
shape of the pumped I-V curve. First we discuss the case when the junction 
is pumped by a voltage source. This case is simple to analyze but 
experimentally unrealistic. We then discuss the influence of the source 
admittance on the magnitude of the pump voltage. Borrowing from the 
discussion of junction admittance from the last chapter, we find that pump 
voltage is dependent on the dc bias voltage. This causes the pumped I-V 
curve to differ from that calculated using a RF voltage source. We then show 
accurate fits to experimentally measured pumped I-V curves obtained by 
using the embedding admittance as a free parameter. We then discuss this 
theoretical fitting to the pumped I-V curve as a method of measuring the 
embedding admittance under experimental conditions. 

4.2 Photon Assisted Tunneling 
The dc quasiparticle tunneling current pumped by a time-dependent 

potential V(t) = V rocos(wt) is given byl, 33 

(4.1) 
n=--

where (l = eV ro/fiw, In(a) is the nth order Bessel function of the first kind, and 
Idc(V) is the dc current that flows through the unpumped junction at dc bias 
voltage V. This expression assumes that all higher harmonics of the ac 
waveform are shorted. We assume that this is the case throughout this 
chapter. This assumption is identical to the 3-port approximation used to 
evaluate mixer performance in later chapters. The approximation is valid for 
all experimental results reported in this thesis due to the relatively large 
geometrical capacitance of the junctions used in our work. 

If the junction is pumped by an rf voltage source, calculation of the 
pumped dc I-V curve can be accomplished by evaluating this expression 
numerically at each dc bias voltage. The result of this calculation is shown in 
Fig. 4.1 for a typical I-V curve. Note that this is different that the classical 
method of calculating the pumped I-V curve in which the time-dependent 
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voltage is applied to the dc I-V curve and the time-averaged current is 
calculated. The classical analysis would not produce the steps seen in Fig. 4.1. 
The quantum mechanical expression, Eq. 4.1 does reduce to the classical case 
in the low-frequency limit.1 

4.3 I-V Curve with Arbitrary Source Admittance 
In a typical experiment, the junction is pumped by a source with a 

non-zero, usually complex, output admittance. Tucker has extended the 
theory of photon assisted tunneling to include the case of arbitrary source 
admittance. Since the input admittance of the junction varies with bias 
voltage, the pump voltage varies with bias voltage. This causes the pumped 
dc I-V curve to differ from that calculated for the voltage pumped case. With 
the correct source admittance, we can obtain photon assisted tunneling steps 
with low or negative dynamic conductance. We will now explain the 
appearance of this low or negative conductance using the Tucker theory. 

As pointed out by Smith et aI, the dynamic conductance can be divided 
into two parts,55, 56 

+ 

(4.2) 

da d 00 L f(a) ~c (Vo + nllro/e) 
dVoda n 

n=-oo 

The first part is simply the dynamic conductance of the voltage pumped I-V 
curve. This is almost always positive; it can only be negative near the gap 
voltage for a junction with a pronounced proximity-effect-induced super-
gap structure.54 The second part is due to the change in pump voltage. The 
partial derivative with respect to a is always positive below the sum-gap 
voltage. In order for steps of negative dynamic conductance to occur, the 
second term must be negative and larger than the first term, i.e. da/ dVo must 
be large and negative. We will show that this second term is primarily due to 
the change in the imaginary part of the pump-frequency input admittance of 
the junction with bias voltage. 

In order to facilitate discussion, we use the equivalent circuit shown in 
Fig. 4.2. The junction is assumed to be driven by a sinusoidal current source 
I(t) = lrocos(rot) with output admittance Yemb = Gemb + iBemb. The source has 
an available power Pay = lro2 / 8 Gemb. We consider the embedding 
admittance to be the parallel combination of the admittance due to the local 
environment of the junction (e.g. the junction mount, any tuning elements 
present, output admittance of any antenna) and the susceptance due to the 
geometrical capacitance of the junction. The junction admittance Yq = Gq + 
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iBq includes only the quantum admittance, i.e. that due to the quantum 
mechanical tunneling process. To calculate the pumped I-V curve, we must 
calculate V ro at each bias point. Since the quantum admittance of the 
junction is dependent of the magnitude of the drive voltage, we must self­
consistently solve the equation 

(4.3) 

with Yq = Gq + iBq given by (from Eqs. 3.6 and 3.7) 

and 

Gq(Vo,Voo) = l! In(a) [In+m(a) + In-m(a)] ~c(Vo + nl1co/e), (4.4a) 
Voo n=-oo 

Bq(Vo, V (0) = J ! In(a) [In+m(a) - In-m(a)] Ikk(Vo + nl1co/ e). (4.4b) 
00 n=-oo 

The quantum admittance used here is the arbitrary signal version of Eqs. 3.8a 
and 3.8b. In general, this equation must be solved numerically at each dc bias 
point. 

In order to gain some physical insight into the effects of the quantum 
admittance on the pumped I-V curve, we first recall the small signal limit 
discussed in the previous chapter. In this limit, Gq and Bq are independent of 
V roo They are plotted as a function of bias voltage in Figs. 3.1c and 3.1d In the 
region between fico/ e below the sum-gap voltage and the sum-gap voltage 
(where the first photon assisted tunneling step will appear in the large signal 
limit), the quantum conductance is approximately constant. The quantum 
susceptance, however, decreases rapidly with increasing bias voltage from a 
relatively small positive (capacitive) value to a relatively large negative 
(inductive) value. It is easy to see how this change in susceptance is 
responsible for a variation of pump voltage with dc bias voltage. If Bq + Bemb 
= 0, no current flows through the susceptive part of the circuit, which leads to 
a large pump voltage. If IBq + Bembl is large, current is shunted through the 
susceptive part of the circuit, which leads to a small pump voltage. Note that 
if Bemb is much greater than the variation in Bq, the change in Bq will have 
little relative effect on IBq + Bembl, and V ro will be almost independent of dc 
bias voltage. This means that a junction with a large geometrical capacitance 
without any tuning elements will be close to being voltage pumped. For 
most results in this work, the capacitance is resonated at the pump frequency 
by an inductive tuning element, so IBemblless than or on the same order as Bq. 

In the large signal limit, the situation become more complicated. The 
currents at the pump frequency are no longer linearly related to the pump 
voltage. To calculate the LO currents, the pump voltage must be calculated 
numerically at each point, and then substituted into Eqs 3.6 and 3.7 to obtain 
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the pump currents. The results of such a calculation are shown in Fig 4.3. 
Two different values of the embedding admittance are used to illustrate 
general trends. Notice that the shapes of the junction conductance and 
susceptance are similar to those calculated in the small signal limit. On any 
photon assisted tunneling step, the conductance is fairly constant, but changes 
rapidly between steps. The susceptance, however, changes rapidly on the first 
sub-gap and the first super-gap steps. Now we will focus our attention on 
the first sub-gap step, and explain the effects of the embedding admittance on 
the dynamic conductance of that step. 

In the capacitive case (Yemb = GN + i2GN, where GN is the normal 
conductance of the junction), IBq + Bembl is large at the lower end of the step, 
and approaches zero at the upper end of the step. This causes the reduced 
pump voltage to increase across this step. Thus daJ dV is positive, leading to 
a large dynamic conductance. 

In the inductive case, IBq + Bembl is finite but small at the lower end of 
the step, and increases to a large value at the upper end of the step, causing a 
to decrease across the step. In this case, daJ dV is negative and large enough 
to cause the second term in Eq. 4.2 to dominate the first, and the dynamic 
conductance on the first step is negative. 

Calculations were also carried out using the samedc I-V curve, but 
ignoring the out-of-phase currents which flow in the junction. Negative 
dynamic conductance was observed on the calculated pumped dc I-V curves 
only when the real part of the embedding admittance was unreasonably low ( 
< 0.001 Q-1). The negative conductance only appeared at the extreme low 
voltage end of the first sub-gap step, in a region actually between the first and 
second sub-gap steps. We have never experimentally observed negative 
conductance in this region. 

We therefore conclude that the quantum susceptance in necessary for 
the production of photon-assisted tunneling steps with low or negative 
dynamic conductance, at least for the moderate quality junction used in this 
part of the study. In higher quality junctions with a sharper current rise at the 
sum-gap voltage, the quantum susceptance is probably even more important 
because the magnitude of the cusp in the Kramers-Kronig transform of the 
dc I-V curve would be larger, leading to a larger swing in the quantum 
susceptance across a step. 

4.4 Fitting of Experimental Pumped I-V Curves 
Since the pumped I-V curve depends on the embedding admittance at 

the pump frequency, it should be possible to infer the embedding admittance 
under actual experimental conditions by fitting to measured pumped I-V 
curves using embedding admittance as a free parameter. There are several 
methods that c~m be used. In practice, these methods can only be used when 
harmonic response is assumed to be shunted (usually by the geometrical 
capacitance of the junction). All of these methods assume an embedding 
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admittance and an available pump power, then calculate the pumped I-V 
curve based on these parameters, and then compare the shape of the 
calculated and measured pumped I-V curves. We outline the variations 
below. These methods are similar to the method of circles developed by 
Shen57 for determining the embedding admittance. 

4.4.1 "Eyeball" Method 
The first method is the so-called "eyeball" technique. In this method, 

pumped I-V curves are computed for various values of embedding 
admittance, and after optimizing the available pump power, the shapes of the 
measured and theoretical are compared by eye. This method is at best tedious 
and non-quantitative. 

4.4.2 Computerized Current Match 
This method is essentially an automated version of the eyeball 

technique. Here an admittance is assumed, the available pump power is 
optimized. Then the sum of the squared differences between the 
experimental and calculated pumped dc current is calculated for a number of 
representative bias voltages. The computer can be used to step through a 
range of admittances to find the best fit. The disadvaI\tage of this method is 
that a large amount of computer time is required because a Fourier-Bessel 
series must be inverted for each admittance-bias point. 

4.4.3 Computerized Voltage Match 
The voltage match method58 is a more efficient approach. In this 

method, the experimental pumped IV curve and the measured unpumped 
IV curve are used to compute the values Vk of the pump voltage at several 
(-10) dc voltages at which the curves are to be compared. This pump voltage 
is used to the compute the input admittance Yk of the junction at the pump 
frequency at each of the dc voltages. For a given value of the embedding 
admittance Yemb we can calculate a new value for each of the pump voltages 
using the above input admittances, 

V'k = 1m 
Yemb + Yk 

(4.5) 

The optimum values of the embedding admittance and the pump drive 
current ILO are those that minimize the mean square deviation E between the 
Vk'S and the Vk' 's, 

k k k k 
(4.6) 
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By differentiating this expression with respect to 10) we obtain the optimum 
value for 10), given by 

(4.7) 

Substituting this into the expression for E we obtain 

E = L Va - (4.8) 
k 

Here, E can now be regarded as a parameter quantifying the quality of the fit 
between the experimental and theoretical pumped I-V curves for a given 
embedding admittance. 

4.4.4 Automated Fitting 
To illustrate the fitting process, we plot contour maps of the fit quality E 

as a function of position on a Smith chart. An example of such a map is 
shown in Fig. 4.4 In general, when E is less than 5 x 10-4 (mV)2, the 
simulated pumped I-V curves are visually indistinguishable from each other 
and fit the experimental pumped IV curves very well. 

4.4.5 Fit Quality 
An example of a typical fit is shown in Fig. 4.5. To our knowledge, 

these are the highest quality fits to pumped I-V curves yet obtained. Over the 
past several years, we have used this procedure to fit hundreds of pumped I­
V curves of various SIS junctions. In general we have found that the more 
closely the dc I-V curve of a given junction resembles that predicted by elastic 
tunneling theory, the higher the quality the fit obtained. Specifically, 
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junctions with substantial leakage currents yield poor fits. Also, junctions 
whose 1-V curves exhibit substantial proximity-effect induced structures 
immediately above the current rise at the sum-gap yield poor quality fits 
above the sum-gap. Typically, in such junctions, there is a region of negative 
dynamic conductance, and the measured dc I-V curve does not accurately 
represent the density of quasiparticle states near the gap because of 
instabilities in the bias circuit when driving this negative dynamic 
conductance. We have also fitted· pumped I-V curves of series arrays of 5 
nominally identical junctions. It has been argued2 that such arrays can be 
treated as a single junction if the measured voltage and current are scaled 
down by a factor of five. We have found that the fits of pumped I-V curves 
using such a scaling procedure are of relatively poor quality, even when the 
junctions in the array have nearly identical critical currents. 

4.4.6 Comparison with Results from a Scaled Model 
To check the validity of the I-V curve fitting technique, we can 

compare the deduced embedding admittances to those obtained from a scaled 
model. These measurements were done using the waveguide-based mixer 
test apparatus to be discussed in chapter 5. The mixer block has a single 
adjustable tuning element, and non-contacting backshorts. We have also 
constructed an accurate scaled model of this mixer block which allows us to 
measure the embedding impedance at a scaled frequency range of 6-8 GHz. 
Because of experimental difficulties in our apparatus, it was difficult to relate 
the position of the backshort in the scaled model to the position of the 
backshort in the actual experiment. So, instead of comparing the deduced 
and measured embedding admittances for specific backshort position, we 
compare the range of embedding admittances accessible by moving the 
backshort while holding the LO frequency fixed. To do this, we measured a 
set of I-V curves pumped at 93 GHz, each with the backshort position 
stepped O.0165mm farther away from the junction, starting at approximately 
1.15mm away from the junction. The range of admittances consistent with 
each I-V curve was deduced using the voltage match method. For each I-V 
curve, this range can be represented on the Smith chart as a roughly oval 
shaped region. These regions, along with the range of admittance measured 
from the scaled model59 at the scaled frequency, are shown in Fig. 4.6. 

The deduced admittances are in good qualitative agreement with those 
measured from the scaled model. The deduced admittances lie on an oval 
with a larger radius than the circular range measured from the scaled model. 
This could be caused by inaccurate scaling, or by differences in the surface 
impedance between the scaled model and the mixer block at the measured 
frequencies. It should be noted that I-V curves were measured only for a 
small range of backshort positions. For most positions the admittance lies 
between region (a) and region (k). The pattern is qualitatively repeated with 
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period .... 1.5mm, which is approximately 1/2 the guide-wavelength at 93 
GHz. 

The successful comparison between admittances measured from a 
scaled model and those deduced from pumped I-V curves gives us 
confidence to apply the I-V curve method to the modeling of mixer 
performance. This will be discussed in chapter 5. 

4.5 Conclusion 
We have studied the effect of the quantum susceptance in the large 

signal limit by studying the photon-assisted-tunneling steps with negative 
conductance. This negative conductance is due to the larger RF drive voltage 
caused by the capacitive quantum susceptance at lower bias voltage. The 
agreement between the I-V curves calculated including the quantum 
susceptance and the experimental ones is essentially perfect. This result 
provides an effective way to identify whether the imbedding admittance is 
inductive or capacitive by observing the slope of the photon-assisted­
tunneling steps. This method has proved to be very useful in searching the 
optimum frequencies for SIS mixers coupled to tuning elements . 
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ChapterS 
Waveguide Mixer Results Using Tantalum Tunnel Junctions 

5.1 Introduction 
Heterodyne receivers which use the nonlinear response of SIS tunnel 

junctions have been shown to provide the lowest noise over a broad range of 
the millimeter and sub-millimeter electromagnetic spectrum.2, 4 However, 
even the best of the receivers have fallen short of the performance which is 
predicted by the theory of quantum mixing.!' 2 Because of the lack of detailed 
comparisons between experimental and theoretical performance, it has been 
unclear whether the discrepancy between measured and predicted 
performance is due to difficulties in coupling the signal to the mixer, or 
problems with the theory. 

Several authors have made quantitative comparisons of SIS mixer 
performance with theory. Feldman et al.60 obtained good agreement with 
theoretical predictions of mixer gain at 115 GHz using embedding admittances 
measured from a scaled model. However, they were not able to measure. 
mixer noise accurately enough for a comparison with theory. McGrath et al.61 

made an extensive comparison between theory and experiment near 36 GHz. 
They concluded that the theory overestimates the gain, and underestimated 
the noise by a significant amount. They did not measure the embedding 
admittances involved in the actual experiment, and therefore could only 
compare experimental performance with that predicted with the embedding 
admittance optimized for best performance. The ranges of allowable 
embedding admittance for their work were determined from a scaled model. 

In this chapter and more briefly in the letter and paper that preceded 
it9, 10we carry out a detailed analysis of the performance of high quality, small 
area (1.0 x 1.0 micron) Ta/Ta20S/PbBi tunnel junctions used as quasiparticle 
mixers near 90 GHz. We compare theoretical and experimental pumped I-V 
curves to deduce accurate embedding admittances under experimental 
conditions, and use these admittances to predict both mixer noise and mixer 
gain. These predictions are then compared with experimentally measured 
values. 

This chapter is organized as follows. In sections 5.2, 5.3, and 5.4, we 
discuss, respectively, the RF, IF and dc measurement apparatus. In section 5.5 
we give a description of the tunnel junctions used. In section 5.6 we discuss 
the measurement scheme. In section 5.7, we show our mixing results, and in 
5.8, we compare these results with the theoretical predictions of the Tucker 
theory. 

5.2 RF Measurement Apparatus 
A block diagram of the RF apparatus is shown in Fig. 5.1. The local 

oscillator is a tunable Gunn effect oscillator48 . The oscillator provided -20 
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m W of RF power over a tuning range of 78-115 GHz. For monitoring 
purposes, a switch could be used to redirect the RF power to a thermistor 
based power meter or to a digital frequency counter. The RF power enters the 
dewar by way of a stainless steel waveguide and is coupled to the mixer block 
through a 23-dB crossed-guide coupler. Both the loss in the 80 cm stainless 
steel waveguide and the 23-db coupling value of the coupler serve to reduce 
the amount of room temperature radiation incident on the mixer. 

In order to make precise measurements of mixer performance, a 
calibrated signal must be coupled to the mixer. To do this, we terminate the 
straight-through arm of the coupler with a specially designed variable 
temperature RF waveguide 10ad62 which provides a calibrated blackbody 
signal with a spectral density that depends on its temperature. A diagram of 
this variable temperature load is shown in Fig. 5.2. The load is made from a 
250 J.1m thick silicon vane inserted through a narrow slot in the broad wall of 
silver WR-10 waveguide. The vane was made from a standard 2 inch silicon 
wafer. The gradual taper of the secion in the waveguide minimized 
reflection. A nichrome film was evaporated on one face of the vane to 
provide an absorbing surface. The emissivity was inferred from VSWR 
measurements to be very close to unity (-0.999). 

The temperature of the load is measured using a germanium resistance 
thermometer, and the load can be heated using a 500 Q metal film resistor. 
The load is thermally isolated from the bath by thin-walled fiberglass tubes. 
The time constant was set to be - 5 seconds by choosing the length and 
diameter of the copper wire thermal link to the helium bath. The internal 
time constant of the vane is estimated to be less than 1 second at cryogenic 
temperatures due to the low heat capacity of silicon. 

The resistance of the thermometer is read out using a four-wire ac 
bridge method to avoid errors due to lead resistance and thermal emf's. The 
thermometer was isolated from external heat sources by using 125 J.1m 
diameter manganin wires which were well heat sunk at the bath 
temperature. 

The load is connected to the mixer block by the following lossy 
components: a 76 mm length of silver waveguide, a 25 J.1m thick mylar 
window epoxied between two waveguide flanges, a 23 dB crossed-guide 
coupler, and a 25 mm length of silver waveguide. Together these cause an 
input loss of 0.5 ± 0.2 db at 1.3 K. 

A diagram of the mixer block is shown in Fig. 5.3. The mixer block is 
made of OFHC copper. Each half of the split block contains one half of a WR-
10 waveguide channel. A channel-waveguide transformer reduces the 
waveguide height by a factor of four. A non-contacting A/4 backshort serves 
as an adjustable tuning element. The SIS tunnel junction, along with an 
integrated RF band-reject filter pattern is deposited on a 0.9 mm x 12.5 mm 
fused quartz substrate which is 0.15 mm thick. The substrate is placed across 
the waveguide in a smaller channel forming a suspended strip line circuit 
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outside the waveguide. One side of this strip line circuit is connected to the 
center conductor of an SMA connector, to provide coupling to the IF 
amplification system. 

5.3 IF Measurement Apparatus 
The IF measurement apparatus must be able to accurately measure the 

power coupled out of the mixer at the IF frequency, as well as the power 
reflection coefficient off the mixer at the IF frequency. A diagram of the IF 
measurement system is show in Fig. 5.4. The IF power from the mixer is 
coupled to a liquid Helium temperature GaAs high electron mobility 
transistor (HEMT) amplifier through a quarter-wave micros trip matching 
transformer, and a cooled L-band isolator. The noise temperature of the 
HEMT is measured to be 5-6 K between 1.2 and 1.6 GHz. The output of the 
HEMT amplifier is coupled out of the Dewar using stainless steel coaxial cable. 
and is further amplified by room temperature amplifiers. Also at room 
temperature is a tunable bandpass filter with a bandwidth of 50 MHz used to 
define the IF bandwidth and center frequency. The amplified signal can be 
evaluated using a precision power meter, a spectrum analyser, or a crystal 
detector. A 20-dB bidirectional coupler is used to inject monochromatic test 
signals in order to measure the reflection coefficient Ipl2 for the IF power. 

By switching a coaxial switch, the input of the IF system can be 
connected to a variable-temperature coaxial matched load. This load is 
similar in function to the RF waveguide discussed above, and is used to 
provide a blackbody signal to calibrate the performance of the IF system. 

5.4 dc Measurement Apparatus 
The dc bias is coupled to the junction through a bias tee incorporated 

into the IF frequency matching circuit. The bias is provided by a battery 
powered source with an output impedance (load line) that can be varied from 
10n to 10kQ. The voltage across the junction and across a monitor resistor in 
series with the junction (used to measure the bias current) are measured 
using low-noise instrumentation amplifiers. The bias current can either be 
held constant, or swept to provide an I-V curve on an oscilloscope or chart 
recorder. The I-V curve can also be measured using two computer controlled 
digital voltmeters to provide an accurate digitized I-V curve for theoretical 
modeling of mixer performance. This dc measurement system was also used 
for the measurements discussed in chapters 3 and 4. 

5.5 Tantalum Junctions 
In order to test quantum mixer theory we require the highest quality 

tunnel junctions possible. To reduce the noise we require low subgap leakage 
currents, and in order to see strong quantum effects, we require a sharp 
current rise at the sum gap voltage. Both of these criteria are met by 
Ta/Ta20s/PbBi junctions fabricated at Yale University.63,64 The Ta20S tunnel 

42 



• 

" 

barrier used in these junctions is of extremely high quality because Ta does 
not form stable suboxides which would degrade barrier quality. 

5.5.1 Fabrication 
The Ta/Ta20S/PbBi junctions used for this experiment are small area 

<i.0 x 1.0 Ilm2).64 A 3000A thick Ge film is thermally evaporated on the 150 
Ilm-thlck quartz substrate. 100A of Nb and 3000A of Ta are then ion-beam 
sputtered and patterned by liftoff. The thin Nb layer nucleates the bcc phase 
of the Ta base electrode. A chlorobenzene-soak resist process produces a 1 
{llm)2 resist "dot" with an undercut profile necessary for lift-off. 3000A of 
SiO is then thermally evaporated: lift-off of the resist "dot" defines the 
junction window in the SiO film. After patterning the counter-electrode 
lift-off stencil, the junction is ion-beam cleaned. The exposed Ta is then 
oxidized by a dc glow discharge inlure 02 to produce the Ta20S tunnel 
barrier. Thermal evaporation of 3000 of PbO.9BiO.l and 150A of In completes 
the tunnel junction. The base electrode ion-beam cleaning, oxidation, and 
thermal evaporation of the counter-electrode are completed in-situ in order 
to produce a high quality tunnel barrier. The device is completed by lift-off 
of the counter electrode. All fabrication of tantalum junctions was performed 
at Yale University by A. H. Worsham. 

5.5.2 I-V curves 
The majority of the experiments reported here were carried out on a 

single SIS junction. This junction had a normal resistance of 720 at 1.3 K. 
Both the normal resistance and the shape of the I-V curve remained constant 
over a period of six months even though for much of that time the junction 
was stored at room temperature in a desiccator. This durability is in contrast 
to the behavior of earlier tantalum junctions and is attributed to the 150A 
overlayer of indium deposited on top of the counter-electrode.64 

The I-V curve of the tantalum junction used in this experiment 
showed an extremely sharp current rise at the sum-gap voltage as well as 
extremely low sub-gap leakage current. The voltage width II V over which 
the sum-gap current step rises from 0.1 to 0.9 of its full value is less than 0.01 
mY. T~e leakage current at 0.8 Vgap is less than 0.05 Ie. The dc I-V curve of 
the junction is shown in Fig. 5.5. 

5.5.3 Dependence of 1-V curves on Magnetic field 
The quasiparticle branches of the dc I-V curves of these junctions 

depended on applied magnetic field and on the amount of magnetic flux 
trapped in the junction. When no magnetic field was applied, and for some 
amount of trapped flux, the current rise at the sum-gap voltage was 
extremely sharp, and in some cases exhibited negative dynamic conductance. 
For different amounts of trapped flux, as evidenced by a lower value of the 
critical current, the sum-gap current rise was not so sharp, and the leakage 
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current increased by as much as a factor of two. Two different I-V curves for 
the same junction at the same temperature are shown in Fig 5.5. Both I-V 
curves were measured with zero applied field. 

For the comparison between measured and calculated mixer 
performance discussed later in this paper, it was important that the dc I-V 
curve remain constant throughout the experiment. We found that certain 
operations (such as switching the electrically controlled coaxial switch) sent 
transients to the junction which caused the amount of flux trapped in the 
junction to change. We found that we could regain the original I-V curve by 
repeatedly switching the coaxial switch, presumably reproducing the original 
value of the trapped flux .. 

When an external magnetic field of moderate strength was applied 
parallel to the plane of the junction, the dc I-V curve changed significantly. 
1-V curves for the same junction at the same temperature but for several 
different values of the applied magnetic field are shown in Fig. 5.6. Notice 
that the dynamic conductance of the sum-gap current rise decreased with 
increasing field, but without a significant rise in leakage current at bias 
voltages less than 0.8 V g. This effect is due to a smearing of the density of 
states as the applied field approaches the critical field of the superconducting 
films. 

5.6 Measurement Scheme 
Accurate measurements of mixer noise and gain are required in order 

to evaluate mixer performance. The technique used in this work, which 
employed variable temperature loads, is describedelsewhere.62, 65 We will 
summarize the technique here. First we will discuss a simplified version of . 
the measurement scheme we use to measure the mixer performance. 
Because all quantitative measurements were done using broadband blackbody 
signals, we use spectral densities (measured in WHz-l ) to characterize the 
signal strength. With the local oscillator applied, the spectral density of the IF 
output signal Sout is 

Sout = Gr (Sr + Sin) . (5.1) 
Here Sin is the spectral density of the input signal, Sr is the'spectral density of 
the noise added by the receiver (Le. the total noise added by the mixer and the 
IF amplification system), and Gr is the gain of the receiver. In our case, the 
input signal incident on the mixer is a single-mode blackbody signal 
produced by the RF load at temperature T with 

tiro (tiro) Sin = - coth --
2 2kT . (5.2) 

When tiro/2kT « 1, note that this reduces to Sin = kT, as expected in the 
Rayleigh-Jeans limit for a single-mode source. The measurement scheme is 
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as follows. First, we measure Sout as we vary T. Then we plot Sout as a 
function of Si1l1 which we calculate from the measured values of T and Eq. 5.2. 
The slope of the best linear fit to this plot is the receiver gain Gr, and the x­
intercept gives the negative of the spectral density of the noise added by the 
receiver. If we switch the coaxial switch so that the IF amplification system is 
connected to the variable temperature IF load, we can repeat the above 
procedure to "measure the gain GIF and noise spectral density SIF of the IF 
system. We can rewrite eq. 5.1 in terms of the mixer and IF parameters, 

(5.3) 

Where Sm is the spectral density of the noise added by the mixer, Gm is the 
gain of the mixer. Its easy to see that we can extract the mixer parameters as 

(5.4) 

In this simple discussion we have neglected many sources of noise, 
losses between the RF load and the mixer, and losses due to impedance 
mismatches in the IF system. A more realistic analysis yields 

where Gm is the gain of the mixer, Sm, SLO, and S8 are the spectral densities of 
the noise added by the mixer, room temperature noise leaking down the LO 
waveguide, and the Helium bath respectively. Here a is the loss between the 
rf load and the mixer, and Pm is the magnitude of the IF reflection from the 
mixer due to admittance mismatch. The term Pm2SB is due to blackbody 
radiation emitted by the isolator reflecting off the mixer and then coupling to 
the amplifier. " 

A mixer test proceeds as follows. First, the receiver performance is 
measured as described above using the varaible temperature RF load. Then 
the reflection coefficient from the mixer is measured by injecting coherent 
signals through the test ports shown in Fig 5.4. When a signal is injected into 
port one, it is coupled straight out through the isolator and IF amplifier. 
When a signal is injected into port two, it travels first toward the mixer, 
where it is reflected, and then couples through the isolator. "The power of the 
two signals is measured using a spectrum analyser, and the ratio between 
them is the power reflection coefficient of the mixer Pm2. 

We then calculate mixer performance by solving Eq. 5.5 for Gm and Sm, 

G - . Gr 
m - (2) , 

GIF 1 - Pm (1 -a) and (5.6) 
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(5.7) 

In a typical experiment, four or five values of the rf load temperature were 
chosen in the range from 1.3K to 20K and the output power measured for 
each load temperature. A least squares linear fit to these points was used to 
compute the mixer performance. 

5.7 Mixer Optimization 
Mixer performance is dependent on a large number of experimental 

parameters. These include, but are not limited to, de bias point, applied local 
oscillator power, local oscillator frequency, IF frequency, backshort position, 
temperature, and applied magnetic field. Before the mixer performance is 
measured using the above procedure the appropriate parameters were 
optimized to maximize the coupled gain Gc = (l-Pm2)Gm. This was typically 
done by injecting a monochromatic signal through the LO waveguide at 
either the upper or lower sideband and maximizing the output power PIF of 
the IF system, which was monitored with a direct detector .. 

5.8 Mixer Performance 
The coupled gain and mixer noise for our mixer are plotted as a 

function of local oscillator frequency in Fig. 5.7. The backshort position and 
available local oscillator power were optimized for each frequency: The 
minimum mixer noise was found to be 0.61 + / - 0.36 quanta at 93.0 GHz. The 
sideband ratio for this operating point was 9.8 dB, essentially making this a 
single sideband (SSB) mixer. The mixer noise is within 25 percent of the 
SSB quantum limit of 0.5 quanta. This is, to our knowledge, the closest 
approach to the quantum limit ever demonstrated. 

The coupled (transducer) gain was always measured to be less than 
unity. Simulation has shown that DSB mixers with such sharp I-V curves 
can give values of coupled gain much greater than unity. We attribute our 
low gain to the small instantaneous bandwidth of our mixer mount at the RF 
frequency. This matter will be discussed in more detail later in the thesis. 

5.9 Comparison with Theory 
In order to compare our experimental results with the Tucker theory, 

we have carried out computer simulations of mixer performance. All 
calculations were done using the three-port model that is, with currents 
generated at the first and higher harmonics assumed to be short-circuited. 
This is a reasonable assumption in our case because the relatively large 
geometrical capacitance of the junction (C .... 160 fF, roRNC = 14 at 190 GHz) of 
the junction shunts currents at harmonic frequencies. 
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The Tucker theory provides a method for predicting the high­
frequency properties of a quasiparticle mixer from the dc I-V curve, provided 
that both the dc I-V curve and the rf performance are determined only by 
elastic tunneling processes. Because the I-V curves of our junctions closely 
resemble the I-V curves calculated from the BCS density of states and elastic 
tunneling theory, we expect that the dc I-V curve is largely determined by 
elastic tunneling events. Many other junctions exhibit sub-gap currents 
substantially in excess of those predicted by the BCSI elastic tunneling theory. 
These currents may not arise from elastic tunneling, and hence would not be 
'correctly modeled by the Tucker theory. If this is the case, our junctions 
should be a favorable case for a quantitative test of the Tucker theory. 

5.9.1 Determination of Embedding Admittances 
To calculate mixer performance from the Tucker theory, we must 

know the embedding admittance both at the upper sideband frequency, and at 
the lower sideband frequency. These admittances can be determined in 
several ways. First, numerical modeling of the embedding structures could be 
carried out. While this may be possible in simpler situations, the complexity 
of our mixer block would make this process tedious and unreliable. We have 
instead used two other approaches. The first is to measure the admittance of 
a large scaled model of our mixer block at lower frequencies (3 -10 GHz) 
where accurate network analyzers are available. We have also determined 
the embedding admittance by studying the shape of the pumped I-V curve at 
various frequencies and backshort positions. Comparisons between these two 
methods show good agreement. Because of the large amount of backlash 
present in the backshort drive, it was impossible to determine the exact 
admittance present under specific experimental conditions. We therefore 
deduced the embedding admittance by studying the shapes of the pumped I­
V curves measured under experimental conditions. 

It has long been known that the embedding admittance at the pump 
frequency influences the shape of the pumped I-V curve. The nature of this 
dependence was discussed in the chapter 4. Other workers have used the 
shape of the pumped I-V curve to determine in general the range of 
embedding admittance provided by their mixer mounts.58, 66, 67 This work 
utilizes the shape of the pumped I-V curve to deduce the embedding 
admittances present under actual experimental conditions which are needed 
to accurately model mixer performance. 

5.9.2 Simulation of Mixer Performance 
We have calculated mixer performance using the Tucker theory in the 

3-port approximation. We have not made the low IF approximation used by 
some other authors. The input data are the dc I-V curve, the bias voltage, the 
La voltage amplitude VLO, the RF embedding admittances Yusb and YIsb at the 
upper and lower sideband frequencies respectively, and the IF load 
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admittance YIP. We consider the susceptance due to the geometrical 
junction capacitance to be part of the embedding admittance. 

To predict mixer performance we must measure or deduce the above 
input data under experimental conditions. The dc I-V curve and the bias 
voltage are straightforward to measure. The LO voltage amplitude was 
determined from the pumped dc current at the bias point using the Tucker 
theory. The IF load admittance was assumed to be matched to the mixer IF 
output admittance, yielding the available gain. 

The RF embedding admittances were determined by pumping the 
mixer first at the upper sideband frequency, and then at the lower sideband 
frequency, and measuring a pumped I-V curve for each case. From these I-V 
curves, we deduced a range of embedding admittances consistent with each of 
these I-V curves. Ranges deduced using different available pump power 
were consistent. In general, the best defined ranges were obtained when the 
available pump power was such that the pumped dc current on the first 
photon-assisted-tunneling step below the sum-gap was 1/4 to 1/3 of the 
unpumped current immediately above the sum-gap. The admittances used 
in this work were deduced from I-V curves measured under these 
conditions. 

The ranges of admittances deduced were used in the Tucker theory to 
predict a range of mixer performance. This was done by exhaustively 
sampling on a grid of admittance pairs consistent ( E ~ 5.0 x 10-4 (m V)2 , E 

defined as in Eq. 4.8) with the shape of the pumped I-V curves. The range of 
performance we quote was obtained by plotting a histogram of calculated 
available gain and mixer noise value, and noting the range into which 90 
percent of the predicted values fell. 

5.9.3 Results vs. pump power 
As a first test of this procedure, we analyzed the results of a relatively 

simple experiment. We measured mixer noise and available gain as a 
function of LO power with all other parameters (Le. LO frequency, backshort 
position, dc bias point, IF frequency, magnetic field, and temperature) held 
constant. This implies that the embedding admittances at the upper sideband 
and at the lower sideband were constant during the experiment, and that 
changes in mixer performance were due only to changes in the amplitude of 
the LO voltage. 

In Fig. 5.8, we plot the experimentally measured mixer noise and 
available gain as a function of available pump power. The range of predicted 
performance consistent with the I-V curve is indicated by the dashed lines in 
Fig. 5.8. The experimental values are consistent with the predicted range of 
performance, but are at the poor performance end of the range. This is 
consistent with the conclusions reached by McGrath et a1.61 For one specific 
set of embedding admittances within the allowable range, we are able to 
predict performance that is in nearly perfect agreement with the 
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experimentally measured values. The comparison is represented by the solid 
lines in Fig 5.8. These values of the embedding admittance are identical to 
those used to produce the fits to the pumped I-V curves shown in Fig. 4.5. 

5.9.4 Results vs. Backshort position 
We have also modeled mixer performance as function of backshort 

position. We measured mixer gain and noise for 13 different back short 
position with LO frequency, IF frequency, and applied magnetic field held 
constant. The chosen positions were on either side of the optimum 
backshort position. At each backshort position, the LO power and dc bias 
point were optimized for maximum coupled gain. 

The analysis of this experiment is slightly more complicated because 
the embedding admittance changes with backshort position. For each 
backshort position, we measured I-V curves pumped at the upper and lower 
sideband frequencies and used these to deduce ranges of allowable embedding 
admittances, which were used to model mixer performance. In Fig. 5.9 we 
plot the experimentally measured mixer noise and available gain as a 
function of backshort position. The range of predicted performance is 
indicated by the dashed lines in Fig. 5.9. The experimental values are in good 
agreement with the predicted range of performance for backshort positions 
closer to the junction than 0.59mm. When the back short is farther away, the 
agreement is not as good. 

The admittances deduced when the backshort is farther than 0.59 mm 
from the junction are on the extreme outer edge of the Smith chart, where 
either or both the real or imaginary parts of the embedding admittance is 
much larger than the input admittance of the junction. Under these 
conditions, the change of the input admittance of the junction with bias 
voltage does not have a large effect on the LO voltage, and hence I-V curve 
with different embedding admittances are quite similar. However, 
admittances that yield almost identical I-V curves have different values of 
RF reflection coefficient, and hence different mixer performance. 

As the embedding admittance moves radially outward near the edge of 
the Smith chart, the power needed to obtain a specific pumped dc current 
increases rapidly. It is possible to eliminate some of the embedding 
admittances that are consistent with I-V curve shape, but inconsistent with 
the measured value of the LO power. Since the LO power is measured 
outside the dewar, we must know the loss between the power meter and the 
junction at the pump frequency. We were able to estimate this loss by using 
the calculated pump power for the I-V curves measured when the backshort 
is closer than 0.59mm to the junction. For these backshort positions, the 
embedding admittance is nearer the center of the Smith chart and the pump 
power varies only by a factor of two over the range of admittance consistent 
with I-V curve shape. 

We used this procedure to restrict the range of admittances when the 
backshort is more than 0.59mm from the junction. In Fig. 5.10, we replot the 
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experimentally measured mixer noise and available gain. The range of 
predicted performance calculated using the restricted range of admittances is 
indicated by the dashed lines. The agreement between experiment and theory 
is substantially improved over the range in which the corrected admittances 
were used. It should be noted that the performance calculated using the 
restricted range of admittance falls outside the range calculated using the 
unrestricted admittances. This is because the values calculated using the 
restricted admittances fell outside the 90 percent range used in Fig. 5.9. 

5.9.5 Discussion 
It is useful to consider effects that could cause discrepancies between 

calculated and experimental mixer performance. It is possible that the Tucker 
theory overestimates the performance when the dc I-V curve is used to 
predict high-frequency behavior. This could occur if the dc I-V does not 
accurately represent the density of states. A very small negative dynamic 
resistance observed on the sum-gap current rise indicates that the high 
current density of our junctions heats the quasipartic1es and sharpens the 
current rise at the sum-gap voltage. The time scale of this effect is much 
longer than one cycle of the local oscillator, so that the high-frequency 
response is not exactly determined by the dc I-V curve. A second possibility 
is that the leakage current below the sum-gap does not arise from tunneling, 
and so is not correctly modeled by the Tucker theory. If this effect were 
important it could explain our relative success because the effect would be 
minimized in low-leakage junctions. It is possible that the determination of 
embedding admittance using pumped I-V curves gives incorrect results, 
either due to non-equilibrium phenomena, leakage currents, or other effects. 
We consider this unlikely because of the good agreement between the 
admittances deduced by the fitting procedure and those measured using a 
scaled model,59 or theoretical expectations.8 

It is also possible that harmonic effects are important for some 
backshort positions. This is unlikely to be the case for the first experiment 
where performance was measured as a function of pump power. In this 
experiment, the junction capacitance was nearly resonated at the LO 
frequency. Under these conditions, the amplitude of the RF voltage at the 
first harmonic of the pump frequency is -100 times smaller than that at the 
pump frequency for typical pump power, and the assumptions of the three­
port model should be very well justified. For the second experiment, where 
the backshort position is varied, the embedding admittance was highly 
capacitive at the pump frequency when the backshort was farther than 
0.59mm from the junction. Under these conditions, voltages at the first 
harmonic of the pump frequency could arise either from harmonic 
conversion in the mixer itself, or from harmonic content in the waveform of 
the local oscillator. The pump power needed at these backshort positions is 
up to 100 times larger than when the mixer is optimized, thus there is up to 
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100 times more power at the first harmonic frequency. It is possible that the 
3-port model is no longer valid under these conditions. 

We now turn the discussion to the relatively low values (less than 
unity) of coupled gain that we measured. Simulations have shown that 
junctions similar to ours can give large values of coupled gain if provided 
with the correct embedding admittances. The small instantaneous bandwidth 
of our mixer block limits our ability to simultaneously provide favorable 
embedding admittances at both the upper and lower side band. Simulation 
has shown that as the difference between the imaginary parts of the upper 
and lower side band embedding admittance increases, the coupled gain 
decreases for typical mixer parameters. Coupled gain much greater than unity 
was measured in a full-height version of the mixer block used in this work.68 

The junction used in that experiment used an integrated tuning element to 
resonate the geometrical capacitance of the junction which greatly increased 
the instantaneous bandwidth, making the mixer almost double-sideband. 

We have accurately measured the performance of an SIS mixer 
operating in the quantum limit where the noise is limited by the uncertainty 
principle. Our minimum mixer noise is a maximum of 0.42 quanta above 
the quantum limit for a phase-preserving linear amplifier. This is, to our 
knowledge, the closest approach to the quantum limit measured in any 
mixer. We have calculated pumped I-V curves in nearly perfect agreement 
with those measured in the experiment for a broad range of experimental 
parameters. Using admittances deduced from the fitting parameters and the 
Tucker theory of quantum mixing, we have predicted mixer performance in 
good agreement with that measured experimentally. 
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Chapter 6 
Measurements of Quasioptically Coupled SIS Mixers 

6.1 Introduction 
One of the major goals in the development of SIS mixers is to increase 

the frequency at which they can be operated with useful sensitivity. Tucker's 
theory predicts sensitive operation up to frequencies near the sum-gap 
frequency (00 - 2A/t069,70, about 600 GHz for mixers using all Nb junctions. 
Above -300 GHz, the sensitivity of existing receivers falls well short of that 
predicted by theory. At least part of this low sensitivity is due the difficulty of 
coupling the signal to the mixer at submillimeter frequencies. 

SIS mixers operated at millimeter-wave frequencies can be coupled to 
the incoming radiation using waveguide-based coupling schemes. Such a 
scheme was used successfully in the work discussed in the previous chapter. 
As the operating frequency is increased into the submillimeter band, in 
becomes increasingly difficult to fabricate waveguide structures with 
sufficient accuracy using conventional techniques. The smaller waveguide 
dimensions also makes it necessary to fabricate the mixer junctions on 
thinner substrates to prevent excessive dielectric loading of the waveguide. 
These thin substrates (-20 J.1m at 500 GHz) are difficult to handle and mount 
with sufficient accuracy. Although waveguide-based mixers have been 
successfully operated up to 345 GHz71 , this is probably near the limit of 
conventionally-fabricated waveguide mixers. There are two possible 
solutions to this problem. One is to fabricate waveguide structures using 
micromachining techniques with integrated mixer junctions.72 The other is 
to couple the radiation to the mixer using a quasioptical coupling scheme. 

In a quasioptical scheme, optical components such as lenses and 
mirrors are used to focus the radiation onto an antenna which then couples 
the radiation to the mixer. A planar antenna can easily be fabricated using 
microlithography techniques to the accuracy required for sub-millimeter 
operation. SIS receivers using planar lithographed antennas and quasioptical 
coupling schemes have shown good performance at millimeter and 
sub millimeter wavelengths.73- 75 

Another of the major problems encountered at near-millimeter and 
sub-millimeter wavelengths is capacitive roll-off, which can significantly 
degrade the coupling of the RF signal to the mixer. It may be possible to use 
high current density (jc ~ 10 kA/ cm2 ) small area ( ~ 1 J.1m2) junctions so that 
the capacitance does not play a dominant role in the RF coupling. Such 
junctions are extremely difficult to fabricate. Also, mixers with extremely 
small capacitance are prone to complication by harmonic mixing, since the 
higher harmonics are not shunted by the junction capacitance. These 
harmonic effects are thought to degrade mixer performance69. The highest 
performance millimeter wave mixers built to date have capacitances such 
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that (ORNe - 4-8, and use tuning elements to resonate the capacitance at the 
operating frequency. In a waveguide-mounted mixer, the capacitance can be 
resonated at the signal frequency using adjustable tuning elements such as 
back shorts or screw tuners. For quasioptical receivers such adjustable tuning 
elements are not available or poorly understood. However, it is possible to 
fabricate lithographed inductive tuning elements which resonate the 
capacitance at the signal frequency. 

In this chapter we discuss development we have done on quasioptical 
coupling to submillimeter mixers. This chapter is organized as follows: First 
we discuss the mixer test apparatus we used, including the quasioptical 
elements and planar antennas. Then we motivate the use of tuning elements 
to resonate the junction capacitance. We then discuss the use of a Fourier 
transform spectrometer to rapidly evalute the performance of tuning 
elements. We then discuss the design and measured performance of each 
type of tuning structure sequentially. Since the performance of the mixers 
discussed in this chapter is so far from the quantum limit, we report the noise 
added by the mixer by citing the noise temperature of the mixer. 

6.2 Mixer Test Apparatus 
The mixer test apparatus shown in Fig. 6.1, allows us to measure the 

coupled gain and added noise of the mixer under test. The measurement 
scheme is similar to that discussed in sections 5.2-5.4. The main difference is 
that the RF black-body source is outside the cryostat. The RF black-body is 
either a piece of millimeter-wave absorbing foam76 immersed in liquid 
nitrogen (771<) or an identical piece of foam at room temperature (-300K). 
We note the output of the IF amplifier when each of these loads is placed at 
the input of the mixer test system, and from this deduce the gain and added 
noise of the test system as a whole. As in chapter 5, we must account for the 
contribution to these parameters from the IF amplification system in order to 
determine the performance of the mixer. 

Returning our attention to Fig. 6.1, the local oscillator is either a Gunn 
effect oscillator (near 90 GHz), or a Gunn oscillator pumped reverse-biased­
Schottky varactor multiplier (at 180, 270 and 360 GHz). The local oscillator is 
coupled to free space using a horn antenna and lens combination which 
provides a parallel beam. The local oscillator and the signal are combined 
using a 0.075 mm-thick mylar beamsplitter, which has a transmittance of 0.97 
at 90 GHz for the polarization of interest. The combined LO and signal are 
focused by a 10 em-diameter, £/1 off axis paraboloid onto the window of the 
cryostat. The vacuum window of the cryostat is a 16 mm-diameter 0.02 mm­
thick polypropylene film. The window is curved by the external air pressure 
which reduces Fabry-Perot resonances. A 12.7 mm-diameter 0.83 mm-thick 
fused quartz window with a 100 J.1m-thick black-poly film is attached to the 
77K heat shield. This window absorbs most of the radiation above the mid­
infrared range (to reduce radiation loading of the LHe temperature cold plate 
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of the cryostat) yet has almost 100% transmission at small multiples of 90 
GHz. Inside the cryostat the LO and signal are further focused by an on-axis 
ellipsoidal mirror onto a hemispherical quartz lens. The quartz lens provides 
good thermal contact between the LHe temperature cold plate and the 
junction. It also provides a dielectric half-space through which the antenna 
couples most efficiently to the input radiation. The planar antenna and 
mixer junction are located on the flat side of the hemispherical lens. 

The on axis configuration of the ellipsoidal mirror suffers from center 
obscuration by the mixer mount, so we later changed to a simpler 
configuration using a hyperhemispherical quartz lens followed by a second 
TPX lens which couples efficiently to a parallel beam at the dewar window. 
To accommodate this beam, the dewar window was enlarged to 31.5 mm and 
the off axis paraboloid was eliminated from the system. 

We have used several planar antennas in our work. We first used a 
90° bowtie antenna. The antenna pattern of this antenna suffers from large 
sidelobes at 60° from normal and thus would not couple well to the nearly 
gaussian beam emitted by a millimeter-wave radio telescope. We have also 
used the circular-tooth log-periodic antenna shown in Fig. 6.2a. Both the 
bow angle and the tooth angle are 45°, and ratio of the linear dimension of 
the adjacent teeth is 2. The choice of angle and ratio is a compromise between 
beam pattern and cross polarization. This antenna is designed to be operated 
between 20 GHz and 1 THz. The beam pattern of this antenna is nearly 
gaussian. One disadvantage of this antenna is that the polarization coupled 
to the antenna is frequency dependent. We have also used a two-arm log­
spiral antenna, shown in Fig 6.2b. The antenna pattern of this antenna is 
nearly gaussian and frequency independent. The radiation coupled to a log­
spiral antenna is circularly polarized. 

All of the antennas used have a self-complementary structure, i.e. the 
pattern of the metallized part of the substrate is the same as the pattern of the 
unmetalized part. It has been shown that antennas with this property have a 
frequency-indepedent admittance which depends on the dielectric constant 
of the dielectric half space on which it is mounted.77 For quartz substrates 
with Er = 3.83, the antenna admittance is 0.083 0-1. Because the antenna 
admittance does not depend of frequency, the task of designing tuning 
elements is much simplified. 

Care has been taken to ensure that the junction is well heat sunk to the 
cold plate through the quartz hemisphere and its OFHC copper support. A 
thin layer of vacuum grease was placed between the junction substrate and 
the lens to increase the thermal contact. We measured the temperature at the 
center of the antenna using a germanium resistance thermometer. For a 1.8K 
bath temperature, it is 2.6K with the HEMT amplifier off and 2.8K with the 
HEMT amplifier on. 
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The IF system is identical to that discussed in section 5.3. The overall 
noise temperature of the IF system, including contributions due to the 
isolator, is typically 6-7 K. 

6.3 Integrated Tuning Elements 
Before we discuss specific tuning schemes, it is useful to introduce a 

simplified equivalent circuit and the RF coupling coefficient CRP. The 
equivalent circuit we use is shown in Fig. 6.3. The RF input is represented by 
an RF current source in parallel with the admittance of the antenna. The 
junction capacitance, the inductance of the junction leads, and the admittance 
of any tuning element are represented by C, LL, and X. The non-linear 
quasiparticle tunneling is approximated by the RF conductance GRF. In 
reality, this conductance is a complicated function of de bias voltage and 
pump power. Under typical operating conditions (on the first photon step), it 
is approximated by 

GRP = 0.7 x GN (tico/eVg), (6.2) 
where GN is the normal resistance of the junction, and V g is the sum-gap 
voltage. Note that we have ignored any effect of the quantum susceptance. 
The quantum susceptance only shifts the resonant frequency by at most -20%, 
as seen in chapter 3. 

In general, the conversion gain is a very complicated function of 
imbedding admittance, dc bias point, and pump power. To a rough 
approximation, the performance of the mixer is good (high gain, low noise) 
when the RF coupling coefficient CRF is high, where 

• 2 
CRF = 1 _ Y A - Yj 

YA+Yj 
(6.3) 

Here, YA is the admittance of the antenna, and Yj is the admittance of the 
right side of Fig. 6.3. CRF is the ratio of the power available at the 
antennaterminals to the power absorbed by the quasiparticle conductance 
GRF. (Note that susceptive elements which appear in parallel can be 
considered to be part of the antenna (YA) or part of the junction (Yj) without 
changing CRF, as we expect physically. This is due to the complex conjugation 
in the numerator of equation 6.3. The quantity that is mod-squared is not 
the voltage reflection coefficient.) 

All of the tuning element discussed below make use of microfabricated 
superconducting micros trip transmission lines78,79. These transmission 
lines have typicallinewidths of 2-10 J..Lm and inter-conductor spacings of 0.5 
J..Lm. Millimeter-wave transmission lines of this size made from normal 
metal would be both lossy, due to the surface resistance of the copper, and 
highly dispersive, due to either the normal or anomalous skin effect, 
depending on the temperature of operation. Such properties limit their 
usefulness in the high-Q resonant circuits needed to resonate the junction 
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capacitance. Superconductive transmission lines are expected to be nearly 
lossless and dispersion free for millimeter-wave frequencies and thus should 
be ideal for the fabrication of integrated tuning elements. Superconducting 
transmission lines can become lossy, however, if the dielectric separating the 
two superconductors is lossy, or if the superconducting films themselves are 
of low quality and have excessive high frequency surface resistance. 

The junctions used for the majority of the work reported here are 1.7 x 
1.7 J.1m Nb/NbOx/Pb-In-Au junctions. The capacitance of these junctions is 
estimated to be 160 fF. The normal resistance is typically 50 - 200 Q. Without 
tuning elements, the RF coupling coefficient (CRP) is very smail, about 0.08 at 
90 GHz, and correspondingly worse at higher frequencies. Tuning elements 
are required for acceptable mixer performance. The normal resistance of 
these junctions is 'such that good coupling can be achieved if the junction 
capacitance can be resonated at the frequency of operation. 

6.4 Tests of Tuning Elements Using a Fourier Tranform Spectrometer 
One of the main problems encountered when designing mixers with 

integrated tuning elements is that the parameters of the junction (such as the 
normal resistance and capacitance) and of the microstrip transmission lines 
(such as phase velocity) used are difficult to control precisely. Consequently it 
is important to be able to measure the frequency response of the mixer 
structures easily so we can reject those with undesirable frequency 
characteristics. This often requires measurements over a broader range than 
are convenient with millimeter and submillimeter wave oscillators. In this 
section we describe a new method of rapidly measuring the frequency 
response of quasioptical mixer structures over a frequency range from below 
50 GHz to over 500 GHz, In this method we couple the output of a Fourier 
transform spectrometer to the antenna and use the SIS junction as a direct 
detector (or videodetector) of the coupled power. This is the same technique 
we used to measure the quantum susceptance in Chapter 3. 

The Fourier spectrometer takes the place of the sweep oscillator 
conventionally used for frequency response tests at lower frequencies. This 
direct spectroscopic technique has several advantages over the previously 
used technique of the resonance induced Josephson steps (or Fiske 
modes)74, 79,80. The Fiske modes are well defined only for narrow RF 
bandwidths and are hard to interpret to find bandwidth information. With 
this new method, we can measure both the resonant frequency and the 
bandwidth of the resonance. 

The spectrum measured by the spectrometer is the product of the 
frequency-dependent responsivity S(oo) of the junction operated as a 
videodetector, the RF coupling coefficient CRP, and the spectrum of the 
radiation source of the spectrometer, which is modified by the frequency­
dependent beamsplitter efficiency 11(00). Since we are measuring CRP, we need 
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to understand each of the other terms in order to account for their influence 
on the measured spectrum. 

6.4.1 The SIS Direct Detector 
The current responsivity of a direct detector is defined as the induced 

change in DC current per unit RF signal power absorbed in the detecting 
element. For an SIS junction it is given br 

(6.4) 

For a typical SIS junction with a moderately rounded I-V curve, such as the 
one shown in Fig 6.4a, S(CO,V de) peaks at about tico/ e below the sum-gap 
voltage. The position of this peak shifts away from the gap voltage as the 
frequency is increased. If we fix the bias voltage at a fixed voltage V 0, then S 
will be a function of frequency. In Fig. 6.4b, we plot curves of S as a funtion of 
frequency at several different bias voltages Vo computed using equation 6.10 
from the I-V curve shown in Fig 6.4a. We can see that the current 
responsivity reaches its maximum at COo = e(V g - V 0)11, and then falls as co-I 
at high frequency. Above COo the responsivity is a relatively smooth function 
of frequency. 
6.4.2 Source Spectrum 

The output of the Fourier transform spectrometer is black-body 
radiation from a Hg-arc lamp. Only a single mode of this radiation is 
coupled to the antenna so that, in the Rayleigh-Jeans limit, the spectrum is 
flat. This flat spectrum is modified by the efficiency of the 250 ~m mylar 
beamsplitter. The beamsplitter efficiency is a smooth function of frequency as 
shown in Fig 6.4d. 

The dc current produced by the RF radiation is a product of the 
responsivity S(co,Vo), the RF coupling coefficient CRP, and the efficiency of the 
beamsplitter. Since S is a function of dc bias voltage V 0, we expect the relative 
heights of resonances at different frequencies to vary as it is changed. For the 
narrow fractional bandwidths that we typically measure, however, the 
frequency dependence of CRP dominates that of S so the resonant frequencies 
and bandwidths can be easily obtained. 

For the experiments discussed in this section, we used a far-infrared 
Fourier Michelson interferometer operated in the step-and-integrate mode. 
Since the response speed of the SIS junciton is high, a rapid- scan Fourier 
spectrometer could also be used. The high sensitivity of SIS direct detectors 
permits data to be obtained at much lower frequencies than are usually 
obtained using Fourier spectroscopy. 
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Coupling from the spectrometer was accomplished by placing the 
llmm diameter lightpipe, which provides the output of the spectrometer, 
against the window of the cryostat. The beam diameter of the output beam 
from the receiver is estimated to be -12mm at this point, so the light pipe 
beam is efficiently coupled to the receiver. 

The junction voltage at the 17.7 Hz chopping frequency of the 
spectrometer is lock-in detected and digitized for Fourier transformation. 
Although the output impedance of the detector was typically 1kn, so it was 
not well matched to our PET preamplifier, the detected signal was typically 
103 times the broadband noise in a 1 Hz bandwidth, so that adequate signal­
to-noise ratio could be obtained with integration times of 1-3 s. Performance 
could be somewhat improved by using an impedance matching transformer. 

6.5 Design and Measurement of Tuning Elements 
In this section we discuss the design and measurement of each type of 

tuning element we have designed. The first three types are inductive tuning 
elements placed in parallel with the mixer junction. The junction is located 
at the terminals of the planar antenna. The last type of tuning schemes use 
microstrip impedance transformer. In this case, the junction is located some 
fraction of a wavelength away from the antenna terminals on one of the 
halves of the antenna. 

6.5.1 3')..,/8 Stub (Open Ended Stub) 
The first type of tuning element used is an open-ended 

superconducting microstrip stub, as shown in Fig. 6.5. This stub is fabricated 
in parallel with the SIS junction. The admittance of an open ended stub 
constructed from lossless transmission line is given by 

Y = iYo tan( (3.e), (6.5) 

where (3 is ro/v, .e is the length of the stub, Yo is the characteristic admittance 
of the micros trip, ro is the frequency of the radiation, and v is the phase 
velocity of signals on the stub at frequency roo For nA/2 + A/4 < .e < nA/2 + 
A/2, where A is the wavelength of the radiation in the microstrip, and n is an 
integer, this admittance is inductive, and can thus be used to resonate the 
geometrical capacitance of the junction. The series inductance due to the 
junction leads is so small that it can be neglected for both the open-ended 
and shorted-end (section 6.5.2) stubs. The resonance condition is given by 

rooC + Yotan(rooR Iv) = 0, (6.6) 

where C is the capacitance of the junction, and 0>0 is the resonant frequency. 
Note that there are an infinite number of resonances, though each successive 
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resonance has a smaller bandwidth. The dimensions of the stub are chosen to 
satisfy rooC/Yo = 1, which maximizes the bandwidth of the first resonance. 

We fabricated mixer junctions with tuning circuits having resonant 
frequencies of 90, 180, 270, and 360 GHz. Those are the frequencies at which 
local oscillators were readily available. First we discuss the results at 90 GHz, 
and then move to higher frequency. The microstrip stubs at all frequencies 
are constructed from a Pb-In-Au film separated from a Nb groundplane by 
300 nm of thermally evaporated Si079. 

At 90 GHz, we use a 0.38mm-long stub with a characteristic admittance 
of 0.1 0-1. Vph was estimated to be 0.30c,78 and the junction capacitance C was 
estimated to be 0.160 pF. In Fig. 6.6b, we plot the expected CRF calculated 
assuming a lossless, dispersion free transmission line, and GRF = YA = 0.083 
0-1 . The length and characteristic admittance of the line are chosen so that 
the first resonance occurs at 110 GHz. The next two resonances occur at 244 
and 387GHz. 

In Fig 6.6a, we plot the response of the junction and tuning circuit 
measured using the Fourier transform spectrometer. The junction was biased 
at 2.0 mV, which is -0.9 mV below the sum-gap voltage. The spectrum was 
measured with a resolution of 3 GHz. There are 3 distinctive peaks in the 
spectrum at 110, 220 and 336 GHz. These peak values, except for 110 GHz, 
these values differ from the expected resonant frequencies. By changing the 
capacitance C and the phase velocity Vph, we can shift the positions of the 
peaks. However, we cannot obtain agreement for all three values for any 
choice of C and Vph. Also, the measured bandwidths of the high resonances 
are larger than expected. These discrepancies suggest that the loss and 
dispersion are not neglible at these frequencies. The admittance of 
transmission line with small loss and dispersion is given by38 

(6.7) 

Here a is the loss per unit length, and ~(ro) = ro/Vph(ro)' is the dispersive 
propagation constant. If we assume the loss in the micros trip stub comes 
mainly from the surface impedance of the superconductor, then the 
frequency dependence of Vph can be written in the form 

Vph = Vo 2. (6.8) 
1 + aro 

In Fig. 6.6c we replot the RF coupling coefficient CRF for a stub that is 
both lossy and dispersive. We chose a and a in Eqs. 6.7 and 6.8 to give a good 
fit to both resonant frequency and bandwidth for the three resonances. The 
values of the parameters obtained are a! /Yo is 1.0 0-1, and a = 3.8 x 10-26 

.The value of a deduced corresponds to a loss of 38 dB per meter. This is 
about 10 times more loss than is calculated using the Mattis-Bardeen 
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theory78. By analyzing the shape of pumped I-V curves measured with the 
junction at 4.5 K and at 2.8 K, we have determined that the loss is not 
temperature dependent, as would be expected if it were due to the surface 
impedance of the superconducting films. We therefore assign the loss either 
to the SiO dielectric layer in the microstrip line, or to excess residual 
resistance in the superconducting films. 

The best mixer performance measured using this type of tuning at each 
frequency is summarized in the table below. 

Center Frequency 
90 
180 
270 
360 

Mixer Noise Temp. 
150K 
200K 
-2000 K 
>10,000K 

Coupled Gain 
-4.8 dB 
-4.4 dB 
-10.2 dB 
< -15 dB 

In Fig. 6.7 we show a pumped I-V curve for a mixer with a stub designed for 
180 GHz. The junction normal resistance is 64 il, and the leakage current is 
3.5 JlA at V de = 2.5 mV. The first photon assisted tunneling step has a 
positive slope of about 200 il, which indicates that the capacitance of the 
junction is successfully resonated (see chapter 4). 

In Fig. 6.8, we plot the receiver noise temperature, the mixer noise 
temperature, the available gain, and the coupled gain as function of LO 
frequency for a mixer with a stub designed for 180 GHz. The lowest mixer 
noise temperature is 200 K at 176 GHz, where the receiver noise temperature 
is 250 K. The best coupled gain of -4.4 dB occurs at the same frequency. 

The pumped I-V curves of similar mixers designed for 270 and 360 
GHz showed well developed photon-assisted tunneling steps. However, the 
mixer performance is very poor. The IF output power from the mixer is very 
low, only 2-3 times higher that the shot-noise background. This suggests 
that the high mixer noise temperature arises because of poor coupling of the 
RF signal to the mixer. One possibilty is that the loss in the stub, which 
should increase with frequency, is so large at these frequencies that it limits 
the performance of the tuning structures. This assumption is supported by 
the analysis of I-V curve shape, which indicates excess embedding 
conductance below the resonant frequency, which is expected for a lossy stub. 

6.5.2 ')../8 Stub (Shorted-End Stub) 
This tuning element is similar to the open-ended stub, except that the 

end of the stub is RF shorted. This is achieved by a A/4 section of high­
admittance (wide) micros trip line. A diagram of this configuration is shown 
in Fig. 6.9a. The high admittance of the line provides a good approximation 
to an RF short across a wide frequency band. The 3dB linewidth of the 
resonance of this structure is expected to be about twice as large as the 
resonance associated with the open-ended stub. 
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The total susceptance of the two-section stub is given by38 

(6.9) 

Where J3 = ro/v, Yl,2 are the characteristic admittances of section 1 (narrow) 
and section 2 (wide) of the stub. The resonance condition is given by 

rooC + Bstub(roo) = 0 . (6.10) 
We designed tuning structures of this type to operate at 90, 180, 270, and 360 
GHz. The expected bandwidths of the tuning circuits are summarized below. 
All dimensions were optimized for maximum expected bandwidth. The 
junctions used for these mixers were fabricated using the tri-Iayer process at 
NIST in Boulder. These were prototype devices for which the processing was 
not yet optimized. These devices proved to be extremely sensitive to 
mounting-induced stress and were destroyed before definitive mixer tests 
could be performed. 

Center Frequency 
90 
180 
270 
360 

3 dB Bandwidth 
10 
5 
4 
4 

CRF is plotted as a function of frequency in Fig 6.9b for a tuning structure 
designed for 90 GHz. The junction capacitance and GRF are the same as in Fig. 
6.6b. The junction response measured by the Fourier transform spectrometer 
is also shown in Fig. 6.9b. 

6.S.3 Five Junction Array with Inductive Wire 
Another type of tuning element is an inductive wire in parallel with a 

linear array of 5 junctions. A diagram of this configuration is shown in Fig. 
6.10a. In order for this type of tuning element to function correctly, it must be 
in parallel with the junction array at the RF frequency, and an open circuit at 
dc and at the IF frequency. This is achieved by connecting one end of the 
inductive wire to a A/4 open-ended microstrip stub which provides an RF 
short at the design frequency. In this configuration, the inductance due to the 
junction leads is no longer negligible, and must be included in any 
calculation of CRF. For large junctions with short leads, i.e. GRF« (C/LL)l/2 , 
the resonant frequency is given by 

roo = [C (Lw + LL )]1/2 (6.11) 
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The inductance due to the junction leads, together with the inductive wire, 
works as an impedance transformer and transforms GRF of the junction array 
to a higher value. Feidman60 has shown that an array of n junctions can be 
treated as a single junction with GRF = nGRF,single junction and C = (1/ n) Csingle 
junction. The inductive wire cannot be used in the single junction case because 
of geometrical considerations. Above about 150 GHz, this tuning scheme 
becomes ineffective when using current fabrication schemes because of the 
series resonance between the inductance of the junction leads and the 
junction capacitance. Below this frequency, however, it has the advantage of 
a wider bandwidth than the either of the stub based tuning elements. 

We fabricated a five junction array with an inductive wire tuning 
element designed to operate at 100 GHz. The inductive wire was 60 J.1m long, 
5 J.1m wide and 0.27 J.1m thick, giving a geometrical inductance of 44 pH. The 
inductance due to the junction leads is estimated to be about 34pH. The 
estimated capacitance is 32 fF, giving a resonant frequency of 101 GHz. These 
two inductances worked together to transform up the junction admittance at 
the operating frequency by about a factor of 3. 

The response of the junction array, measured by the Fourier transform 
spectrometer is shown in 6.10b. Also shown is the best coupled mixer gain 
measured at several frequencies near the resonant peak. The coupled gain of 
the mixer is very highly correlated with the measured direct detector 
response, and hence with the RF coupling coefficient, as postulated earlier. 
The lowest noise temperature measured for this type of tuning structure is 
115 K, with a coupled gain of -3.4 dB. 

6.5.4 Open Ended Stub with A/4 Matching Transformer. 
The stub-type tuning structures discussed so far (sections 6.5.2 and 

6.5.3) do not transform the real part of the junction admittance. At 
submillimeter frequencies, it becomes difficult to fabricate junctions with 
small enough values of CORNC (we want coRNC ... 4) with high enough values 
of RN to efficiently couple to typical antenna admittances. Small coRNC 
requires high critical current densities, which in turn requires extremely 
small junction areas to obtain high enough RN'S. The requirement of small 
junction area can be relaxed if the real part of the RF junction admittance can 
be transformed down to match the output admittance of the antenna. This 
can be achieved using a A/4 matching transformer.82 

An example of such a configuration is shown in Fig. 6.11a. In this 
configuration, the junction capacitance is resonated using a 3')..,/8 stub as in 
section 6.5.2. Then the relatively high input admittance of a high current. 
density, moderate area junction is transformed down to match the lower 
output admittance at the antenna terminals. 

We have designed tuning elements to match 2 x 2 J.1m trilayer50, 83 

junctions with a critical current density of 5kAI cm2 to a log-periodic 
antenna. These junctions have a normal resistance of 10 0, far too low to 
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efficiently match to the 0.008 0-1 output admittance of the log-periodic 
antenna. We chose the characteristic admittance of the 3A/8 stub to maximize 
the bandwidth over which the capacitance is resonated. We then chose the 
characteristic admittance of the A/4 transformer to maximize the frequency 
range in which CRF is greater than 0.8, giving an admittance about 30% 
higher than the geometric mean of the RF input admittance of the junction 
and the output admittance of the antenna. We have designed tuning 
elements for operation at 90, 180,270 and 360 GHz. A summary of expected 
bandwidths is shown in the table below. In Fig 6.11b, we plot the expected CRF 
as a function of frequency for a tuning structure designed for 90 GHz. The 
expected bandwidths are much greater than those for the other tuning 
schemes discussed so far, due mostly to the smaller values of coRNC possible 
with this tuning scheme. The junctions and tuning structures are currently 
being fabricated at Conductus, and are not yet available for testing. 

Center Frequency 
90 
180 
270 
360 

6.6 Conclusion 
\ 

Resonant Bandwidth 
60GHz 
80GHz 
85GHz 
100GHz 

We have discussed the design and implementation of several types of 
tuning elements used to resonate the junction capacitance of millimeter­
wave and submillimeter-wave quasioptically coupled SIS mixers. These 
tuning elements met with limited success at near millimeter wavelengths. 
As the operating frequency is increased into the submillimeter, the tuning 
schemes appear to be limited by loss in the superconducting transmission 
lines. Because this loss appeared to be independent of temperature, we 
blamed it either on dielectric losses in the interlayer dielectric used to form 
the transmission lines, or on excessive residual surface resistance of the 
superconducting films. Such losses probably become even more important at 
higher frequencies. Clearly, more work needs to be done in this area. 
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Fig. 2.2 Experimentally measured I-V curve, b) KK transform. 
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Fig. 2.3 
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Equivalent circuit used to analyze mixer performance. The 

voltage Vm at the mth port (COm = mooLO + OOIF) is related to 

the currents in at all other ports through the matrix Ymn. Each 

port is terminated by an embedding admittance Y m.A 

fluctuating current source aIm is placed at each port to 

account for noise. In typical operation, a signal source is 

placed at port 1, and the IF output is measured at port 0. In 

the three-port model, ports other than -1,0, and 1 are 

ignored. 
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a) Measured dc I-V curve of the SIS junction studied in this 
chapter, the junction temperature is about 4.5 K. b) !<ramers­
!<ronig transform of the Ictc calculated using Eq. 3.1. c) 
Quantum conductance Gq at m/2x = 77 GHz calculated from 

Eq. 3.Sa using the Ictc a). d) Quantum susceptance Bq at 77 
GHz calculated from Eq. 3.Sb using the Ikk in b). 
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Semiconductor model of an SIS junction. The energy difference 

between state A on the left side and state B on the right side is 

tiro, where co is the angular frequency of the RF drive. The 

tunneling between states A and B can be assisted by the real 

photons in the RF signal. The tunneling between state A and 

any states other than B cannot be finalized because of the energy 

conservation law. The quantum sloshing between state A and 

the states on the right side other than state B gives a reactive 

component in the tunneling current. 

74 



0.06 

0.04 

-;.... 
'-'I 0.02 

Fig. 3.3 

o~------~------------------~ 

-0.02 

o 40 80 120 160 200 

f (GHz) 

Calculated quantum conductance Gq and quantum susceptance 

Bq using Eq. 3.5 as functions of frequency at a dc bias voltage V 0 = 
2.50 m V. The frequency at the peak of Gq, 62 GHz, corresponds to 
the energy difference between the edges of the valence band and 

of the conduction band on two sides of the junction. At this 
frequency, the quantum susceptance Bq vanishes. 
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Fig. 3.4 (On next page) a) Picture of a log-periodic antenna with a 

microstrip stub, the SIS junction is located at one end of the stub 

and at the center of the antenna. b) Schematic of a two-section 

micros trip stub with one section RF short-ended by the other 

section, which is a ')../4 long, open-ended stub. c) Equivalent 

circuit of a resonator which includes a microstrip stub Bstub, a 

junction capacitance C, the quantum susceptance Bq, and the 

quantum conductance Gq. The variable signs on Bq and Gq 
indicate that they are functions of dc bias voltage. The radiation 

source and the antenna are represented with an RF current 

source in parallel with the antenna admittance YA • 

76 



(a) 

77 

1 
~ 

B t 
Ul 

A 

(b) 

~c B stub 



4 

3 -(J) -.2: 
::J 

.ci .... 
~O 
Q) 
(J) 

§ 3 
a. 
(J) 
Q) 2 II: 

0 

Fig. 3.5 

4 
(a) 3 (c) 

2 

0 

4 
(b) 3 

2 

0 

0 20 40 60 80 0 30 60 90 120 150 
Path Difference (mm) f (GHz) 

Interferograms taken with a Fourier transform spectrometer, a) 
at 2.35 mV, b) at 2.50 mV. Spectra after correcting for beamsplitter 
efficiency corresponding to the above interferograms, c) at 2.35 
mV, d) at 2.50 mV. The dashed lines in c) and d) are the 

computed spectra. 
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a) Resonant frequency as a function of dc bias voltage. The dots 
are the experimentally measured results; the solid line is the 
theoretically calculated results; the dashed line is the calculated 

result without including the quantum susceptance. Note the 
dashed line is essentially flat vs. Yo. b) Linewidth of the 

resonance as a function of Yo' The dots are the experimental 
results and the solid line is the calculated result. wo/21t = 77 GHz 

is the resonant frequency of the imbedding susceptance without 
the quantum susceptance. 
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Fig. 4.1 
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a) Experimentally measured dc I-V curve of an SIS tunnel 
junction .. b) Voltage-pumped I-V curve calculated using the dc 

I-V curve shown in a). The reduced pump voltage a = eVco/ tiro 
used is 1.3, and the pump frequency used is 100 GHz. 
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Fig. 4.2 
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Gemb 8emb 

Equivalent circuit used for the analysis of pumped I-V curves. 

The embedding admittance Yemb = Gemb + iBemb is the parallel 
combination of the susceptance due to the geometrical 

c~pacitance of the junction and the admittance due to the mixer 

mount. The quantum admittance Yq = Gq + iBq is due only to 
the tunneling currents in the device. 
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Fig. 4.4 Example of a" contour map of the fit parameter E plotted as a 
function of embedding admittance on a admittance Smith 
chart. Contour spacing is 10-5 mV2. The quality of the fit 

improves as the admittance move toward the center of the 

series of concentric oblong contours. When a pumped I-V 

curve is calculated using any admittance taken from inside 

the the innermost contour, it is visually indistinguishable 

from the experimentally measured pumped I-V curve. 

82 

.. 



.. 

Fig. 4.5 
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a) dc I-V curve of an SIS junction measured at Temperature 1.3 

K. b) experimental and calculated pumped I-V curves. The 

solid line is the calculated curve. The experimental points are 

represented by dots. The pump frequency is 96.35 GHz. The 

embedding admittance used in the calculation is Yemb = 0.14 + 
O.OBi 0-1. c) same as b), except here the pump frequency is 93.65 

GHz, and the embedding admittance used is Yemb = 0.04 + O.lBi 
0-1. 
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Fig 4.6 Comparison between admittances measured using a scaled 

model and those deduced from pumped I-V curves. This 

analysis was done for our waveguide mixer block at 93 GHz. The 

shaded regions (a) - (l) represent the ranges of embedding 

admittance deduced from a series of pumped I-V curves 

measured, each with the backshort stepped 0.0165 mm farther 

away from the junction. The dashed circle is the range of 

available embedding admittances measured from the scaled 

model measured at a scaled frequency corresponding to 93 GHz. 

The solid circle is the same range, except that the susceptance 

due to the estimated geometrical capacitance of the junction of 

160 fF has been added in parallel. 
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Variable temperature RF waveguide load used to produce a 
calibrated blackbody signal for accurate measurements of mixer 

performance. 
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Diagram of the mixer block used for 90 GHz waveguide mixer 
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Two dc I-V curves measured from the tantalum junction used. 

Both curves were measured at 1.3 K with no applied magnetic 

field. The two curves differ because different amounts of 

magnetic flux were trapped in the junction. 
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A series of dc I-V curves measured with different values of the 

applied magnetic field. As the field is increased from zero, the 

density of states near the gap begins to smear, leading to a more 

rounded current rise. 
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Added mixer noise and available gain plotted as a function of 
local oscillator frequency. At each frequency, the local oscillator 

power, dc bias voltage and backshort position were optimized for 
maximum coupled gain. The peak in mixer noise near 90 GHz 
corresponds to a resonance in our mixer block which makes it 
impossible to provide favorable embedding admittances. The 
horizontal line at 5 = 1/2 is the quantum limit imposed by the 
uncertainty principle. The 5 = 1/2 vacuum fluctuations already 
present on the signal are not included in the mixer noise. 

91 



-ctS -c 
ctS 
:::l a --
Q) 
CJ) 

0 
Z 
~ 

Q) 
x 
~ 

-a:l 
"C --
c 

'(ij 
(!) 

~ 

Q) 
x 
~ 
Q) 

..c 
ctS 

'as 
> « 

Fig 5.B 

1 0 

.I. 
/. 

.I. 

5 .I. 
.I. 

.I. 
.I. 

~ " " " " 

0 

.... - ..... 
" ..... .... , .... 

I .... .... 
I .... ..... ..... ..... 

0 ..... 
..... 

..... ..... 
..... 

- 1 0 
0 20 40 60 80 
Available Pump Power (arb. units) 

Added mixer noise and available gain as a function of local 

osdllator power with flO = 95.0 GHz, VDC = 1.956 m V. The 

dashed lines are the limits of the performance that are consistent 

with I-V curve shape. The solid line is the best fit to measured 

performance, with YUSB = 0.14 + O.OBi 0-1 and YLSB 0.04 + O.lBi 

0-1. All measurements were performed with no applied 
magnetic field. 
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Fig. 5.9 
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Added mixer noise and available gain as a function of backshort 
posiiton. The dashed lines are the limits of performance that are 
consistent with I-V curve shape. The fit is relatively poor for 
backshort positions more than 0.59 mm from the junction. 
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Fig. 5.10 
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Same as Fig. 5.9 except that now the calculated limits of 
performance are calculated using only admittances that are 
consistent with measured values of pump power for backshort 
position more than 0.59 mm from the junction. Note that the 
quality of the fit is dramatically improved in this region. 
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Fig. 6.1 Diagram of the quasioptical mixer test apparatus 



Fig. 6.2 

(a) (b) 

a) Circular-toothed planar log-periodic antenna. b) two­

arm log-spiral antenna. 
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.. Fig. 6.3 

c B 

Equivalent circuit used to analyze the performance of 

quaisoptical mixers. The signal at the terminals of the planar 

antenna is represented by the current generator is and the 

conductance GA. The mixing element is represented by the 

non-linear conductance GRF and the geometrical capacitance 

C, the leads of the junction by LL, and the tuning element by 

the susceptance B. 
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a) dc 1-V curve of a typical SIS junction. b) Computed 

frequency dependence of the current responsivity S(ro,Vo) at 

several values of bias voltage Yo. c) Computed frequency 

dependence of the RF resistance RRF at several dc bais 

voltages. d) Computed beamsplitter efficiency for a 2501lm­

thick Mylar sheet at a 45° angle of incidence. 
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Fig. 6.5 Diagram of and SIS junction with a 3A/8 open-ended 

micros trip stub used as an inductive tuning element. The 

junction is shown at the terminals of a log-periodic antenna. 

99 



Fig. 6.6 
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a) Measured frequency response of single junction with a 

3').../8 stub. b) Computed coupling coefficient CRF for a single 

junction with a lossless open-circuited micros trip stub. c) 

Computed CRF for a single junction with a lossy, dispersive 

stub with parameters indicated in the text. 
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Fig. 6.7 a) I-V curves of a pumped (solid line) and unpumped 

junction. b) IF output power as a function of dc bias. The 

upper curve is for the hot (300 K) and the lower curve is for 

the cold (77 K) RF load. 
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a) Diagram of an SIS junction with a ')../8 stub used as an 

inductive tuning element. The wide section of microstrip 

provides a broadband RF short for the ')../8 stub. b) Measured 

(Solid line) and computed (dashed line) frequency response 
of the structure shown in a). 
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a) Diagram of an 5-junction array of SIS junctions with an 

inductive wire as a tuning element. The wire is RF-shorted 

by a A/4 section of microstrip transmission line. b) Measured 
frequency response of the structure shown in a). 

c) Computed RF coupling coefficient of the structure shown 
in a). 
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a) Diagram of a single SIS junction connected to the antenna 

terminals by a A./4 impedance transformer. The capacitance 

of the junction is resonated by a 3A./8 open-ended microstrip 

stub. b) Computed RF coupling coefficient for the structure 

shown in a). 
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