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1. Introduction 

In this lecture I shall try to describe those aspects of the mathematics of 
quantum groups which I believe may be relevant for the formulation of new phys
ical theories based on nonoommutative calculus and noncommutative geometry. 
As a consequence, there is no attempt here to cover the standard applications 
of the theory to integrable systems, knot theory and conformal field theory in 

two dimensions. 

A very helpful review of the more conventional mathematical approach can 
be found in [1), which contains numerous references. This standard approach ill 
based on the concept of quasitriangular Hopf algebras. It provides a satisfac
tory all-embracing theory of quantum groups but it ignores the existence of the 
quantum exterior differential calculus of Woronowicz on quantum groups and 

therefore the connection with noncommutative differential geometry [2). Here 
I shall underplay the importance of Hopf algebras and concentrate instead on 
the calculus aspect. Comultiplication is barely mentioned, in (2.17) and (3.4). 

Instead I emphasize equations such as (3.5),(4.2) and (4.15) from which the co

multiplication rule can be derived. The word antipode will never appear here, 
although plenty of inverse quantum matrices will play a role. I shall emphasize 
the computational aspect which I believe will be important in the "new physics" . 

The quantum groups 8L,(2) and 8U,(2) provide useful simple examples in the 

following. This restricted choice of material can also be justified by space limi
tations. Many details are contained in the papers quoted here, where numerous 

additional references can also be found. 

2. Quantum groups and Lie algebras 

This section is a review of some very well known facts about quantum groups 

which are needed in the following. We follow mostly the approach of Faddeev, 

Reshetikin and Takhtajan [3). A quantum group can be defined in terms of the 

defining representation of the corresponding Lie group. For instance, GL,(2) 
can be defined in terms of the two by two matrix 

T= (a P) .., 6 . (2.1) 

The space of the group parameters a,p,.., and 6 can be quantized by turning the 



parameters into non commuting quantities satisfying the commutation relations 

afJ = qfJa cry = q7a 
fJ6 = q6fJ 76 = q67 A (2.2) 

06 - 60 = >'fJ7 fJ7 = 7fJ, 

where q is a generic complex number and we shall consistently use the abbrevi

ation 
-I >'=q~q . (2.3) 

Using these commutation relations it is easy to check that the "quantum deter

minant" 

detqT = 06 - qfJ7 = 60 - q-1fJ7 (2.4) 

is central, i.e. it commutes with a,fJ,,., and 6. We shall call a matrix like (2.1) 
whose elements satisfy (2.2) a q-inatrix. 

The commutation relations (2.2) have the following remarkable property. 

Let a,fJ',7',6' commute with a,fJ,7,6 and let them satisfy the same commu
tation relations (2.2). So 

a'fJ' = qfJ'a' etc ... , (2.5) 

which means that 

1" = (a fJ') 
7' 6' 

(2.6) 

is a q-matrix with elements commuting with those of T. Then the matrix 

, (a' fJ") (aa + fJ7' afJ' + fJ6') 
1" = T1" = 7" 6" = 7a + 67' 7fJ' + 66' (2.7) 

obtained from T and T' by matrix multiplication, rows by columns, is also a 
q-matrix. We refer to this fact as to the quantum group property of (2.2). 

The commutation relations (2.2) can be written compactly in terms of the 
R-matrix of the quantum group [3]. Consider the tensor product of two vector 
spaces and let the matrix T operate on it 88 

TI =T® 1, (2.8) 

i.e. T on the first space and the identity on the second, or explicitly 

(TI)i~, = T j 6Jo,. (2.9) 
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Similarly define 
T2= I®T, (2.10) 

i.e. 
•• •• (T2)' jl = Ii' jT l' (2.11) 

If the matrix elements of T were commuting quantities, TI and T2 would com

mute. Because of (2.2) their products in opposite order are not equal but they 

are related by conjugation in the tensor product space 

RnTIT2 = T2T1R12· (2.12) 

The matrix RI2 operates in the tensor product space and is given for GLq(2) by 

(

q 0 0 0) 
ilr 0 1 0 0 

(RI2) jl = 0 >. 1 0 

o 0 0 q 

(2.13) 

where the rows (and columns) are numbered 88 11,12,21,22. We shall call (2.12) 
the "Hl'T equation". Using it, it is very easy to prove the quantum group 
property, since T' also satisfies an equation like (2.12) and T: and T2 commute. 

The R-matrix satisfies the "Yang-Baxter equation" in the triple tensor prod

uct space 

RI2Ra3R23 = R23RI3Rn (2.14) 

which ensures consistency of the Hl'T equation (2.12). In this approach clas
sifying all possible quantum groups is equivalent to finding all solutions of the 
Yang-Baxter equation[3]. 

Since the determinant (2.4) is central, one can set it equal to unity: 

06 - qfJ7 = 1. (2.15) 

The quantum group GLq(2) is then restricted to the "subgroup" 8Lq(2). How
ever beware: quantum groups are not groups. 

For quantum groups other than GLq(n) or 8Lq(n) in addition to giving the 

relevant R matrix one must impose further restrictions compatible with (2.12) 
and (2.14), such 88 orthogonality or other conditions for the quantum matrices. 
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See reference (3) where the cases of quantum orthogonal and symplectic groups 

are described in detail. 

Jimbo (4) and Drinfeld (5) have provided us with a consistent quantum de

fonnation of any simple Lie algebra. For the case of SL(2) one has the generators 
H,X+ and X_ and their commutation relations are defonned to 

(H, X±) = ±2X± 
qH _q-H 

(X+,X_) = _ . (2.16) 

The comultiplication is given by 

A(H) = H®I + I®H 

A(X±) = X± ® qH/2 + q-H/2 ® X±. (2.17) 

It is easy to check that (2.16) and (2.17) are consistent with each other. For 

q -+ I they become the standard relations for SL(2) (or SU(2) if appropriate 

reality conditions are imposed). 

3. Relation between the quantum group and the quantum Lie algebra. 

In this section we follow again the approach of reference (3) with some minor 

modification. We continue to use the example of SL(2). 

Define the upper diagonal matrix 

(
q-H/2 

L+ = o 
and the lower diagonal matrix 

__ ( qH/2 
L - -AX_ 

AX+) 
qH/2 

_q~H/2) . 
It is easy to see that the algebra (2.16) can be written compactly as 

R12L! Lt = Lt L! R12 

RI2L2 Ll = Ll L2 R12 

RI2Lt Ll = Ll L! R12 • 
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(3.1) 

(3.2) 

(3.3) 
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The first two equations (3.3) state that L+ and L- are q-I_matrices. From their 

definition (3.1) they have quantum detenninant equal to one. The comultipli
cation rule (2.17) is equivalent to 

A«L+)i;) = (L+)'. ® (L+)·; 

A«L-)i;) = (L-)i. ® (L-).; (3.4) 

(sum over repeated indices). 

The matrix elements of L + and L - can be identified with quantum differ

ential operators on group space. Their action on the group variables is given by 
the equations 

LtT2 = T2'R21Lt 

Ll T2 = T2 'Rl~ L1· 

Here'R is a suitably nonnalized R-matrix. For SL(n) 

'R = q-I/"R. 

(3.5) 

(3.6) 

The nonnalization factor is detennined by the property that L + and L - have 

q-detenninant equal to one. It is easy to check, using (2.14) that (3.5) are 

consistent with (2.12), i.e. the action on the group preserves the quantum 

structure of the group. The algebra (3.3) and the comultiplication law (3.4) 
can actually be derived from (3.5), which can be taken as the basic relations. 

Equations (3.3-5) are general. Consistent relations among the matrix ele

ments of L + and among those of L - (or an appropriate ansatz generalizing (3.1» 

must be given for different groups so that the number of independent generators 

agrees with that of the classical Lie algebra (see (3), (6». 

Let us define a right "vacuum" > and a left "vacuum" < such that 

L+ >=L- >=1 > (3.7) 

and 

<T=<1 (3.8) 

where I is the unit matrix. Using (3.5) one can compute vacuum values of 

products. For instance 

< LitTI >=< TI'RloLit >= 'RIO. (3.9) 

5 



More generally 

< LciT,T2 ... Tn > = 'RIO~"·'R..D 
< Ljj'TIT2 ... Tn > = 'RO.''R.01 ... 'RO.!. (3.10) 

The knowledge of all vacuum values is equivalent to the basic relations (3.5). We 

see that the enveloping algebra of the quantum Lie algebra is dual to the algebra 

of functions on the quantum group and consists of "regular" linear functionals 

of these functions. 

4. Bicovariant calculus 

The bicovariant calculus on quantum groups is due to Woronowicz (7). Here 
we follow the approach of Jureo [91, which provides a direct connection between 
the calculus of Woronowicz and the work of Faddeev, Reshetikin and 

Takhtajan (3). 

Define the matrix 
Y = L+(L-)-I (4.1) 

which is neither upper nor lower triangular. It is not hard to see that (3.5) imply 

(see the explicit example (6.8) below) 

YiT2 = T2~IYi'R12 (4.2) 

and that the algebra relations (3.3) imply 

'R2IYi'R12l'2 = l'2~IYi'R12' (4.3) 

These equations have the remarkable property that they are covariant under the 
transformation 

T -+ T'T, Y -+ Y, (4.4) 

as well as under 
T -+ TT', Y -+ (T')-lyT'. (4.5) 

The matrix elements of T' are taken to commute with those of T as well as with 
those of Y. Furthermore, the matrix T' satisfies 

RI2r;~ = ~r;R12' 
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We shall say that (4.2) and (4.3) are "left-invariant" (because of (4.4» and 

"right-covariant" (because of (4.5)). The matrix elements of Y are the differen

tial operators of a "bicovariant" calculus on the quantum group. 

Take the case of SL(2) and write 

Y = ("I 11+). 
11- 112 

Using (4.3) one can verify that 

D = 111112 - q211+11_ 

commutes with lilt 112, 11+ and 11- and that 

1 ( 112 Y - I
- - 2 - D -q 11-

_q211+ ) 
q2111 + (1 - q2)112 • 

Furthermore, when Y is given by (4.1), it follows from (3.3) that 

D = (detHL+)(detq_IL-)-I. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

The special matrices L+ and L- given in (3.1) and (3.2) have q-I-detenninant 

equal one, therefore 

D=l. (4.10) 

We could have used y-I instead of Y, but we see from (4.8) that the corre

sponding operators are linear combinations of the elements of Y. The calculus 
of y- I is completely equivalent to that of Y. An alternative choice is given 
by (L+)-IL- or ita reciprocal. This gives operators which belong to the same 

enveloping algebra but are not linearly related· to those of Y and y-I. The 

resulting calculus is right invariant and left covariant. 

The "determinant" D, given by (4.7), commutes not only with the elements 
of Y but also with the matrix elementaofT, as one can check using (4.2). There
fore (4.10) is a consistent condition. In general there are other quantities which 

commute with the elements of Y but not with those of T. These correspond to 
the classical Casimir operators, which are central in the Lie algebra, but have a 

nontrivial action on the group. For SL(2) the Casimir operator is given, by 

C = III + q-2112. (4.11) 
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A general formula for Casimir operators (3) can be given in tenns of the invariant 

quantum trace discussed at the beginning of the next section.lt is 

C" = Tr(,V- 1 y") (4.12) 

where It = 1.2 •... r and r is the rank of the group. 

As q -+ 1. the matrices L + • L - and Y tend to the unit matrix I. To establish 

a connection with the classical Lie algebra. define the matrix X by 

Y=I-U. (4.13) 

The matrix elements of 

X= (XI X+) 
X- X, 

(4.14) 

correspond to the generators of the classical Lie algebra (differential operators on 

the group). From (4.2) and (4.3). one can easily obtain the analogous relations 

for X. They are 

and 

1 
XIT, = T'~IXI'R12 - XT'(~I'R12 -II,) 

'R'IXI'R12X, -X'~IXI'RI' 
1 = X(~I'RI'X, - X,'R'I'R12). 

The condition (4.10) becomes. in terms of X. 

XI + X, - ~XIX' + q' .\X+X- = o. 

(4.15) 

(4.16) 

(4.17) 

Using this equation one can eliminate. for instance. XI. The Casimir operator 

(4.11) becomes then 

C = 1 + q-' + q-' ~'(1 - ~X2)-l[qX2 + X~ + q4X+X_J. (4.18) 

As q -+ 1 the expression in square brackets tends to the well known classical 

expression for the 8L(2) Casimir operator. 

Although we started from he matrices L + and L - and defined Y by (4.1) in 

terms of them. we can now formulate the bicovariant calculus directly in terms 

8 
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of Y and theeqs. (4.2). (4.3) (4.7) and (4.10) which it satisfies. Then X will still 

be defined from (4.13). The matrices L+ and L- are left-invariant but (because 

of the triangularity conditions they satisfy) they transform in a very complicated 

way under the right multiplication (4.5). Nevertheless. as shown in (6). one can 

always decompose a matrix like Y into a product like (4.1) where L+ is upper 

and L- lower triangular. It seems that the triangularity properties of L+ and 

L - should be considered as special choices of gauge. 

15. Quantum differential forms 

Just as for ordinary Lie groups. one can introduce exterior differential fOnDII 
[7]. We shall derive their properties from those of the differential operators on 

the group. We first notice that. if a matrix M transfonns as 

M -+ (1")-1 M1" = M' (5.1) 

where 1" is a q-matrix whose elements commutes with those of M. then the 

quantum trace 
Tr(1)-1 M) = Tr(1)-1 M') (5.2) 

is invariant. where 1) is a suitable matrix and Tr denotes the usual trace. In 
general. 1) must satisfy. for any q-matrix T. 

U(T-I)t(Url = (r)-I (5.3) 

where t denotes the ordinary transposed of a matrix. It turns out that 1) can 

be chosen diagonal. For 8L(n). 

1) = diag (l.q'.q", ... q'(n-l l) . (5.4) 

Let us now introduce a matrix of differential one-forms 

(
WI w-) 

n= w+ w2 . (5.5) 

The exterior differential 

d = Tr(V-lnX) 

= W 1XI + w-X- + q-'w+X+ + q-'w'X, (5.6) 

9 



is invariant if one transforms 

x -+ (1")-1 X1" (5.7) 

(see (4.5) and (4.13» and 
{l -+ (1")-I{l1". (5.8) 

At the same time the quantum trace of {l 

e = Tr('D-I{l) = Wi + q-2w2 (5.9) 

is invariant. 

The exterior differential is required to satisfy the standard underformed 

relations 

,f = 0, d(constant) = 0 (5.10) 

and 
d(Jg) = dIg + (_l)p(J) Idg, (5.11) 

where p(J) is the parity of I. The properties of the differential one-forma can 

be derived from those of the differential operators by using (5.10) and (5.11). 

For instance, it must be 

o =,f = dwlXI + dw-X- + q-2dw+X+ + q-2dw2X2 

- wldXI - w-dx- - q-2w+ dx+ - q-2w2dX2' (5.12) 

Substitute (5.6) in the last four terms of this equation. We know the commu

tation relations among the X's from (4.16). With a little work one obtains the 
commutation relations for the one-forma 

w+w- +w-w+ = 0 

wlw+ + w+wl = 0 

wlw- + w-wl = 0 

w2w+ + q2w+w2 = q)..w+wl 

w2w- + q-2w- w2 = _q-.I )..w-wl 

WlW2 + W2w l = _q-I )..w+w-

(WI)2 = (w+)2 = (w-)2 = 0 

(w2)2 = q)..w+w-

10 
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(5.13) 

and the quantum Maurer-Canan equations 

dwl = _q-3w+w-

dw2 = q-Iw+w-

dw+ = q-lw+(WI - w2) 

dw- = q-I(wl - w2)w-. (5.14) 

These are the bicovariant relations of Woronowicz (7) for the case of 8L(2). 
They have a very interesting property as pointed out by Woronowicz in general. 

Although the group 8L(2) has only three par8ll1eters, there are four one-forma, 

one too many, it would seem at first. However, the invariant form e of (5.9) can 
be easily seen to satisfy 

e =0, de =0 (5.15) 

and, for all w'",Q = 1,-,+,2 

ewO + woe = >'dw°. (5.16) 

As q -+ 1, >. -+ 0 and e decouples. What happens to >.-Ie in the limit? We leave 
this as an interesting exercise for the reader. 

Finally, it is clear that (4.15) and (5.6) allow us to derive the commutation 

relations between the one-forma and the matrix elements of the matrix T. One 

finds, in general 

{lIT2 = TiRll{l,'R.2II . (5.17) 

The derivation of this equation requires the identity, satisfied by the R matrix, 

(Rll )" rl = Z>IIR~~Z>1t (5.18) 

where tl denotes transposition in the space 1 of the tensor product. For 8L(2) 
one obtains, from (5.17), 

owl =qwlQ 

ow- = W-Q + )..wlfJ 

ow+ =w+Q 

ow2 = q-IW2Q + q-I)..w+ fJ 

11 
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and 

pw' = q-'w' p 

pw- = w-p 

pw+ =W+p+q2»..J'a 

PW2 = qw2 P + q>..2w' P + q»..J-a. (5.20) 

The same equations are valid with a replaced by .., and p replaced by 6. For 
functions on the group the invariant form e plays a similar role as in (5.16) for 
forms: if I is a function of a,p,.., and 6, one has 

eJ - Ie = >.dl. (5.21) 

Notice that, from (5.19)and (5.20), all one-forms w", for a = 1, -, +, 2, 
commute with the quantum determinant (2.4) of T. Therefore the invariant 
form e also commute with it and, by (5.21), it is identically 

d(det,T) == O. (5.22) 

As a consequence one can impose (2.15). 

There is an alternative way to introduce differential forms on a quantum 
group, which is perhaps closer to that which one often. follows in the classical 
case. Define the new matrix of forms 

0= T-'dT, (5.23) 

which satisfies 
dO = _02• (5.24) 

Clearly 0 is left-invariant (under T -+ T'T) :md right-covariant, i.e. under 

T -+ TT' it transforms as 
o -+ (T')-'OT'. (5.25) 

How are fi and 0 related? Since they transform in the same way, we are led to 

the identification 

0= clfi + OJe! (5.26) 

12 

where c, and OJ are constanta. For SL(n) one has 

where in general 

6. Invariant measure 

c, = _q2/ft-2ft+l, OJ = q [;d ' 
1 _ q'ls 

[x] == 1-q2' 

" '" 
~ . 
./ 

(5.27) 

(5.28) 

The general properties of a left and right invariant Haar measure for com
pact quantum groupe were discussed by Woronowicz [8]. Here we consider briefly 
the case of SU,(2) and, using a different technique, we compute explicitly the 

invariant measure. 

For SU,(2) the unitarity condition 

T' = T-' (6.1) 

for the matrix (2.1) gives 

(~ "I) = (6 -q-'P) , 
pi -q.., a 

(6.2) 

where the bar indicates an involution of the algebra of functions on the group 
which changes the order of factors in a product. For consistency it must be 

q=q. (6.3) 

In the following we shall keep in mind that 

6=0, P= -q"l (6.4) 

. but we shall continue to use the letters P and 6 for those matrix elementa. 
Ordered monomials in a,p,.., and 6 can be taken as a basis for functions on the 
group or at least for polynomials. Using the determinant condition 

a6 - qP.., = 1 = 6a - q-'p.., (6.5) 

and the commutation relations (2.2) one can transform any monomial to the 
form 01' pt..,m or to the form 6' pt..,m, where the exponenta take all integer values 

0, 1, 2,... . We shall take these monomials as a complete basis. 

13 



We wish to associate to a function (J) on the group a real number, its 

invariant group average, which we shall denote as (1). There are different ways 

to state the invariance of the group average. For algebraic manipulations a 

convenient way is to require that 

(Xof) = 0, (6.6) 

where XO are the differential operators of a bicovariant calculus, the matrix 

elements of the matrix X in (4.13). For q oF 1, we can use (4.13) and rewrite 

(6.6) in the very convenient form 

(1"j/) = 6'j. (6.7) 

This condition actually allows us to compute the average for all basic monomials, 
by means of the commutation relations (4.2). 

We write explicitly the commutation relations (4.2) for the example of 

SU9(2). They are 

11+0 = 011+ + q-I >'PlIl 

11-0 = 011-

-I 1110 = q 0112 

II+P = PII+ 

II-P = py- + q-I >'0111 

1I1P = qP1I1, (6.8) 

together with the equations obtained by replacing 0 with -y and P with 6 .• We 

have not written the relations involving 111, which we consider as defined by 
(4.7), (4.10). Using (6.8) one can easily compute 

(1110 ' /I'Ym) = q-lo+t-m 0' pt'Ym. (6.9) 

Together with (6.7), which is now 

(Y10'pt'Ym) = 1 (6.10) 

14 
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this implies that (o!'pt'Ym) must vanish unless Ie + m - I. = O. Computing 
(y_o!'pt-ym) one finds, since (6.7) gives 

(11_0' /I'Ym) = 0, 

that 

(o'/I'Ym) = 0 unless both Ie = 0 and l = m. 

A similar argument gives the result 

(6'/I'Ym) = 0 unless Ie = 0 and l = m. 

To obtain the remaining nonvanishing average values (P'-y'), compute 

(11+0 'Y'p'-I) 

= >'q-I [Ie]0c5-y'-1 {I'-I + q-2 >.-y' p', 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

where we have used the notation of (5.28). The average of the left hand side of 
(6.14) vanishes. Using (6.5) we obtain the recursion relation 

(P"'Y') - -q~(P'-I'Y'-I) - [k+l] . (6.15) 

Choosing the normalization 

we obtain finally 

(1) = 1, 

(-q)' 
(P'-y') = [Ie + 1)" 

(6.16) 

(6.17) 

With the unitarity conditions (6.3) and «!.4) the above results agree with 
those obtained by Woronowicz [8] with a different method. In particular (6.18) 
becomes 

do' 1 ( ) (-y 'Y ) = [Ie + 1)" 6.18 

It is remarkable that the results (6.12), (6.13) and (6.17) make sense even with
out the unitarity conditions, although one loses the positivity property of (6.18). 

So, it seems possible to define a left and right invariant average for polynomials 

on SL9(2). As q -+ 1 this average still makes sense and is invariant, but appar

ently cannot be defined in terms of an integral over the group, even though a 
left and right invariant volume element exists on SL(2). 
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7. Conclusion 

The methods and results described above are examples of differential and 

intergal calculus on non commutative spaces. Other related examples can be 

found in [10) to [13J. 

The way seems to be open for the construction of consistent deformations of 
quantum mechanics and quantum field theory. Perhaps these deformations will 

provide a form of realistic regularization (too many as yet inconclusive papers 

to cite on this). In any case, it is remarkable that our present physical laws 
seem to allow consistent deformations, which are not required or suggested by 

experiment. 

I am very grateful to Julius Wess, ChryB8 Chryssomalakos, Peter Schupp 

and Paul Watts for helping me to understand the subjects discuBSed here. 
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