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SEMICLASSICAL METHODS AND THEIR APPLICATION TO
PROBLEMS IN COLLISION THEORY

Stuart Dudley Augustin

Inorganic Materials Research Division, Lawrence Befkeley Laboratory and

Department of Chemistry; University of California,
Berkeley, California 94729

ABSTRACT

With the recent development of classical S-matrix theory, semi-
classical methods have been applied to an increasing range of problems
in collisipn dynamics. This work involves the application and improvement
of oldér methods as well as the extension of classical S-matrix methods
to systems more complex than those previously éoﬁsidered.

The first chapter includes a review of previous methods for treating
electronic transitions in the collision of two atoms. Special emphasis
is given to Stueckelberg's method and how it cah be extended to give
improved results for the transition probability. Approaches are also
preéented by which more of the quantum behavior_méy be taken into

account.

The second chapter describes the application of semiclassical

4o 2

methods to the calculation of the cross section for the "S+“D excitation

+ . . .
of 0 during collisions with ground state He. The transition arises from

' P A : 4 2
~a spin-orbit interaction at a crossing of the lowest I and 1l states

4+ . .
of HeO . There.is a residual oscillatory structure in the energy
dependence of the cross:section, and it is shown how experimental
observation of this could be used to obtain precise information concerning

the relevant potential curves.
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.in the next section, the formalism necesshry for the application
of ciassical S-matrix theory to_collisions of an atom with a rigid
asymmetric fotpr'is derived. This is applied toTfotatidnallexcitation.
of fotmaldehydé by Hz (takén to be sphefically‘symmetric) at energies _ j
from 10°K to lS’K. Classical Monte—Carlo trajéctqry calculations were
: aiso carried buf for the same system in the energybrange 10°K to 40°K.
The fééuits sﬁﬁbort tﬁe proposal of Townes and Cheung thét a collisional
mechanism is responsible for the 111*1io anomalous ébsofptioﬁ bf
forﬁhldghyde in cool interstellar dust clouds.

| The asymmetric rotor work is the first appligatioﬁ of classical
S—ﬁatrix methods to a collision involving a_polyatomic molecule. "The
formalism necessary for the extension of the theéry to thé simplest

two center problem, the diatom-diatom system, is derived in the following

-chapter. Indications are also given as to how this_may be generalized
to include more complex molecules as collision ﬁartners.

Chapter V considers the advantages and'disadvéntages'of using
action—angle variable for‘computing classical’tféjéctories. Consideration
is given tdlthe computation of complex-valued trajectories and to apparent
singularities in the action-angle variable‘formalism fof a médel system.

Classical trajectory calculations for the rétafional excitation
of CO by collisions with He at low energies are preéénted in the next
chapter. The results are compared with accuratevéuantum mechanical o
calculafiohs by other workers.

The last chapter considers a procedure by which the Jacobian factors
necessary for the use of classical S—-matrix theory can be calculated from

perturbed classical trajectories. A three-dimensional generalization of
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the Wall-Porter potential for collinear diatom-atom reactions is also

presented.
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I. THEORY OF ELECTRONIC TRANSITIONS

A. Introduction

Iﬁ théfcollision of two atoms in which an electronic transition can
occur, it is clear that the electronic degrees of freedom must be
handleévquantum mechanically. However, classiqal dynamics i; usually
adequate to describe the translational degree'of ffeedom. A satisfactory
‘semiclassical theory of such a process then redui¥es the explicit
blendiﬁg of classical and_quantum dynamics. The obvious way to proceedv
is to expand the total wave function in a complete set of functions
which give partial separation of the electronic and nuclear degreeé of
freedog._

va ﬁ is the relative internuclear coordinate and ; is shorthand
for all the electron coordinates, the complete Hamiltonian for a diatomic
system‘is_‘

H=T, +T + VR, D) | 1)
where TR and Tr are the nuclear and electronic kinetic energies,
respectively, and V(E,;) is the total potential energy. The last two
terms of Eq. (1) (often called the electronic Hamiltonian) may be further
divided‘if the electrons are assigned to either nucleus a or nucleus b.

! .
- - ) ‘ -> -
Let Ra andJRb be‘the position vectors of the two nuclei and ra, rb be
the position vectors of the electrons assigned to nucleus a, b; then

2

: ZZe T :

N a’b > > -
= = + + -

B, =T +V(Rr) =T T, = + Va(lRa ra|,ra) (2)
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' . > > .
If the total wave function Y(R,r) is expanded in eigenfunctions

of the electronic Hamiltonian, the adiabatic representation for the &
scattering problem is obtained. That is we let wi(R,r) be the i bf
solution of the equation
> > > > -> > > !
[T+ V(R,1r)] ¥.(R,x) = €.(R) ¥, (R,r) (3 ?
r RS i i
> _ S > g
- where wi(R,r) and €i(R) have only a parametric dependence on R. The total
‘wave function is then given by
o ' V .
> > > > > : i
YR,D) = D00 (R Y R | W
i=1 _
if a complete set of ¢i's is included. The full Schradinger eqﬁation is
now
: 0o - .
> > >
(Tg + Hyp) D0 0, (®) ¥, Ryr) S ®
. v
> > >
=E )0, ® YR .
i=1 .
. ._* 9> >
.Equation (5) is then multiplied on the left by wi(R,r) and integrated
> o ) '
over r to give the matrix equation
> > > ‘ o
(T, - WR) $(®) =0 | . (6)
> > : :
where ¢(R) is the column matrix of nuclear wave functions,
: : ¥

W®I, = le,® - )6,
and

[TR]ij = <wi|TR|q}j> .



e

»

> » '
It may be noted that W(R) is a diagonal matrix while TR is not diagonal.

In the limit that the nuclear mass is infinitely greater than the electron

" mass, the off-diagonal elements of T_ go to zero (neglecting relativistic

effecté) and thé.familiar‘Born—Oppenheimer appfoximationl is obtained.

A ; > .
If this were the case, the ¢i(R)'s would be uncoupled and no transitions

would occur.

- Of éoufse there are many more possible choices for the electronic
basis set éince aﬁy two bases that are related by a unitary transformation
are equally valid. For the purpose of studying electronic transitions,
it iS'desirablé to have a basis in which the transitions are explicitly
allowed'tb occur. In addition, for the scattefing ﬁroblem, it is
important that the electronic basis functions go t§ a product of
separated atom wave fungtions in the asymptotié region, a property that
the adiabatic basis does posess. The electronic basis ;et formed by
a complete set of products of atomic functions obviously satisfies this
requirément and is uniquézin that it diégonalizes_the kinetic energy
matrix for all values of R.

In keeping with Smithz, the above basis will henceforth be referred
fo in this work as the diabatic basis. Other workers have also defined
bases that may be called locally diabatic bases. - In thése, tﬁe
adiabatic representation is followed except in the’neig?borhood of

an avoided crbssing. A iinear combination of the adiabatic functions
is defined in that region such that the off-diagonal couplings are
locally transferred from the kinetic energy matrix- to the potential

matrix. These locally diabatic representations depenhd on the specific

system for which they are defined, and it is thus desirable to retain
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the deéignation "diabatic representation"»fof;thé unique representation
that diagonalizes the kinetic energy matrix evgrywﬁeref

Tﬁe diabatic electronic basis éet consiéts‘of a complete set of
products of eigenfunétions 6f the separated atoms. These functions
are the solutions Ei(;) of the'equatibh

[t + :.T.r + va(ﬁia - ?al ,?a) R | )

a b v _
V(R - T DT £ @) = e, (D

The total"wave function can now be expanded as_.

YR, = 3 x (R £ (D) S ®
i=1 : ' '

so that the xi's obey the matrix equation

[IT, + V®) - E] X®) = 0 | | 9
where
- N ZaZbe . NN
. [Y(R)]ij = <Ei "_R—'+ vab(R’ra’rb) ! £j> s o

Ejy = B-epd 85 s

and E is the idenity matrix. It can‘be seen from Ed. 9) thaﬁ in this
repreéentation electronic transitions arise from.fhe off-diagonal
elements of the matrix Y(ﬁ). |

| If é(ﬁ) is the unitary transformation that diégonalizes [Y(E) - E],
the relationship between the nuclear functions ¥ and ¢ can be readily

obtained. Equation (9) can be written as



»

@ 1A + a® VD - B 4@ (9")
AR X® =0

Since
v > -> -1 >
AR [V(R) - E] A7 (R

!
|
!
:

' ->
must be equal to W(R), it is clear by comparison with Eq. (6) that

T, = A TAT® o (10a)
® = AR X® . - (10b)

Although knowiedge of Y(E) is enough to definé the relationship of
the adiabatic and diabatic representations, to go the other way requires
a knowlédge of the off%diagonal matrix.elements of ER' Virtually all
calculations of potential energy surfaces are done within the Born-
Oppenhéime: approxiﬁation so that information about thé off-diagonal
elements of IR is difficult to obtain. The great difficulty with
the diabétic représentation then is that relatively little can be
determined about the matrix Y(E) from a knowledge of the Born-Oppenheimer

potential curves.

B.;iThe Curve Crossing Problem

The primary rationéle for the application of semiélassical methods
to the electronic transition problem is the relatively classical behavior
of the huclear motion fgr most of thg collision. idealiy then, the region
in which quéntum effects are important should be relatively small and
localized. One case in which this ideal is often well realized is that

of the crossing of two potential curves. According to the Franck-Condon

Ll
1



principie, a radiationless transition between two crossing potential

curves will occur only at the place where the curves cross since this
is the only place where the transition can take ﬁléée with the nuclei
remaining fixed; It would seem fhen that the cﬁrvé crossing problem

is the most propiﬁious case for the use of semiéiassical methbds}

: The’non—gfoSgiﬁg rule3 for_molecular states is aﬁ importantv
considérafion'for the curve croésing problém. Since ﬁhe born-Oppenheimer:
approkimation is genera1ly very good.for molecular systems, if would be
expected;thét the motion of the nuclei'duriné a collision would follow the
adiabatic potential curves. An exception to this is‘wben two éurves of
the same symmetry approach each other and the ﬁbn'Born~Oppenheimer terms
becomgvléfge compared to the ehergy separation-df the two states. In
this cése the adiabatic»potential curves will have én avoided crbssing;
they approach each other and Ehen move apart without intersecting. At
such an ‘avoided crossingvthe diabatic_potentia1 éufves will actually
cross an&'they intersect at about the same R value where the adiabatic
curves ébpréach each other most closely (see Fig. 1). The locally
diabaticfreﬁresentations mentionedfearlier'are basically a linear
combinétion of adiabatic states needed to give a potential matrix whose
diagonal elements do cross.

If the transitions occur only in the near vicinity of thé crossing
point, the effect of the presence of other electronic states on the
transition should be minimal. Therefore, it is a good approximation
that only tﬁe two states that cross need be conéidéred in determining
the likelihood of an electronic transition (provided that all such

crossings are well separated). The relationship between the adiabatic
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Fig. 1. A hypothetical case of the avoided crossing of two curves,
illustrating the typical behavior. The solid lines are the
adiabatic potential curves while the dashed limes are the

| |
|

diabatic curves.
|



diabatic potential curves can be simply expreésed when the electronic
basis is truncated to the two states under consideration.

In the two state approximation, Eq. (9) can be written as

T. 0 V..(R) V., _(R) E-e. O X 5 (R) 0
R ), (1 12 _ 1 1 ) (1)

0 T V12(3) V), (R) 0 E-e, /I \X,(® 0

A partial wave expansion of the functions Xi(R) can now be performed to
‘eliminate thespatial dependence of the operator-TR. This expansion will
add_
2
h el + 1)
ZURZ
to the diagonal elements of V and may add other terms to V from the coupling

. , 4 .
of orbital and electronic angular momentum. The coupled channel equations

for the radial functions are now

4 | o |
.2 ar® ¢ U (RY U, (R) y (R) 0 ' (12)
- — ' 2 |+ |
w\ o ) \uw u@ )\ 0
dR

where U..(R) = V, . (R) + (e, - E) §,, plus angular momentum terms. The
ij’ ij i ij A

U(R) matrix is diégonalized.by the transformation



i

Yy +8 Y = 3 ‘/Y + 8 _"Y -8B
2Y 2y U U 2Y 2y

11 12
! ‘ | - (13)
_‘/Y - B :[Y +8 U, Uy i[x -8 :’y + B
2y 2y 2Y _ 2y
-1 a+y| 0
= AUA T =
T 0 a -y
where
-1 1 _ - 2 2
@ =300 ¥ Ul s B =500 - Uyl v = §8 + 1,

The functions

vl(R) _ Ul(R)

VZ(R)

are then the solutions of the coupled channel equations in the adiabatic

répresentation
2‘ 2 a+y 0 .\ :
h - .
-3 A S5 e Ym + v =8 (14)
L | S 0 a-y

The coupled channel equations in the diabatic representation
(Eq. (12)) are thus a silmple second order system with nb first derivative
terms. The adiabatic répresentation (Eq. (14)), on the other hand, gives
a significéntly‘less mathematically tractable éystem of equatioﬁs. It
would'séem then;that thé system Eq. (12) would be much more amenable
| :
to approximate methods Jf solution and to the fofmulation of model

problems than is Eq. (14). Indeed the classical treatments of this

problem by Landau,5 Zener,6 and Stueckelberg7 all begin with the coupled

equations in the diabatic representation.

-~
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The great advantage of the -adiabatic represéntation lies in the
availabiiity of the adiabatic potential curveé. Virtually all methods for
the detefmination of potential curves are carriea out within the Born-
Oppenheimer aﬁproximation so that usually.only the adiabatic curves are
. known. - The diabaﬁic curves are very difficultlﬁo obtain by ény
ghfinitio”or empiricai'procedure and a theofy bésed on these curves
would seem to be of little utility.

A major exception to the unavailability of'diébatic potential curves
is when tﬁe coupling of states of different symmetry is responsible for
the transition at a curve croésing. In these situations the Born-
Oppenheimer curves actually do cross although the two Born-Oppenheimer states
are connéctéd by éff diagonal matrix eleménts; Updgr such.circumstances

the adiabatic potential curves may be considerédfasbthé diagonal elements
- of a diabatic potential matrix,Aand the problem qf'fiﬁding the diabatic
matrix for such a system thus reduces to the calcuiation of the off—
diagonal matrix eleﬁents of the coupling operator between the Born-
Oppenheiméf electronic wave functions. Spin orbit coupling and the
coupling of electronic and orbital angular moméntaafs are two important
examplés of the interaction between electronic s€ates of different

symmetry.

C. Summary of LZS Theory

The earliest theoretical work on the curve-crossing problem is
that of Landau,? Zéner,6 and Stueckelberg;7 all of whom derived the
well-known Landau-Zener formula for the transition'érobability. In
each derivation, it was assumeé that the transitiéﬁ”takes place only

. . . 9
in the immediate vicinity of the crossing point. Bates  and Coulson
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and Zalewskilo have found that this argument breaks down for high
energies.and that the width of the transition region actually becomes
unbounded ik thE limit éf infinite energy. Landau, Zener and Stueckelberg
also made the assumption that the diabatic curves are approximately linear
near the-érossing point and that the off-diagonal matrix element is
approximately constant. Stueckelberg's derivation by means qf a connection
formula may also be used, however, with the exact adiabatic potential curves,
and it also includes the interference effects froﬁ the two classical
trajectéries contributing to the transition. Stueckelbert's results are,
thereforé, capable of much wider validity thaﬁ<the simple Landau-Zener
formula; ”

- The Stueckelberg derivation begins by dividing the R domain for each
diabatic curve into three regions as in Fig. 2; " Region T is for R
between O-and the classical turning point (Rb).fbr energy E, Region II
lies between the turning point and the crossing point (Rx), and Region III
includes all R values outside the crossing point. WKB wave functions
can be written down for each of the three regions, but they are invalid
at the classical turning point and at the crossing point. It must then
be determingd what 1ineqr combination of the WKB functions is a regular
solution with the propef‘asymptotic behavior, a @rocess that requires
that the solutions be joined over the entire R domain. The well known
derivation éf the WKB phase shiftll for simple elastic scattering proceeds
by obtaining thg quantﬁm mechanical solution for the wave funétion in
the immediate vicinity of the turning point, with the assumption that the
potential curve is linear. The asymptotic behavior of the quantum

mechanical solution is then matched to WKB wave functions in Regions T
“‘
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Fig. 2.

T "
| |
| |
|- |
| |
!
N |
|
| :
|
o |
| |
H .
z |
S| REGION I | REGION I
| |
| |
| 1
'R Ry

XBL749- 7129

Partition of the R domain for diabatic potential curves
with a crossing.
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and II in order -to "conmnect" the WKB solutions ih these two domains.
Stueckeibefg's procedure finds a "connection formﬁia" for joining the
solutiéns in Regions II and III as well.

His*procedure.for connecting the solutiohsris'analagousIto that
used by Zwaén12 and Kemble13 for the WKB turning point problém. The WKB

J

wave functions are analytically continued into the complex R!plane, and
solutions in Regions II and IIT are connected By following a compléx R
path tHat stays far énough away from the corssing:point so that the WKB
functions are still valid. The mathematical validity of Stueckelbert's
procedure has been examined in more detail by Rice14 and Thorson, et al.

Stueckelberg's result for the S-matrix elements can be interpreted
by realizing that there are ‘two classical trajectories contributing to
each trénsition (Fig. 3). Trajectory I follows:the'adiabatic curve
to the turning point and crosses over to the other curve on the way out.
Trajectory II, however, crosses curves on the way’in and does not cross
on the way. out (the picture must be altered somewhat in the diabatic
representation since a diabatic crossing is an adiabatic non—crossing
and vice versa). If the transition takes place only at Rx, then the
magnitﬁde squared of the two off-diagonal S—matrik elements.must be
expressed as ?xtl - Px) where PX is the probability of a ﬁrajectory
changing'curves when it passes the crossing point (and of course_l - Px
is the probability of staying 6n the same curve).: The two trajectories
will, however, contribute terms with different phases to the S-matrix

element since the WKB phases over the trajectories will be unequal in

general.

15
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Fig. 3. Two possible classicél trajectories for the transition between the upper
and lower states on hypothetical adiabatic curves.
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*
Let RC and Rc be the two complex values of R at which the adiabatic

curves cfoss. From Eq. (13) it can be seen that"Rc is defined by
1410, &) - U, ®)1Z+ VR R) =0 . (15)
117 ¢ 22 ¢ 12°7°¢’
Adopting the convention that wl(R) is the adiabatic curve for the upper

state and WZ(R) that for the lower state; let

k(R = {2ulE - wl(R)]}l/2

and ki = ki(w). Stueckelberg obtained the result .that

~28 R
P =e , 8§ =1 f ¢ [k, (R) - k; (R)] dR (16)

%
‘R
c
Do ! : .
It may be noted that 8 has the appearance of a WKB barrier penetration

integral., The S matrix element is given by o
I IT '
N ool B 20 id ]
52+1 Px(l PX) [é + e an

where ¢I, ¢II are the WKB phases along the two possible trajectories

. : B R R
¢I = lim[—ﬂ/4 - klR - k2R + ] kl(R') dR' + ] -kz(R') dR' (18a)
fo | Ry Ry
R
+ 2 f * ky(R') dR'
oy ,
IT1 | R ' R '
o'T = lim|n/4 - KR - kR + f K (R") dr' + f ky(R') dR’ (18b)
R0
R R
X X .
R
,2 f Ky (RY) dR’]
. C R »

| . 2
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The tranSition prébability P2+l = ISZ+1|2 is néw given by
P = 420 - e sinz(j + /ey (19a)
where
| . : K R ' R
T = 1/2(67 - o' = f" Ky (R) dR' - f * K, (R') 4R (19b)
Ry . Ry | |

It may;be seen that an extra cénstant of /4 has beehvinserted in
Eqs. (18a,b5 as compared to Stueckelberg's defivedvresulté. Recent
work15 indicates that there is an ﬁndeterminedvconétant phase in the
derivation, but by analogy Qith the Distorted Wavé Born’Approximation'
it ouéht'to be /4.

It is important to note that all of the quantities in Eqs. (17)
through (19) refer to the exact adiabatic curves. As was argued
v eaflier this is desirable since, in general, only the adiabatic
potentialicurvés are available. |

Thg Landau-Zener formula for the transitioﬁ'probability may be
obtainedvfrom Eq. (19a) if certain approximations are made to § and the
phase difference f is assumed to be large. To follow the Stueckelberg
derivation, the integrand in the exﬁression for § is expanded in a power

series in the wvariable

If only the first order term in t is kept16 and the assumptions are made
that U,,(R), U..(R) are linear and U,_.(R) is constant near R , then the
117 722 12 : X

Landau-Zener expression is obtained for §
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' 2
§ = hV(g ) .[U' (II{U:)LZngz l (R )‘l (20)
X 11 x 227 x"7 :
! ! | |

where V(Rx).is the local velocity at the crossing point. If it is
assumed. that T is large, sinz(T + m/4) may be replaced by its average
value, 1/2, and

P . =200 - 7% | (21)

2«1

which is'Zener's6 result for the transition probability. Finally, if
§ is assumed to be small, the exponentials in Eq. (21) may be expanded

to give Landau's result

Py, = 4 | | (22)

Examination of Eq. (20) reveals that in this approximation § becomes
infinite at threshold where V(Rx) is equal to zero. This well known
failure of the Landéu—Zener formula is a consequence of the approximate
method of evaluating the phase integral in Eq. (16) and is not a breakdown
of the Basic theory. Equation (16) may have somé.déficiencies near
threshold but at least it is well behaved and cpntinuous.

A mo&ification to Egs. (19a,b) must be made for eﬁergies below .
the crossing energy. In this case, both of the phases in Eq. (19b)
are imaginary and the sin of Eq. (19a) must go ovgf to an exponential.

. !
It would seem that it is also necessary to make the further change

|

R R |
r,='f x k (R') dR' +f * ky(R') dR' . (19b")

Ry Ry
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This may be looked upon as forcing the atoms to "tunnel in" to the

crossing point, where the transition occurs, and then "tunnel" back

"+ out.

D. Extensions and Imprdvements of LZS Theory

Two very important assﬁmptiohs aré made in the derivation of the
connection formula for the curve cfossing probiéh.'.The'first is thaf
tHe bréakdowns in the WKB approximation are localizéd. This is not
true, aé was mentidned earlier, for the breakdown at the crossing point
in the Higﬁ energy limit. The other ﬁajdr aséuﬁpfionvis that the points
of bfeakdowﬁ are isolated. -This fails when there are two nearby crossing
points or when the crossing point is close to a turning point. Unfortunatély,
the nearness of the crossing poiht'to one or.both turning points is
unavoidable near threshold or when the orbital angular momentum is
large enough to move the corssiﬁg_energy up to the translational energy.

O_.--K.__Rice14 attempted to handle the low ehergy difficulty by taking

-a complex R path that circumvents the crossing péiﬁt and the turning

points’siﬁultaneously. However, he was unablejto determiné the transition
probability:for that case. Mére recently Nikitin et al.17 have attempted
to find the transition probability by solving a model problem in theb
vicinity of the crossiﬁg poigt. This has some anélogy with solving

the linearized pqtential problem for the WKB cohﬁéétion formula at the
turning point.

In the diabatic representation, the coupled channel equations for

the radial functions of the two state problem are (see Eq. (12))
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2 |
d
s (2 ° U (R U (N u, (R) 0
_h” PR = (23)
B N R U..(R) U..(R) u, (R) 0
. 12 22

Nikitin's model problem assumes UlZ(R) is a constant and Ull(R), UZZ(R)

are linear functions of R. That is, let

U12(R) = a
Ull(R) = (E - Ex)'+ cl(R - RX) (24)
UZZ(R) = (E - Ex) + CZ(R - Rx)

where EX is the énergy of the crossing point (see Fig. 4). Defining

b=E- Ex and x = R - Rx,18 Eq. (23) becomes

% '
2 ;;7 0 b + c X a _ul(x) 0
- _Z_J d2 + | = (25)
o 0 - a b+ c.x/1 \U,(x) 0
2 2 - 2
dx

Nikitin could not find a solution of Eq. (25) valid for all values of the
parameters and could only get solutions for certain limiting cases.

One of Nikitin's limiting solutions is for the situation that

t

433/2Ul/2

h 4/ ICZ - cll (c1c2)1/4

(basically the étrong coupling limit). For this case, his solution turns

>> 1

out to be a subcase of Eq. (17) with & given as in Eq. (16). The

solution in the weak coupling limit is the distorted wave Born ' -
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-crossing.

Nikitin's model problem for curve

Fig. 4.
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approximation result for Eq. (25),20 and it is of value to compare
this result with that of Eq. (19a).

k) : .
The distorted wave result for the transition probability is

2

| 2 /3 c, - C

P (DWBA) = 4nla’ |[2X 1 w2l 2”5
2«1 h2 (C _ )2 hz C]_Cz
Clcz 2 Cl

where Ai is the Airy function. In the limit of small a, the expression

1/3
] (26)

for § in Eq. (16) becomes the same as that of Eq. (20), and for this

system it is

6= —T2 2 (27)
- h
2lc; - el b
It is found from Eq. (19b) that
23/2U1/2b3/2 c, = ¢ o
T 3h c.c : (28)
172
so that'Eq, (26) can be written in terms of T aﬁd § as
P, (DWBA) = 8md (§-r>1/3A12 - (2 r)2/3 (29)
241 2 2 7/
Since § is presumed to be small in the weak coupling limit, the
exponentials in‘Eq. (19a) can be expanded to give
’ |
, _ .2 » '
P2+1(LZS) 88sin“ (T + W/4) . | (19a')
For large T, the Airy function in Eq. (29) can be feplaced by its
asymptotic expression
Ai(-z) -~ —-l-'z_ll4 sin(%zB/2 +vﬂ/4)5 , (30)
/m o



-22-

a;d'ghen_this is domne EQ. (29) becomes identical to Eq. (20a).
ﬁqﬁationv(26)>is‘thefquéntum mechanical resultvfor’thé model
system in the 1iﬁit of weak cqupling so that fhe'insertibn‘of /4 in N
Eqé. (18a,b) wo#ld seem to be_justified. it Qould_also be expécted'
that if Eq. (19a) is modified to replace tﬁe sin by the appropriate Airy
function, then ﬁhe 10& energy behavior Qill.bé‘improved._ With this

modification Eq. (19a) becomes

P2*1“= 4w <%,T>l/3 e—ZG(l —.e_zé)Aiz[; <%'t>2[%] ¥ | D

where § is defined-as in Eq. (16) and T is as in Eq. (19b) or Eq. (19b').
Equation (26) is now just a limiting éase of Eq.. (31) for the model

system.

E. Uniform Approximation for the Wave Function

There is an interestihg.procédure for handling the WKB turning
point pfoblem due to Langer.22 Rather than usinérélementary functions
of difféfent types (exponential and trigonometric) on the two sides of
a turning point, this method.uses a single functional form over the
entire domain. Such an approximation is ﬁhen dniformly good over the
entire region in the sense that the error of the approximation depends
very 1ittle upon the position.

Consider a hypothetical problem of afpotehﬁial V(x) defined on the
domain from -® to 4+, with a classical turning point X at energy

E (Fig. 5). WKB wave functions can be written down for Regions I and Il

away from the turning point
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REGION 1 REGION II

V(x)

|
|
|
|
|
|
|
|
|
|
|
X

0
o X

i | - XBL749-713|

Fig. 5. A hypothetical problem to illustrate a uniform‘approximate
- for the WKB wavefunction.
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’

X vf._ _ ' ‘
Ve = — exp[— f ° k" dX'] C x<x) |
‘/12()() X - , . o li
| (32) |
X :
wII(x) ~ l sinjn/4 + .I. k(x') dx' (x> x) .
vk (x) 1 o . o o _
° , v |

where

!gi VE - V(%)

k(x)

If thé:WKB'approximation is reasonably good for the hypothetical system,
the difference befween qu (32) and the exact ane function will be
relatively small over most of the domain of x but will be infinite

at the turning point. The potential can be approximated by a straight
line iﬁ the near vicinify of X, in which éase the quantum solution will be

1/3 |
V) = An |(2E 2mEF _ Y | (33)
’ hz h2 L }

where F is the force at X . This solution (which can be used to get a
"connection formula" by matching it to the WKB functions) is quite
close to the true wave function near X s but is a very poor approximation
awvay from this point.
The basis of the uniformized WKB wave function comes from the recognition
. . s ., 19 - X
that the asymptotic behavior of the Airy function ~ has the right nature o

in Regions I and II. Thus the wave function may be written

o Q9] o
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where

o(x) = fx k(x') dx' .
‘ % |
When ¢(X) is lafge, as it will be when Eq. (32) is suitable, Eq. (34) is
practically the same as the WKB solutidn. For the near vicinity of ko,
wu(x)'is’still a very good approximation to the exact wave function so
thatku(x) meets the requirement for a unifbrm‘apbfoximation to the
wave function.

IF‘QOuld,seem to be straightforward now to extend this method
of the two.state curve crossing problem. The mﬁdel system of
ﬁq. (25) would seem to be the analogue for this case of the line-
arized pbténtial of the one-dimensional WKB approximation. If the solution
of the model sysﬁem were known, it should be possible to get a connection
fdrmula for the WKB wave functions on the two sides of the crossing point.
It might tHen be possible to feplace the constants of Eq. (25) by functions
in a mannef'similar to that for the one-dimensional WKB wave function.

This would yield a uniform approximation for the wave function and would

presumably lead to improved results for the transition probability.

F. Solution of the Model System
Forlthe purpose of constructing a uniform.approximatioﬁ; the system

Eq. (255 éan be generalized a bit to

d2

__d 5 0 b, + ;% a ul(X) 0 3

o, - . _ - - (35)
o d /

0 2 a i b2 +vc2x UZ(X) | 0

dx
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: : S . s 2u . .
The changes here are the inclusion of the factor —%-1n the various constants
: ' h*

and the constant terms of the diagonal elements_of the "potential" matrix
: g P

being allowed to be unequal. In matrix notation Eq. (35) becomes

62—)( > >
—fg—ﬁl - [B+ Cx] u(x) =0 : v (36)
dx R
where
. ul(X) bl a\ - ey 0
u(x) = s, B = ' , C= : .
uy (%) ¥ a b, - 0 o

If Eq. (36) is solved in matrix form there is nd reason why the dimensions
of the matrices in the equation cannot be increased.
. ’ B _)
It is possible to get a formal solution to Eq. (36) by expanding u

in a power series in x with matrix coefficients. Thus let

-> - n
u(x) = énx : (37)

n=0

which substituted in Eq. (36) gives

o]

[e o] [e o]
' ) : n-2 n : n+1
E é&ﬂn— 1) x - gﬁf‘_ E 9&3 ‘—0
n=2 n=0 n=0

so that the An's are determined by the recurrence relation

-1 '
én " n(n - 1) '[§éh—2 + géh—3] (38)

withvthe.proviso that‘éh = 9 for negative n. Thejfirst two coefficient
matrices are not determined by Eq. (38) and must be‘adjusted to fit the
boundary conditions. It may again be noted that there is no restriction
on fhe dimensionality of the matrices; the only requirement is that all

the elements of B and C are constants.
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Because Eq. (38) is a two term recurrence reiation, it is quite
diffieult to establish that the formal series Eq..(37) is convergent for
all ? and 9 and for ail values of x. _For this problem, however, we first
want to use the solution to obtain a connection formula for WKB approxi-
mats on the two sides of the crossing point. This would require knowing
the behavior of the solution of Eq. (36) for large positive and negative
X, in which case the formal solution is slowly convergent (if at all)
and of little use. Suffice it to say that for a = 0 Eq. (37) is diagonal
and the pewer series for ug and u, is that for the well known Airy
function19 (choosing appropriate values for éo and é ).

Unfertunately no method could be found to determine the asymptotic
behavior of the solutions of Eq. (36) so that a connection could be
effected. The methods that work for one-dimensional systems apparently
fail ih‘this case because the § and 9 matrices dé not commute in general.
For instaece, if the Laplace transform is applied fo Eq. (36)

oo} [ee]

j e Xt (x) dx -f [B + Cx] u(x) e fdx = 0
[s} o -
oY
2> -> <> > d+ .
t“v(t) - tu(o) - u'(o) - Bv + C ﬁ—} =0 (39)
where
o o)
V(D) =f e *(x) dx
(o]

> ->
Assuming that things can be arranged so that the u(o) and u'(o) terms

' >
can be eliminated, the equation for v(t) is
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.%:-:’-+C[It2—B]3=O" o (40)

If C-l commuted with C—lB, the solution to Eq. (40) would be

v(t) [c Tpe - "9‘1 5_3_} o | (41)
The inverse transform could then be applied to Eq; (41) to give an integral é
representation of K(x). This integral representation could then be |
evaluated by the method of steepest'deseent23_to give the asymptotic

behavior of the solutions of Eq. (36). Unfortunately, the appropriate
matrices.only'compute»for the special caSee a_é_O.(§ a'diagonal matrix)

or ¢y =”c2'(9 a‘scalar natrix). Of course a formal'power'series solution

can be written down for Eq. (40) but it apparently is of no help in

determining the desired asymptotic properties of the solutions of Eq. (36).
Therefore, unless better methods can be found to devine the character
of the:solutions of Eq. (36), the construction of the desired uniform
approximation would seem to be impossible. Without knowing the form of
the solutions, it is also impossible to say whether a‘further goal could
also be attained. This goal is the expression.of all the quantitiee
Vin-the solution .in terms of the adiabatic potential curves; a highly
desirable objective because of the aforementioned greater availability
of the adiabatic curves.
Before leaving the model problem, it is interesting to consider
the one.case in which there is a simple solution to Eq. (36); the situation
in which the diabatic potential curves are parallel (cl =c, of Eq. (35)).

This model has some physical significance since the repulsive wallstof:two

potential curves are often near parallel for high energies (Fig. 6);
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Fig. 6. A physical situation that may be approximated by the
parallel curves model. :
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althdugh in the actual case it would be expeéted'that the diabatic
éoﬁpliﬁg is ‘large and rapidly varying. Since thé diaba#ic curves have
no feal crossing poiﬁt and the adiabatic complexvcrossing point haé
moved off to infinity, this would be é caseiwhére any transitions
would'ﬁe hénlécal.-._
- The soiﬁtion for the pgfallel curves modei is obtained quite

simply if it ié realized thét the uniﬁary transformation (Eq. (13)) that
diagonalizés the potentiai matrix has no x.depeﬁdénce. It can then be
seen from Eq. (14) that the coupled channel equations in the adiabatic
representation are completely uncoupled so that;thg transition probability
is zero. it is interesting to note that transition probability predicted
by the Stueckelberg theory is also zero since § és defined by Eq. (16)
is zero for this case. If some x dependence (such.as a linear.term) is
added to the Hiabatic coupling, the transformation matrix is no longer
x independent and transitions occur. The_prediction of this model
problem then is that for the parallel curves situation, transitions are
caused'by the variation of the diabatic coupling.

Altﬁough the diséﬁssion ﬁas been limited fo the model system Eq. (35)
for the eiectronic transition problem, the solution of this equation
may be useful in other situations as well. An arbitrary set of coupled
channel eqﬁations ought to.be representable locally by Eq. (36). For
these othervkinds of inelastic processes though, no assumption of localized
transitions is likely to be valid, and the solution would have to be
varied point by point. In this context, the solufions of Eq. (36) can
be looked ﬁpon as a coupled channel extension of the one—diﬁensional

Airy function and may perhaps be useable in a similar fashion.

|
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IT. ELECTRONIC TRANSITIONS IN COLLISIONS OF He AND 0+

f ; A. Introduction

It.was decided to do a calculation of the:érOSS sections for electronic
excitation of O+ during collisions with He. Preliminary analysis indicated
that molecular potential curves corresponding to the 4Su and Du atomic
states of O+ would probably cross. Estimation of the spin-orbit coupling
between the two molecular states along with an accurate calculation of the
potential curves for the states then permitted a'detailed calculation of
the inelastic collision processes. The calculated cross sections had
oscillétions as a function of energy which can be related to the
properties of the potential curves;

Peter K. Pearsonza’performed a minimum basis full CI calculation of
all the diatomic potential curves arising from the ground states of He
and He+; the 4S s 2D and 2P :states of 0+, and the 3P s, D and'lS states

N Su u u g g g
of 0. He also carried out more accurate calculations of the curves for
‘the ZH'and 42- states since these were believed tq_be the most interesting
for the dynamics. The potential curves obtained are shown in Fig. 7
- (suitably shifted vertically so that the dissociation limits correspond
to the experimental atomic energy levels).
| The lowest 2H and 42 potential curves from this calculation cross
at about 2.3 a_- Although these curves are ofvdifferent symmetry, they
are coupled by spin-orbit terms so that transitions may occur between
the'AS and 2D states of 0+ (with ground state He). Since the calculation
of the Born-Oppenheimer potential curves iénores all the relativisfic
terms in the Hamiltonian, these Born-Oppenheimer #urves are actuaily

the diagonal "diabatic" curves for the crossing. The adiabatic potentials
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He ot minimum ‘basis
Calculated potential curves
Shifted to proper
‘dissociation limits

's 0 + He
ap ot4 He
2 +
2 ‘|D ’ +
2p 50 + He
3p
2P ~
2p '
"Df ?Of+, He
0 — ‘s s J

XBL 7410-4234

Fig. 7. Potential curves arising from the valence states of ‘He and
ot, and Het and 0, shifted Vertically-sb as to match the
known atomic -energy levels at infinite separation. The dashed’
curves are the results of the more accurate calculations.
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Wi(r) are then the.eigenvalues’of]the 2x2 matrix

Vi1 () V(™
(1
VlZ(r) sz(r)
where Vll(r) and sz(r) are the calculatedvaz and 2H potential curves and
Vlz(r) is the spin-orbit éoupling between these two states.

B. Estimation of the Spin-Orbit Coupling

A rigorous calculation of the spin*orbit coupling between the'two
mélecq;ar states woﬁld.be a substéntial project in itself,23 but. a.
reasonable estimate can.be made quité easily26 by using information from
atomié'spin-orbitacalcﬁlations. a

.In Brief, one assumes tﬁe molecular spin-orﬁit Hamiltonian to be

a sum of terms related to each of the nuclei separately.
> > .
Hoo ™ Z:Ng(riu) bitSy (2)
i, ‘

where riN-is the distance fro@ electron i to‘nucleus‘N, and for purposes
.of estimating the matrix elements of this operator one writes the wave
functiops in terms of.individual atomic states. ‘At the érossing point,
the minimﬁm basis wave function for the 42 state from thé aforementioned

calculation by P. Pearson has a single dominant configuration;'correspbnding

to the ground state of He and the 4S state of O+

4 .
S3/2)0+ . (3)
The-2H state, on the other hand, involves three significant atomig

components at the crossing point.
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—— 1
Heot ° 0763;1 S)y | P3/2 o* + 0. 668| S), [ D3/2)0+ o @)

1 2
~ - 0.338| s)Hel D3/2)0+

In coﬁstfﬁctiné the matrix éleﬁéqt df.the épinforbi;:operator.between:
‘,these-tWOAwave functions one furthefmore neglects errlap bétWeen

: orbital§‘§éntered on different ﬁuclei. Since all the wave functions
contain.éniy thé 1S state of He, there is no contribution to the spiﬁ—

orbit coupling related to this center, and one thus obtains

ot 4
|Hso! 83/2>

2 by 2
v, = ¢ "'Bsol Z)=0.631¢ P32

12
(5)
+

|H l4s )

o4, |
lu_ |'s -0.338¢°p, 372

- 2
+:0.668¢"D 3/2] 3/2

5/2

: -+ : :
+
where Hgo is the atomic spin-orbit operator for O alone. The atomic

s 4 L2 + .
spin-orbit interaction between S and D states of O is zero, however,

so that this becomes

= 0. 631( P

V12 3/2 3/2

ot 4 - | .
IHSOI S. o) : (6)
. . i , 2 4

The spin-orbit matrix element connecting P3/2 and S3/2 states of
the 2p3 configuration is equal to [, the 2p radial integral of the
effective central force interaction,2

g =J drr 2p(r)” £ (r) = .
0 o S -
The problem of calculating'V12 thus reduces to the problem of

o + v | _
determining £ for O . The matrix of the spin-orbit operator for the

2p3 configuration is27
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Pis2 ] Bay2 | S3z2 | DP3z2 | Dsp2
Zp 0 0 0 0 0
1/2

2 z

P3jp | O 0 c ;5|0

4 ' (7
53/ 0 z 0 0 0
2 s

03/2» 0 3 /5 0 0 0
2p . 0 0 0 0 0
D52 |

If we let E'(SL) be the energy of state SL ighoring relativiétié terms .
in the Hamiltonian, the energy levels including spin orbit coupling are

the eigenvalues of the matrix

e o 0 0 o-ﬁ\
o e XA o |
o z £’ (*s) o 0 %
\\.\ 0 5 o win 0 ‘f
\\ o 0o o 0 | E'(zDa/.

: . ] ' 28
The observed values of the energies of the relevant states are

4, _ -1
E( S3/2> =0 cm

26808.4 cm

t=1
LN
(=}
W
~
L
[]
|
[

26829.4 cm

40468.4 cm

(os/2)
E(2P3/2> 40466 .9 c@'l
(eyys)
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Unfortunately, the matrix above predicts that the_2P3/2 state is higher

in energy than that of the 2P state. This is a clear indication that

1/2 _
more than simple spin-orbit coupling is responsible for the splittings
of the observed levels. An attempt was made to'see if the proper

- orderings could be obtained if small perturbations were madé to all
the off-diagonal_elements‘of the central block of the matrix, but this
effort was unsuccessful.

~ For the ?3 configuration of O+ it is,_therefore, impossible to.
 estimate C directly from the spectroscopic'data; This problem is in
large part because [ enters quadratically into the eigenvalue.equation
for the energy levels. Although they are probgbly much smaiier than the
spiﬁ-orbit coupling, spin-spin énd other interactions may enter into
the eigenvalues linearly and thus obscure the effecfs of‘thevspin orbit
coupling. This problem doés not arise.for 0?3(2p'), 0+2(2p2), and

O(Zpaj éo that the T values for these species can be determined from

spectroscopic dafa to be 256,202, and 253 cm_l,-respectively. ASsuming

that the shielding is approximﬁtely constant for these configurations,
the value of 168 cm'-1 for 0+ can be obtaihed by interpdlation.‘.The
spin-orbit interaction conhecting the 42 ana 2H:-states at thé crqssing

point is thus estimated to be

v, = (0.631) (168 cnly = 106 ew b - ®

which should be reliable to within 20%.
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C. Calculation of the Cross Sections

The cross sections were calculated for the transition between the
43 and 2D states of O+ for collisions with the 1S ground state of He.
. . ' ' + '
Letting 1 denote the 4S state and 2 denote the 2D state of 0 , the

cross section is given by

e o]

0,y (B = 21 f abbe,, | (b,E,) ' @

o
where P2+1(b,E1) is the transition probability as a function of impact
parameter b and initial translational energy El' The 4S to D transition
is dominated by the single isolated curve crossing so that the transition

probability can be approximated by the LZS formula

L S 41Te-26(1 - e_za) <% T) 1/3 AL [(%T)3/2:] (10)

. It may be recalled that § and T are given by

r, '
26 = 1n f dr [k, (r) - k;(0)] : .11
r—
and
r r
T = f° drk, (r) -f ° drk, () (12)
N )

where ki(r) is the localvmomentum'on the appropriate diagonalized

potential curve

1/2 |
k() = ol - W@ - BT (13)
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r» r, are the classical turning pointg, r, are the roots.of wi(r) = Wz(r),
and r, is the point where the '"diabatic" curves cross.A

For the claculation of 7, the Born-Oppenheimer curves were used
instead of the diagonalized curves Wi(r) in Eq. (12). The off-diagonal
matrix element is so small that these curves are practigally thé same,
and, therefore, no significant inaccuracy results from the approximaﬁion.
The integrations in Eq. (12) were doné by é 'five-point Gauss quadrature

.

after the integrand was transformed somewhat. ' Letting r(x) be

r(k) = r0 ~ x(r0 - ri) ' _ (14)
then
vau [ o | Eb> V2UE | ' |
T dr E - Vi(r) ‘- —2 = h ) (15)
. r v
Ty : —
' ! 1 - Vi[r(x)] -3
f dxvl - x r (x)
. A V1 - x ‘

If £f(x) is defined as

. b2
1- Vi[r(x)] -
r (%)

vl - x
' 29
Eq. 15 can be approximated by
. 1 I \Ffif 5 :
P}
—%Ef dx/I - x £(x) = T z W E(x,) (16)
o : ' i=1

(o}
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- 2 _ or2 - th o
‘where xi'— l. Ei_and vy ZEiwi (Ei, w, are the i points and weight

factors fqr 9th order Gauss - Legendre guadratufe). This method of
caléula%ing the integrals was found to be accurate to ten significant
figures for typical values.of the constants andei(r) = 0.

For the asshmption of linear diabatic curves and constant coupling
at the croésing point, the integral for § in Eq. (11) can be done

explicitly. The result is3o

2 .
V .
- 2m 12 16 1/2 2.1/4
X n 22 ,
V 1+ 22 + € '
5 K(k) - €E(k)

where

k2 _ V 1+ 82 - E
- ’
241+ €2

and

vl v - v, |
X 22~ 11

£ =
V .
499 \/ [vilv§2|

and K(k), E(k) are the complete elliptic integrals of the first and second

kinds. | The term in braces may be recognized as the Landau-Zeher
Aapproximation to 28 while the rest is a function of € that goes to

unity for large €. Since € may be rewritten as

€= ——= . - (18)

where Ex is the energy of the crossing and EC is a characteristic energy
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[]
2,V

¢ {Vyy -y

E (19)

thevparameter € may be séen to be the energy above the crossing point
weighted by the strength of the coupling and che'properties of the
diagonalrcurves. For large € there is a good deal of cancellation.between
. the two térms in the square bracketsvso that‘6 is better represented by

a series in k

: N
21 Vip | 1 -2 | ZA 2ol (20)
n

28 = T T
W IV -Vl 1 o2

n=1

where A1 = 3/8 and

A _(n+1)2n - 3) A |
n+l 4n(n + 1) - “n ot

. + '
For the particular case of He and 0 , the smallness of V12 led to
the result that the calculated cross sections were almost unaffected by
using the Landau-Zener result for §

2 : :

: Vi(r) L _ _

2w 12" x

28 = v S (21)
<th> |Vl(rx) B VZ(rx)I

However, the replacement of the Airy function in Eq. (10) by its

asymptotic value

3“ <§»T>l/3A12[K%'T>2/3] +‘sin2(T + ﬂ/&)

causes a large shift in the magnitude of the calculated cross section.
The reason for this is that the weakness of the spin-orbit interaction
causes the most significant impact parameters to be those for which

the crossing point is close to the turning points, precisely the situation
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where the substitution of the sin for the Airy function is poorest.
Fﬂgure 8 shows the croés section for the 4S+2D transitioﬁ of 0

as a function of initial collision energy, as calculated from Eqs. (9)
and (10) with T calculated from Eq. (12) by the method of Eq. (16) and
§ calculated from Eq. (17) or Eq. (20) (for € greater than 2). The
oscillatory structure of the cross section in Fig. 8 is a remmant of
the oscillatory nature of P2+1(b,El). Thus if the Airy function is
replaced by the sin and the average value of 1/2 is substituted for

sinz(r + m/4), i.e.,
4ﬂ‘(%'T>l/3Aiz [(% T)z/é] > 2

the oscillations in 02*1 vs El disappear.

i D. Oscillatory Structure of the Cfoss Sections
As was previously mentioned, the oscillations in the cross sections
as a function of ehérgy disappeared when the T dependence of the
transition probabilities was removed. it was, therefore, deéided to
analyze the oscillatory structure to see what information could be
gained about T and the potential curves from the oscillations.

J ) _ .
To do this the transition probability was approximated by

P

- )
9<l P2+12s1n [T(b,E) + ﬂ/A] if \‘(22)

where

- -28 -26
P2+1 2e 1l-e )

is the phase averaged transition probability. As was noted, the
replacement of the Airy function by its asymptotic value shifted the

|

i



42~

l | |
5 6 7
E,(eV)

W
e

XBL7210-4233

. i . + + 2
Fig. 8. The inelastic cross section for He + O (4S)+He + 0 (D)
as a function of initial collision energy.
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cross section vs energy curve significahtly, but the curve was
shifted uniformly without a‘significant change in the amplitude of
the oscillations.

Tﬁe cross section can then be approximated by
[e o]

(E)) = an dbbP, , (b,E;) 2sin’([n/4 + T(b,E)] (23)

o

O9¢1

Since'

2sin’[n/4 + T(b,E,)] = 1 + sin[2T(b,E)]

Eq. (23) becomes

o} = o(El) + Ao(El) : : | (24)

2«1

where the nonoscillatory part of the cross section is the usual Landau- -

Zener result

0
O(El) = 2'nf dbbP2+l(b,El)
)
and the oscillatory part is given by

oo

Ao(E,) = znf dbbP, , (b,E;) sin[2T(b,E)] . (25)
0

. Define bC to be the value of b at which 7 (and hence Vx) vanishes

for energy El' The Landau-Zener approximation for § can then be written as

28 ¥ ————— o ‘ . ) (26)



by

where
2
V12
DENETL .
Vig - Yyl 1

m

=

a=hl

For this system, o is much less than one (typically about 10_3 ao) so that

Pr1
small and slowly varying elsewhere. It might then be expected that the

(b,El) has a very sharp spike for b slightly less than bé and is

behavior 6f T near bc will be the major'determinant of Ao, but this is
not the case because'sinZT is very small there. .

For energies well above the crossing energy, it is expected that
T should depeﬁd mainly- on (bc - b) when b is ﬁear'bé, an expectation
that ié born out for this system (see Fig. 9).  Because of this property
and the similar b dependence of § (Eq. (26)), P2+1(b,El) is very nearly |
also a function of bc - b for large b (Fig. lO)T Since the cross
section:is the afea under the curve [bP2+1(b,E1)].the difference ip
the cross sections for nearby energies will, therefore, be dominated
by the behavior . of T for small b.

To verify this expectation numerically for this system, it was
found that the b dependence of T(b,El) for E1»=.5.7 eV is reasonably

given by
1(b,5.7 eV) = 1(0,5.7 eV) [1 - (%) ] . ‘ 27)

Except for b near to bc’ § is very small and §2+1 may be approximated

as

P, . o= 48 = 2 : (28)



o1 [ l : '
215 -1.0 ~0.5 0
b - b, (Bohrs) v

XBL 749-7135

Fig. 9. Phase différence (t) vs b - be for Ej = 5.7 eV
(s0lid line) as Ej = 6.0 eV (dashed line). '
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Fig. 10. P2+1(b,E1) vs b — b, -for E; = 5.7 eV (solid line) and
E; = 6.0 eV (dashed line). '
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The integral for Ao in Eq. (25) is now given by

sin|2t {1 -~ — o (29)

. bc 5
Ao(E,) = 8ma db ————
1 2 2 o b2
’ Vb - b c
o c

where T is shorthand for T(O,El). Making the substitution

b2
x=1|1- 3
b
c
Eq. (29) becomes
| rl sin(2T x)
Ao(E,) = lmocbc[ dx ° (30)
: X
o
so that the expression for Ao is
T
Ao(El) > 4pabc V}—; 82(210) o (31)

where 82 is the Frgsnel sin integral.

Values of Ao calculated from Eq. (31) agree essentially exactly
with the observed values in phase although the agreement in magnitude is
not particulérly good. For this system the values of 2T° are relatively

large for energies well above threshold (21:o ~ 5 for El = 3.35 eV and

2To ~ 24.5 for E;, = 6.0 eV). The cumbersome Fresnel integral in Eq. (31)

1

' 1
can then be well represented its asymptotic behavior3

L
SZ(X)

% V21X

cosx f 0(%) ’ v' (32)

A plot of cos(m - 2T0) superimposed on a plot of the observed AO(El) is

shown in Fig. 11. It can be seen from the figure that the function



25
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E, (eV) | XBL 749-7134

Fig. 11. Plot of cos(w - 2t,) (the solid curve, in arbitrary units) superimposed on a plot of the
observed Ag as a function of the initial translational energy El (dashed curve).

_817_
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cos(m - ZTO) represents the positions of the peaks and valleys of the
observed’oscillatory cross section essentially exactly, so that it is

safe to gay that within a good approximation
AO(El) = A+ B(El,To) cos{(m - 2To)_  (33)

where A is a constant and B is a nonoscillatory function.
Observation of the oscillations in the energy dependence of the cross
section would, by Eq. (33), thus determine the energy dependence of

T at zero impact parameter; i.e., TO(E) which is given by

| r, (e - V@1
TO(E) =f dr hz
I | (34)
o foulE - v 01\
—./’ dr :
h2

r1
would be an experimentally known function. An RKR like integral transform
of this function could fhus be used to give definite information about
the crossing potential curves. Proceeding in the usual fashion,32 one
thus obtains the following result: |

' 2
rl(E) - rz(E) = rl(o) - r2(o) + %— %ﬁ

v (35)
E
f dE'T!(E") (E - 1~:')’1/2 R

(s
rl(E) and rZ(E) being the classical turning points for b = 0 and energy
E on potenfial curves Vl(r) and Vz(r), respectively. Equation (35)

pertains as written to the case that the posifionvof the crossing point

l
1
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is belowivz(w), the asymptotic value of the excited state. If the

crossing point is above this value, then the result becomes

E

. 2 C
- __2_ h__ [ 9 ] ' - ,—1/2
r, (E) —‘RZ(E) = a 7 dE TO(E Y(E E")

\Y i '

[o}

Vo being the common value of V1 and V2 at the crossing point.

Obsetyation of oscillatory structure in 02+1(El) would thus be
a valuable piece of information in obtaining precise knowledge about
the potential curves_in?olved>in the transition. Equations (35) and
(35a) show specifically what this information ié; némely the lateral

distance between points on the potential curves Vl(r) and Vz(r) that

correspond to the same value of the total energy.

(35a)

L»
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III. SEMICLASSICAL TREATMENT OF ATOM-ASYMMETRIC ROTOR
COLLISIONS; ROTATIONAL EXCITATION OF FORMALDEHYDE AT LOW ENERGIES

3 “A. Introduction

'
|
’

The 1 transition of formaldehyde is seen in absorption against

11710
the 2.7°K cosmic background radiation in cool interstellar dust clouds,
indicating that the lower state (111) has a population greater than

would be expected if the system were in equilibrium with the background
33,34

radiation. Townes and Cheung35 have noted that since the 212 state

spontaneously decays (via a dipole-allowed transition) to the 111 state,

while the 2l state spontaneously decays to the l10 state, collisional

1
excitation which favors the 212 over the 2ll state could produce the
observed "cooling" (i.e., enhancement of the population of the ill state).
They further argue35 that since the 212 state corresponds to the rotational
angular momentum being predominantly about the axis perpendicular to the
plane of the molecuie, collisional excitation of fbrmaldehyde from a

j=1 stéte toaj=2 state should indeed be preferentially to the 212
state. The results of the calculations presented here do show the cross
sectibns for the 1, .2 and lll+2 excitations to be larger than those

10 712 12

2 and 1 2 excitations, thus leadihg support to the

for the 1,,°2;, 117%11

Townes~Cheung mechanism.

In the present calculation the gollision partner of formaldehyde
is takén to be HZ’ which is assumed to be spherically symmetric. A
model potential is used which, although probably not an accurate
represéntation of the actual potential, should give the essential
features of the collision process correctly. All internal degrees

of freedom of H, and all vibrational degrees of freedom of formaldehyde

2
are ignored.

!
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The cross sections for the rotational excitation transitions have
been obtained by Moﬁte Carlo trajectory methods36 and by application
of "classical S—mafrix" theory,37 a sémiclassical_approach that uses
" numerically computed classical trajectories in combination with essential
quantuﬁ mechanical features. lA number of applications37n39 to atom—
diafom éolliSion processes have shown that this‘semiclassical‘theory is
offen an accurate description of the quantum effects in molecular
collisions; the present work is the first application of it to collisions
involving a polyatbmic molecule. The classical Mon;e Carlo calculations
are much simpler to carry out and ﬁeré done for the‘energy range 10-40°K.
The semiclassical célculations were performed at four»energies in the
range 10-15°K to provide a check oﬁ the reliability éf the purely
classical results. Apart from an interference structure iﬁ the semiclassical
results, the two approaches are‘in reasonable agreement.

The,chaptér is organized as follows: Section B discusses fifst
how an isdlatéd asymmetric rotor is described Semiéléssically. ‘Classical
S-matrix theory for atom—asymmetric rotor collisions is summarized
in Section C, along with specific aspects of the present applications; i
the way in which Monte Carlo trajectpry calculations were carried out

is also described here and in Appendix 3.  The results of the calculations

are presented and discussed in Section D. I {
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B. Semiclassical Description of the
Isolated Asymmetric Rotor

. . L 37 .

In order to apply classical S-matrix theory to a bimolecular
collision process it is first necessary to describe the internal quantum
states (i.e., rotational-vibrational states) of the isolated collision
partners. - This section, therefore, considers the semiclassical description
of an isolated asymmetric rotor.

. . 40 . . .

Consider an asymmetric rotor = with principal moments of inertia

| 1 1

d I >1 > 1. ing A = —— = =
Ix, I and z such that IZ Iy Ix Letting Av ZIX , B 21

y
C= E%_ ; the asymmetry parameter K is defined by

z v .
_2B-A-C
- A-c ' (1
For a prolate symmetric top.Iy = Iz and K = -1 while for a oblate

symmetric’ top IX = Iy and K = +1.
The rigid asymmetric rotor has three degrees of freedom, and its

classical Hamiltonian can be written as

. .2 2 2 .2 2 , 2 2
H(J,m,k;qj,qm,qk) = B(j” - k) cos a9 + A(j" - k7) sin 94 + Ck (2)
This gives the Hamiltonian in terms of the action-angle variables of the
systemﬂ j is the magnitude of the rotational angular momentum, m is
its component along a space-fixed z axis, and k is its component along
“a body-fixed z axis. The q's are the angle variables conjugate to the

momenta j, k and m. In the oblate symmetric rotor limit, B = A, and

the Hamiltonian becomes

B3 m,k50,9,,0) = BGZ - K9 - (B - 0 1 . @a)
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In the prolate symmetric rotor limit (B = C) one needs to define k'
o ‘ L + . . .
to be the projection of j along the body fixed x axis, and the

' Hamiltoﬁién.then becomes

' ) j,2' . 2 . 2 .
H(jim’kj;qj9qm9qk|) = B(J -k'"") + (A -B) k' . (3b)

Since Eq. (Z) has no dependence on q -or qj; it can readily be seen that
j and m are conserved. Likewise for a symmetric top k (or k') is
also conserved.

The traditional way of quantizing the asymmetric rotor semi-
classically41 is to realize thét it is essentially a system with only
one degree of freedom, with j appearing in the Hamiltonian éimply as

a parameter; i.e., the one-dimensional Hamiltonian is

Hj(k,qk) = (j2 - kz)(Asinzqk + Bcoszqk) + Ck2 .

One then applies the Bohr-Sommerfeld quantum condition to this one

- dimensional system in order to quantize the k-degree of freedom:

2mh (n + 1/2) = $dq k(q.3,8) (&)

where k(qk,j,E) is determined from the Hamiltoﬁian.by conservation

of energy:

- 1/2
E - jz(Asinzqk + Bcoszqk)

k(qk’j’E) = % 2 2 : (5)

C - Asin 9 Bcos 4

Equation (4) can now in principle be inverted to give E(j,n). This
procedure, however, gives relatively poor results for the lowest quantum
states which are our present concern. It would be desirable, therefore,

to be able to use the correct quantum values for the energy levels within
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an internally consistent semiclassical framework.
For this purpose we define a new momentum variable n by

2 L L2 .2
n = (1+«k) Ji-(1~'<) I, (6)

where j_ and j, are the components of ? along the corresponding body-
fixed axes. It may be noted that in the oblate limit (k = +1) n2'= 2k2
and in the prolate limit (k = -1) nz = —2k'2. The'classical Hamiltonian

in terms of this new variable is given by

. .2 A-C 2 ,
H(J,n;qj,qn)‘ = Bj - Lz—)— n - : (7a)

so that ﬂz is a constant of the motion. If one lets j2 ='ﬁzj(j + 1),

2 .
vz = ff , a= th etc, then Eq. (7a) becomes
(a - ¢) Vz o »
H=Dbj(G +1) - >>—r>"" , (7v)

2

so that v is related to the quantum mechanical quantity E(k) by4.0

EG) = ki + 1) - v . ' (8)

The rotational state of the asymmetric rotor can now be described within
the semiclassical framework by specifying the quantum number j and the
quaﬁtity V (determined from tabulated values of E(x)). Appendix 1

carries out the canonical transformations necessary to replace k by n.
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C. Semiclassical Theory of Atom-Asymmetric Rotor
Collisions; Methodology _ -

The cross section for the inelastic process

CHZO(Jl,\)l) + H, > CHZO(_]Z,\)Z) + H

2 2

is given by

2
|

o a2 e ; |
%5943, (B T @B 23 ¥ D JZ..:(ZJ t Z‘_ls’_%zjévz,iplvl @
. T : = 21,2

_where'l_is the orbitél angular momentum quantum numbe: forzrelative

translétion of the collision partners, j and vV are the quantities that

define the-rofational state of the isqlated formaldehyde as in Eq. (7b),

J is the total angulér momen tum quantum number,vrotatibnal &) plué

orbital'(ﬁ), of the composite systeﬁ, E is the initial translational

energy, and U is the reduced mass of the collision pértners. The réader

will recognize that Eq. (9) is identical in form to the-expreésion for
rotational-vibrational excitation in the atom-diatom collision system,

except that here v is related_to the components of j ébout-body fixed axes -

rather than Being a vibrational quantum number. Thg sums over.R.1 and 22

in Eq.,(9)fresult from an average and a sum ovef the initial and final

m states of the rotor, respectively.

The sgmiclassical approximation to the S-matrix elements in Eq. (9)
is constrﬁcted according to the general préscription that has begn

given.37-42 Again, the expression is of the same form as that for the

. . . i 42,38d
atom-diatom rotational-vibrational system: >3
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-1/2

(L, ,3.,V,) ,
J :E : 3 2°72°72 ,
Sy 4 .y (B) = (-2mih) , _ (10)

Ly39V9s%131 VY - B(qzl,qjl,qvl)

r !

exp[i¢(£2j2v2,21jlvl)/ﬁ] s

where the sum indicates a sum of such terms for all trajectories which
obey the correct initial‘and final boundary conditions; see Réf. 37 and 42
for more details. |

| In order to use Eqs. (9) and (10) it is necessary that J2 be Quantized
evefywhere and that j2, 22 and vz be Quantized in the initial and final
asymptotic regions. J2 and 22 are quantized by the usual Langer

prescription

22 502+ 1/2)2

(11)
72 o023+ 1/2)2 ,

vz is '"quantized" by setting it equal to the value determined from Eq. (8)

by j and the quantum value of E(k). The quantum me;hanical quantization
of jz (i.e., j2 - hzj(j + 1)) was retained beCause it was felt that this
would be more accurate for treating the low rotational levels which
were of interest in this calculation.

The numerically ingegrated classical trajeétories needed to evaluate
Eq. (10) may be computed in any convenient set of canoqicél variables as
long as the‘proper transformation to the %,j,v,qz,qj,qv set is pgrformed
in the initial and final asymptotic regions. Formaldehyde is almost a
prolate symmetric top (kK = -0.9610644 for the adopted geometry) so that
the component of angular momentum along the CO bond axis of isolated

formaldehyde is.almost cbnserved.43 Since the rélationship between k
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and n is also not very tractable (see Appendix»l),‘it was decided to
coﬁputé ﬁhevtrajectories44 in the Q,j,k,qg,qj,qk set of canonical
coordinatés. Appendix 2 gives the canonical transformations and necessary
relations for ﬁhis coordinate set. |

’ The classical Hamiltonian is‘given in this set of cononical variables
by

2
PR g2 2 2 2
H(PR,Q,q,k';R,qg,qj,qk} ‘= P t——+] [Csin_qk + Bcos qk] (12)

2UR
2 2 L2
+ k" (A - Bcos 9 -»C81n-qk) + V(R,Y,2)
where R is the distance between the centers of mass of the collision
partners and U is the reduced mass for the relative motion of the

“en, 0", . |
;g;—:j;;———v). The potential energy depends
CH,O
2 2

on only the three parameters (R,Y,l), where Y is the angle between ﬁ

centers of mass (i.e., U =

and the body-fixed z axis of formaldehyde, and [ is the angle between
>
R and the corresponding x axis.

The equations of motion are given by

R = PR/U o (13)
. =vﬁ- _ , 2 3V  dcosy , AV dcosy

qj ZJ[B + (C B) sin qk] + dcosy 9] dcost aj

s 2 9V dcosy , oV dcosl.

d = 2/ (uR) + dcosy 9% dcosf 94

. = ' _n o , 2 oV acosy oV dcosi

T 2k[A = B - (C - B) sin qk] + dcosy 3k + dcosz 3k
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L] - 2 3 _ AV_
t__ 9V dcosy _ 3V Bdcost
) dcosy 9dq, ' dcosi 0dq,
J j
L=- Al 3C°SY}_ oV dcosg
dcosy 3qz © dcosl aqg
L] - . 2
k

where the potential parameters cosy, cosf and their partial derivatives

are given by

dcosy _ Vi% - K @? -2 - 9% e

= : - sing, + . . si
393 E s1an cosq, 2T cosqJ sinq,
Scosy _ kEcosqz . 1113 _ k2
%y p5° ]
2 .2 2
- cosq, sinq, + G -3 -%) sinq, cosq
j L 285 j L

dcosy _ ‘singg [:§_+ ? + 9% - 3% . K2
9] 23 .2 £
- j jz\Gz _ 2

;

|

. 2 2 2
cosq, cosq, + (g -3 -%) sinq, sing
J L 223 : j L

22?2

2853

sjnqj 51nq2
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dcosyY _ k31nq2 -& + (J2 + j2 + 22)
3L j2 222 B £
j2 - kz(J2 + 22 - jz) sinqj sinql
252,2j2
dcosy _ 581nq2‘_ k
% 2257 RV
2,2 2
cosq, cosq, t+ J el S L) sing. sinq
3 R 283 j '3
dcosy _ k51nqk 3CQ§XV+ cosq
aq, 9q. k
.qJ- \’jZ_kZ qJ
22 .2 |
(J° -3 =27 . e
cosqj cosql + 283 s1nqj 51nq2
' ksing E£sing, cosq
dcosg _ k dcosy _ k L
aq 9q
A \,jZ _ k2 L 20 j2 _ k2
, 2.2
. @’ - 3% - 9H
cosqk s1nq2 51nqj + 703 cosqg cosqj
Béosc sinqk . . . .
= [22kcosY - &sing,] - singq, Jcosq, sinq,
3G, \l'z——'g _ : % Tk 27
22Nj” -k :

2 .2 2
U -] — 2) sinq, cosq,
243 : L j
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acesr _ kSlnqk dcosy + 1sinq, sing,
9] 5 2 a3 L
J'-'kJ
3 _(J + 27 2
.2 2.3/2 r——-————
-2jkcosy sinqk (JZ +Ai? ~ Qz)
+ -~ sinq, cosq, cosqg
23 2 k2)3/2 v 22j2 '3 i k
Scost ) kaIqu BcosY 51nqk 81nq2 E (JZ + j2 _ 22)
oL ol £
ViZ - i V2
2 2 .2
PG i = 1) sinq, cosq, cosq,
: k. 22 -Y kg. .
dcosg _ sing, Bcosy L2 j cos 31nqk sinq  sinq,
ok | 9k .2 2.3/2 2 2,3/2
,]jz_kz (J - k%) .'Q'(J - k7)
.2 2 : 2 .2 2
ey = YA~k @~ -3" =29 _. .
~cosY = 3 cosq, cosqj + 243 sinq, 51nqj (15a)
kEsinqz
T
! 243
v sinqk
cosl = [2%kcosy - EsianJ (15b)
28 j2 - k2
2 .2 2
+ cosqk cosqg sinqj - J_- ;Qj_ 2;) sinqi cosqj
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The trajectories were begun with the initial conditions

R =R ' ' (16)
max .
q =9
L 21
a4 qkl |
. 2,2
L \/;uEl - jz'l/Rmax
i=n5 G, FD
L= h(,Q,l + 1/2)
2 V2. s . 2
ny + (1 - ©h jl(J1 + 1) -sin 9
Kk = ' L,

1+ )+ = x) sin_2qk
1

and were ended when R, = Rm~ while P_ was positive. Rmax is a value

2 ax R
oV and v
dcosy acosy

of R that was chosen to be the smallest value for which
are negligible (Rmax =10 a in this case). At the conclusion of the
trajectories, the final quantum numbers'jz, 22, v2 were calculated

from jf,_lf, kf by

-1/2 + 1/2V1 + 432m? - (17a)

= 2./h - 1/2 , - ~ (17b)

I2

©
|

2 1 2 . 2 2. .2
v, =55 [}l +6) ke - (U - ) - k) sin qkz] (17¢)

=g
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. The trajectories were rejected if conservation of energy as measured by

2. . (C-A) .22 2. .0 N
E - Bh73,(3, +1) + SF5—= h'v, + Bh J1<31 +1)

4 1 R

e R
2

was violated by more than 0.5%.

A model potential of the form
4

— ' 2
V= Z ;e (-R;/S,] | (18)

i=1

was adopted for the hydrogen molecule—formaldehyde interaétion. This
type of potential was used in order to make the results comparable
with quantum mechanical calculations34 thch were in progress at the
time this work was begun. The sum is over the fouf atoms making up
the formaldehyde and Ri is the squafe of the distance between the ith
atom of formaldehyde and the H2 center of'masé. Table I lists the values
of the parameters that were chosen for this work. The S, values were
chosen so that the "sizes" of the atoms for the energy range considered
would be comparable to the usual Van der Waals radii of these elements
in organic compounds. | |

This model potential is admittedly quite crude in that it neglects
the long range attractive forces and that the short ranée repulsion
is not steep enough. Since the quantity of interest for the present
astrophysical problem is the relative size of cross sections (see
Section D), however, it may be that the detailed form of the potential

beyond that which essentially determines the size and shape of the

moleculeé will not seriously alter the major results. Work currently
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Table I. Values of parameters chosen for

the model potential.

Atom Fi (Hartress) Si(ag)
o 1.0 0.88333
C 1.0 0.970

H 1.0 0.75667

1,2




(a)

(b)

Center
of Mass

 XBL745-6394

Fig. 12. (a) The geometry of formaldehyde;.see Ref. 40.
(b) The coordinate system for formaldehyde.
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in ﬁrogress_(B; J. Garrisoh, H. F. Schaefer, W. A. Lester and w.‘H. Miller)
on the potential surface for helium;formaidehyde‘should proVidé a much
more realistic interaction potential.

The structure of formaldehyde giveﬁ in Ref. 40 was édopted.for this
work since it is the same as that ﬁsed in Ref. 34 and 35. Thé values
’giVenéo fbr the rotational constants are Ao = 282,106 Mc; B0 = 38,834 Mc;
and C0.= 34,004 Mc which correspond to an asymmetry parameter K of
-0.9610644. The adopted structure and the cdordinate system used are
shown in'Fig. 12. The values 6f the structural parameters with respect
to the center of mass as shown in Fig.leére then: ro = 0.9943 a s

r = 1.2925 as ry = 2.9948ao and § = 37.29°, The ehergies and values.

H

of v for all the j 1 and j = 2 rotational states of.formaldehyde are

given in Table II. The distances required in Eq. (18) are now given in

terms of the structural parameters and the potential parameters

(R,Y,Z) by
2 _ 2,2 S ' '
Ro =R + r, - 2Rr0cosY ., . (19)
R2.= R2 + r2 + 2Rr cosy
c c c
2 - .2 2 .
RH = R" + r, + 2RrH(81n6'cosC - cosY cos§)
1
2 2 . 2 .
RH = R” + Ty - 2RrH(31n6 cosl + cosy cosf)
2

Even at the low collision energies employed the excitation of the
j=1 statés ﬁo j=2 stétes is a "classically allowed"45 pfocess,
i.e., there are real—valued‘classical trajectories which lead to these
transitions. (There will also be some contributiqn from compiex—valued

classical trajectories, but this has been ignored in the present work.)
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Formaldehyde energy levels.

Table II.

- ; oy 2 n2
State (Jk_-k+) E (°K) ‘\) = ;?
%90 0 0
10l 3.49579 0.03894
1, 15.17141 -1.92213
1, 15.40323 | -1.96106

205 10.48396 0.11738
2., 21.93119 -1.80532
2,4 22.62663 -1.92213
2, 57.65349 -7.80532
2 57.65691 - =7.80590 .

20
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In general there are a number of different_classical tfajecto;ies (up to
8 in the éresentAapplicatibn) which contribute to each specific S-matrix
element; because of the small difference in the classical éctions along
such trajéctories it is important not to use the "primitive" semiclassical
expression, Eq. (lOL but rather the appropriate uniform asymptotic
.ekpréséioﬁ}Bsc’38d’46 The semiclassical resﬁlts discussed in.the following
section have all been "uniformized" in this way.

An interesting feature of this system is the apparent mixing of

classical and quantum behavior. At a translational energy of 10°K,

the S métrix element for the transition 1

11-’212 Wth J = 2,,21 =1,

22 =0 gets contributions from eight classical trajectories; an apparent
indication of classical-like behavior. However, this is the only
S matrix element for that transition which gets any contributions,
something that might be expected if the system behaved qﬁantum
mechanically. This situation is moderated at the higher energies
and virtually disappears at 15°K (see Table V).

For the Monte Carlo trajectory célculations it was decidéd to
modify the.standard procedures36 somewhat because only a few values
of J, 21 and 22 contribute to the sums in.Eq. (9) at these low pollisipn
energies. Proceeding along the 1ines_of Ref. 38c, therefore, J and 21
were rgfaihed as integers and the Monte Carlo procedure used to calculate
the square modulus of S-matrix elements individﬁally. Appendix C gives

the details of this as it pertains to the atom—asymmetric rotor collision

system.
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Table V. The distribution of the classical trajectories
: contributing to the S-matrix elements for the
1107219 transition (the distribution is 51m11ar
for the other transitions studied).
Number of contributing terms for the energies and
quantum states indicated. :

J,21,22 4 Trans%ationai-Energy
'!
10°K 11°K 12°K |
1,0,1. 0o ' 2 6
1,1,1 0 2 2
'2,1,0 8 12 |12 %
2,1,1 0 0 6
2,2,1 0 0 0
3,2,1 0 0 0
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D. Resulté and Discussion

Thé cross sectiqns for the rotational excitation of the 111 and 110
states to the 212 and'211 states of formaldehYde_are shown in Fig. 13;
the solid line is the result of the Monte Carlo classical trajéétory
calcuLatioﬁ; and the points are the semiclassical values at energies
of 10, li, 12 and 15°K. Numerical values of the calculated~cross
sections are given ih Iables III and IV;- The semiclaésical results
" show a‘strdng interference étructure thch is hdt Quenched by the sums
in Eq. (9) because so few terms contribute. As_,'expected,l"7 the purely
classical fesults do not reproduce this structure but appear to give the
average resﬁlt reasonably well. Since these crdss sectionS-would be
averaged‘over a smooth distribution of trahslational energies in
computing rate constants, the. interference structure would noﬁ likely
be impoftant; if thié is the case, then the classical Monfe—Carlo
results wQuld be sufficient. This is quite encouraging, of course,
for the.ciassical ﬁonte Carlo trajectory calculations are considerably
earier to carry out than the semiclassical omes.

Figure l4a shows the classical Monte Carlo results for the
111-*110 cross sectibn as a function of éOllision gnergy E. Since

microscopic reversibility implies that

01N "= 8 “Upohi) o (20) o

where Ae is the splitting of the 111 and l10 levels, Ac = 0.23182°K,
the cross sections for‘the lloflll and 111-*110 transitions are

essentially equal at the energies E considered.
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Classical S-matrix results.

Table III. Cross sections (a2) for the indicated
: transitions and energies. ‘ ° -
Energy (°K)
Transition '10.0 11.0 12.0 15.0
(L 1119212 1.100833% 4.211031 2.581632 - 1.462453
(2.038357) ** (4.552308) (4.981321) (1.850373)
2 1,72, 1.864489 1.05383 | 1.506511 1.258176
(1.207066) (1.808262)_ 5 (2.412053) f (3.662941)
3 110*212 1.044088 4.712126 ; 2.259673 2.390978
(1.869910) (5.614068) | (5.087348) (3.823447)
(4) 110*211 2.149583 1.307034 1.651284 1.717957
(1.986073) (2.936735) (3.674114) (4.618388)
(5) Ratio of (3) 0.559986 4.471404 © 1.499938 1.900353
to (2) (1.549137) (3.104676) (2.109136) (1.043819)
(6) Total (1) + (2) 6.158993 11.284027 7.999100 6.829564
+3)+® (7.101406)  |(14.911373) |(16.154836) | (13.955149)

*
Uniformized results.

*k
Primitive classical

S-matrix results given in parentheses.



Table IV. Monte-Carlo classical trajectory results.

_indicated transitions and energies.

Cross sections (ai) for the .

Transition

Energy (°K) 1 (i; 1 (3; 1 (3; | 1 (i% % Ratiésgf Total Ei; +
11 12 11 11 . 10 712 1Q 11 i (3) to (2) (2) + (3) + (4)
10.0 4.03274 | 0.94633 | 3.07623 | 1.30732 3.25070 9.36262
11.0 3.66518 1.09063 2.86338 1f4879l | 2.62544 9;10711
12.0 3.48989 |1.19020 | 2.77504- [ 1.40964 | 2.33157 8.86478
15.0 3.48592 |1.20464 | 2.78741 | 1.56672 2;31389 9.04470
20.0 4.68262 |1.67763 | 4.02615 | 1.91998 2;39991 12.30339
25.0 3.79570 1.96233 | 3.21320 | 2.29035 1.63744 11.26158
30.0 2.8Q932 1.94898 | 2.45761 2.13178 % 1.26097 9.34769
40.0 .2.35953 1.71022 | 2.09424 .1.81360 ;2 1.22454 7.97759
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e

| | 1 1

13.

0 20 30 40
E (°K) | | |

. XBL 745-6395 -

Cross sections for the indicated rotational excitations in

Hy (spherically symmetric)'+-H2C0,collisions as a function of
initial relative translational energy. The solid lines are the
results of the Monte Carlo classical trajectory calculations

‘and the points the semiclassical values; the solid (open)

points correspond to the upper (lower) curve. The energetic
threshold for all four transitions is. 7°K+~0.5°K (see Table II).
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Although a number of additional complicatiohs48 must be taken into
:éccount‘in a complete analysis of the "anomélbus".absorption of
formaldehyde, the following treatment may be of interest. If the rate
of the'dipole—allowed'spontaneous decay of the j = 2 states to the j =1
Statest(i-?-: 212*1ll and 211+110) were infinitely fast compared to
vinelastic coilision rates; and if the radiative rates between the 110'
vand 111 states were neglibly slow, then s1mple tons:.deratlons35 imply
' that the steady—state ratlo R of populatlon of the l11 state to that

of the 110 state would be

R = [0(1 ) + 0(2 [0(1 ) + 0(2 )] . (21)

11° 10 12° 10)] 107 ll 11
This quantity is shown as a function of collision energy in Fig. 14b,
the cross sections being the Monte Carlo trajectory results from

~ Figs. 13 and l4a. The temperature T relating the lll and.l10 levels

is defined by
R = exp(Ae/kT) ;3 1 (22)

= 1.1 and 1.2, for example, implies a temperature T = 2.4°K and 1.3°K,
respectivel&. With the cross sections replaced by ones suitably
averagéd over translational enetgy—-which would effectively smooth oqt
the R vs E.relation in Fig. 145——thisis in good qualitative'agreement
with thé observedl population ratio corresponding to T ~ 1.8°K.
In suﬁmary, therefore, the results of the calculatioﬁs do show
that rdtétional excitation of formaldehyde from the 1 and 1lO levelé'

11

to theiZ12 level is favored over that to the 211 level, in accord with

.Townés and,Cheung,35 and the magnitude of the effect is consistent with



-75-

| | |
12+
No
S
S
= 8
O
Q
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oL | ] |
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.2}
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.ok | ' L .
O 3 IO 20 30 40
' E (°K)
o ‘ ‘ ‘ XBL745-6396
Fig. l4. (a) Cross section for the 111*110 (and essentially also the

1,07111) transition in collisions Hj and HpCO, as a function
o% initial translational energy. - (b) The cross section ratio,
defined by Eq. (21), as a function of initial translational

energy. <
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this beiﬁg the cooling méchanism responsible.fér the anamalous absorption
of fofmaldehyde in interstellar dust clouds. The weakest aspect.of

the present calculatidns is probabiy ﬁhe interaction potential, although
it wéuld also be useful to have completely quantum mechanical.scattering
caiculations to check the reliability of the classical and semiclassical

results.
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APPENDIX 1. SEMICLASSICAL TREATMENT OF THE ASYMMETRIC ROTOR

Let x,'y, z be the principal axes of the molecule with

I 21 > Ix' For a pr

z y
symmetfic top Ix

]

1

o0late .symmetric top Iy = Iz and for an oblate

Iy. The classical Hamiltonian is

2

Iw

2 I wZ

xx v
7 T3

y z z
+
"2

where the w's are the angular velocities about the appropriate axes.

Now introducing the Euler angles 6, ¢, Pof the body49 we have

W
X

so that

ésinB siny + écoéw

$sin6 cosy - ésinw

&cose.+ &

I w'sind sinP + I w _sinb cosY + I w cosO
xXx - yy Sz oz

co
wax sy

I w
z z

- I w sin
Yy v

(1.1)

(1.2)

(L3)

are the momenta conjugate to the Euler angles. Inverting the momentum

relations gives

boop

I w_ =

X X

prcosw

sin6

Py

siny

sinf

pesinw - pw

+ pecosw -

p., cosf siny

sinf

cosf cosy

sinf

a.4
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- for the body fixed components of the rotational angular momentum. " The

Hamiltonian is now

. 2 '
: : p,siny p,cosB siny
_‘H(6,¢,w,pe,p¢,pw) Al: oing T Pgcosv s (175)
p cosw‘ : o p,cos9 cosy 2 2
*Blsmme T PSW T T o | YOy
v 1 . 1 _ 1 ' ' ,
where A = 51 B = 21 and C = 31 and the square of the magnitude of the -
i z . .

>2 2 2 | 2. 2 1 2 2 | ‘ ' .
3 = 3 + 1 + 3 = : + - 2 L 6 1.6
st et — o [P¢ - pq)pwcos:l (1.6)

The asymmetry parameter K is defined by « =;Z§ii%F%—g so that

K = 41 for an oblate symmetric top and k= -1 for a prolate symmetric
top. The quantity E(K) which can be calculated quéntum'ﬁechanically
is defined by

2E = (a + ¢) j(j + 1) + (a - ¢) E(x) ' o (LD

where a = hZA etc,
We now eliminate Py in favor of j, the magnitude of the rotational

. ’ . . 50
angular momentum by a canonical transformation using an F2 generator.

This generator is

' -1 ;2 0s0 - mk . PP
F,(8,0,0,3,mKk) = ¢m + Yk + jcos == = o (L.®)
.2 2,..2 2
V[(J‘ -k)G -m)
-1l © mcosb - k -1 kcosf - m
- mcos - kcos

sinf ij - m2 sinSij - k2



where m = p¢ is the component of j along the space-fixed z axis and
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k = pw is the component|of 3 along the body-fixed z axis. Now the new

coordinates  (which are the coordinates canonically conjugate to j, m, k)

and the transformed Hamiltonian are

i

-1

j2cose - mk

cos

N2 o2 N2 2

¢ -~ cos

Y - cos

1

mcosf - k

[ 5ind ij - m2

kcosf - m

+ kz[C - Asinzqk - Bcoszqk]

-

| 5in6 V j2 - k2_

. L .20, 2 2
H(J,k,m,qj,qk,qm) = j [Asin 9y + Bcos qk]

(1.9)

(1.10)

Since 9 is the only coordinate present in the Hamiltonian, it is now

obvious that j and m are conserved whereas k is not (unless A = B).

v'It can now be seen from Eq. (1.10) that we have an effectively one-

dimensional problem and that the semiclassical‘enérgy levels might be

calculated by applying the Bohr-Sommerfeld quantization rules to the

k's’ bqk

|

| o

2th(n + 1/2) = j

0

system (with j as a constant parameter). This would give

E - j2(Asin2qk + Bcoszqk)

dq

k| ¢ - AsinZq. - BcosZ
C Asin 9 Bcos AU

(1.11)
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with jz = hzj(j + 1). In the limit A = B(k = +1) we would get the
correct qﬁantum result thét n-= k+ but in the ;imit B'=_C(K = —1) |
we will not get n = k.. This is because the ihtégral iﬁ Eq. (l.ll)v
is singulgr for jz(Bv; A)'sinzqk = kz[(B - C)j+'(B —VA) éinzqk] so that
Ithe‘sdlutiop in the k = +i 1imit will not go sméothly inté the solution
in Lhe K'; -1 limit.
It is then desirable to seek a new momen;um in which the qﬁantization
can be carried.qut. béfine nz by_

nz = (1 + k) ji -1 -x) ji - O (1.12)

so that the classical Hamiltonian becomes

. : .2 A-0C 2 _
H(J sm’nsqjaqm9qn) = Bj - '(—2_')_ n . (1.13)

It is clear now that n2 is conserved and that if we let j2 = ﬁzj(j + 1)

2 . ‘
and vz = IL?, the Hamiltonian is
. T h

H=bj(§ + 1) -'ié—g—fl-vz _— (1.14)

Comparing Eq. (1.14) with Eq. (1.7) it can be seen that v is simply
reiated to E(K) by

2

E(K) = Kj G+1) -v (1.15)

In the limit of k = +1, j_ = hk,, and in the limit € = -1, i, = hk_,

v 5 .
so that N has the correct behavior in the two limits. In order to

transform from the k, qk set to the n,'qn set we have that

n= @+ K- a-0a6"-x) sin’q, (1.16)
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The~F2 generator that eliminates k in favor of nz is given by

, ~ 9 r]2 + ('1 B ) .zsinzx ‘
F,(jsm,q,,q,) = mq + jq. + dx . 1 5 (1.17)
J I (1 +x)+ (1 -k)sin'x
_ % ,

Now n2 has the dimeﬁsioﬂs of (momentum)? but it can be seen from
Eq. (1.12) that n2 can take on either positive or negative values. The'

integral in Eq. (1.17) must be worked out separately for the two signs

of nz; and it will be seen that no logical inconsistencies result from

allowinvg‘n2 to be less than zero. Indeed, the case that nz = 0 is
exactly the point at which Eq. (1.11) becomes discontinuous.

For the casé that n2 > 0 we have that
v : n2 v
FZ(J,n,qj,qk) =mq + jay + \[ . - _ (1.18a)
' 1+ +3i A -Kx]

a2, |
II <Ys 2,;-1 (12 K) ’ r)
n +3i @ -«x)

where

2 .2 . .2
sin qk[n + 37 - k)]

sin®y = ——=— 7 (1.18b)
[n" + 371 - ¥) sin"q,] B v

2_a-w Ha+ -l
A+ 112a -0 +1%

and H(¢,n;k) is the ellipﬁic_integral of the third kind

. ¢ q
1(4,n,k) ,=f —=
‘ (1 +n sinza) 1 —-k2 sinza

0
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The'cQordihate conjugate to n is given by

_NF(y,r)

_ .19
qnv. - (1.19)

Vi + o5 - o + n?y

R ”
F(_qz,,k):_/~ J do

0. V1-k sinzab

where -

is the elliptic intégral'of the first kind and Y, r are the same as
in Eq. (1.18b).
For ng < 0 not ail Valﬁes of q, are classically allowed. Since

k(nz,q ) is given by

n2 + (1 - k) jzsinzqk . '
k = - 4 2 - (1.20a)
(1 +k) + (1 - k) sin 9 ' :

and k must be real, we must have
n* + (1 - ©) 3%sin’q >0 o (.20m)
If the-iptégral in Eq. (1.17) is done considering the limits on 9 by
Eq. (1.20b) we get for n> < 0 | |
o n2_ o S
; = + 9q. - — 1.21
Fz(q,n,qj,qk) mq + jay \/ . : > 5 ( )
1-[Q+Kk)j -n]

' 2
2@ - %) + 1
=

iT@ - x)

x Tfy', , ') - F(y',T")
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where r'jéel/r.and sinzy'v Iy and r as in Eq.,(l 18b)1], a

sin Y

q, = e — F(y',r') (1.22)

n |
Va-oula+o - n’]

Thelﬁqe.a(l.l9) and (1.22) are all that is needéd to apply .
classical.S-matrix tneory to collisions. of an asymmetrie rotor. The
appropriate value of nz for a quantum state of the rotor can be obtained
from the Quantum mechanical values of E(k) by'Eo; (1:15); Although there
is now no need‘to‘obtain a semiclassital prediction.of the energy levels,
such a prediction is poSsible. B

In order to quantize the asymmetric rotor semielaésically we use

the Bohr-Sommerfeld quantization rule

Zﬂh(n +a) = fndqn | o B - | | (1.23)
where n is an 1nteger and o is an arbltrary constant to be adJusted

The 1ntegra1 in Eq (1.23) has parametric dependence on the energy and -
the magnitude of the angular momentum, whlch we take to be its quantum
value hJE?}fi*IY. Since n is a constant of the motion the integral is
just the enange in q over a complete cycle.: Nowvif.the.left hand side

of Eq. (1. 23) is 2m (k + o ) for n2 greater than or less than zero

respectlvely, we get

>0t (LK, +a)’ L ON —  (1.242)

W [J(J ¥ 1)(1 - K) +v7]
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and

n?<0: (- Kk, rart=

o'’ @ /m) , (1.24b)
PG+ DA+ -V

where

LA OEE DA+ -V
A+OLEG+ DA -0 + V]

and K(m) is the complete elliptic integral Of‘thébfirst kind. By analogy
with Eq. (1.12)_it may be deSirable to combine_Eq; (1.24a) and Eq. (1.24b)

by definingv

2

= Ak, Foepl - (- 0k F ) (1.25)

while‘lgtting vz have the same sign‘as‘Nz. It can be seen that the
difficﬁlties in Eq. (l.il)_arise where V2 =0 andlthat Eq. (1.24a) and
Eq. (1;24b) pass smoothly through this boundary if.Eq. (1.25) is used. -
Thé @ajorvdifficulty with using the expressions in Eqs. (1.24a),»
(1.24b) and (1.25) for calculating thé energy levels of the asymmetric

rotor is the problem of determining the values of'oa+ and a_. It was

found that for the lowest states (j < 3), the values that the alphas had
to takevon‘to_reproduce the quantum levels showed considerable dependence

“on j, k,, and k_

1 For some of the states the values also had a

1

strong dependence on K. It is possible that for 1arge,j values, where
\ : :

the rotor behaves more classicélly, the procedure outlined above maj '

be of value in predicting the energy levels.
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'APPENDIX 2. ACTION-ANGLE VARIABLES FOR ATOM-ASYMMETRIC
ROTOR COLLISIONS
in this section, tne conventions with regarn‘to the rotor are
the sane;as in Appendix 1. Lét R be the ventnr from the center of mass
nf the ronor to thé atom, and & and B be the altitude and azimuth

respectively of this vector. The Hamiltonian is

1. S '
H = %-(R + R2a2 + R26251n2a)'+ f§ (¢psinb siny +_6cost,b)2 (2.1)

1 L I'-o ‘o
+ —% ($sind cosy - 6sinw)2 + —%-(¢cose +-1_p)2 + V(R,Y,Z)

where Y is the angle between R and the body fixediz axis and = is the

" angle between R and thé body fixed x axis. Therefore,

" cosY = cosf cosa + sinf sino sin(¢'- B) _ (2.2)

cosg siny{coso sinb - cosH sina sin(¢ - B)]

+ coéw sina cos(9 - B)

In terms of the canonical momenta H is

pz. p2 p2 - o pncosG siny z '
H= 2R + az + B - +-é ¢ g;;%-+ pecosw —iL—gzgé———} (2.3)
U 2uR 2UR sin o _ : . ’
- - 2 cpl - |
B cosw . _ _ cosb cosy Y
where pe,‘p¢, pw are asvin'Appendix 1 and
g MR o RS
2. |
P, = WR'a

Pg =nustin2aé
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(note that U is the reduced mass of the "two—body" system where one
body is the atom and the other is the‘;otor). Since ¢ and B only occur

in thé combination (¢ - B), ¢ can be replaced by the new,variable'

€ = (¢'— B). This is done by the F3

generator -

which'giﬁés‘the'néw momenta p_ = p¢ =mand M = p€-+ Pg> the projection
of the total angular momentum on_the space-fixed z axis. The orbital
angular momentum £ is now introduced by_an.F2 type'generator using

2 op - m?
T2 2 .2
2uR 2UR sin o

1] - fcoso - v (2.5)

22 - M- m)? , | o

' F2(€,B,d;2, m,M) = me + BM + Lcos

M - m)‘cosa

- (M -m) cbs-l
: sinocﬁllz - (M~ m)2

The new coordinates are

v -1}  fcosa

= CO0s
V2 - 0t - my?

~

(2.6)

(M - m) coso

Q. = B - cos |- _
2 2 2
_ ) : [sino Y27 - (M - m)”

-

™ - m) cost

€ + cosm1 — .
' : _Z_Sina\/ZZ - M- m)2 ’

o
W
]
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2

the new coordinates are .

The F, generator in Eq. (1.6) is now'uéed‘(with ¢ replaced'By Q3) and

a]

I
2}
O

o e -m 1 o
3 —J cos ' ' o (2.7)
| (z_kz\\/z_m ” -
. _ -1l kcos® - m
q, = Y - cos ,
k ‘/z 2
o sinBY{ i~ - k7 |

-1 mcosB - k

.Q, = cos
3 -
. .2 2
. sinfV{ j~ - m

The space fixed components of.g and I are now givén by

L]

I

L N - o
g = -_S_in(vQ2 tq) Y3 -m o - (2.8)
. 2 2 ‘
Jy = cos(Q, + qm_)v im-m

j,=m

=
|

= - cosq, V/QZ - - m?

. 2 ' 2
zy =‘_‘vsquwlz - (M- m)

[
!

= (M- m

SO0 thét the magnitude of the-total angular momehtgm J is given by

' J2 = 32 + 2,2 + 2m(M -~ m) + 2 djz - m2 422 - (M - m)'2 sinqn'l - (2.9)
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It is now desired to replace m by J, and to express Y and  in terms

of the final ahgle variables. The first is done with the generator

ENI? - o

. Fa(j’29M9m;J’j,2’,‘M) = Jsin

2 .2 .2 2 2 20
+ R,'sin'_l m(J” + 27 - i) - MWJ” - 27 - 437)
E\/Ez - M- m)2
12 .2 2, _ .2 _ 2 YN _
+jsin—l a(J” + i - 27) 2Mj + Msin 11 (J° + 3 27) 2M(M ~ m)

£V32 - n? | V32 -2 Ve? M - m)?

-1 @32 - 32245 - @ - w)

ZV?;- mz \/2,2 - (M- m)2

- msin

where EZ = —J4 - j4 - 2,4 + 2sz2 + ZJZJL2 + 2j22,2. The new coordinates

are

—

2 .2 2 2]
qj = q:'] + sin_l m(J_+j = L) - 2M] (2.11)
N A S
[ .
2 2 .2 2 2 .2
q2=qé’+sin_lm(‘] +2,-'l)—M(J ‘—2—3)
| i EVe? - (M - m)?
—~
2 2 2
o = q +sin U + 2% - §°) - 2M(M - m)
M2 2 2./ 2 2
_2'\/J - M \/2, - (M -m
2 .2 .2 2
IR (6 i i ) B .Y

q
’ eV -2
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because of the overall rotational symmetry.of the system,:M can be .
set equal to zero without loss of generality. The two poténtial

parameters are given in this set of coordinates and momenta by

NI 2 .2 2 kEsing
cosY = =—Jfﬁ:;l£— cosq, cosq, + =] ) sinq, sinq,| + — 2
o A j 2%, L 3 2.
B 3 . , 243
sinqk L ‘ :
cosl = - - [2%kcosY —lgsinqz]-f cosq, |cosq, s_inqj _ (2.12)
20V3% - k2 . o
' 2 ,2. 2
- G - J. - £ sinq, cosq,
283 2 i
- The Hamiltonian is now given by
2 . :
BBy 2L 2002y neesy ] 4 P(c - astnlq, - Beos’q ] (2.13)
= 7+ 3" n"q, s°qy n q cos’q, @

2uR

+ V(R,Y,2)
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APPENDIX 3.  MoNTE—cARLb TECHNIQUE FOR"',' ) s | §

ASYMMETRIC ROTOR TRANSITIONS - - o ' !

Priﬁcipaiiy bécauSe the secoﬁd "quantum nﬁmber", v, for defining : | | |

the state of the asymmetric rétdr is nét an“integer; and may>be. » |
iméginéry, several modifications must be made in tﬁe standard Mbnte;
carlo classiﬁal‘trajectory téchnique fdr'evaluatiﬁg'the cross sections. |
Thg classical S-matrix result for the total croSé section (see Egs. (3.1)

.and (3.2)) is given by

) .
o (E) = (2J + 1) E BRI

where

s ) -1/2 : - ‘
g S PYAY | ‘ i ;
5} PN (G e 1 (.2
l 1 l | zl’qj’QVi,

2’J2,\)Z 2’

e1¢(225J2’v2;219319V1)/h

Equatlon (3 l) is transformed to a form suitable for Monte Carlo

evaluatlon by ignoring the phase in Eq. (3.2) and averaging over final

- quantum numbers so that the Jacobian factor in Eq. (3.2) cancels out.
We.fi:st approximate the infinite sum over 22 by an integral over

22.

factor

If this intégral is then transformed into an integral over dqg, the
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- which arises cancels with'the Jacbbian in the squdare of the. S-matrix

element. We now have

| - 2 - ) | -
(E) _ Th -/ -
sz’\);—jl"vl _zuE(zjl + 1)vv_§) (23 +1) ; \Zn) v o (3‘._3)

—lh

- [8GE, v, T
1. [?(-32 2 )]
(2Tl“h) o qjlsqv ,

To cempletely remove the Jacobian ue‘want td'average j2 and Vj over .
""quantum number" intervals. This is stralghtforward for 32 but not

for v2 since this is non—lnteger for the desired f1na1 state and may -

be. imaglnary Because of thlS last d1ff1cu1ty we average over a v;
interval rather than a Vy interval and take the averages of the v2 values

for the various states as the endpoints.- We now have

: : Y

E® m? < | (2

Oy, sV «i sV,  2UE(23, + 1) 2. @I+ _5_ : - < (3.4)
22V 310V 1D £ 2 |

2 1 /4 R : ,
Y L (R .
: 2 ; 1 v 1 1 '
pr F’("z)f A7) X722 7N 2
2 (vtop‘- vlow) (2ﬁh)
low 0 ’ S '
3(JzaV |t

11

where Vz " and v2 are the endpbints of the vz interval. -It:.is nowv
- top low R ' » , - A
desired to cancel out the‘Jaeubian “entirely by changing the integrals
over j2 and vg'to integrals over qj and q,
. 1 V1
Slnce it is more convenlent to compute the traJecotlres 1n the k,qk

set of canomnical varlables rather than the v,q set, we would 11ke the '
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' expreséion to involve only the former set. From the results in .

Appendix 1 we have that

aq . - : N
\)'l ' : -\).l
‘kl \Jkl + K)'+ (1 - k) éinzq ‘Jvz + 3,(, + 1)@ - k) sinzq
i . ‘ k1 11 kl
so that
/ d<\)2> = 2v, f-<_1\)2 = 2v, / éq\) d_qvi-
_ v . 1
o av, aqvl 1
= 2,013 \ 3q, qul
1 1
If we insert a function X that. is one if a trajectory falls in the
>appropriate j2,Av§1"box" and zero otherwise weiget'finaily.
: . J+i,
(E) “hzvl & | S
o, . = - > (23 + 1) -E (3.6)
Jz,vzfjl,vl 2uE(23l + 1) A o | . _|J - I
1 T
1 (9% \ ,1 (9 1[4,
a—1) f 0 I R |
2m w 2
0 0 0
XV
% 2

| . 2 2 . . ;2
\/(1_+ K) + (1 - x) sin qkl\Jvl + Jl(Jl + 1@ f K) 'sin 9y

1

where A is the length of the Vg "box". Equation (3‘6) is now in a form

amenable to Monte-Carlo evaluation and is the desired result.
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Ty, SEMICLAS,S,IC;AL.” THEORY OF NON-REACTIVE
- 'DIATOM~-DIATOM COLLISIONS

In the previous section, the necessary formalism was developed
for the - semi-classical treatment of an atom colliding w1th an asymmetrlc
rotor. .Vibrational.motion'of the rotor.was not 1nclnded, but.1ts onlyd
-effect on the‘transformations‘of_rotational'coordinates is tovmake i
the moments of inertia varying‘with.time.' Despite the complexity'of
asymmetrlc rotor motlon, this 1s st111 a one-center problem, only one.
of the collision partners is allowed to have 1nternal degrees of freedom.
This section_considers_the.simplest'Case.of a two—centerlproblem, the
collision of'two rigid diatomic rotors.

- Let one of the diatoms be molecule A made Lp of atoms labelled l
and 2. Similarly, let the other be molecule B made up of atoms 3 and 4.

The classical kinetic energy_is

g:

m K] - m . L]
-1 32 _§'+ 322 _ﬁ.* 1)
T=3 T *3 2 *7 ‘3- 2 % 1
Now define thevfollowing new coordinates:
S 2 R SRR
o= LY . S S ‘
R‘?m v Zmiri v _ i .» | v S (2a)
: 1=1 ST o -
> 1 _ 1 B L
R=:— (mr, + m,r,) - (m + m r ) L ©(2b)
v, (TR Ty 3¥3 | -
> > > T A L
LD B | T (?C)v
> > > p
=y - 2d
TBT 3TN 20

"where M =m o+ m2 MB =‘m':+ mé;'M = M + MB» Clearly R - is the locatlon._

of the overall center of mass; R is the relative vector between the center

>
of mass of A and that of B;,rA is the relative vector in A;‘and rB is the
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is the relative vector in B. The inverse transformation to Eqs. (2a-d)

is given by

> - MB+ 'm2‘—>_ - _' o . '
T~ Rcm +-§f R+ M. TA T ' - : (3a)
A .

> > MB-+ m1—> B _ | S

= R W R Ta S
. ) A :
M m, - : .

> 2 __A" _4-> o , .

3 Tem M R‘+-MB B R - - (3e)
'Mv m T,

> > __A-‘—>_i__é'+ o S N :

Ty RCm M vR MB s : o (3d)

o - M u u :
M2 AB 32 , "A 2 "B 2 :
T=5R_+ 5 R +57r, + 2 Tn . (4)
where 1. ai-+-%r-,'%i<= l—».+ l;.;__l;.= if»+_l— . The first term is ﬁhe
Pa ™ Wy My myoom, iy MMy | '

motion of the overall cenfe? of mass and can, therefore, be droppgd.
Ve are now fréé to fix a point in fhe center of mass syétem as
the ofigih'of coordinates; ﬁhg center of mass of molecuie A is taken
'to’be tha;_péint heref Let the sphericél polaf‘coordinates °f,;A be .
'(rA;6,¢) and of R be (R,a,B) whgre ¢:and B are ézimuthal angies énd

8, ® are polar angles. In'tefms‘df the spherical coordinates

| —‘;‘ ?i - 5‘5 f_i+ _—ZA 62 + $%sin’0) -~ (5a)
., ° u ! -R2 ' : : ' '
_AB 2 _ AB g2 BB 52 4 820w © (5b)
2 2 2 | .
Qhere I.-= r2
A~ MaTa
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It is mueh more diificult'to set_up'anrappropriate eoordinatev
system for molecule B. To this end let'r 'beYI; |; let.G be the engle
between R and rB, and let € be the azimuthal angle 1n the plane
perpendlcular to R at its end with € = 0 corresponding to the line of
intersection of this plane with the plane containing R and the x-axis.
This coOrdinate system is represented in Fig. 15.' In terms'of.the

A A A

'sphericaluunit vectors of ﬁ.(R,a,B), the following relations are

‘obtained
;\"_,
Rexy = choso
§+F, = r_sind si | - | 6)
a rB = rpsind sine _ E ‘ :
R
B°rB = rBsino cose -

. It can thus be seen that §,€ are the spherical angles ofvrB with

respect to the moving center of coordinates fixed at the center of
~mass of moleCule B (with the "x axis" in this system definedvby the
1ntersection of two moving planes) |

The space—fixed cartesian components of rB in the eootdinate
system are

' sina cosf cos6 + coso sinB sind sine - 51n8 sind cose

r =r 51na sinB cosS + cosa slnB siné sine + cosB sind cose

B B (7)

coso coso - sina 51n6 51n€

Where the top element'of the column matrix is the x component, etc.

. Now' u r2 is given by



>N

XBL749-7137

Fig. 15. Coordinate system for theAClassical'dynamics-ofvthe diatom~diatom system.
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. 5
‘Mg .2 MpTp .2

vty = 2 5y + 2 L 4 e+ 87 s Potns + 2,38
4+ Z&ésinévcos§ co$€;+ Z&SSihe'+ Zéésipa cds§ - 2é5c4].
where | .
¢ = cos26.+-sin26 giﬁze”
 c2'= sind cqse(sindvsinﬁ sine 4.cosa cqsG)”v'
c, = sinza-coszﬁ + gosza sinzs Sin2€‘+ Sinzé cos?e‘

'+ 2sina cosa sind cos$ sine

c, = sind(cosa sind + sino cos$ sine)

4

The momenta conjugatefto‘the coordinates are'now given by

Py = I,0
o‘- 2
. p¢ = IA¢51n 9
PrA ) pArA'
PR =‘UABR
prB= Hp*g

2+2 2
.B

p. =i, R & + MpT (clé + czé + ésine + £sind cos§ cose),

o "AB

2. 2 2 T e . ¢« ..
R'Bsin"a + Upro(c3f + c o + 6sing cose - 945)1

PB_= uAB

2. e .« o

Pg = uBrB(6_+ asine + Bsino-cose)

? =y rz(ézsinzé %'&sind:cosﬁ cose.—.éc )
3 B'B o _ 4

(@)

(8b)

(9
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' Writing fhe kinetic energy in terms of pé, p¢,.§, ;A’ r_, a,-B,AS, é

and the coordinates gives

2 2 : L
Pp - P 2 . D . . Ly o o5 :
=9 ¢ __ BB 32 4 %% 4 R%%sinla) + B2 (10)
21 . 2 2 B . .
A 21 sin“6 : : . :
A .
. we2 | |
A -2 "BB . 2 22 22 2 . 2 .
+ 2_rA + 5 (clq_ f c38 + 6 + 6.31n S + 2c2a6

+ 20£siné cos$ cose + Z&ésine'+ Zéésina cosE - 2C4éé)

The terms in Eq.iklO) can now be given some physical_meéhing. The
first two térms‘ére the rotational motion of molecule‘A.' The second is
the radial and éfbifal ﬁofion of the éenter of mass of B.. The third
and fburth terms arevthe vibrational motion of mqleéules A énd'B,:
~ respectively. The last tefm appears quite férmidable bdt it contains

somegrecogqizeable_parts, -The part

- .
U r ‘
L] L] 2
2B (8 + Zsin’s)
is just the_rotatioﬁalvmotion of molecule B if its center of mass were
fixed, and the rest represents coupling between the motion of R and the

+
T .

motion or B

In order to make fgrther progréss with qu (10) it is necessary
to éliminéte all the time‘derivatives ofvangles in favor éfvtheir
canoniéal mémenta. To thié end we note that the transformatiéﬁ between :
the set (&,B,S,é) and fhe Setv(pa, PB’ P> ps).égn'be given by #he

matrix equation
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(11) -

Py . a+ bci : !‘ ..bcz. ' "l bsine ';bsinéjpoSG qosé
va " .bcz' v:éSinza +'bc3 :bsinq cose'r —bé4 |
Pg B ‘1v :bsins , : bsina cose : b :, . : 0 |
pel» ,-bsiné cosd cosé : | —bé& f | :' -Or : bsinZs
where a'ﬁ’uABRz and b;= pBrB?. _InQefting the @Xé_matrii giﬁes thé invefsei
transformation - | |
CwlenZeamis o
| 0 ‘.1 - : | iabzsinza
—aB?Sipzq sin26 éiﬁé_  :;ab2sina‘sin26”cQs€ (;2)
.—abzsinzd sind cos6 cose.: ab2c4 | |
: '—abzsin2a7$in26 sing ::?abzsinzavsin§.éosSchsE R Py \
:_ ;abzsiha Sinzs COS?.  :i‘ . ab2c4 v o | pe' |
: siﬁza sin?5(a2b + abz) :.fébzsiﬁa césqtsinzd cosE pg
: —ab?siha vcoéd sinZG qbsEjl azbsinza % ébzé : p

6 e £

'where'c6'=:siﬁ2d éoszé +'c052&?siﬁ2§-+ 2sina cosq éipé cpé&-éine.
‘”'If,shogld now be posé?bie to iﬁtroduée'the‘orbifal éngulaf:momemtum
E and thé-rdtationalkangulgr_mqmgﬁta qf Av?Dd.B (EA_and XB)F' The
éartesiaﬁ éompbnentéuof EA.are giVen by ' ‘
-ésiq¢ —-ésiﬁé céSé éo$¢ |
f}g =fIA _ éco$¢.— $siﬁercb$6 $in¢ l.: o ';”(13§ 
| - $sin29 | |
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"so that ji’i Ii(é2 +_$zsin29). Replééing é,é by Pgs

Py
—pesih¢ ; p¢cot6 cosd
Iy = pecos¢ —.p¢cot6 sin¢ . - ,(143)'
P
- ¢
pZ- X
322 p s -0 (14b)
A , 2 :
: sin 0
Also
f&sinB - ésiha cbsa cosB
%= é, " GeosB - Bsina coso sinB | 0 (15a)
~ésin2a
or
i - L Pe
| =-gi - : -—
| { 31n8pa coto. cosBpB + ¢1Ps ~Ino Sind
1 P . o . “Pg S
= | COSBPa - cota 51anB = ©15Ps ~ Tima oing - o | (15b)

i
Iy

EPB - sino c9§€p6 + C5p8/31n6

.(cdéd‘cdsﬁcs - sina sinB cosd cose)\

5 + sino cosB cos$ coseg)

i
3
?

!

(cosa sinBc

v
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and
S ' pz’ 4 c, ' S 2cos$ cose p_p_
02 2 ‘B 20 6 2 N ST T Pate
Vo= ¥ Tt Py Ty 5 P~ 2sine ppse sind
sin o - sin"o sin" 6 : oo
Ly (15¢)
_ 2cose + 2e,poPe - 2coso_cose
sina po5 . . 2 sina PsPe
o sin"a sin"§
where.
e = c4/sin6  . “ o . ' . (154d)
cq =.sin6:coée(sinq éosS + coso sind siné)
20 2 2
cg = sin0 cos0 sin”§ sin“e - sind cos® cos 6
.+ sinzq sin§ cos$ sine - cbéza sind cosé sine
C9_='c10/51n§.
c107=.sin6(cosa'cdsd sine -'siﬁa $iné)
c11-= cosa_cosB coéé'+_sin8 sine
. clzv? cosBlsine - coso sinB cosg
o -+ .
The components of jB are
;.—a(sinsél + cosBc7) + B(?OSBCS - sintz) - 6911
-> . - . . . ' N T el E : : .
JBi— b \ OL(cosBcl - 51n8c7) +‘B(¢osBc2 + 31n§c8) %’6C12 _ o (16a)
ac, f Bc3 + §siqa cose - €c,

= o o . _ \
o+ E(cosBciO - sinB sind cosd cose)l

S+ é(cosB sind cosd cose + sinBclO
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or
: 1-C11p6 + (cosBc10 —'sinBvsinS cos$ cose) pé/sinZGE'
33 = CiZPS + (sinBe,, + cosB siné cosGlcose) pé/sinzd é . (16b)
1
. _ . ,I
A\ pgsina cose pecs/slpé /
and
2 __ | | |
B .
sin”§. : |

It is now instructive to_éxamine'thé'gesults»given in Eqgs. (14),-
(15) and (16). The expressions.for XA’ ji‘are‘the usual results for
a rigia diatomic rotor since EA i; so far uncoupled to the‘other.angular
moménta, E énd 2? contain the tefms to be expectgd if particle B had
no internél motion plus ;efmélproportiona; tb psbaha P »Althgugh
the expressioﬁ for 35 is quite fqrmidablé, it is remarkable that.jB
is given By the same ekpression that would be obtained if the centef
of mass of B»were held fixed. The difference here is that,pé andAp€
contain terms relatihg to thé orbital motion of B as well és to its
rotational motion.

Now expressing the kinetic energy in terms of the angular momenta

‘

2 2 2 2

B PO SR 2 p o
Te Sttt et S an
S Wl - B Mp ' |

AB ZUABR

-
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where'IB = uBrB.

It is again worth noting'thét exact1y~the‘same‘result
is obtained as one would naivéiy predict, fhis is also quite cémforting
since the choice of keeﬁing the centér_of mass Qf.A fixed Waé completeiy-
arbitrary éo that the final‘result_shoﬁld be reasoﬁably symmetric with
. respebt to the two molecules. |

It is now necessary to uﬁdertake the canoﬁical transfdrmatibﬁs to
formallyvreplace pe,p¢, pa,.ps, Ps and P, by fhe appropriaie ané#lar
momentum expressions so that the potenfial energyvcan be.pﬁt in terms

of their canonical coordinates. To this end we first introduce the angular

~ momentum ji which is the vector sum of jB and %.

-s;and - cota cos_BpB - cosBpE/31na

ugi = cosspa'f cota sianB - sianE/sinu - S (185)
Pg
and
S 2 - 2 o
: ; P, + p_ + 2p_p _coso.
2 2 , -
ieple Bt B (18b)

.2
. sin"a
It may be recalled'from the previous section that the square of the.
_angular momentum of an dsymmetric rotor is given by

: .2 2 ‘
2 2 +_p¢,+.pw - 2p¢pwcosQ |
j Pg 1 ; .

(19)
sin26 ‘
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where p¢1is the componénﬁ qf } aloﬁg.thgvspaqe.fixed g axis and pw.ié-Fhe
component én the body—fixedvz ékis._ In Eq. (185); pB ié the compqnént
of ?l'bﬁ the space—fixed z axis while (-pe) is the componént of
[3B and hence jl] on the axis coincident with the ﬁ vector. The
resemslance Between Eqs. (iSb) and (19) ‘is thus duite striking. It
woqld,'thefefqre; séemAthat-the rotational motion.of ﬁolécule B hés
" a similar.mathématiééi éffégt oﬁ the orbifalbmétion of B as the quyf
fixed compoﬁent:of the angulér momeﬁtum;has on the>rotatiohal motion of
an asym@etricvmotor.

"Lét us first nﬁw élimiqaté pé'in favor ofllgAlf” This is accomplished

by the canonical transformation

= - = ) ‘ - = 4 = t
9 =6  py = Py Py =dy Q= qu
B PTR PR QT
" using the -generator S ' »
. L ' r® \/jisinze' - mi ’ _
s . = . v
Fz(e ’.¢)-’JA’mA) : »q)mA- _"if sind' de (20a)
cosf m, cosb




so that

: -1 : mAcose ' -
q = ¢ - cos. : L
A 'nG‘/"Z _ 2 . |
o sinB {3, - m, o
Now to eliminate Ps in favor of ljBl

W= PRy Pty 9 =9
P I T A
S d V/j381n26' - ps

. - : . 1

Fz(é,_e,J.B‘,va) ep_ + Sing’ ds . (21a)
JBcosév _ pgcosé

and

q) = cos | ==
- I : ‘[.2 L2
. Nig - p |
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: -
Finally, to eliminate P, in favor of Ijll

= ¢ Py
q, = B P,
3 7 Q P3
Fz(a,B,Qz;Jl,mi,pE) =
‘ and

= = = '
= pg P, =.m = pg Q, = qml
= P P3 = P Q3 = QE
o JJ2 .2, 2 2 .
: Jlslnvd -m - P~ Zmlpgcosa '
QZPE + mIB + : : sina’ do
| .2 .
| oy . =1} Jjcose ¥ mP. |
= szE + mIB + jjcos . . : (22a)
| ‘/,2 2 Vﬁz 2
LY ™™ ¥ TP g
 _1 m cosa + p _1| —Pccosa - m
- mycos | — + p_cos '
| , ‘/,2 ] : ‘/.2 _ 2
sina Vi; - my K |sinaVi; - my
jzcosa + m,p
q, = cos_l 1 v Lo | (22b)
| 17T ¥V TP
. m, coso + p
q, = B - cos 1 —

1
1 . . L2 2
sina le - my

b

-m, - coso
1 pe

. 1
€ oot 0Ll‘/,z 2
o ' SIP ql " Pe
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The momenta which have quantum mechanical analogues are 3y jﬁ‘

and % so Fhat it is necessary to replace P by %. Since jl‘= I + jB

r 2 =3, -3 dl— 24320933 et
or * =1, JB an Jl JB T 23y Jg» We get
2 _ .2 . .2 2 2 2 4.2 2 . -
e 1 +'JBV_ zpe 2V - P ‘JJl " P sinQ . (23)

Now the canonical transformation -

= q' = = = q"
q, = q} Py = Ip P, =iy Q, =4q.
o o ’B

93 = Q Py = P Py =& Q; = qg

with the generator

s . — 3 o 4 s 1 € 1 N ’
F (q ,Cl ’QEZ’J].’JB’R’) , quJ + ’Jqu + f pﬁ(QE) dQ€ : (24)
J1 g . _ 1 B . »
g Q  p_(QY)
- T s ' _ I € ' € € '

€

o p :
= 2 A s - € ' '
3195, * 3p9y * QP f Q. (p) - dpg

!

S o[22 22
Q Nt BRI ekl S
Jl 3j JB i, . € €. ' e-

1 B - : V 012 2

' 3 e J1 e
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The ihtegral in Eq. (24) may be integrated by -parts to femove the inverse

sin and the expression for the generator is. then obtained

c0l 2 .2
ot ) 2) 1 -1 pE(Q' + JB " ‘Jl) (25)
F (q' qu- ’Q ;j ,j > = J q'. + J q. - J sin - - 25
273, g ®TLTB 173, "By 7B - J2 2

. 2 2 2.1 '
o aPe B+ 3y - 3p) ST L AN
-_ sin . + 23111

i; _ z
".2 2
" 13 Jl - p€

2 2.2

2 4 b 42 2.2
_ 2 _ 4 _ + . . . .
where E_» 1Jl - - ig | ZjljB + ?g ip + 2% ig- The canonical
coordinatesbafe
| [ 2 2 2]
SRR T LA O P N
qf =4q; - sin ’ (26) -
h I 2 2
) EV3y - P
-
o 2 + 3% - 53]
- v P € B 1
q. =q' =~ sin -
Jp.. I Eyi2 - o2
L 3 Pe .

The - final canonicaljtyansformation introduces the total angular .
momentum 3= }1 + EA.- Froﬁ Eqs.v(l4a), (18a), (20b) and (22b) it is

: ) 4 -»>
obtained that the cartesian components. of jA and jl are
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> 2 2 :
2\
1
iy = my . . . (27b)
'so that
2 2. 2. . ‘J}z 3 ‘J 7 2., o
= : + - T - . -
q | JA +.le+ 2mlm:A 2 J - omy .Jl m, cos(qml _ qu) . .(28)_
The final canonical transformation ié'now
= .',' . = s = 5 ‘ =
WYy, hTh Ath o 4Ty
. » . 1
q, = q! P, =3, P =] Q, = q.
2 Jp 2 “A » 2  .A 2 Ja
B 7% P3TT Py =J Q=4
U=y P TTy B =M G =
with the generator (M having'been set equal to zero)
' -1 2m J\ _ ‘ v o
4(Jl,JA,m A,Jl,JA,J-,l‘f) = Jcos "\~ T— o (@29
2, .2 .21 [ .2, .2 .2
.t eog] A P N R | L\ S TN P
chos ‘ : + JACOS
2 -2 2 2
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4 4 s 2,2
-J - - JA»+ 2J i

iy As was noted in the

2 2,2 2.2
where n” = + ?J jA + 2j1]A..
previous section M can be set equal to zero without any loss of
 geherality because'of the overall rotational symmetry of the system. . -

The new canonical coordinates are now given by

' 2m,J
o TTA .
. qJ - CO.Sv R (30)
22 2]
_ _ (; @ +3i; -3
— . n A 1 A
qJ = qj + cos , - -
1
1 nyiZ - o’
L 1 A ]
[ 2 2 2]
) : : - mA(J ,+ jA_ jl)
- ] .
q. .= q, + cos
Ja A 2 2
. . nVi, - m,

L ' 4
To c;ﬁplefe the description of the’aiatdm—diatom'syétem, it is now

_nepessary ﬁo consider the pbtential ehérgy. The potential energy

shoula depend only onAthé six distancés between thg'four gtomé. fhé

positidn vectors of the four atoms in the center of mass system are

given by Egs. (3a-d) iflﬁcm_is'removed. Letting rij be the.distance

between atom

ArlZ

r34
2
13
2

24

r

r

i

]

and atom j, it is obtained that

A
r,
R2 +r

R2f+ r

NN N

+r

+r

SN W

+ 2Rr

- 2Rr4?osél+.2Rr2cosY‘—'2r2§4cos§-

3 .

cosS - 2Rr

1

Y.

1 3cos;

cdsy_— 2r

(31a)
(31b)

(31c)

(31d)
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- LA R f r1_+ r
2 2 2
i Ty3 = R + r, T r
where
r, =
 r2 =
ry =
r, =

WN N
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- 23r4c056 - 23rlcogy_f 2r1r4cqsc
+ 2Rr3c036 + 2Rr2cosy,+ 2r2r3cos;
.
W, A
m
MAi'A
"4
T

m

3

(31e)

(31£)

(32)

" are the‘diétances of the atoms from the center of mass of the appropriate

diatoms. The angles §, v,

so that

. cosY

cosg

(Since.G is one of the ahgles of our coofdinate system for
it needs no further elabofation.) The expression for cosf is quité

cumbersome so that it may be advantageous to introduce the angle w

defined by

cos$ cosy

¢ in Egs. (3lc-f) arevdefined by the relations

cosY

Ka

RIBC036, .

= rAquosg

cosb cosO + sinb® sind cos(d - B).

+ siné'sihe[sine coso. cés(¢ - By

(33)

(34)

- sino cQsej + sind cose sin® sin(¢: - B) .

>
T

(Eq. (6))
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cdsg = éosy cos8 + siny sind cosw ‘ ' (35) .

The sigvdistanqes, and ﬁence the potential energy, has nowbbeen
pérameterigediin terms.of the si# quantitigs rA% té, R, cos8, cosy, cosw.
The physical interpretations.éf the six pbtential parameters can
now be,considered. The distances_rA and rB are the interatqmicbseparations
of the two diatoms, and'R'is‘thé distance between the centers of mass
_of-the tw0'diatoms, The anéles Y and 8 afe the,épgles,bétween thé §

vector and the internuclear axes of diatoms A and B, respectively. The

B

angle w is the dihedral angle between the plane containing R and r,
o ' > > '
and the plane containing R and r .

To complete the sémiclassical theory,tit is necessary that-all
~ ‘of ‘the Hamiltonian be expressed in terms of the classical momenta which.

correspond to quantum numbers and their canonical coordinates. Of the
2 2

e

six termsAip'the kinepic energy,.Eq. (17),Athe téfms in ji, L, ig and
pR have direct-quantﬁm ahalogies. Thelterms containing piA and piB can
now be repiaced by the,classical-equivalgnt of’the vibrational

quantuﬁ number. This.tfansformation is identical to that fbr a single
diatom aﬁd will, thereféré, not be considered here. Similarly; the

potential parameters r, and r

A B wi}l be replaced with the coordinates
conjugaté-to the vibrational quantﬁm numbers. The pafameter R of the
poténtial needs no further &ork because Pr is.a continuous variab1é 
quaﬁtdm mechanicélly. |

It now remains to express the remaining potential parameters

cosS, cosy, and cosw in terms of the appropriate momenta and their

canonical coordinates. The expressions obtained are
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2 2 .2
v . Gy - 47 - 33) .
cos§ = cosq., cosq, + 1 — ‘3 - singq, - sing - (36)
' ig L ZRJB ig 2 .
| | 0222
| | | A7+ 37 - 33) '
cosY = sinq, |sinq, cosq, + — % B sinq, cosq, (37)
| SN B B 3 © 2834 L t
cosq, |, .. : .
. 5 Ensing g
A L 2 2 L2
METRT B PSR SR Y
a g
20 .20 20
_ y (Gg - 37 - %D v
cosq, cosq, + — » sinqg, sinqg.
: '3 Uy 2231 _ L i
2 2,2,
, . ‘ g - - o _
sinY sind cosw = sinq, - sin cos cosq, cosq,
Sy, 203, dg €084y 084y, 0%y
22 2
+ sin q, sinq, cosq, - . : sin cos sing, sing,
. q9 ‘ qu qJ,B, 2233 'QQ,_‘ qp qu qJ
L2 2 2 .2 20
£%sinq A7 - 3= 35)
+ cosq, sinq, 3 % - 23 ,l _B coszqz
S S 173 S PR I J1dg
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2 2

| ja? -5 -5 |
- cosq, 5 - —-sin q, cosq, cosq,
Ia 2343, 5 B
,2 ;-2 2 :
G- 37 -4&4) '
+ 2 I sinq, cosq, sinq, cosq
N i N { . .
_ 29(31 » ') 2 3q _JB
.2 .2 2
+ — — - sinq, cosq, cosq, sinqg,
‘ZQJB - L 2 3y B
2 .2 222 L2
+ sinq, sinq, [ - - — —— ~— cos'q
. iy 4 2. . 23.3 %
1 . B\442 33, 1°B
v >sinq_
En s , , . . B
+ ———— Isin cos cosq., + ———
RYIRER B e Bt PR
A"l v A _ : ;

(@ 52 - 3D + @+ 52 - 5D cos?q,)
It is quife probable that'this_last expression is_in erfor‘or can be -
simplifiéd considerably. ‘Even if that’isvﬁot true, it ma&rbe>possibie'
to.find;a new pbtentiai parémeter to replace cosw whosé'expréssion is
not sovforﬁidable.

The question»may.now be raised of what chanées must. be madg tp
allow moleculeé‘A and B‘tO'be polyatomic. As has>be§n seen the .'
vibratibnal degrees of freédom are not coupled between the two molecules
so that they may be treated in the same fashion as for a single

isolated molecule. It may be seen from Egs. (10),.(14), (17) and (20)
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that the kinetic eﬁergy terms for the.rotation of moleéﬁle A-aré.thev
same aé fér an isolated’moleculé. Thus it is straightforward to
permit!mblecule A to Se{én asymmetric rotof siﬁce*this can be handled
ih the same way as .an isolated rotor. Of course, it tﬁis‘case more -

» potenﬁial‘parameters will'have‘tb be added and the expféssions for

cosY and coswlwili.be altéred_by the additional rotational degree of
freedoﬁ. ' The généralization of'the mblecule B would seem to be coh;
sideraﬁly ﬁbre compliéated...Bu; because the choice of keepiﬁg the
center 6f mass.§f A,fikéd'was coﬁﬁletely arbitrary, it is expected that
a'great‘deal of symmetry in A and B éhoﬁld appear in tHe final
eXpressions, ésvwas indeed thg case for the.diatom—diatom system. Thus‘
it ié reasonablé to énvisién'the péssibility Qf_applying classical

S-matrix theory to generalized bihary collisions.
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V;_.THE USE OF ACTION ANGLE VARIABLES FOR CQLLISION DYNAMICS
The’appiication of classical S-matrix theory-reqﬁirés that in the
asymptotic regions the'classical Hamiltonian be expressed in.terms of
quahtities'which are analégous to the quantum numberé-of quantum mechanics.
These claésical quantities are tﬁe classical momenta ("action variables')
which are'conservéd in the asymptqtic'regions. The canonical coordinates
to the action variébles ("angle variables") are tﬁeq.changing linearly
with time. |
For tﬁe purpose of applying_classical S—mat;ixﬂtheory,'it ié
immaterial in what set 'of classical variablesvthéfclassical trajectories’
arechmputed as long as the pfoper transformations td the action-angle
variables are made af the endpoints of the trajectbry; It would seem
that the action—ang1e variables may be a quite advantageous set in which
to computg_the trajectories since through much of the trajectory the
actionvariables are conserved or nearly conserved. No definitive study
has Been made of the relative labor of computing classical trajectories
in action—angle variables aé opposed to cartesian COofdinates, but
indicationé are that the tréjectofies require two';o five times the
computer Eihevfor a typical system when run in cartesian coordinates.
There are, howeyer,_two important problems to be considered with
the computation of classical trajectories_in actiqnéangle'variables.
One problem is that the tiﬁe derivativés of the angle'vériables appear
to have sipghlarities in some céses; no singularities are possible in
cartesian coordinates. Another problem arises with fhe computation of
the complex valued trajectories that are necessary’fbr the description

of classically forbiddén processes. The trajectories are independent of
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the contonr in.the complex t nlane‘as long as-the endnoints are tixed,
but along certain contours the computation of the trajectories'may be
numerically unstable. %hehangle variables are ginen by trigonometric
fnnctlons of the momenta, SO that when the momenta become complex, the
angle variables may become exponentlally increasing along certain t1me
paths."'

.Therefore, two questions‘must be answered.beforevaction-angle
variables can be stated to be categorically superior.OVerhcartesian
coordinates for the»computation'ofrclassical'trajectories. Are there'any
singularities in the action;angle variable exnressions§ and, if there are,
 can they be handled in a phy31cally meaningful ‘manner? How may the |
complex-time path for a complex—valued traJectory be chosen so that the
1ntegration is stable in action-angle variables? ”

To shed some light on these questions let us COnsider*a model
problem. Assume a diatomratom system nhere thefdiatom'is a harmonic
oscillator whose . vibration is nncoupled to its rotation. The classical
, Hamiltonian may be nritten as _ ‘

2 P pé b p; p2 o’

tmr—2 LD (r-1) (1)
W R uR%sinZa 2T 21sin?e 2¥p - o

+ V(R,r,cosY)

iwhere 9;¢ dre the orientation angles for the diatom; R,a,B are.the
spherical polar coordinates of the atom; r is the internalvcoordinatg;
i is the reduced mass of the system and‘uD is the reduced mass of the’
diatom; w is thevclassical vibrational frequency; r is the equilibrium

separation of the diatom and I is its moment of inertia = uDrb; and finally
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cosY = coée coso + sine;sina cds(¢ - B)

Now introduce the action variables j, the rotational angular

(2)

momentum of the diatom, and %, the orbital angular momentum. -These are

given in terms of the old variables by

., 2
- sin O

so that the relevant canonical

q =0 P, = Py
q, = ¢ Py = Py
q3=°f P3 7 Py
qQ = B P, = Pg

with the genefator

F2(9,¢,a,3;q,mj52, m2)= ¢mj +

“—‘m.COS v
LI I ‘/.2 2|
o ~t§1n6 i7 - m,
. . i
' ‘ T

transformation is-

P Q =9
Py =Py =my QY =q,
3

= - )
Py= 4 Q3 = qg
Py =gy % " G,

Bmﬂ, + jCOS_l _Jjcos®

-
- m,cosb
J

-

-1l mzcosa

- ﬁ’cos v -1
o . Q/QZ 2
Lsina = mg |

(3a)

(3b)

(&)

&
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' The canOnicalvcoordinatés are thus given by

‘i‘_l

q = cos jcosB . o o R o . (5a)
i 2.2 | e
i .
_ m,cosf .
qQ = ¢ ~.cos — 1 : ~(5b)
m , o
J , (.2 2
sinfVj~ - m,
. i
: 22 _ 2
™
. o _ m,coso
q. =B - cos g o -~ (5d)
m, :
S A . <d 2 2
' ... ]sina V& - m
where'mg is the component of 3 aldng'the space fixed z'axis_and m2 is
the component of I on the same axis.
 The projection of ﬂhé'total'angular momentum on the:space—fixed.
-z axis, M = m27+ mj, can be set equal to zero because of the overéll
rotational symmetry'of the system. The total angular momentum J is
thus given by the expression
J2 = j2‘+.22 - 2m2'+ 2’Jj2 - m2 VKZ - m2 cOs(qm - qA ) B (6)
oA . m ,
. | . i R
where mr=;m3 = - ml;and'is'iﬁtroduced-by the canonical trénsformation
= ". : '.v=' = =
9 .qj}: _“,.pl.‘q, P, =13 Q = 9
4, =9y P, =& P, =4 Q, =g,
37 Pg=my By U =9
Y = 9 ) Py =M Q = Oy



with the generator-

F,(3,2,m3,8,9) =

where Ez = sz -

6f_interest, 9 and

g

)
i

The action variable n which is proportional to the vibrational

energy is ﬁow_introduced'by the canonical transformation

.ql - r
with the generator
T

. : .
: . o
: Fz(r,n) = f o dx

= (n +

A S LAV R LI |

- =120-

2mJ

Jcos_l(;‘—%—) + Rcos”

VE h 2':2 - mz

+ jcos

4 2,2

qj,iafe given by

. -

1 m(J2 + 22 - jz) .

qi + cos

[ - '
Hm@? + 12 - 2%

q' + cos
J

r

Pp =P Pp=n Q =

22
V_/ZUD‘_"(“ + 1/2) - qu X

e ' wu )
1/2).sin_l[}r - ro) | ziajg?is]

-1 m(J2 + jz_é'ﬁz)

T 22 2
+ > ‘/ZUD(H + 1/2)w - pr (r - ;o)

1)

£~. The new coordinates

(82)

(8b)

)
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so that the angle variable is
. o wp S :
L | D v .
9, sln’ [(r ro) (2n + 1) ] _ T : o (10)
The.potential parameters may now be expressed in terms of the action angle

variables,

cosY = cosq, coqu + (J 2 =%

-~ ) ,2n + 1 B - , '
r=r + 31nqn - , | | (llb)

It may be noted that the harmonic oscillator portioﬁ of the potential,

sing, sing. (11a)
q, sing, :

i.e.,

2 2
Hw -

o
2

2
(r'—.ro)

has been incorporated into n so that the Hamiltonian is now given by

PR 22‘ .2 : ‘ , .
H = + = 4 1 + (n + 1/2) w + V(R,n,q_,cosY) (12)
- 2u _ 2uR2 21 ‘ n

The.second of the qdestioné propounded above, COncerning.;he
stability of complex—vaiuéd'trajéctories, will be considered first.
Let the:chplex tiﬁé beﬂexpresséd in‘polaf form, i.e., z = teiT where
z is ﬁhefcémplex time. | In the.numerical compﬁtatibn of classical
trajectories, t must be{bhanged in small steps governed by the criterion‘
that thé truncation errér of the»integration Be/acéeptably low. |
Howevef; if would seem'that»tﬁe chapges inT frém one step to the next

are completely arbitrary since the endpoints of the trajectory'shoﬁld
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be independent of the path in the complex t plane. Some paths in the
compléx t'piane thbugh can be numerically unstable or require excessively
long'contours.

If én is complex, Eq.'(llb) becomes

r=r, # Q’ggﬂi;l E%-{exp{igg(qn)] exp[-Im(qn)]' o A(13)
| -exp[-iRe(qn)]'éxp[+Iﬁ(qn)]} .

Now, if T is such that Im(qn)_is inéreasing élong the'coﬁtour,.the
réal part of r will be eprnentially increésing; _ This may move r
outside o£>the range of validity of the potential surface or indéed
force it to go to infinity’during the trajectory--‘Therefore, in order
to computé qomplevaaluéd classical trajectories'iﬁ action-angle
variables;:it isvnecessaryvthat it be known how T should be changed
to keep the_trajectory undér control.

Let D Be an arbitrary dynamical variable with real part u and
imaginary part v. In polar form tﬁe operator forvfﬁe derivative with
respect to_fiﬁe is given by

_. . | N
4 _e (3 _1i 3. o
dz (Bt t ar) | - a8

Since the dynémicai variables are analytic functions of the time, the

Cauchy-Riemann equations are applicable, i.e.,

u 1 v - ) : ’ ' (152)

3t t ot
dv _ _ 1 du S S
9t t ot | ‘_(15b)
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oo dD i
The quantity D = Eg is obtainable from the equations of motion. Now

. B it o
pe g = (o B e a6

t "t 3 Tt
If the Couchy-Riemann conditions, Eqs;l(ISa;b) are substituted in
Eq. (16), the expression for D becomes:
it
e

D=2 ia’? (v-iw o - o an

Separating the real and imaginéry.parts

- (eost v, stmr 3u) | (ster b _comdu) g
t 3T 't 9t t 9T t ot o

The numerical values of the real and complex part of D are known
at each step of the numerical integration from the equations of motion.

From Eq. (18); théfeforg,

9T

" _cosT 3v , sinT 3du B
Re(D) = t 'BT_+ & » - (19a)
In(by = SI0T v cosT du - (19b)
t 9T - t 9T

that ﬁi d ég-ma befsblvéd fdr to giv

so that 5= and 7— may be solv give
%% = f[éinr Im(D)'+ cosT Re(D)] ' o (20a)
EE.=.t[s#nT”Ré(D) - cosT Im(D)] ' '(20b)
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'“Eqﬁations (ZOa;b) can-nbw BgMusea to deterﬁine the.sigﬁ oflthe
rates of ;hange pf'u and v with respect to T. Thus for gach’néw time
' stép, the change in T can be chosen to produce the desifed resulté.

A particular éxampie is that the éhange in T may be chosen so that the
absolute valué'of the iméginary part . of q, is decreasing along the
.frajectory. This will'theﬁ preﬁent-the exponential runaway of r as
was pfé?ioﬁsly mentioned. fhe only restriction here is that_T.caﬁ not
be allowed to gé outside the range +n/2,0,-m/2 since such a situation
corresﬁondé-tq going backﬁafd inbtime: |

A_review of the gepérators and otﬁér expreéSions fqr'thg'model
problem provides exampies fof thé firsf quéstiOn. Tﬁé expressions in
 Eqs. (4) énd (Safd) apparenfly become pathalogicai when the projectioh
of one of the angﬁlar momenta is equél tp its mégni;ude (i.é;; j= mj'

2

or L = mg)' In Eq. (1la) the term (Jz -3 - 22)/22j may be troublesome

when % or j is equal to zero. From Eqs._(llé) and (12), the time derivative
_of qj is given by

. o 22 2 »
6 =+ oH _ l{: BVY] g+ S N Q_) sinqg._sinqj S ¢33

j - 3i I|3cos zng

a similar expression beihg obtainedvfortéz. Now when j or % gqes-to
zéro, the second fermvin Eq. (21) is appérently singuiar. -
:In a sémicléssical approach, quantum mechanical consgraints are
put on the actién variables at the endpbiﬁts of the classical trajecfories.

‘At the beginning of the trajectbry then
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=
1

n2ee + 1/2),2:

(%
I

W2 o+ un?
where'thé £, j on the righthhﬁd side are the integer quantum numbers.
It is also true that the quanfum mechanicallreéuiremeﬁts make the quantity
(j2 - m?).greater than zero at'thévstért. ‘It is now to be investigatéd
whethér,’given these initial éonditions, the troublesomé.situations
can ariéé during'the trajectbry.

In the.iimit that j or & goes to zero, both the numerator and .
denominator of the factor (JZA— j2 - 22)/22jjin_Eq. (11a) also go fo
zZero. Define}\1 to be thé raﬁio @/j and'xz ta be m/%. Equation (4)=can

. now be written

C N s ' . " :
Fy(8,0,0,8; 3,m,2,mg) = ¢m - Bm + jeos™ —Los¥ |- : "
. ’ o : 2
1 - Xl
Aycos6 | : : -\,cosa
- mcos 1 + Kz,cos—1 —Sos% + mcos v Z

sinGQll - Xi- o . 1- Ag o sina‘yl - AZ' B

s0 that;.-
. o o . - .
qg = cos_1 —Lo8r : ‘ o (5a")
V-2
V-2
i A, cosB ' " =A.cosq
q, = ¢ - B - cos"1 1 + cos_1 — 2 (5¢")
, ’ . , 2 . " 42
: _81n6 1~ Al s;na 1 AZ
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Now from Eq. (6)

_ 2 (20, o2 2 . ‘{f ~ 2 Q/"_ 2
=31 - Al) + 251 - Az) + 2% {l. Al 1 12 cosqm‘

and

2 2

CJ = = AN ‘/ - 4‘/ - o
2%y Alkz + 1 Al'. 1 Az cosq (23)
The behavior of Al o 38 jor? goés-to zero must now be considered.
: ‘1,2 . : : ‘ ,

in order to elucidate the limiting value of Eq. (23). Quantum mechanically
the ratio.)\l is
2 2 | : - |

2 m h] .
+ 1)

AT = <
173G +D 3G

. SO that'if.j is -allowed‘to.go to zero as a-continuous variable,.the
limit wiil Be zero. Since m and j both go‘to zero in the 1imit h) goes
to zero, L'Hospital's rﬁle givesvéhat the limit of m/j.is the same as
thg limit of'é/j. Té evaluate this.limit classically, cosY can be

expressed in the set of variables j, £, m, qé, q', q as

] L .. : :
V7 2 | e [etngy stna:
cosy = ‘[; m YL - T + cosq [sinqy 51nqj (24)

2 » ’ . .
_m;_ ' 1 . E . [ (] El_ 1 PUNE |
%3 cosqg ‘cosqj] + s;nqm[l.s1nqj cosqz +’j cosqj slnql]
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. a ’ : . a ’ ] L] .
Since m = - 5%—' nd j = - 5%7-, the ratio m/j is given by the expression
o :

J
. =', . ' ‘1 | . L 2 1 . . .
m/j ‘{mcosqm[Jslnqj cosqy + lcosqj sinqg] : - (25)
2.
- . . - . [} » [} - T \]
$1nqm{2351nqj 31nq£- m cosqy cqsqj}
' 2 o
{-sinq'! cosq! + cosq [m“sinq' cosq' + %jcosq' sing'
q; cosqy + cosq [ q; cosq; + &jcosqy sing]

+ msinqm[jcosqi cosqi = Rsinq3 sinqi]}-l

Although fhe behavior of Eq. (25) may not be oBvious.fpr certain special
cases, the limit of ﬁhe expfession for j and m going to zero is zero.
Sincefthe équations.are symmetric in i énd L, it.musf also be true that
AZ goes to zero as % goes to zero. _

iﬁspegtion of Eq. (4') now reveals that the.generétor has no
singulafities_as jor & go_tovzero. 'The conjugatg coérdinates in this

limit become

ga=0=0 (26)
qQ(t=0) =0
q (G or2=0)=¢-8

Thus the limit of Eq. (23) is

1n @ =3 =8 s -8 o en
P00 |
20

'Thevexpression'for cosY in.Eq. (24) may also be used to shed light'
on whether the situation j = m is'claSSically accessible. The formulas:

for the time derivativesof j and m are
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Lle o
I

' sinq! cosq} o . o o
2 _ 2 ‘/ 2 2 . % L
GcosY { | 2' -m {- - T o . (28a)

2
Mmoo ' ol it
+ cosqm[;j sing; cosqy + cosq 31nq2]

o [ 1 : : 1 ] 14
y i cosq} cosqy i 31nqis1nq2]
q [ 3

3V 2 2‘/ e, , L. m S
" Beosy j L cosqm[?'SIqu cosqz_f 3 cosqj s%nqg (28b)

2 .
Z e _ . ' : ' . '
_ 51nqm[ 23 cosqg cosqj + .s;rl.qj 31nq2]

As m appféacﬁes s both'j and m go to zéro. Howevef,7this is not
sufficient in itself to insure tﬂat.an infinite amount of time will be
required for ﬁhe_limit j=nm fo be reached. No‘easy argumeﬁt can, therefore,
be found ét present to pfové that j = m is classically inacceséiﬁlé.

The most serious difficulty with the repreéentation of the dynamics
in terms of the action—anglé variables is‘the apparent singulatity

of the time derivatives of the angle variables. . Thus Eq. (21)

. 2 2 2
_d__ v (@ 43" -2 .
95 = T~ Jcosy 2132 sinqy singy

would appear to be suspect when j.or % is equal to'zerb. Near j = 0,
it may be possible to show that the limit is finite since both the
numerator and denominator vanish. However, when £ = 0 in the expression -

for éj’ only the denominator vanishes and it would seem then that qj is

hopélessly_singular.
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E#amination of Eq. (28a) reveals that'%%-vaﬁishes in the limit

that j goes to zero. It may be possible to show that the situation,
j or £ going to zero, is classically inaccessible given the starting
conditions j, 2% unequal to zero. If not, it may still be possible to

“find a limiting procedure to proéeed safely through the trouble region.

No definitive answer is presently available. -
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VI. CLASSICAL TRAJECTORY'STUDY,OF ROTATIONAL EXCITATION
' IN LOW ENERGY He-CO COLLISIONS

Gfeen and ThaddeuSSl’have_récgntly carried out accurate quantum

mechanicgl_céupled:channel.caiculations for rotational exéitation of.
CO by He; Classical mechanical trajectory calcﬁlations wére carried
opt ﬁor}the pqrpose of coﬁpafing dynaﬁically eiaqt classical meéhénigs
- with dynamicélly'exact quantum mechanics. |

_ The_He-Cb systém was treated as a rigid rofor-atom éystem, ;he*
poféntiél béing the sﬁmekés.that used for the quantum calcﬁlation.51 The
claséicai célculations,Wéte'carried Qﬁt‘in a way‘which is eqﬁivalent
.to the now—standard quaSi-éléssical frajectoty pfocedufé.53

The rotational qunatum number j is defined by

Erét - 3(j +,1/2)2 - - ,'. o - (#)

where Eot is the classical rotational energy of the rotor and B the

rotatioﬁal constant (B = 1.9226 cm_l). Trajectories were all'begun

_ co
with j = 0, and after collision the final rotational quantum number

was deterﬁined by first éolving‘for tﬁe final non-integral valué of.j
from Eq. (1) and then assigning the‘closest integer. The cross section
for the 0 + j transition is then given by

2, ) S _ .
940 wbmax(Nj/Ntot) o . . 7(2)

where bméx is the maximum impact parameter which defines the usual impact

parameter samp_ling53 (i.e., b = bmaifg » where & is a random number),

Ntot is the total number of trajectories run, and Nj is the number of

these for which the final rotational quantum number is j. For this work,
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b wés.chésen to be 6:5 ao,and Ntot was about 1000 (ﬁhe number Qaried"
because some trajectories wére discarded)5

The classical trajectofiésvwere computed in the action-angle
variables ;elevant to the atom-rigid rotor collision system.54 In this 
representation it-is nécessarybto specify the Qalues of the'initial'
orbital aﬁgular momentum and the total angﬁlar momentum. . The orbitéi

angular momentum is given in the usual manner by
L= (V2uE1) b +1/2 : : ’ (3)
where b is determined in a random way as described above. The
square of the total angular momentﬁm was determined by
2,2 .2 . : ;
where 21,'jl are the initiai orbital and rotational angular momenta and
€2 is a random number between zero and one. The other two Monte-Carlo

variables, Qj and q, were selected randomly in the interval [0,2m].

The equations of motion in the action-angle variables are

Rew | o
(.lj i} ZIBj + BBZSY | ag;SY - | - Gb)
ay - 2/ (ur%) +3§ZS§ _3?§§Y S es
;'; éV Béosyi ' ; ;“u& , i , (5¢)

~ 3cos 9q.
Cv:Y .qJ

o - _ oV dcosy ' i _ :
=7 Beosy aq, | 6D
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where u is the reduced mass, V the potential energy and R, 19 the

translational coordinate and its conjugate momentum,‘respectively. The

potential parameter cosY and its partial derivatives are given by

| 2 2 2
cosY = cosq, cosq, *+ G 1= ) sinq, sing
j cosdy 293 T %
_ 2, L2 2
ag?s! = - g+ ? 2_ L) sinq,'sinql
3 Yy i
2 2,2 o
chzl __ G+ 22 - J ) sing, sinqz
9% 1283 - '
| 2 2 2 :
ocosy - . : (B -3 =-%)
3qj .sinqj cosq, + 2% cosqj‘sinqg
- 2 2 2
dcosy _ G -3 =2)
.'qu cosq, sinqz + 743 S?anj Qoqu

max
%y =9
1, = 4
2”9y
DY PN
PR = V/(ZuEl A1/ Rax
3= hG, +1/2)

o
\

-‘h(ﬂl +1/2)

(6)

(7a)

(7b)

(7¢)

(70)

(8)

£
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where R is a value of R where v is negligible (R = 20.0 a
max . dc ' max "0

osY

for this case), and were terminated when R = Rz'was greater than

or equal to Rmax and pR was poéitive. The trajectories were rejected

unless the quantity '

‘ 1/2
i f

2 o '2 2,2 :
T+ [211El - pR2 - .zz/Rz] /(2an) (9)

'was‘less than 0.04. (Note that if energy.is exactly conserved, this
quantity will be zero.)

In'the initialvstages'qf the project, the trajectories were
computed‘iﬁ cartesian coordinates. Thishprovided to be unsatisfactory
becauseAthg nature of‘the.potential surface. vThé attractivevwell‘pfeseﬁt_
in the poténtial gave conéiderable complex formation at these low energies
(10 cm_’1 to 150 cmil). When this occurred, as was‘verified by detaiied
examination of selected individual trajectories, enough time steps wére
required to.make the numefical integration inaccurate.

When the trajectories were compdted in action—anglg'variables, the
trajectories required about half the computer_time on the average as

v;he trajeptories in cartesian coordinates. Evén so, complex formation:
remainéd a considerable problém, necessitating the discérding of
humerically.inaccurate trajectories. This probleﬁ'was.quite energy
dependeﬁt; ébdﬁt 5% of the trajectories at an energy of 150 cm—l_were
too much in error tp.be used while-ﬁhis figure was close to 20% ét
10.cm_1. The - computer time requiféd per trajectofy was also stfongly
influencedib& the translational énergy. On the CDC 7600 used, a

typical trajéctory_required 1.0 and 0.4 secs at an energy of 10 and 150 cm-l,

respectively.
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. Tﬁgvfesults of the caiculationfarg represented iﬁ Fig. 16 as.a
function of initial translational energy, along with the quéntum mechanical -
results of Green and Thaddéus.s; The overall agreement is quite reasbnable,
prObabiy_typical-of'whét one should expect of a quasi-classical trajectory
calculation. |
| A.more‘iﬁteresting comparison is shown in fig. 17; hefe the crosél
section for the 0*j ex@itétion is.plotted as a functiog of j fbr a fixed
initial translational energy of 100 ém-l. .(The compariéon is similar
fof other §élués of E.) The quantum mec‘hanicallresultss1 show an
oscillatdry structure which tﬁe-CIASSical values do not reproduce; this
is the reason that the classical cfoss sections of the 0+2 and 03
transitioné iﬁ Fig.bl6 are éqnsistently too small and too large,
respectively. Miller52 describes the osciilations in the qqantum
resul;s in Fig..l7 as a,reﬁnégt of the Aj = 2 selection rule and - |

discusses the implications.



-135-"

I B S B N B S B B e

J=0—>2 ]

Fig. 16.

The cross
CO by He,
The solid
_ Green and
classical

100~ 1500

XBL 745-6290

section for the 0*j, j=1-4, rotational excitation of
as a function of the initial translational energy.
curve is the accurate quantum mechanlcal result of
Thaddeus,?1l and the dashed curve the results of the
trajectory calculation.



He + CO
E =100 cm”!

_XBL 745-629I

Fig. 17. The same quantity as in Fig. 16 (solid line = quantum,
dashed line = classical) but shown as a function of final
rotational quantum number; for a given initial tramslational
-energy E = 100 cm~1.
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VII. ADDITIONAL TOPICS

A. Alternate Calculation of Jacobians

In order to apply classical S-matrix methods to compute the cross

section for a transition, it is necessary to calgulate the classical
éction along the trajectories conneéting the'initial and final
quantum states. It is aiso necessary to compute the Jacobian of the
final quantum numbers with.respect to their initial conjugate coordinates.
One way to calculate the derivétives needed for the Jacobian is‘tq
computé classical tréjectories close to the de§ire& one and fhen
compute:the derivativeé by standard means of numerical analysis.

Tﬁere is another méans of claculating the.derivatives which uses
the properfies of classiéal mechanics. Consider a one-dimensional

system with a Hamiltonian

v Ri o ‘
The classical trajectofy is now determined by the initial values
Py> q1 and the equation of.motion

m(e) = - %% o Flq(t)] . ©))
' fq(t o

" If a small perturbatlon is applled to the in1t1a1 momentum, pl->p1 + dpl,

the new traJectory q (t) may be wrltten as
q'(t) = q(t) + A(t) . - 3)
where A(t) is presumably small. The equation of motion is now

 m(X +q)y=F(q@+) . _ ' -(4)
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If the force is expanded in a power series in A and only the first
order term retained

CmX

= F(q) + X——l - mg o : (5)
q(t) ' :
- IKQE .
q(t)
o,
3y
= - A5 [a(®)]
; 3q,
The derivative 5——-13 defined as .
'8—"" = lim g d - _ - (6)
P dp;>0 @ . '

where qz'is the value of the coordinate at the end of the trajectory

- But

(t = tz).
alty,py +dp) = a'(e)) = alt,y,py) + Alty)
so that

3q2 K A(tz)

L ap0 9P |
where A(t) ‘is computed with the equation of motion, Eq. (5), with the
_initial conditions

A =0 | | | ®)
dp
5 =1
A(tl) i
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The actual partial derivative required in classical S-matrix theory is

%

where ¢ is the classical action along the trajectofyf: But since

a(b(P sP ) )

2’71 _ - v _ .
—552—— =-q, : o (9a)

‘and
39(p,,pP,) _ o :

____2___i_ = ql , ’ (9b)
Py o _ _
- = : 10
19p19P, op;  9qy . o o

so thatvthé partial defivatiVes necessary in thé éomputation of the
Jacobian can-be calculated froﬁ Eq. (7).

The aboVe.method can be easily generalized to § multi—dimensionél
system. In that case tﬁe new trajectbry di(t) for tﬁé pérturbationv

Pj(tl)*pj(tl) + dpj is.given by
qj(t) = q;(t) + A (t) ' — E (11)

for all i, so that Ai(t) is determined by.

- _ oV B .
miAi(t) ""? gsaTsaTS : . all i (12)
: i joi : : :
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with the initial conditions

Ai(tl) =0 : al} i = . R (13)
Ai(tl) =0 i#j
dp. .
= —1
Aj(tl)u “3

‘The apparent diffiéulty of computing'ﬁhe A's from Eqs,‘(iZ)vand (13)
would seem to make this an impractical'method.for compufing‘the paftial
derivatives. It remains,-hOWever, an'ipteresting Curiosity.which may
be of value for some éystems. |

B. Three-Dimensional Generalization of the
' * Wall-Porter Potential i

The twq_dimensibnal Wall-Porter potentia1 surface fér célliﬁeér
reactionsss,permits tﬁe.independent édjustment of the position and
curvatures éf the sadde-point, the activation energy aﬁduthe shape of
the diatdmic poténtial curves. Thus it ié a most useful funcfional
form with‘wﬁich to.fit or approximate the coilinear reactive poﬁential
surface for an atom-diatom sYstem. 

- The Wall—quter fofm for thé potenﬁial_surface eséentially»is a
Morse—chrVebof varyiﬁg well depth and curvature thét pivots between
thg,two dissociation limits. The expression fof:the potential in the

- symmetriec case is

Veoy) = v((L - exp(-08)1% - 1} o aw

. where

Y =D - asin®20) a5
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a=o +,(q¢ ->do) sin*26 i' ' '. .' _ _(lﬁi
E= VIR -S) - (R -x)] sin“20 + (R - x ) - (ﬁ ~x) secd  (17)
. e} (o} (o} (o] C : 0 -0 . 0 v

6 = tan '[(R_ - /(R - %] : asy

In the above expressions the coordinates x and. y ére the two distances in

the collinear arrangement. The rotation is ‘about the point x = Ro’

y=

Rb and the'assumption is made that for x or y greater than R.0 the

potential is the pure diatomic Morse function. The saddle point is located

at x

: ' + .
=y = So’ and the values of g, £ and 0 can be adjusted to give

specificed values of the activation energy and the symmetric and

unsymmetric curvatures at the saddle point.

Formidable extra requirements are presented if this approach is

to be generalized to a three~dimensional surface. There are now three

dissociation limits and the surface must flow smoothly into all three.

The collinear orientations, of which there are now three, must be lower

in energy than the surrounding parts of the surface. The potgntial

should have adjustable Saddle—point-loCations and curvatures in all

three collinear planes and should be roughlylof the two-dimensional

Wall-Porter type on these planes.

By analogy‘with the two-dimensional surface for the symmetric

case (all three atoms identicél), choose the rotation to be about

the point (Ro’Ro’Rb) where the three coordinates are the three distances’

Ty rz‘and Ty Let the potential be expressed as

Ve = YL - ew(ap))® -1 a9
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Wherg g(rl,rz,r3), Y(fl,fz,r3).and E(rl,rz,rB)-are adjusted £o meet the
various coﬁditiqns. By ‘analogy, it is also postﬁlated,that thé.surface
is the‘appfopfiafe pure diatoﬁic Morse potenﬁial‘fér any of the nearest-
neighbor distances.greater thaanb. |

Define the auXilliary’codrdinates X, ¥ ana z b& X =(R.0 - rl),

y = (Ro - r2) and z .= (Rb’-'r3). Choose yY(x,y,z) to be given by

o o T A i :
Y(x,y,2) = D(L - a) +}an[A = f%"y’z)] - pbg*(x,y,2)  (20)
 whefe
S . 2 + + ) . . : . o .
CExy,p) = 2 EEz b ye). R (21)
: . x +y +z '
and _
E _ 3V3(z + R.0 - X - VE+R -y- z)(y + R -x- z) (22)
_g(x,y,z) = B 2 7.3/2 -
(x +y :

+z )
The fuhétibhig(x,y,z) is zefo on each of the three planes of collinear
orientation so that it can be-assure& that those orientatidhs'are lower
in energy. .Much of the role of sin26 for the two-dimensional case is
apparently occupied byvf(x,y,z) in this formulation. This function goes
to zero vhenever any tvo of the variables (Rb - rl), (R0 - rz), (Ro - r3)
are zero and is equal to.2 along the'main diagonal (x = y = z). The

‘other quantities in the potential expression are chosen as

a(x,y,2) = o + @, '".“*-)[A - f(.};’y’Z)] - C_gk(x,y}'Z)» R C
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E(x,y,2) = £ (x,y,2) q + L ‘/;2 + yz vt - (28)
. " -
- dg (X’Y9z) .
It is now necessary to see what limitatidns'é:e placed upon the
" heretofore unrestrained«parameters £, A, a, b, ¢, d, q, O .
The saddle points in the collinear orientation are located at r, =r, =8

] o

r, = 280. Again By analogy with the two-dimensional éaée,_éD should be

the activation energy and o the curvature of the Morse function at the .

saddle point. Then A is chosen to be the value of f(x,y,é) at the saddle

point or
: 2[3R§ + 555 - 8Rbsb]' : L
A= ——— o _ (25)
[3R” + 6S” - 8 R S ] - '
- : o o o0

(e}

£(x,¥,2z) must vanish at the saddle pbint'soAthat q must be given by |

q= A‘“[%o - Rb.+g/3kg - 8RS+ 635] ﬁ_ | (26)

,The‘thrée exponents n, m, k are free-fo Be chosen so that,the'potential_
is smooth;.and the constant b, q, d éhould reflect the extent to which
the.collinear orientation is favored. |

The interrelation of éome of these COnsténts can now hopefﬁlly be
adjustédvto.specify the symmetric and unsymmetric éufvétures at the
saddle-pqint. Unfprtunately, it appears that thi§ is ndt péssible.
Boﬁh éf the first_derivativesbare zero at the saddle point and the
second derivative in the unsymmetric directién is nonzero. However,
the second derivative in theisymmétric directioﬁbis equal to zero

. {the third derivative.dbes not vanish) so that the point is not really
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. a true saddle point in the mathematical sense. . Still the shape of
' the surface is approximately'right in fhis'region and it 1is not

known how serious this deficiency is.

ca
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